1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
23 //===----------------------------------------------------------------------===//
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
51 #define DEBUG_TYPE "x86-codegen"
53 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
54 STATISTIC(NumFP
, "Number of floating point instructions");
57 const unsigned ScratchFPReg
= 7;
59 struct FPS
: public MachineFunctionPass
{
61 FPS() : MachineFunctionPass(ID
) {
62 // This is really only to keep valgrind quiet.
63 // The logic in isLive() is too much for it.
64 memset(Stack
, 0, sizeof(Stack
));
65 memset(RegMap
, 0, sizeof(RegMap
));
68 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
70 AU
.addRequired
<EdgeBundles
>();
71 AU
.addPreservedID(MachineLoopInfoID
);
72 AU
.addPreservedID(MachineDominatorsID
);
73 MachineFunctionPass::getAnalysisUsage(AU
);
76 bool runOnMachineFunction(MachineFunction
&MF
) override
;
78 MachineFunctionProperties
getRequiredProperties() const override
{
79 return MachineFunctionProperties().set(
80 MachineFunctionProperties::Property::NoVRegs
);
83 StringRef
getPassName() const override
{ return "X86 FP Stackifier"; }
86 const TargetInstrInfo
*TII
; // Machine instruction info.
88 // Two CFG edges are related if they leave the same block, or enter the same
89 // block. The transitive closure of an edge under this relation is a
90 // LiveBundle. It represents a set of CFG edges where the live FP stack
91 // registers must be allocated identically in the x87 stack.
93 // A LiveBundle is usually all the edges leaving a block, or all the edges
94 // entering a block, but it can contain more edges if critical edges are
97 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
98 // but the exact mapping of FP registers to stack slots is fixed later.
100 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
103 // Number of pre-assigned live registers in FixStack. This is 0 when the
104 // stack order has not yet been fixed.
107 // Assigned stack order for live-in registers.
108 // FixStack[i] == getStackEntry(i) for all i < FixCount.
109 unsigned char FixStack
[8];
111 LiveBundle() : Mask(0), FixCount(0) {}
113 // Have the live registers been assigned a stack order yet?
114 bool isFixed() const { return !Mask
|| FixCount
; }
117 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
118 // with no live FP registers.
119 SmallVector
<LiveBundle
, 8> LiveBundles
;
121 // The edge bundle analysis provides indices into the LiveBundles vector.
122 EdgeBundles
*Bundles
;
124 // Return a bitmask of FP registers in block's live-in list.
125 static unsigned calcLiveInMask(MachineBasicBlock
*MBB
, bool RemoveFPs
) {
127 for (MachineBasicBlock::livein_iterator I
= MBB
->livein_begin();
128 I
!= MBB
->livein_end(); ) {
129 MCPhysReg Reg
= I
->PhysReg
;
130 static_assert(X86::FP6
- X86::FP0
== 6, "sequential regnums");
131 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
132 Mask
|= 1 << (Reg
- X86::FP0
);
134 I
= MBB
->removeLiveIn(I
);
143 // Partition all the CFG edges into LiveBundles.
144 void bundleCFGRecomputeKillFlags(MachineFunction
&MF
);
146 MachineBasicBlock
*MBB
; // Current basic block
148 // The hardware keeps track of how many FP registers are live, so we have
149 // to model that exactly. Usually, each live register corresponds to an
150 // FP<n> register, but when dealing with calls, returns, and inline
151 // assembly, it is sometimes necessary to have live scratch registers.
152 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
153 unsigned StackTop
; // The current top of the FP stack.
156 NumFPRegs
= 8 // Including scratch pseudo-registers.
159 // For each live FP<n> register, point to its Stack[] entry.
160 // The first entries correspond to FP0-FP6, the rest are scratch registers
161 // used when we need slightly different live registers than what the
162 // register allocator thinks.
163 unsigned RegMap
[NumFPRegs
];
165 // Set up our stack model to match the incoming registers to MBB.
166 void setupBlockStack();
168 // Shuffle live registers to match the expectations of successor blocks.
169 void finishBlockStack();
171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
172 void dumpStack() const {
173 dbgs() << "Stack contents:";
174 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
175 dbgs() << " FP" << Stack
[i
];
176 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
181 /// getSlot - Return the stack slot number a particular register number is
183 unsigned getSlot(unsigned RegNo
) const {
184 assert(RegNo
< NumFPRegs
&& "Regno out of range!");
185 return RegMap
[RegNo
];
188 /// isLive - Is RegNo currently live in the stack?
189 bool isLive(unsigned RegNo
) const {
190 unsigned Slot
= getSlot(RegNo
);
191 return Slot
< StackTop
&& Stack
[Slot
] == RegNo
;
194 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
195 unsigned getStackEntry(unsigned STi
) const {
197 report_fatal_error("Access past stack top!");
198 return Stack
[StackTop
-1-STi
];
201 /// getSTReg - Return the X86::ST(i) register which contains the specified
202 /// FP<RegNo> register.
203 unsigned getSTReg(unsigned RegNo
) const {
204 return StackTop
- 1 - getSlot(RegNo
) + X86::ST0
;
207 // pushReg - Push the specified FP<n> register onto the stack.
208 void pushReg(unsigned Reg
) {
209 assert(Reg
< NumFPRegs
&& "Register number out of range!");
211 report_fatal_error("Stack overflow!");
212 Stack
[StackTop
] = Reg
;
213 RegMap
[Reg
] = StackTop
++;
216 // popReg - Pop a register from the stack.
219 report_fatal_error("Cannot pop empty stack!");
220 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
223 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
224 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
225 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
226 if (isAtTop(RegNo
)) return;
228 unsigned STReg
= getSTReg(RegNo
);
229 unsigned RegOnTop
= getStackEntry(0);
231 // Swap the slots the regs are in.
232 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
234 // Swap stack slot contents.
235 if (RegMap
[RegOnTop
] >= StackTop
)
236 report_fatal_error("Access past stack top!");
237 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
239 // Emit an fxch to update the runtime processors version of the state.
240 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
244 void duplicateToTop(unsigned RegNo
, unsigned AsReg
,
245 MachineBasicBlock::iterator I
) {
246 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
247 unsigned STReg
= getSTReg(RegNo
);
248 pushReg(AsReg
); // New register on top of stack
250 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
253 /// popStackAfter - Pop the current value off of the top of the FP stack
254 /// after the specified instruction.
255 void popStackAfter(MachineBasicBlock::iterator
&I
);
257 /// freeStackSlotAfter - Free the specified register from the register
258 /// stack, so that it is no longer in a register. If the register is
259 /// currently at the top of the stack, we just pop the current instruction,
260 /// otherwise we store the current top-of-stack into the specified slot,
261 /// then pop the top of stack.
262 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
264 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266 MachineBasicBlock::iterator
267 freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
);
269 /// Adjust the live registers to be the set in Mask.
270 void adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
);
272 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
273 /// st(0), FP reg FixStack[1] is st(1) etc.
274 void shuffleStackTop(const unsigned char *FixStack
, unsigned FixCount
,
275 MachineBasicBlock::iterator I
);
277 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
279 void handleCall(MachineBasicBlock::iterator
&I
);
280 void handleReturn(MachineBasicBlock::iterator
&I
);
281 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
282 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
283 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
284 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
285 void handleCompareFP(MachineBasicBlock::iterator
&I
);
286 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
287 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
289 // Check if a COPY instruction is using FP registers.
290 static bool isFPCopy(MachineInstr
&MI
) {
291 Register DstReg
= MI
.getOperand(0).getReg();
292 Register SrcReg
= MI
.getOperand(1).getReg();
294 return X86::RFP80RegClass
.contains(DstReg
) ||
295 X86::RFP80RegClass
.contains(SrcReg
);
298 void setKillFlags(MachineBasicBlock
&MBB
) const;
304 INITIALIZE_PASS_BEGIN(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
306 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
307 INITIALIZE_PASS_END(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
310 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312 /// getFPReg - Return the X86::FPx register number for the specified operand.
313 /// For example, this returns 3 for X86::FP3.
314 static unsigned getFPReg(const MachineOperand
&MO
) {
315 assert(MO
.isReg() && "Expected an FP register!");
316 Register Reg
= MO
.getReg();
317 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
318 return Reg
- X86::FP0
;
321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
322 /// register references into FP stack references.
324 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
325 // We only need to run this pass if there are any FP registers used in this
326 // function. If it is all integer, there is nothing for us to do!
327 bool FPIsUsed
= false;
329 static_assert(X86::FP6
== X86::FP0
+6, "Register enums aren't sorted right!");
330 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
331 for (unsigned i
= 0; i
<= 6; ++i
)
332 if (!MRI
.reg_nodbg_empty(X86::FP0
+ i
)) {
338 if (!FPIsUsed
) return false;
340 Bundles
= &getAnalysis
<EdgeBundles
>();
341 TII
= MF
.getSubtarget().getInstrInfo();
343 // Prepare cross-MBB liveness.
344 bundleCFGRecomputeKillFlags(MF
);
348 // Process the function in depth first order so that we process at least one
349 // of the predecessors for every reachable block in the function.
350 df_iterator_default_set
<MachineBasicBlock
*> Processed
;
351 MachineBasicBlock
*Entry
= &MF
.front();
354 LiveBundles
[Bundles
->getBundle(Entry
->getNumber(), false)];
356 // In regcall convention, some FP registers may not be passed through
357 // the stack, so they will need to be assigned to the stack first
358 if ((Entry
->getParent()->getFunction().getCallingConv() ==
359 CallingConv::X86_RegCall
) && (Bundle
.Mask
&& !Bundle
.FixCount
)) {
360 // In the register calling convention, up to one FP argument could be
361 // saved in the first FP register.
362 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
363 // that the FP registers contain arguments.
364 // The actual value is passed in FP0.
365 // Here we fix the stack and mark FP0 as pre-assigned register.
366 assert((Bundle
.Mask
& 0xFE) == 0 &&
367 "Only FP0 could be passed as an argument");
369 Bundle
.FixStack
[0] = 0;
372 bool Changed
= false;
373 for (MachineBasicBlock
*BB
: depth_first_ext(Entry
, Processed
))
374 Changed
|= processBasicBlock(MF
, *BB
);
376 // Process any unreachable blocks in arbitrary order now.
377 if (MF
.size() != Processed
.size())
378 for (MachineBasicBlock
&BB
: MF
)
379 if (Processed
.insert(&BB
).second
)
380 Changed
|= processBasicBlock(MF
, BB
);
387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
388 /// live-out sets for the FP registers. Consistent means that the set of
389 /// registers live-out from a block is identical to the live-in set of all
390 /// successors. This is not enforced by the normal live-in lists since
391 /// registers may be implicitly defined, or not used by all successors.
392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction
&MF
) {
393 assert(LiveBundles
.empty() && "Stale data in LiveBundles");
394 LiveBundles
.resize(Bundles
->getNumBundles());
396 // Gather the actual live-in masks for all MBBs.
397 for (MachineBasicBlock
&MBB
: MF
) {
400 const unsigned Mask
= calcLiveInMask(&MBB
, false);
403 // Update MBB ingoing bundle mask.
404 LiveBundles
[Bundles
->getBundle(MBB
.getNumber(), false)].Mask
|= Mask
;
408 /// processBasicBlock - Loop over all of the instructions in the basic block,
409 /// transforming FP instructions into their stack form.
411 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
412 bool Changed
= false;
417 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
418 MachineInstr
&MI
= *I
;
419 uint64_t Flags
= MI
.getDesc().TSFlags
;
421 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
422 if (MI
.isInlineAsm())
423 FPInstClass
= X86II::SpecialFP
;
425 if (MI
.isCopy() && isFPCopy(MI
))
426 FPInstClass
= X86II::SpecialFP
;
428 if (MI
.isImplicitDef() &&
429 X86::RFP80RegClass
.contains(MI
.getOperand(0).getReg()))
430 FPInstClass
= X86II::SpecialFP
;
433 FPInstClass
= X86II::SpecialFP
;
435 if (FPInstClass
== X86II::NotFP
)
436 continue; // Efficiently ignore non-fp insts!
438 MachineInstr
*PrevMI
= nullptr;
440 PrevMI
= &*std::prev(I
);
442 ++NumFP
; // Keep track of # of pseudo instrs
443 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI
);
445 // Get dead variables list now because the MI pointer may be deleted as part
447 SmallVector
<unsigned, 8> DeadRegs
;
448 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
449 const MachineOperand
&MO
= MI
.getOperand(i
);
450 if (MO
.isReg() && MO
.isDead())
451 DeadRegs
.push_back(MO
.getReg());
454 switch (FPInstClass
) {
455 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
456 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
457 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
458 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
459 case X86II::CompareFP
: handleCompareFP(I
); break;
460 case X86II::CondMovFP
: handleCondMovFP(I
); break;
461 case X86II::SpecialFP
: handleSpecialFP(I
); break;
462 default: llvm_unreachable("Unknown FP Type!");
465 // Check to see if any of the values defined by this instruction are dead
466 // after definition. If so, pop them.
467 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
468 unsigned Reg
= DeadRegs
[i
];
469 // Check if Reg is live on the stack. An inline-asm register operand that
470 // is in the clobber list and marked dead might not be live on the stack.
471 static_assert(X86::FP7
- X86::FP0
== 7, "sequential FP regnumbers");
472 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& isLive(Reg
-X86::FP0
)) {
473 LLVM_DEBUG(dbgs() << "Register FP#" << Reg
- X86::FP0
<< " is dead!\n");
474 freeStackSlotAfter(I
, Reg
-X86::FP0
);
478 // Print out all of the instructions expanded to if -debug
480 MachineBasicBlock::iterator PrevI
= PrevMI
;
482 dbgs() << "Just deleted pseudo instruction\n";
484 MachineBasicBlock::iterator Start
= I
;
485 // Rewind to first instruction newly inserted.
486 while (Start
!= BB
.begin() && std::prev(Start
) != PrevI
)
488 dbgs() << "Inserted instructions:\n\t";
489 Start
->print(dbgs());
490 while (++Start
!= std::next(I
)) {
505 /// setupBlockStack - Use the live bundles to set up our model of the stack
506 /// to match predecessors' live out stack.
507 void FPS::setupBlockStack() {
508 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB
)
509 << " derived from " << MBB
->getName() << ".\n");
511 // Get the live-in bundle for MBB.
512 const LiveBundle
&Bundle
=
513 LiveBundles
[Bundles
->getBundle(MBB
->getNumber(), false)];
516 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
520 // Depth-first iteration should ensure that we always have an assigned stack.
521 assert(Bundle
.isFixed() && "Reached block before any predecessors");
523 // Push the fixed live-in registers.
524 for (unsigned i
= Bundle
.FixCount
; i
> 0; --i
) {
525 LLVM_DEBUG(dbgs() << "Live-in st(" << (i
- 1) << "): %fp"
526 << unsigned(Bundle
.FixStack
[i
- 1]) << '\n');
527 pushReg(Bundle
.FixStack
[i
-1]);
530 // Kill off unwanted live-ins. This can happen with a critical edge.
531 // FIXME: We could keep these live registers around as zombies. They may need
532 // to be revived at the end of a short block. It might save a few instrs.
533 unsigned Mask
= calcLiveInMask(MBB
, /*RemoveFPs=*/true);
534 adjustLiveRegs(Mask
, MBB
->begin());
535 LLVM_DEBUG(MBB
->dump());
538 /// finishBlockStack - Revive live-outs that are implicitly defined out of
539 /// MBB. Shuffle live registers to match the expected fixed stack of any
540 /// predecessors, and ensure that all predecessors are expecting the same
542 void FPS::finishBlockStack() {
543 // The RET handling below takes care of return blocks for us.
544 if (MBB
->succ_empty())
547 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB
)
548 << " derived from " << MBB
->getName() << ".\n");
550 // Get MBB's live-out bundle.
551 unsigned BundleIdx
= Bundles
->getBundle(MBB
->getNumber(), true);
552 LiveBundle
&Bundle
= LiveBundles
[BundleIdx
];
554 // We may need to kill and define some registers to match successors.
555 // FIXME: This can probably be combined with the shuffle below.
556 MachineBasicBlock::iterator Term
= MBB
->getFirstTerminator();
557 adjustLiveRegs(Bundle
.Mask
, Term
);
560 LLVM_DEBUG(dbgs() << "No live-outs.\n");
564 // Has the stack order been fixed yet?
565 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx
<< ": ");
566 if (Bundle
.isFixed()) {
567 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
568 shuffleStackTop(Bundle
.FixStack
, Bundle
.FixCount
, Term
);
570 // Not fixed yet, we get to choose.
571 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
572 Bundle
.FixCount
= StackTop
;
573 for (unsigned i
= 0; i
< StackTop
; ++i
)
574 Bundle
.FixStack
[i
] = getStackEntry(i
);
579 //===----------------------------------------------------------------------===//
580 // Efficient Lookup Table Support
581 //===----------------------------------------------------------------------===//
587 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
588 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
591 friend bool LLVM_ATTRIBUTE_UNUSED
operator<(unsigned V
,
592 const TableEntry
&TE
) {
598 static int Lookup(ArrayRef
<TableEntry
> Table
, unsigned Opcode
) {
599 const TableEntry
*I
= llvm::lower_bound(Table
, Opcode
);
600 if (I
!= Table
.end() && I
->from
== Opcode
)
606 #define ASSERT_SORTED(TABLE)
608 #define ASSERT_SORTED(TABLE) \
610 static std::atomic<bool> TABLE##Checked(false); \
611 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
612 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \
613 "All lookup tables must be sorted for efficient access!"); \
614 TABLE##Checked.store(true, std::memory_order_relaxed); \
619 //===----------------------------------------------------------------------===//
620 // Register File -> Register Stack Mapping Methods
621 //===----------------------------------------------------------------------===//
623 // OpcodeTable - Sorted map of register instructions to their stack version.
624 // The first element is an register file pseudo instruction, the second is the
625 // concrete X86 instruction which uses the register stack.
627 static const TableEntry OpcodeTable
[] = {
628 { X86::ABS_Fp32
, X86::ABS_F
},
629 { X86::ABS_Fp64
, X86::ABS_F
},
630 { X86::ABS_Fp80
, X86::ABS_F
},
631 { X86::ADD_Fp32m
, X86::ADD_F32m
},
632 { X86::ADD_Fp64m
, X86::ADD_F64m
},
633 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
634 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
635 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
636 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
637 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
638 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
639 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
640 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
641 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
642 { X86::CHS_Fp32
, X86::CHS_F
},
643 { X86::CHS_Fp64
, X86::CHS_F
},
644 { X86::CHS_Fp80
, X86::CHS_F
},
645 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
646 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
647 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
648 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
649 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
650 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
651 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
652 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
653 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
654 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
655 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
656 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
657 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
658 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
659 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
660 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
661 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
662 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
663 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
664 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
665 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
666 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
667 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
668 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
669 { X86::COS_Fp32
, X86::COS_F
},
670 { X86::COS_Fp64
, X86::COS_F
},
671 { X86::COS_Fp80
, X86::COS_F
},
672 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
673 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
674 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
675 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
676 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
677 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
678 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
679 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
680 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
681 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
682 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
683 { X86::DIV_Fp32m
, X86::DIV_F32m
},
684 { X86::DIV_Fp64m
, X86::DIV_F64m
},
685 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
686 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
687 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
688 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
689 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
690 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
691 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
692 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
693 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
694 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
695 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
696 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
697 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
698 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
699 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
700 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
701 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
702 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
703 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
704 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
705 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
706 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
707 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
708 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
709 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
710 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
711 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
712 { X86::IST_Fp16m32
, X86::IST_F16m
},
713 { X86::IST_Fp16m64
, X86::IST_F16m
},
714 { X86::IST_Fp16m80
, X86::IST_F16m
},
715 { X86::IST_Fp32m32
, X86::IST_F32m
},
716 { X86::IST_Fp32m64
, X86::IST_F32m
},
717 { X86::IST_Fp32m80
, X86::IST_F32m
},
718 { X86::IST_Fp64m32
, X86::IST_FP64m
},
719 { X86::IST_Fp64m64
, X86::IST_FP64m
},
720 { X86::IST_Fp64m80
, X86::IST_FP64m
},
721 { X86::LD_Fp032
, X86::LD_F0
},
722 { X86::LD_Fp064
, X86::LD_F0
},
723 { X86::LD_Fp080
, X86::LD_F0
},
724 { X86::LD_Fp132
, X86::LD_F1
},
725 { X86::LD_Fp164
, X86::LD_F1
},
726 { X86::LD_Fp180
, X86::LD_F1
},
727 { X86::LD_Fp32m
, X86::LD_F32m
},
728 { X86::LD_Fp32m64
, X86::LD_F32m
},
729 { X86::LD_Fp32m80
, X86::LD_F32m
},
730 { X86::LD_Fp64m
, X86::LD_F64m
},
731 { X86::LD_Fp64m80
, X86::LD_F64m
},
732 { X86::LD_Fp80m
, X86::LD_F80m
},
733 { X86::MUL_Fp32m
, X86::MUL_F32m
},
734 { X86::MUL_Fp64m
, X86::MUL_F64m
},
735 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
736 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
737 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
738 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
739 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
740 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
741 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
742 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
743 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
744 { X86::SIN_Fp32
, X86::SIN_F
},
745 { X86::SIN_Fp64
, X86::SIN_F
},
746 { X86::SIN_Fp80
, X86::SIN_F
},
747 { X86::SQRT_Fp32
, X86::SQRT_F
},
748 { X86::SQRT_Fp64
, X86::SQRT_F
},
749 { X86::SQRT_Fp80
, X86::SQRT_F
},
750 { X86::ST_Fp32m
, X86::ST_F32m
},
751 { X86::ST_Fp64m
, X86::ST_F64m
},
752 { X86::ST_Fp64m32
, X86::ST_F32m
},
753 { X86::ST_Fp80m32
, X86::ST_F32m
},
754 { X86::ST_Fp80m64
, X86::ST_F64m
},
755 { X86::ST_FpP80m
, X86::ST_FP80m
},
756 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
757 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
758 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
759 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
760 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
761 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
762 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
763 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
764 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
765 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
766 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
767 { X86::SUB_Fp32m
, X86::SUB_F32m
},
768 { X86::SUB_Fp64m
, X86::SUB_F64m
},
769 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
770 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
771 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
772 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
773 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
774 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
775 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
776 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
777 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
778 { X86::TST_Fp32
, X86::TST_F
},
779 { X86::TST_Fp64
, X86::TST_F
},
780 { X86::TST_Fp80
, X86::TST_F
},
781 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
782 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
783 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
784 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
785 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
786 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
789 static unsigned getConcreteOpcode(unsigned Opcode
) {
790 ASSERT_SORTED(OpcodeTable
);
791 int Opc
= Lookup(OpcodeTable
, Opcode
);
792 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
796 //===----------------------------------------------------------------------===//
798 //===----------------------------------------------------------------------===//
800 // PopTable - Sorted map of instructions to their popping version. The first
801 // element is an instruction, the second is the version which pops.
803 static const TableEntry PopTable
[] = {
804 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
806 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
807 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
809 { X86::IST_F16m
, X86::IST_FP16m
},
810 { X86::IST_F32m
, X86::IST_FP32m
},
812 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
814 { X86::ST_F32m
, X86::ST_FP32m
},
815 { X86::ST_F64m
, X86::ST_FP64m
},
816 { X86::ST_Frr
, X86::ST_FPrr
},
818 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
819 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
821 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
823 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
824 { X86::UCOM_Fr
, X86::UCOM_FPr
},
827 /// popStackAfter - Pop the current value off of the top of the FP stack after
828 /// the specified instruction. This attempts to be sneaky and combine the pop
829 /// into the instruction itself if possible. The iterator is left pointing to
830 /// the last instruction, be it a new pop instruction inserted, or the old
831 /// instruction if it was modified in place.
833 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
834 MachineInstr
&MI
= *I
;
835 const DebugLoc
&dl
= MI
.getDebugLoc();
836 ASSERT_SORTED(PopTable
);
840 // Check to see if there is a popping version of this instruction...
841 int Opcode
= Lookup(PopTable
, I
->getOpcode());
843 I
->setDesc(TII
->get(Opcode
));
844 if (Opcode
== X86::UCOM_FPPr
)
846 } else { // Insert an explicit pop
847 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
851 /// freeStackSlotAfter - Free the specified register from the register stack, so
852 /// that it is no longer in a register. If the register is currently at the top
853 /// of the stack, we just pop the current instruction, otherwise we store the
854 /// current top-of-stack into the specified slot, then pop the top of stack.
855 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
856 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
861 // Otherwise, store the top of stack into the dead slot, killing the operand
862 // without having to add in an explicit xchg then pop.
864 I
= freeStackSlotBefore(++I
, FPRegNo
);
867 /// freeStackSlotBefore - Free the specified register without trying any
869 MachineBasicBlock::iterator
870 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
) {
871 unsigned STReg
= getSTReg(FPRegNo
);
872 unsigned OldSlot
= getSlot(FPRegNo
);
873 unsigned TopReg
= Stack
[StackTop
-1];
874 Stack
[OldSlot
] = TopReg
;
875 RegMap
[TopReg
] = OldSlot
;
876 RegMap
[FPRegNo
] = ~0;
877 Stack
[--StackTop
] = ~0;
878 return BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::ST_FPrr
))
883 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
884 /// registers with a bit in Mask are live.
885 void FPS::adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
) {
886 unsigned Defs
= Mask
;
888 for (unsigned i
= 0; i
< StackTop
; ++i
) {
889 unsigned RegNo
= Stack
[i
];
890 if (!(Defs
& (1 << RegNo
)))
891 // This register is live, but we don't want it.
892 Kills
|= (1 << RegNo
);
894 // We don't need to imp-def this live register.
895 Defs
&= ~(1 << RegNo
);
897 assert((Kills
& Defs
) == 0 && "Register needs killing and def'ing?");
899 // Produce implicit-defs for free by using killed registers.
900 while (Kills
&& Defs
) {
901 unsigned KReg
= countTrailingZeros(Kills
);
902 unsigned DReg
= countTrailingZeros(Defs
);
903 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg
<< " as imp %fp" << DReg
905 std::swap(Stack
[getSlot(KReg
)], Stack
[getSlot(DReg
)]);
906 std::swap(RegMap
[KReg
], RegMap
[DReg
]);
907 Kills
&= ~(1 << KReg
);
908 Defs
&= ~(1 << DReg
);
911 // Kill registers by popping.
912 if (Kills
&& I
!= MBB
->begin()) {
913 MachineBasicBlock::iterator I2
= std::prev(I
);
915 unsigned KReg
= getStackEntry(0);
916 if (!(Kills
& (1 << KReg
)))
918 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg
<< "\n");
920 Kills
&= ~(1 << KReg
);
924 // Manually kill the rest.
926 unsigned KReg
= countTrailingZeros(Kills
);
927 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg
<< "\n");
928 freeStackSlotBefore(I
, KReg
);
929 Kills
&= ~(1 << KReg
);
932 // Load zeros for all the imp-defs.
934 unsigned DReg
= countTrailingZeros(Defs
);
935 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg
<< " as 0\n");
936 BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::LD_F0
));
938 Defs
&= ~(1 << DReg
);
941 // Now we should have the correct registers live.
942 LLVM_DEBUG(dumpStack());
943 assert(StackTop
== countPopulation(Mask
) && "Live count mismatch");
946 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
947 /// FixCount entries into the order given by FixStack.
948 /// FIXME: Is there a better algorithm than insertion sort?
949 void FPS::shuffleStackTop(const unsigned char *FixStack
,
951 MachineBasicBlock::iterator I
) {
952 // Move items into place, starting from the desired stack bottom.
954 // Old register at position FixCount.
955 unsigned OldReg
= getStackEntry(FixCount
);
956 // Desired register at position FixCount.
957 unsigned Reg
= FixStack
[FixCount
];
960 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
963 moveToTop(OldReg
, I
);
965 LLVM_DEBUG(dumpStack());
969 //===----------------------------------------------------------------------===//
970 // Instruction transformation implementation
971 //===----------------------------------------------------------------------===//
973 void FPS::handleCall(MachineBasicBlock::iterator
&I
) {
974 unsigned STReturns
= 0;
975 const MachineFunction
* MF
= I
->getParent()->getParent();
977 for (const auto &MO
: I
->operands()) {
981 unsigned R
= MO
.getReg() - X86::FP0
;
984 if (MF
->getFunction().getCallingConv() != CallingConv::X86_RegCall
) {
985 assert(MO
.isDef() && MO
.isImplicit());
992 unsigned N
= countTrailingOnes(STReturns
);
994 // FP registers used for function return must be consecutive starting at
996 assert(STReturns
== 0 || (isMask_32(STReturns
) && N
<= 2));
998 // Reset the FP Stack - It is required because of possible leftovers from
999 // passed arguments. The caller should assume that the FP stack is
1000 // returned empty (unless the callee returns values on FP stack).
1001 while (StackTop
> 0)
1004 for (unsigned I
= 0; I
< N
; ++I
)
1008 /// If RET has an FP register use operand, pass the first one in ST(0) and
1009 /// the second one in ST(1).
1010 void FPS::handleReturn(MachineBasicBlock::iterator
&I
) {
1011 MachineInstr
&MI
= *I
;
1013 // Find the register operands.
1014 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1015 unsigned LiveMask
= 0;
1017 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1018 MachineOperand
&Op
= MI
.getOperand(i
);
1019 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1021 // FP Register uses must be kills unless there are two uses of the same
1022 // register, in which case only one will be a kill.
1023 assert(Op
.isUse() &&
1024 (Op
.isKill() || // Marked kill.
1025 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1026 MI
.killsRegister(Op
.getReg())) && // Later use is marked kill.
1027 "Ret only defs operands, and values aren't live beyond it");
1029 if (FirstFPRegOp
== ~0U)
1030 FirstFPRegOp
= getFPReg(Op
);
1032 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1033 SecondFPRegOp
= getFPReg(Op
);
1035 LiveMask
|= (1 << getFPReg(Op
));
1037 // Remove the operand so that later passes don't see it.
1038 MI
.RemoveOperand(i
);
1043 // We may have been carrying spurious live-ins, so make sure only the
1044 // returned registers are left live.
1045 adjustLiveRegs(LiveMask
, MI
);
1046 if (!LiveMask
) return; // Quick check to see if any are possible.
1048 // There are only four possibilities here:
1049 // 1) we are returning a single FP value. In this case, it has to be in
1050 // ST(0) already, so just declare success by removing the value from the
1052 if (SecondFPRegOp
== ~0U) {
1053 // Assert that the top of stack contains the right FP register.
1054 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1055 "Top of stack not the right register for RET!");
1057 // Ok, everything is good, mark the value as not being on the stack
1058 // anymore so that our assertion about the stack being empty at end of
1059 // block doesn't fire.
1064 // Otherwise, we are returning two values:
1065 // 2) If returning the same value for both, we only have one thing in the FP
1066 // stack. Consider: RET FP1, FP1
1067 if (StackTop
== 1) {
1068 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1069 "Stack misconfiguration for RET!");
1071 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1072 // register to hold it.
1073 unsigned NewReg
= ScratchFPReg
;
1074 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1075 FirstFPRegOp
= NewReg
;
1078 /// Okay we know we have two different FPx operands now:
1079 assert(StackTop
== 2 && "Must have two values live!");
1081 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1082 /// in ST(1). In this case, emit an fxch.
1083 if (getStackEntry(0) == SecondFPRegOp
) {
1084 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1085 moveToTop(FirstFPRegOp
, MI
);
1088 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1089 /// ST(1). Just remove both from our understanding of the stack and return.
1090 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1091 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1095 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1097 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
1098 MachineInstr
&MI
= *I
;
1099 unsigned DestReg
= getFPReg(MI
.getOperand(0));
1101 // Change from the pseudo instruction to the concrete instruction.
1102 MI
.RemoveOperand(0); // Remove the explicit ST(0) operand
1103 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1105 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ true, /*isImp*/ true));
1107 // Result gets pushed on the stack.
1111 /// handleOneArgFP - fst <mem>, ST(0)
1113 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
1114 MachineInstr
&MI
= *I
;
1115 unsigned NumOps
= MI
.getDesc().getNumOperands();
1116 assert((NumOps
== X86::AddrNumOperands
+ 1 || NumOps
== 1) &&
1117 "Can only handle fst* & ftst instructions!");
1119 // Is this the last use of the source register?
1120 unsigned Reg
= getFPReg(MI
.getOperand(NumOps
- 1));
1121 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
);
1123 // FISTP64m is strange because there isn't a non-popping versions.
1124 // If we have one _and_ we don't want to pop the operand, duplicate the value
1125 // on the stack instead of moving it. This ensure that popping the value is
1127 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1129 if (!KillsSrc
&& (MI
.getOpcode() == X86::IST_Fp64m32
||
1130 MI
.getOpcode() == X86::ISTT_Fp16m32
||
1131 MI
.getOpcode() == X86::ISTT_Fp32m32
||
1132 MI
.getOpcode() == X86::ISTT_Fp64m32
||
1133 MI
.getOpcode() == X86::IST_Fp64m64
||
1134 MI
.getOpcode() == X86::ISTT_Fp16m64
||
1135 MI
.getOpcode() == X86::ISTT_Fp32m64
||
1136 MI
.getOpcode() == X86::ISTT_Fp64m64
||
1137 MI
.getOpcode() == X86::IST_Fp64m80
||
1138 MI
.getOpcode() == X86::ISTT_Fp16m80
||
1139 MI
.getOpcode() == X86::ISTT_Fp32m80
||
1140 MI
.getOpcode() == X86::ISTT_Fp64m80
||
1141 MI
.getOpcode() == X86::ST_FpP80m
)) {
1142 duplicateToTop(Reg
, ScratchFPReg
, I
);
1144 moveToTop(Reg
, I
); // Move to the top of the stack...
1147 // Convert from the pseudo instruction to the concrete instruction.
1148 MI
.RemoveOperand(NumOps
- 1); // Remove explicit ST(0) operand
1149 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1151 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ false, /*isImp*/ true));
1153 if (MI
.getOpcode() == X86::IST_FP64m
|| MI
.getOpcode() == X86::ISTT_FP16m
||
1154 MI
.getOpcode() == X86::ISTT_FP32m
|| MI
.getOpcode() == X86::ISTT_FP64m
||
1155 MI
.getOpcode() == X86::ST_FP80m
) {
1157 report_fatal_error("Stack empty??");
1159 } else if (KillsSrc
) { // Last use of operand?
1165 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1166 /// replace the value with a newly computed value. These instructions may have
1167 /// non-fp operands after their FP operands.
1171 /// R1 = fadd R2, [mem]
1173 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
1174 MachineInstr
&MI
= *I
;
1176 unsigned NumOps
= MI
.getDesc().getNumOperands();
1177 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
1180 // Is this the last use of the source register?
1181 unsigned Reg
= getFPReg(MI
.getOperand(1));
1182 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
);
1185 // If this is the last use of the source register, just make sure it's on
1186 // the top of the stack.
1189 report_fatal_error("Stack cannot be empty!");
1191 pushReg(getFPReg(MI
.getOperand(0)));
1193 // If this is not the last use of the source register, _copy_ it to the top
1195 duplicateToTop(Reg
, getFPReg(MI
.getOperand(0)), I
);
1198 // Change from the pseudo instruction to the concrete instruction.
1199 MI
.RemoveOperand(1); // Drop the source operand.
1200 MI
.RemoveOperand(0); // Drop the destination operand.
1201 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1205 //===----------------------------------------------------------------------===//
1206 // Define tables of various ways to map pseudo instructions
1209 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1210 static const TableEntry ForwardST0Table
[] = {
1211 { X86::ADD_Fp32
, X86::ADD_FST0r
},
1212 { X86::ADD_Fp64
, X86::ADD_FST0r
},
1213 { X86::ADD_Fp80
, X86::ADD_FST0r
},
1214 { X86::DIV_Fp32
, X86::DIV_FST0r
},
1215 { X86::DIV_Fp64
, X86::DIV_FST0r
},
1216 { X86::DIV_Fp80
, X86::DIV_FST0r
},
1217 { X86::MUL_Fp32
, X86::MUL_FST0r
},
1218 { X86::MUL_Fp64
, X86::MUL_FST0r
},
1219 { X86::MUL_Fp80
, X86::MUL_FST0r
},
1220 { X86::SUB_Fp32
, X86::SUB_FST0r
},
1221 { X86::SUB_Fp64
, X86::SUB_FST0r
},
1222 { X86::SUB_Fp80
, X86::SUB_FST0r
},
1225 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1226 static const TableEntry ReverseST0Table
[] = {
1227 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
1228 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
1229 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
1230 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
1231 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
1232 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
1233 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
1234 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
1235 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
1236 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
1237 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
1238 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
1241 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1242 static const TableEntry ForwardSTiTable
[] = {
1243 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
1244 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
1245 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
1246 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
1247 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
1248 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
1249 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
1250 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
1251 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
1252 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
1253 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
1254 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
1257 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1258 static const TableEntry ReverseSTiTable
[] = {
1259 { X86::ADD_Fp32
, X86::ADD_FrST0
},
1260 { X86::ADD_Fp64
, X86::ADD_FrST0
},
1261 { X86::ADD_Fp80
, X86::ADD_FrST0
},
1262 { X86::DIV_Fp32
, X86::DIV_FrST0
},
1263 { X86::DIV_Fp64
, X86::DIV_FrST0
},
1264 { X86::DIV_Fp80
, X86::DIV_FrST0
},
1265 { X86::MUL_Fp32
, X86::MUL_FrST0
},
1266 { X86::MUL_Fp64
, X86::MUL_FrST0
},
1267 { X86::MUL_Fp80
, X86::MUL_FrST0
},
1268 { X86::SUB_Fp32
, X86::SUB_FrST0
},
1269 { X86::SUB_Fp64
, X86::SUB_FrST0
},
1270 { X86::SUB_Fp80
, X86::SUB_FrST0
},
1274 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1275 /// instructions which need to be simplified and possibly transformed.
1277 /// Result: ST(0) = fsub ST(0), ST(i)
1278 /// ST(i) = fsub ST(0), ST(i)
1279 /// ST(0) = fsubr ST(0), ST(i)
1280 /// ST(i) = fsubr ST(0), ST(i)
1282 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
1283 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
1284 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
1285 MachineInstr
&MI
= *I
;
1287 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1288 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
1289 unsigned Dest
= getFPReg(MI
.getOperand(0));
1290 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1291 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1292 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
);
1293 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1294 DebugLoc dl
= MI
.getDebugLoc();
1296 unsigned TOS
= getStackEntry(0);
1298 // One of our operands must be on the top of the stack. If neither is yet, we
1299 // need to move one.
1300 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
1301 // We can choose to move either operand to the top of the stack. If one of
1302 // the operands is killed by this instruction, we want that one so that we
1303 // can update right on top of the old version.
1305 moveToTop(Op0
, I
); // Move dead operand to TOS.
1307 } else if (KillsOp1
) {
1311 // All of the operands are live after this instruction executes, so we
1312 // cannot update on top of any operand. Because of this, we must
1313 // duplicate one of the stack elements to the top. It doesn't matter
1314 // which one we pick.
1316 duplicateToTop(Op0
, Dest
, I
);
1320 } else if (!KillsOp0
&& !KillsOp1
) {
1321 // If we DO have one of our operands at the top of the stack, but we don't
1322 // have a dead operand, we must duplicate one of the operands to a new slot
1324 duplicateToTop(Op0
, Dest
, I
);
1329 // Now we know that one of our operands is on the top of the stack, and at
1330 // least one of our operands is killed by this instruction.
1331 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
1332 "Stack conditions not set up right!");
1334 // We decide which form to use based on what is on the top of the stack, and
1335 // which operand is killed by this instruction.
1336 ArrayRef
<TableEntry
> InstTable
;
1337 bool isForward
= TOS
== Op0
;
1338 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
1341 InstTable
= ForwardST0Table
;
1343 InstTable
= ReverseST0Table
;
1346 InstTable
= ForwardSTiTable
;
1348 InstTable
= ReverseSTiTable
;
1351 int Opcode
= Lookup(InstTable
, MI
.getOpcode());
1352 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
1354 // NotTOS - The register which is not on the top of stack...
1355 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
1357 // Replace the old instruction with a new instruction
1359 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
1361 // If both operands are killed, pop one off of the stack in addition to
1362 // overwriting the other one.
1363 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
1364 assert(!updateST0
&& "Should have updated other operand!");
1365 popStackAfter(I
); // Pop the top of stack
1368 // Update stack information so that we know the destination register is now on
1370 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
1371 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
1372 Stack
[UpdatedSlot
] = Dest
;
1373 RegMap
[Dest
] = UpdatedSlot
;
1374 MBB
->getParent()->DeleteMachineInstr(&MI
); // Remove the old instruction
1377 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1378 /// register arguments and no explicit destinations.
1380 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
1381 MachineInstr
&MI
= *I
;
1383 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1384 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
1385 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1386 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1387 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
);
1388 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1390 // Make sure the first operand is on the top of stack, the other one can be
1394 // Change from the pseudo instruction to the concrete instruction.
1395 MI
.getOperand(0).setReg(getSTReg(Op1
));
1396 MI
.RemoveOperand(1);
1397 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1399 // If any of the operands are killed by this instruction, free them.
1400 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
1401 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
1404 /// handleCondMovFP - Handle two address conditional move instructions. These
1405 /// instructions move a st(i) register to st(0) iff a condition is true. These
1406 /// instructions require that the first operand is at the top of the stack, but
1407 /// otherwise don't modify the stack at all.
1408 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
1409 MachineInstr
&MI
= *I
;
1411 unsigned Op0
= getFPReg(MI
.getOperand(0));
1412 unsigned Op1
= getFPReg(MI
.getOperand(2));
1413 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
);
1415 // The first operand *must* be on the top of the stack.
1418 // Change the second operand to the stack register that the operand is in.
1419 // Change from the pseudo instruction to the concrete instruction.
1420 MI
.RemoveOperand(0);
1421 MI
.RemoveOperand(1);
1422 MI
.getOperand(0).setReg(getSTReg(Op1
));
1423 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1425 // If we kill the second operand, make sure to pop it from the stack.
1426 if (Op0
!= Op1
&& KillsOp1
) {
1427 // Get this value off of the register stack.
1428 freeStackSlotAfter(I
, Op1
);
1433 /// handleSpecialFP - Handle special instructions which behave unlike other
1434 /// floating point instructions. This is primarily intended for use by pseudo
1437 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&Inst
) {
1438 MachineInstr
&MI
= *Inst
;
1445 if (MI
.isReturn()) {
1450 switch (MI
.getOpcode()) {
1451 default: llvm_unreachable("Unknown SpecialFP instruction!");
1452 case TargetOpcode::COPY
: {
1453 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1454 const MachineOperand
&MO1
= MI
.getOperand(1);
1455 const MachineOperand
&MO0
= MI
.getOperand(0);
1456 bool KillsSrc
= MI
.killsRegister(MO1
.getReg());
1459 unsigned DstFP
= getFPReg(MO0
);
1460 unsigned SrcFP
= getFPReg(MO1
);
1461 assert(isLive(SrcFP
) && "Cannot copy dead register");
1463 // If the input operand is killed, we can just change the owner of the
1464 // incoming stack slot into the result.
1465 unsigned Slot
= getSlot(SrcFP
);
1466 Stack
[Slot
] = DstFP
;
1467 RegMap
[DstFP
] = Slot
;
1469 // For COPY we just duplicate the specified value to a new stack slot.
1470 // This could be made better, but would require substantial changes.
1471 duplicateToTop(SrcFP
, DstFP
, Inst
);
1476 case TargetOpcode::IMPLICIT_DEF
: {
1477 // All FP registers must be explicitly defined, so load a 0 instead.
1478 unsigned Reg
= MI
.getOperand(0).getReg() - X86::FP0
;
1479 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg
<< '\n');
1480 BuildMI(*MBB
, Inst
, MI
.getDebugLoc(), TII
->get(X86::LD_F0
));
1485 case TargetOpcode::INLINEASM
:
1486 case TargetOpcode::INLINEASM_BR
: {
1487 // The inline asm MachineInstr currently only *uses* FP registers for the
1488 // 'f' constraint. These should be turned into the current ST(x) register
1489 // in the machine instr.
1491 // There are special rules for x87 inline assembly. The compiler must know
1492 // exactly how many registers are popped and pushed implicitly by the asm.
1493 // Otherwise it is not possible to restore the stack state after the inline
1496 // There are 3 kinds of input operands:
1498 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1499 // popped input operand must be in a fixed stack slot, and it is either
1500 // tied to an output operand, or in the clobber list. The MI has ST use
1501 // and def operands for these inputs.
1503 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1504 // preserved by the inline asm. The fixed stack slots must be STn-STm
1505 // following the popped inputs. A fixed input operand cannot be tied to
1506 // an output or appear in the clobber list. The MI has ST use operands
1507 // and no defs for these inputs.
1509 // 3. Preserved inputs. These inputs use the "f" constraint which is
1510 // represented as an FP register. The inline asm won't change these
1513 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1514 // registers do not count as output operands. The inline asm changes the
1515 // stack as if it popped all the popped inputs and then pushed all the
1518 // Scan the assembly for ST registers used, defined and clobbered. We can
1519 // only tell clobbers from defs by looking at the asm descriptor.
1520 unsigned STUses
= 0, STDefs
= 0, STClobbers
= 0, STDeadDefs
= 0;
1521 unsigned NumOps
= 0;
1522 SmallSet
<unsigned, 1> FRegIdx
;
1525 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= MI
.getNumOperands();
1526 i
!= e
&& MI
.getOperand(i
).isImm(); i
+= 1 + NumOps
) {
1527 unsigned Flags
= MI
.getOperand(i
).getImm();
1529 NumOps
= InlineAsm::getNumOperandRegisters(Flags
);
1532 const MachineOperand
&MO
= MI
.getOperand(i
+ 1);
1535 unsigned STReg
= MO
.getReg() - X86::FP0
;
1539 // If the flag has a register class constraint, this must be an operand
1540 // with constraint "f". Record its index and continue.
1541 if (InlineAsm::hasRegClassConstraint(Flags
, RCID
)) {
1542 FRegIdx
.insert(i
+ 1);
1546 switch (InlineAsm::getKind(Flags
)) {
1547 case InlineAsm::Kind_RegUse
:
1548 STUses
|= (1u << STReg
);
1550 case InlineAsm::Kind_RegDef
:
1551 case InlineAsm::Kind_RegDefEarlyClobber
:
1552 STDefs
|= (1u << STReg
);
1554 STDeadDefs
|= (1u << STReg
);
1556 case InlineAsm::Kind_Clobber
:
1557 STClobbers
|= (1u << STReg
);
1564 if (STUses
&& !isMask_32(STUses
))
1565 MI
.emitError("fixed input regs must be last on the x87 stack");
1566 unsigned NumSTUses
= countTrailingOnes(STUses
);
1568 // Defs must be contiguous from the stack top. ST0-STn.
1569 if (STDefs
&& !isMask_32(STDefs
)) {
1570 MI
.emitError("output regs must be last on the x87 stack");
1571 STDefs
= NextPowerOf2(STDefs
) - 1;
1573 unsigned NumSTDefs
= countTrailingOnes(STDefs
);
1575 // So must the clobbered stack slots. ST0-STm, m >= n.
1576 if (STClobbers
&& !isMask_32(STDefs
| STClobbers
))
1577 MI
.emitError("clobbers must be last on the x87 stack");
1579 // Popped inputs are the ones that are also clobbered or defined.
1580 unsigned STPopped
= STUses
& (STDefs
| STClobbers
);
1581 if (STPopped
&& !isMask_32(STPopped
))
1582 MI
.emitError("implicitly popped regs must be last on the x87 stack");
1583 unsigned NumSTPopped
= countTrailingOnes(STPopped
);
1585 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses
<< " fixed regs, pops "
1586 << NumSTPopped
<< ", and defines " << NumSTDefs
1590 // If any input operand uses constraint "f", all output register
1591 // constraints must be early-clobber defs.
1592 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
)
1593 if (FRegIdx
.count(I
)) {
1594 assert((1 << getFPReg(MI
.getOperand(I
)) & STDefs
) == 0 &&
1595 "Operands with constraint \"f\" cannot overlap with defs");
1599 // Collect all FP registers (register operands with constraints "t", "u",
1600 // and "f") to kill afer the instruction.
1601 unsigned FPKills
= ((1u << NumFPRegs
) - 1) & ~0xff;
1602 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1603 MachineOperand
&Op
= MI
.getOperand(i
);
1604 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1606 unsigned FPReg
= getFPReg(Op
);
1608 // If we kill this operand, make sure to pop it from the stack after the
1609 // asm. We just remember it for now, and pop them all off at the end in
1611 if (Op
.isUse() && Op
.isKill())
1612 FPKills
|= 1U << FPReg
;
1615 // Do not include registers that are implicitly popped by defs/clobbers.
1616 FPKills
&= ~(STDefs
| STClobbers
);
1618 // Now we can rearrange the live registers to match what was requested.
1619 unsigned char STUsesArray
[8];
1621 for (unsigned I
= 0; I
< NumSTUses
; ++I
)
1624 shuffleStackTop(STUsesArray
, NumSTUses
, Inst
);
1626 dbgs() << "Before asm: ";
1630 // With the stack layout fixed, rewrite the FP registers.
1631 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1632 MachineOperand
&Op
= MI
.getOperand(i
);
1633 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1636 unsigned FPReg
= getFPReg(Op
);
1638 if (FRegIdx
.count(i
))
1639 // Operand with constraint "f".
1640 Op
.setReg(getSTReg(FPReg
));
1642 // Operand with a single register class constraint ("t" or "u").
1643 Op
.setReg(X86::ST0
+ FPReg
);
1646 // Simulate the inline asm popping its inputs and pushing its outputs.
1647 StackTop
-= NumSTPopped
;
1649 for (unsigned i
= 0; i
< NumSTDefs
; ++i
)
1650 pushReg(NumSTDefs
- i
- 1);
1652 // If this asm kills any FP registers (is the last use of them) we must
1653 // explicitly emit pop instructions for them. Do this now after the asm has
1654 // executed so that the ST(x) numbers are not off (which would happen if we
1655 // did this inline with operand rewriting).
1657 // Note: this might be a non-optimal pop sequence. We might be able to do
1658 // better by trying to pop in stack order or something.
1660 unsigned FPReg
= countTrailingZeros(FPKills
);
1662 freeStackSlotAfter(Inst
, FPReg
);
1663 FPKills
&= ~(1U << FPReg
);
1666 // Don't delete the inline asm!
1671 Inst
= MBB
->erase(Inst
); // Remove the pseudo instruction
1673 // We want to leave I pointing to the previous instruction, but what if we
1674 // just erased the first instruction?
1675 if (Inst
== MBB
->begin()) {
1676 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1677 Inst
= BuildMI(*MBB
, Inst
, DebugLoc(), TII
->get(TargetOpcode::KILL
));
1682 void FPS::setKillFlags(MachineBasicBlock
&MBB
) const {
1683 const TargetRegisterInfo
&TRI
=
1684 *MBB
.getParent()->getSubtarget().getRegisterInfo();
1685 LivePhysRegs
LPR(TRI
);
1687 LPR
.addLiveOuts(MBB
);
1689 for (MachineBasicBlock::reverse_iterator I
= MBB
.rbegin(), E
= MBB
.rend();
1691 if (I
->isDebugInstr())
1694 std::bitset
<8> Defs
;
1695 SmallVector
<MachineOperand
*, 2> Uses
;
1696 MachineInstr
&MI
= *I
;
1698 for (auto &MO
: I
->operands()) {
1702 unsigned Reg
= MO
.getReg() - X86::FP0
;
1709 if (!LPR
.contains(MO
.getReg()))
1712 Uses
.push_back(&MO
);
1715 for (auto *MO
: Uses
)
1716 if (Defs
.test(getFPReg(*MO
)) || !LPR
.contains(MO
->getReg()))
1719 LPR
.stepBackward(MI
);