1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86InstrInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
45 #define DEBUG_TYPE "x86-instr-info"
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
55 PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
60 ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden
);
63 static cl::opt
<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
68 cl::init(64), cl::Hidden
);
69 static cl::opt
<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden
);
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
79 X86InstrInfo::X86InstrInfo(X86Subtarget
&STI
)
80 : X86GenInstrInfo((STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32
),
82 (STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32
),
85 (STI
.is64Bit() ? X86::RETQ
: X86::RETL
)),
86 Subtarget(STI
), RI(STI
.getTargetTriple()) {
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
91 unsigned &SrcReg
, unsigned &DstReg
,
92 unsigned &SubIdx
) const {
93 switch (MI
.getOpcode()) {
100 if (!Subtarget
.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
105 case X86::MOVSX32rr16
:
106 case X86::MOVZX32rr16
:
107 case X86::MOVSX64rr16
:
108 case X86::MOVSX64rr32
: {
109 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
112 SrcReg
= MI
.getOperand(1).getReg();
113 DstReg
= MI
.getOperand(0).getReg();
114 switch (MI
.getOpcode()) {
115 default: llvm_unreachable("Unreachable!");
116 case X86::MOVSX16rr8
:
117 case X86::MOVZX16rr8
:
118 case X86::MOVSX32rr8
:
119 case X86::MOVZX32rr8
:
120 case X86::MOVSX64rr8
:
121 SubIdx
= X86::sub_8bit
;
123 case X86::MOVSX32rr16
:
124 case X86::MOVZX32rr16
:
125 case X86::MOVSX64rr16
:
126 SubIdx
= X86::sub_16bit
;
128 case X86::MOVSX64rr32
:
129 SubIdx
= X86::sub_32bit
;
138 int X86InstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
139 const MachineFunction
*MF
= MI
.getParent()->getParent();
140 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
142 if (isFrameInstr(MI
)) {
143 unsigned StackAlign
= TFI
->getStackAlignment();
144 int SPAdj
= alignTo(getFrameSize(MI
), StackAlign
);
145 SPAdj
-= getFrameAdjustment(MI
);
146 if (!isFrameSetup(MI
))
151 // To know whether a call adjusts the stack, we need information
152 // that is bound to the following ADJCALLSTACKUP pseudo.
153 // Look for the next ADJCALLSTACKUP that follows the call.
155 const MachineBasicBlock
*MBB
= MI
.getParent();
156 auto I
= ++MachineBasicBlock::const_iterator(MI
);
157 for (auto E
= MBB
->end(); I
!= E
; ++I
) {
158 if (I
->getOpcode() == getCallFrameDestroyOpcode() ||
163 // If we could not find a frame destroy opcode, then it has already
164 // been simplified, so we don't care.
165 if (I
->getOpcode() != getCallFrameDestroyOpcode())
168 return -(I
->getOperand(1).getImm());
171 // Currently handle only PUSHes we can reasonably expect to see
173 switch (MI
.getOpcode()) {
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
194 int &FrameIndex
) const {
195 if (MI
.getOperand(Op
+ X86::AddrBaseReg
).isFI() &&
196 MI
.getOperand(Op
+ X86::AddrScaleAmt
).isImm() &&
197 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
198 MI
.getOperand(Op
+ X86::AddrDisp
).isImm() &&
199 MI
.getOperand(Op
+ X86::AddrScaleAmt
).getImm() == 1 &&
200 MI
.getOperand(Op
+ X86::AddrIndexReg
).getReg() == 0 &&
201 MI
.getOperand(Op
+ X86::AddrDisp
).getImm() == 0) {
202 FrameIndex
= MI
.getOperand(Op
+ X86::AddrBaseReg
).getIndex();
208 static bool isFrameLoadOpcode(int Opcode
, unsigned &MemBytes
) {
222 case X86::MOVSSrm_alt
:
224 case X86::VMOVSSrm_alt
:
226 case X86::VMOVSSZrm_alt
:
233 case X86::MOVSDrm_alt
:
235 case X86::VMOVSDrm_alt
:
237 case X86::VMOVSDZrm_alt
:
238 case X86::MMX_MOVD64rm
:
239 case X86::MMX_MOVQ64rm
:
255 case X86::VMOVAPSZ128rm
:
256 case X86::VMOVUPSZ128rm
:
257 case X86::VMOVAPSZ128rm_NOVLX
:
258 case X86::VMOVUPSZ128rm_NOVLX
:
259 case X86::VMOVAPDZ128rm
:
260 case X86::VMOVUPDZ128rm
:
261 case X86::VMOVDQU8Z128rm
:
262 case X86::VMOVDQU16Z128rm
:
263 case X86::VMOVDQA32Z128rm
:
264 case X86::VMOVDQU32Z128rm
:
265 case X86::VMOVDQA64Z128rm
:
266 case X86::VMOVDQU64Z128rm
:
269 case X86::VMOVAPSYrm
:
270 case X86::VMOVUPSYrm
:
271 case X86::VMOVAPDYrm
:
272 case X86::VMOVUPDYrm
:
273 case X86::VMOVDQAYrm
:
274 case X86::VMOVDQUYrm
:
275 case X86::VMOVAPSZ256rm
:
276 case X86::VMOVUPSZ256rm
:
277 case X86::VMOVAPSZ256rm_NOVLX
:
278 case X86::VMOVUPSZ256rm_NOVLX
:
279 case X86::VMOVAPDZ256rm
:
280 case X86::VMOVUPDZ256rm
:
281 case X86::VMOVDQU8Z256rm
:
282 case X86::VMOVDQU16Z256rm
:
283 case X86::VMOVDQA32Z256rm
:
284 case X86::VMOVDQU32Z256rm
:
285 case X86::VMOVDQA64Z256rm
:
286 case X86::VMOVDQU64Z256rm
:
289 case X86::VMOVAPSZrm
:
290 case X86::VMOVUPSZrm
:
291 case X86::VMOVAPDZrm
:
292 case X86::VMOVUPDZrm
:
293 case X86::VMOVDQU8Zrm
:
294 case X86::VMOVDQU16Zrm
:
295 case X86::VMOVDQA32Zrm
:
296 case X86::VMOVDQU32Zrm
:
297 case X86::VMOVDQA64Zrm
:
298 case X86::VMOVDQU64Zrm
:
304 static bool isFrameStoreOpcode(int Opcode
, unsigned &MemBytes
) {
328 case X86::MMX_MOVD64mr
:
329 case X86::MMX_MOVQ64mr
:
330 case X86::MMX_MOVNTQmr
:
346 case X86::VMOVUPSZ128mr
:
347 case X86::VMOVAPSZ128mr
:
348 case X86::VMOVUPSZ128mr_NOVLX
:
349 case X86::VMOVAPSZ128mr_NOVLX
:
350 case X86::VMOVUPDZ128mr
:
351 case X86::VMOVAPDZ128mr
:
352 case X86::VMOVDQA32Z128mr
:
353 case X86::VMOVDQU32Z128mr
:
354 case X86::VMOVDQA64Z128mr
:
355 case X86::VMOVDQU64Z128mr
:
356 case X86::VMOVDQU8Z128mr
:
357 case X86::VMOVDQU16Z128mr
:
360 case X86::VMOVUPSYmr
:
361 case X86::VMOVAPSYmr
:
362 case X86::VMOVUPDYmr
:
363 case X86::VMOVAPDYmr
:
364 case X86::VMOVDQUYmr
:
365 case X86::VMOVDQAYmr
:
366 case X86::VMOVUPSZ256mr
:
367 case X86::VMOVAPSZ256mr
:
368 case X86::VMOVUPSZ256mr_NOVLX
:
369 case X86::VMOVAPSZ256mr_NOVLX
:
370 case X86::VMOVUPDZ256mr
:
371 case X86::VMOVAPDZ256mr
:
372 case X86::VMOVDQU8Z256mr
:
373 case X86::VMOVDQU16Z256mr
:
374 case X86::VMOVDQA32Z256mr
:
375 case X86::VMOVDQU32Z256mr
:
376 case X86::VMOVDQA64Z256mr
:
377 case X86::VMOVDQU64Z256mr
:
380 case X86::VMOVUPSZmr
:
381 case X86::VMOVAPSZmr
:
382 case X86::VMOVUPDZmr
:
383 case X86::VMOVAPDZmr
:
384 case X86::VMOVDQU8Zmr
:
385 case X86::VMOVDQU16Zmr
:
386 case X86::VMOVDQA32Zmr
:
387 case X86::VMOVDQU32Zmr
:
388 case X86::VMOVDQA64Zmr
:
389 case X86::VMOVDQU64Zmr
:
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
397 int &FrameIndex
) const {
399 return X86InstrInfo::isLoadFromStackSlot(MI
, FrameIndex
, Dummy
);
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
404 unsigned &MemBytes
) const {
405 if (isFrameLoadOpcode(MI
.getOpcode(), MemBytes
))
406 if (MI
.getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
407 return MI
.getOperand(0).getReg();
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
412 int &FrameIndex
) const {
414 if (isFrameLoadOpcode(MI
.getOpcode(), Dummy
)) {
416 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
418 // Check for post-frame index elimination operations
419 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
420 if (hasLoadFromStackSlot(MI
, Accesses
)) {
422 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
431 int &FrameIndex
) const {
433 return X86InstrInfo::isStoreToStackSlot(MI
, FrameIndex
, Dummy
);
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
438 unsigned &MemBytes
) const {
439 if (isFrameStoreOpcode(MI
.getOpcode(), MemBytes
))
440 if (MI
.getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
441 isFrameOperand(MI
, 0, FrameIndex
))
442 return MI
.getOperand(X86::AddrNumOperands
).getReg();
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
447 int &FrameIndex
) const {
449 if (isFrameStoreOpcode(MI
.getOpcode(), Dummy
)) {
451 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
453 // Check for post-frame index elimination operations
454 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
455 if (hasStoreToStackSlot(MI
, Accesses
)) {
457 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
467 // Don't waste compile time scanning use-def chains of physregs.
468 if (!Register::isVirtualRegister(BaseReg
))
470 bool isPICBase
= false;
471 for (MachineRegisterInfo::def_instr_iterator I
= MRI
.def_instr_begin(BaseReg
),
472 E
= MRI
.def_instr_end(); I
!= E
; ++I
) {
473 MachineInstr
*DefMI
= &*I
;
474 if (DefMI
->getOpcode() != X86::MOVPC32r
)
476 assert(!isPICBase
&& "More than one PIC base?");
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
483 AAResults
*AA
) const {
484 switch (MI
.getOpcode()) {
486 // This function should only be called for opcodes with the ReMaterializable
488 llvm_unreachable("Unknown rematerializable operation!");
491 case X86::LOAD_STACK_GUARD
:
492 case X86::AVX1_SETALLONES
:
493 case X86::AVX2_SETALLONES
:
494 case X86::AVX512_128_SET0
:
495 case X86::AVX512_256_SET0
:
496 case X86::AVX512_512_SET0
:
497 case X86::AVX512_512_SETALLONES
:
498 case X86::AVX512_FsFLD0SD
:
499 case X86::AVX512_FsFLD0SS
:
500 case X86::AVX512_FsFLD0F128
:
504 case X86::FsFLD0F128
:
512 case X86::MOV32ImmSExti8
:
517 case X86::MOV64ImmSExti8
:
519 case X86::V_SETALLONES
:
528 case X86::MOV8rm_NOREX
:
533 case X86::MOVSSrm_alt
:
535 case X86::MOVSDrm_alt
:
543 case X86::VMOVSSrm_alt
:
545 case X86::VMOVSDrm_alt
:
552 case X86::VMOVAPSYrm
:
553 case X86::VMOVUPSYrm
:
554 case X86::VMOVAPDYrm
:
555 case X86::VMOVUPDYrm
:
556 case X86::VMOVDQAYrm
:
557 case X86::VMOVDQUYrm
:
558 case X86::MMX_MOVD64rm
:
559 case X86::MMX_MOVQ64rm
:
562 case X86::VMOVSSZrm_alt
:
564 case X86::VMOVSDZrm_alt
:
565 case X86::VMOVAPDZ128rm
:
566 case X86::VMOVAPDZ256rm
:
567 case X86::VMOVAPDZrm
:
568 case X86::VMOVAPSZ128rm
:
569 case X86::VMOVAPSZ256rm
:
570 case X86::VMOVAPSZ128rm_NOVLX
:
571 case X86::VMOVAPSZ256rm_NOVLX
:
572 case X86::VMOVAPSZrm
:
573 case X86::VMOVDQA32Z128rm
:
574 case X86::VMOVDQA32Z256rm
:
575 case X86::VMOVDQA32Zrm
:
576 case X86::VMOVDQA64Z128rm
:
577 case X86::VMOVDQA64Z256rm
:
578 case X86::VMOVDQA64Zrm
:
579 case X86::VMOVDQU16Z128rm
:
580 case X86::VMOVDQU16Z256rm
:
581 case X86::VMOVDQU16Zrm
:
582 case X86::VMOVDQU32Z128rm
:
583 case X86::VMOVDQU32Z256rm
:
584 case X86::VMOVDQU32Zrm
:
585 case X86::VMOVDQU64Z128rm
:
586 case X86::VMOVDQU64Z256rm
:
587 case X86::VMOVDQU64Zrm
:
588 case X86::VMOVDQU8Z128rm
:
589 case X86::VMOVDQU8Z256rm
:
590 case X86::VMOVDQU8Zrm
:
591 case X86::VMOVUPDZ128rm
:
592 case X86::VMOVUPDZ256rm
:
593 case X86::VMOVUPDZrm
:
594 case X86::VMOVUPSZ128rm
:
595 case X86::VMOVUPSZ256rm
:
596 case X86::VMOVUPSZ128rm_NOVLX
:
597 case X86::VMOVUPSZ256rm_NOVLX
:
598 case X86::VMOVUPSZrm
: {
599 // Loads from constant pools are trivially rematerializable.
600 if (MI
.getOperand(1 + X86::AddrBaseReg
).isReg() &&
601 MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
602 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
603 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
604 MI
.isDereferenceableInvariantLoad(AA
)) {
605 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
606 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
608 // Allow re-materialization of PIC load.
609 if (!ReMatPICStubLoad
&& MI
.getOperand(1 + X86::AddrDisp
).isGlobal())
611 const MachineFunction
&MF
= *MI
.getParent()->getParent();
612 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
613 return regIsPICBase(BaseReg
, MRI
);
620 if (MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
621 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
622 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
623 !MI
.getOperand(1 + X86::AddrDisp
).isReg()) {
624 // lea fi#, lea GV, etc. are all rematerializable.
625 if (!MI
.getOperand(1 + X86::AddrBaseReg
).isReg())
627 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
630 // Allow re-materialization of lea PICBase + x.
631 const MachineFunction
&MF
= *MI
.getParent()->getParent();
632 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
633 return regIsPICBase(BaseReg
, MRI
);
640 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
641 MachineBasicBlock::iterator I
,
642 unsigned DestReg
, unsigned SubIdx
,
643 const MachineInstr
&Orig
,
644 const TargetRegisterInfo
&TRI
) const {
645 bool ClobbersEFLAGS
= Orig
.modifiesRegister(X86::EFLAGS
, &TRI
);
646 if (ClobbersEFLAGS
&& !isSafeToClobberEFLAGS(MBB
, I
)) {
647 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
650 switch (Orig
.getOpcode()) {
651 case X86::MOV32r0
: Value
= 0; break;
652 case X86::MOV32r1
: Value
= 1; break;
653 case X86::MOV32r_1
: Value
= -1; break;
655 llvm_unreachable("Unexpected instruction!");
658 const DebugLoc
&DL
= Orig
.getDebugLoc();
659 BuildMI(MBB
, I
, DL
, get(X86::MOV32ri
))
660 .add(Orig
.getOperand(0))
663 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
667 MachineInstr
&NewMI
= *std::prev(I
);
668 NewMI
.substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
671 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
672 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr
&MI
) const {
673 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
674 MachineOperand
&MO
= MI
.getOperand(i
);
675 if (MO
.isReg() && MO
.isDef() &&
676 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
683 /// Check whether the shift count for a machine operand is non-zero.
684 inline static unsigned getTruncatedShiftCount(const MachineInstr
&MI
,
685 unsigned ShiftAmtOperandIdx
) {
686 // The shift count is six bits with the REX.W prefix and five bits without.
687 unsigned ShiftCountMask
= (MI
.getDesc().TSFlags
& X86II::REX_W
) ? 63 : 31;
688 unsigned Imm
= MI
.getOperand(ShiftAmtOperandIdx
).getImm();
689 return Imm
& ShiftCountMask
;
692 /// Check whether the given shift count is appropriate
693 /// can be represented by a LEA instruction.
694 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt
) {
695 // Left shift instructions can be transformed into load-effective-address
696 // instructions if we can encode them appropriately.
697 // A LEA instruction utilizes a SIB byte to encode its scale factor.
698 // The SIB.scale field is two bits wide which means that we can encode any
699 // shift amount less than 4.
700 return ShAmt
< 4 && ShAmt
> 0;
703 bool X86InstrInfo::classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
704 unsigned Opc
, bool AllowSP
, Register
&NewSrc
,
705 bool &isKill
, MachineOperand
&ImplicitOp
,
706 LiveVariables
*LV
) const {
707 MachineFunction
&MF
= *MI
.getParent()->getParent();
708 const TargetRegisterClass
*RC
;
710 RC
= Opc
!= X86::LEA32r
? &X86::GR64RegClass
: &X86::GR32RegClass
;
712 RC
= Opc
!= X86::LEA32r
?
713 &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
;
715 Register SrcReg
= Src
.getReg();
717 // For both LEA64 and LEA32 the register already has essentially the right
718 // type (32-bit or 64-bit) we may just need to forbid SP.
719 if (Opc
!= X86::LEA64_32r
) {
721 isKill
= Src
.isKill();
722 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
724 if (Register::isVirtualRegister(NewSrc
) &&
725 !MF
.getRegInfo().constrainRegClass(NewSrc
, RC
))
731 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
732 // another we need to add 64-bit registers to the final MI.
733 if (Register::isPhysicalRegister(SrcReg
)) {
735 ImplicitOp
.setImplicit();
737 NewSrc
= getX86SubSuperRegister(Src
.getReg(), 64);
738 isKill
= Src
.isKill();
739 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
741 // Virtual register of the wrong class, we have to create a temporary 64-bit
742 // vreg to feed into the LEA.
743 NewSrc
= MF
.getRegInfo().createVirtualRegister(RC
);
745 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
746 .addReg(NewSrc
, RegState::Define
| RegState::Undef
, X86::sub_32bit
)
749 // Which is obviously going to be dead after we're done with it.
753 LV
->replaceKillInstruction(SrcReg
, MI
, *Copy
);
756 // We've set all the parameters without issue.
760 MachineInstr
*X86InstrInfo::convertToThreeAddressWithLEA(
761 unsigned MIOpc
, MachineFunction::iterator
&MFI
, MachineInstr
&MI
,
762 LiveVariables
*LV
, bool Is8BitOp
) const {
763 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
764 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
765 assert((Is8BitOp
|| RegInfo
.getTargetRegisterInfo()->getRegSizeInBits(
766 *RegInfo
.getRegClass(MI
.getOperand(0).getReg())) == 16) &&
767 "Unexpected type for LEA transform");
769 // TODO: For a 32-bit target, we need to adjust the LEA variables with
770 // something like this:
771 // Opcode = X86::LEA32r;
772 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
774 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
775 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
776 if (!Subtarget
.is64Bit())
779 unsigned Opcode
= X86::LEA64_32r
;
780 Register InRegLEA
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
781 Register OutRegLEA
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
783 // Build and insert into an implicit UNDEF value. This is OK because
784 // we will be shifting and then extracting the lower 8/16-bits.
785 // This has the potential to cause partial register stall. e.g.
786 // movw (%rbp,%rcx,2), %dx
787 // leal -65(%rdx), %esi
788 // But testing has shown this *does* help performance in 64-bit mode (at
789 // least on modern x86 machines).
790 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
791 Register Dest
= MI
.getOperand(0).getReg();
792 Register Src
= MI
.getOperand(1).getReg();
793 bool IsDead
= MI
.getOperand(0).isDead();
794 bool IsKill
= MI
.getOperand(1).isKill();
795 unsigned SubReg
= Is8BitOp
? X86::sub_8bit
: X86::sub_16bit
;
796 assert(!MI
.getOperand(1).isUndef() && "Undef op doesn't need optimization");
797 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA
);
798 MachineInstr
*InsMI
=
799 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
800 .addReg(InRegLEA
, RegState::Define
, SubReg
)
801 .addReg(Src
, getKillRegState(IsKill
));
803 MachineInstrBuilder MIB
=
804 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(Opcode
), OutRegLEA
);
806 default: llvm_unreachable("Unreachable!");
809 unsigned ShAmt
= MI
.getOperand(2).getImm();
810 MIB
.addReg(0).addImm(1ULL << ShAmt
)
811 .addReg(InRegLEA
, RegState::Kill
).addImm(0).addReg(0);
816 addRegOffset(MIB
, InRegLEA
, true, 1);
820 addRegOffset(MIB
, InRegLEA
, true, -1);
826 case X86::ADD16ri_DB
:
827 case X86::ADD16ri8_DB
:
828 addRegOffset(MIB
, InRegLEA
, true, MI
.getOperand(2).getImm());
833 case X86::ADD16rr_DB
: {
834 Register Src2
= MI
.getOperand(2).getReg();
835 bool IsKill2
= MI
.getOperand(2).isKill();
836 assert(!MI
.getOperand(2).isUndef() && "Undef op doesn't need optimization");
837 unsigned InRegLEA2
= 0;
838 MachineInstr
*InsMI2
= nullptr;
840 // ADD8rr/ADD16rr killed %reg1028, %reg1028
841 // just a single insert_subreg.
842 addRegReg(MIB
, InRegLEA
, true, InRegLEA
, false);
844 if (Subtarget
.is64Bit())
845 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
847 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
848 // Build and insert into an implicit UNDEF value. This is OK because
849 // we will be shifting and then extracting the lower 8/16-bits.
850 BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA2
);
851 InsMI2
= BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
852 .addReg(InRegLEA2
, RegState::Define
, SubReg
)
853 .addReg(Src2
, getKillRegState(IsKill2
));
854 addRegReg(MIB
, InRegLEA
, true, InRegLEA2
, true);
856 if (LV
&& IsKill2
&& InsMI2
)
857 LV
->replaceKillInstruction(Src2
, MI
, *InsMI2
);
862 MachineInstr
*NewMI
= MIB
;
863 MachineInstr
*ExtMI
=
864 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
865 .addReg(Dest
, RegState::Define
| getDeadRegState(IsDead
))
866 .addReg(OutRegLEA
, RegState::Kill
, SubReg
);
869 // Update live variables.
870 LV
->getVarInfo(InRegLEA
).Kills
.push_back(NewMI
);
871 LV
->getVarInfo(OutRegLEA
).Kills
.push_back(ExtMI
);
873 LV
->replaceKillInstruction(Src
, MI
, *InsMI
);
875 LV
->replaceKillInstruction(Dest
, MI
, *ExtMI
);
881 /// This method must be implemented by targets that
882 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
883 /// may be able to convert a two-address instruction into a true
884 /// three-address instruction on demand. This allows the X86 target (for
885 /// example) to convert ADD and SHL instructions into LEA instructions if they
886 /// would require register copies due to two-addressness.
888 /// This method returns a null pointer if the transformation cannot be
889 /// performed, otherwise it returns the new instruction.
892 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
893 MachineInstr
&MI
, LiveVariables
*LV
) const {
894 // The following opcodes also sets the condition code register(s). Only
895 // convert them to equivalent lea if the condition code register def's
897 if (hasLiveCondCodeDef(MI
))
900 MachineFunction
&MF
= *MI
.getParent()->getParent();
901 // All instructions input are two-addr instructions. Get the known operands.
902 const MachineOperand
&Dest
= MI
.getOperand(0);
903 const MachineOperand
&Src
= MI
.getOperand(1);
905 // Ideally, operations with undef should be folded before we get here, but we
906 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
907 // Without this, we have to forward undef state to new register operands to
908 // avoid machine verifier errors.
911 if (MI
.getNumOperands() > 2)
912 if (MI
.getOperand(2).isReg() && MI
.getOperand(2).isUndef())
915 MachineInstr
*NewMI
= nullptr;
916 bool Is64Bit
= Subtarget
.is64Bit();
918 bool Is8BitOp
= false;
919 unsigned MIOpc
= MI
.getOpcode();
921 default: llvm_unreachable("Unreachable!");
923 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
924 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
925 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
927 // LEA can't handle RSP.
928 if (Register::isVirtualRegister(Src
.getReg()) &&
929 !MF
.getRegInfo().constrainRegClass(Src
.getReg(),
930 &X86::GR64_NOSPRegClass
))
933 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
))
936 .addImm(1ULL << ShAmt
)
943 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
944 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
945 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
947 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
949 // LEA can't handle ESP.
952 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
953 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false,
954 SrcReg
, isKill
, ImplicitOp
, LV
))
957 MachineInstrBuilder MIB
=
958 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
961 .addImm(1ULL << ShAmt
)
962 .addReg(SrcReg
, getKillRegState(isKill
))
965 if (ImplicitOp
.getReg() != 0)
975 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
976 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
977 if (!isTruncatedShiftCountForLEA(ShAmt
))
979 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
983 assert(MI
.getNumOperands() >= 2 && "Unknown inc instruction!");
984 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
:
985 (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
988 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
989 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
993 MachineInstrBuilder MIB
=
994 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
996 .addReg(SrcReg
, getKillRegState(isKill
));
997 if (ImplicitOp
.getReg() != 0)
1000 NewMI
= addOffset(MIB
, 1);
1005 assert(MI
.getNumOperands() >= 2 && "Unknown dec instruction!");
1006 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1007 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1011 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1012 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
1016 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1018 .addReg(SrcReg
, getKillRegState(isKill
));
1019 if (ImplicitOp
.getReg() != 0)
1020 MIB
.add(ImplicitOp
);
1022 NewMI
= addOffset(MIB
, -1);
1032 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1034 case X86::ADD64rr_DB
:
1036 case X86::ADD32rr_DB
: {
1037 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1039 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
)
1042 Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1046 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1047 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1048 SrcReg
, isKill
, ImplicitOp
, LV
))
1051 const MachineOperand
&Src2
= MI
.getOperand(2);
1054 MachineOperand ImplicitOp2
= MachineOperand::CreateReg(0, false);
1055 if (!classifyLEAReg(MI
, Src2
, Opc
, /*AllowSP=*/ false,
1056 SrcReg2
, isKill2
, ImplicitOp2
, LV
))
1059 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
)).add(Dest
);
1060 if (ImplicitOp
.getReg() != 0)
1061 MIB
.add(ImplicitOp
);
1062 if (ImplicitOp2
.getReg() != 0)
1063 MIB
.add(ImplicitOp2
);
1065 NewMI
= addRegReg(MIB
, SrcReg
, isKill
, SrcReg2
, isKill2
);
1066 if (LV
&& Src2
.isKill())
1067 LV
->replaceKillInstruction(SrcReg2
, MI
, *NewMI
);
1071 case X86::ADD8rr_DB
:
1075 case X86::ADD16rr_DB
:
1076 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1077 case X86::ADD64ri32
:
1079 case X86::ADD64ri32_DB
:
1080 case X86::ADD64ri8_DB
:
1081 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1083 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
),
1088 case X86::ADD32ri_DB
:
1089 case X86::ADD32ri8_DB
: {
1090 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1091 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1095 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1096 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1097 SrcReg
, isKill
, ImplicitOp
, LV
))
1100 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1102 .addReg(SrcReg
, getKillRegState(isKill
));
1103 if (ImplicitOp
.getReg() != 0)
1104 MIB
.add(ImplicitOp
);
1106 NewMI
= addOffset(MIB
, MI
.getOperand(2));
1110 case X86::ADD8ri_DB
:
1115 case X86::ADD16ri_DB
:
1116 case X86::ADD16ri8_DB
:
1117 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1121 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1124 case X86::SUB32ri
: {
1125 if (!MI
.getOperand(2).isImm())
1127 int64_t Imm
= MI
.getOperand(2).getImm();
1128 if (!isInt
<32>(-Imm
))
1131 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1132 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1136 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1137 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1138 SrcReg
, isKill
, ImplicitOp
, LV
))
1141 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1143 .addReg(SrcReg
, getKillRegState(isKill
));
1144 if (ImplicitOp
.getReg() != 0)
1145 MIB
.add(ImplicitOp
);
1147 NewMI
= addOffset(MIB
, -Imm
);
1152 case X86::SUB64ri32
: {
1153 if (!MI
.getOperand(2).isImm())
1155 int64_t Imm
= MI
.getOperand(2).getImm();
1156 if (!isInt
<32>(-Imm
))
1159 assert(MI
.getNumOperands() >= 3 && "Unknown sub instruction!");
1161 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(),
1162 get(X86::LEA64r
)).add(Dest
).add(Src
);
1163 NewMI
= addOffset(MIB
, -Imm
);
1167 case X86::VMOVDQU8Z128rmk
:
1168 case X86::VMOVDQU8Z256rmk
:
1169 case X86::VMOVDQU8Zrmk
:
1170 case X86::VMOVDQU16Z128rmk
:
1171 case X86::VMOVDQU16Z256rmk
:
1172 case X86::VMOVDQU16Zrmk
:
1173 case X86::VMOVDQU32Z128rmk
: case X86::VMOVDQA32Z128rmk
:
1174 case X86::VMOVDQU32Z256rmk
: case X86::VMOVDQA32Z256rmk
:
1175 case X86::VMOVDQU32Zrmk
: case X86::VMOVDQA32Zrmk
:
1176 case X86::VMOVDQU64Z128rmk
: case X86::VMOVDQA64Z128rmk
:
1177 case X86::VMOVDQU64Z256rmk
: case X86::VMOVDQA64Z256rmk
:
1178 case X86::VMOVDQU64Zrmk
: case X86::VMOVDQA64Zrmk
:
1179 case X86::VMOVUPDZ128rmk
: case X86::VMOVAPDZ128rmk
:
1180 case X86::VMOVUPDZ256rmk
: case X86::VMOVAPDZ256rmk
:
1181 case X86::VMOVUPDZrmk
: case X86::VMOVAPDZrmk
:
1182 case X86::VMOVUPSZ128rmk
: case X86::VMOVAPSZ128rmk
:
1183 case X86::VMOVUPSZ256rmk
: case X86::VMOVAPSZ256rmk
:
1184 case X86::VMOVUPSZrmk
: case X86::VMOVAPSZrmk
:
1185 case X86::VBROADCASTSDZ256mk
:
1186 case X86::VBROADCASTSDZmk
:
1187 case X86::VBROADCASTSSZ128mk
:
1188 case X86::VBROADCASTSSZ256mk
:
1189 case X86::VBROADCASTSSZmk
:
1190 case X86::VPBROADCASTDZ128mk
:
1191 case X86::VPBROADCASTDZ256mk
:
1192 case X86::VPBROADCASTDZmk
:
1193 case X86::VPBROADCASTQZ128mk
:
1194 case X86::VPBROADCASTQZ256mk
:
1195 case X86::VPBROADCASTQZmk
: {
1198 default: llvm_unreachable("Unreachable!");
1199 case X86::VMOVDQU8Z128rmk
: Opc
= X86::VPBLENDMBZ128rmk
; break;
1200 case X86::VMOVDQU8Z256rmk
: Opc
= X86::VPBLENDMBZ256rmk
; break;
1201 case X86::VMOVDQU8Zrmk
: Opc
= X86::VPBLENDMBZrmk
; break;
1202 case X86::VMOVDQU16Z128rmk
: Opc
= X86::VPBLENDMWZ128rmk
; break;
1203 case X86::VMOVDQU16Z256rmk
: Opc
= X86::VPBLENDMWZ256rmk
; break;
1204 case X86::VMOVDQU16Zrmk
: Opc
= X86::VPBLENDMWZrmk
; break;
1205 case X86::VMOVDQU32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1206 case X86::VMOVDQU32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1207 case X86::VMOVDQU32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1208 case X86::VMOVDQU64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1209 case X86::VMOVDQU64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1210 case X86::VMOVDQU64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1211 case X86::VMOVUPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1212 case X86::VMOVUPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1213 case X86::VMOVUPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1214 case X86::VMOVUPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1215 case X86::VMOVUPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1216 case X86::VMOVUPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1217 case X86::VMOVDQA32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1218 case X86::VMOVDQA32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1219 case X86::VMOVDQA32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1220 case X86::VMOVDQA64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1221 case X86::VMOVDQA64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1222 case X86::VMOVDQA64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1223 case X86::VMOVAPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1224 case X86::VMOVAPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1225 case X86::VMOVAPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1226 case X86::VMOVAPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1227 case X86::VMOVAPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1228 case X86::VMOVAPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1229 case X86::VBROADCASTSDZ256mk
: Opc
= X86::VBLENDMPDZ256rmbk
; break;
1230 case X86::VBROADCASTSDZmk
: Opc
= X86::VBLENDMPDZrmbk
; break;
1231 case X86::VBROADCASTSSZ128mk
: Opc
= X86::VBLENDMPSZ128rmbk
; break;
1232 case X86::VBROADCASTSSZ256mk
: Opc
= X86::VBLENDMPSZ256rmbk
; break;
1233 case X86::VBROADCASTSSZmk
: Opc
= X86::VBLENDMPSZrmbk
; break;
1234 case X86::VPBROADCASTDZ128mk
: Opc
= X86::VPBLENDMDZ128rmbk
; break;
1235 case X86::VPBROADCASTDZ256mk
: Opc
= X86::VPBLENDMDZ256rmbk
; break;
1236 case X86::VPBROADCASTDZmk
: Opc
= X86::VPBLENDMDZrmbk
; break;
1237 case X86::VPBROADCASTQZ128mk
: Opc
= X86::VPBLENDMQZ128rmbk
; break;
1238 case X86::VPBROADCASTQZ256mk
: Opc
= X86::VPBLENDMQZ256rmbk
; break;
1239 case X86::VPBROADCASTQZmk
: Opc
= X86::VPBLENDMQZrmbk
; break;
1242 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1244 .add(MI
.getOperand(2))
1246 .add(MI
.getOperand(3))
1247 .add(MI
.getOperand(4))
1248 .add(MI
.getOperand(5))
1249 .add(MI
.getOperand(6))
1250 .add(MI
.getOperand(7));
1254 case X86::VMOVDQU8Z128rrk
:
1255 case X86::VMOVDQU8Z256rrk
:
1256 case X86::VMOVDQU8Zrrk
:
1257 case X86::VMOVDQU16Z128rrk
:
1258 case X86::VMOVDQU16Z256rrk
:
1259 case X86::VMOVDQU16Zrrk
:
1260 case X86::VMOVDQU32Z128rrk
: case X86::VMOVDQA32Z128rrk
:
1261 case X86::VMOVDQU32Z256rrk
: case X86::VMOVDQA32Z256rrk
:
1262 case X86::VMOVDQU32Zrrk
: case X86::VMOVDQA32Zrrk
:
1263 case X86::VMOVDQU64Z128rrk
: case X86::VMOVDQA64Z128rrk
:
1264 case X86::VMOVDQU64Z256rrk
: case X86::VMOVDQA64Z256rrk
:
1265 case X86::VMOVDQU64Zrrk
: case X86::VMOVDQA64Zrrk
:
1266 case X86::VMOVUPDZ128rrk
: case X86::VMOVAPDZ128rrk
:
1267 case X86::VMOVUPDZ256rrk
: case X86::VMOVAPDZ256rrk
:
1268 case X86::VMOVUPDZrrk
: case X86::VMOVAPDZrrk
:
1269 case X86::VMOVUPSZ128rrk
: case X86::VMOVAPSZ128rrk
:
1270 case X86::VMOVUPSZ256rrk
: case X86::VMOVAPSZ256rrk
:
1271 case X86::VMOVUPSZrrk
: case X86::VMOVAPSZrrk
: {
1274 default: llvm_unreachable("Unreachable!");
1275 case X86::VMOVDQU8Z128rrk
: Opc
= X86::VPBLENDMBZ128rrk
; break;
1276 case X86::VMOVDQU8Z256rrk
: Opc
= X86::VPBLENDMBZ256rrk
; break;
1277 case X86::VMOVDQU8Zrrk
: Opc
= X86::VPBLENDMBZrrk
; break;
1278 case X86::VMOVDQU16Z128rrk
: Opc
= X86::VPBLENDMWZ128rrk
; break;
1279 case X86::VMOVDQU16Z256rrk
: Opc
= X86::VPBLENDMWZ256rrk
; break;
1280 case X86::VMOVDQU16Zrrk
: Opc
= X86::VPBLENDMWZrrk
; break;
1281 case X86::VMOVDQU32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1282 case X86::VMOVDQU32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1283 case X86::VMOVDQU32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1284 case X86::VMOVDQU64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1285 case X86::VMOVDQU64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1286 case X86::VMOVDQU64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1287 case X86::VMOVUPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1288 case X86::VMOVUPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1289 case X86::VMOVUPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1290 case X86::VMOVUPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1291 case X86::VMOVUPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1292 case X86::VMOVUPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1293 case X86::VMOVDQA32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1294 case X86::VMOVDQA32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1295 case X86::VMOVDQA32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1296 case X86::VMOVDQA64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1297 case X86::VMOVDQA64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1298 case X86::VMOVDQA64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1299 case X86::VMOVAPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1300 case X86::VMOVAPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1301 case X86::VMOVAPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1302 case X86::VMOVAPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1303 case X86::VMOVAPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1304 case X86::VMOVAPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1307 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1309 .add(MI
.getOperand(2))
1311 .add(MI
.getOperand(3));
1316 if (!NewMI
) return nullptr;
1318 if (LV
) { // Update live variables
1320 LV
->replaceKillInstruction(Src
.getReg(), MI
, *NewMI
);
1322 LV
->replaceKillInstruction(Dest
.getReg(), MI
, *NewMI
);
1325 MFI
->insert(MI
.getIterator(), NewMI
); // Insert the new inst
1329 /// This determines which of three possible cases of a three source commute
1330 /// the source indexes correspond to taking into account any mask operands.
1331 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1333 /// Case 0 - Possible to commute the first and second operands.
1334 /// Case 1 - Possible to commute the first and third operands.
1335 /// Case 2 - Possible to commute the second and third operands.
1336 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags
, unsigned SrcOpIdx1
,
1337 unsigned SrcOpIdx2
) {
1338 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1339 if (SrcOpIdx1
> SrcOpIdx2
)
1340 std::swap(SrcOpIdx1
, SrcOpIdx2
);
1342 unsigned Op1
= 1, Op2
= 2, Op3
= 3;
1343 if (X86II::isKMasked(TSFlags
)) {
1348 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op2
)
1350 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op3
)
1352 if (SrcOpIdx1
== Op2
&& SrcOpIdx2
== Op3
)
1354 llvm_unreachable("Unknown three src commute case.");
1357 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1358 const MachineInstr
&MI
, unsigned SrcOpIdx1
, unsigned SrcOpIdx2
,
1359 const X86InstrFMA3Group
&FMA3Group
) const {
1361 unsigned Opc
= MI
.getOpcode();
1363 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1364 // analysis. The commute optimization is legal only if all users of FMA*_Int
1365 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1366 // not implemented yet. So, just return 0 in that case.
1367 // When such analysis are available this place will be the right place for
1369 assert(!(FMA3Group
.isIntrinsic() && (SrcOpIdx1
== 1 || SrcOpIdx2
== 1)) &&
1370 "Intrinsic instructions can't commute operand 1");
1372 // Determine which case this commute is or if it can't be done.
1373 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1375 assert(Case
< 3 && "Unexpected case number!");
1377 // Define the FMA forms mapping array that helps to map input FMA form
1378 // to output FMA form to preserve the operation semantics after
1379 // commuting the operands.
1380 const unsigned Form132Index
= 0;
1381 const unsigned Form213Index
= 1;
1382 const unsigned Form231Index
= 2;
1383 static const unsigned FormMapping
[][3] = {
1384 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1385 // FMA132 A, C, b; ==> FMA231 C, A, b;
1386 // FMA213 B, A, c; ==> FMA213 A, B, c;
1387 // FMA231 C, A, b; ==> FMA132 A, C, b;
1388 { Form231Index
, Form213Index
, Form132Index
},
1389 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1390 // FMA132 A, c, B; ==> FMA132 B, c, A;
1391 // FMA213 B, a, C; ==> FMA231 C, a, B;
1392 // FMA231 C, a, B; ==> FMA213 B, a, C;
1393 { Form132Index
, Form231Index
, Form213Index
},
1394 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1395 // FMA132 a, C, B; ==> FMA213 a, B, C;
1396 // FMA213 b, A, C; ==> FMA132 b, C, A;
1397 // FMA231 c, A, B; ==> FMA231 c, B, A;
1398 { Form213Index
, Form132Index
, Form231Index
}
1401 unsigned FMAForms
[3];
1402 FMAForms
[0] = FMA3Group
.get132Opcode();
1403 FMAForms
[1] = FMA3Group
.get213Opcode();
1404 FMAForms
[2] = FMA3Group
.get231Opcode();
1406 for (FormIndex
= 0; FormIndex
< 3; FormIndex
++)
1407 if (Opc
== FMAForms
[FormIndex
])
1410 // Everything is ready, just adjust the FMA opcode and return it.
1411 FormIndex
= FormMapping
[Case
][FormIndex
];
1412 return FMAForms
[FormIndex
];
1415 static void commuteVPTERNLOG(MachineInstr
&MI
, unsigned SrcOpIdx1
,
1416 unsigned SrcOpIdx2
) {
1417 // Determine which case this commute is or if it can't be done.
1418 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1420 assert(Case
< 3 && "Unexpected case value!");
1422 // For each case we need to swap two pairs of bits in the final immediate.
1423 static const uint8_t SwapMasks
[3][4] = {
1424 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1425 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1426 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1429 uint8_t Imm
= MI
.getOperand(MI
.getNumOperands()-1).getImm();
1430 // Clear out the bits we are swapping.
1431 uint8_t NewImm
= Imm
& ~(SwapMasks
[Case
][0] | SwapMasks
[Case
][1] |
1432 SwapMasks
[Case
][2] | SwapMasks
[Case
][3]);
1433 // If the immediate had a bit of the pair set, then set the opposite bit.
1434 if (Imm
& SwapMasks
[Case
][0]) NewImm
|= SwapMasks
[Case
][1];
1435 if (Imm
& SwapMasks
[Case
][1]) NewImm
|= SwapMasks
[Case
][0];
1436 if (Imm
& SwapMasks
[Case
][2]) NewImm
|= SwapMasks
[Case
][3];
1437 if (Imm
& SwapMasks
[Case
][3]) NewImm
|= SwapMasks
[Case
][2];
1438 MI
.getOperand(MI
.getNumOperands()-1).setImm(NewImm
);
1441 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1443 static bool isCommutableVPERMV3Instruction(unsigned Opcode
) {
1444 #define VPERM_CASES(Suffix) \
1445 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1446 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1447 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1448 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1449 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1450 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1451 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1452 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1453 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1454 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1455 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1456 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1458 #define VPERM_CASES_BROADCAST(Suffix) \
1459 VPERM_CASES(Suffix) \
1460 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1461 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1462 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1463 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1464 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1465 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1468 default: return false;
1470 VPERM_CASES_BROADCAST(D
)
1471 VPERM_CASES_BROADCAST(PD
)
1472 VPERM_CASES_BROADCAST(PS
)
1473 VPERM_CASES_BROADCAST(Q
)
1477 #undef VPERM_CASES_BROADCAST
1481 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1482 // from the I opcode to the T opcode and vice versa.
1483 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode
) {
1484 #define VPERM_CASES(Orig, New) \
1485 case X86::Orig##128rr: return X86::New##128rr; \
1486 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1487 case X86::Orig##128rm: return X86::New##128rm; \
1488 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1489 case X86::Orig##256rr: return X86::New##256rr; \
1490 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1491 case X86::Orig##256rm: return X86::New##256rm; \
1492 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1493 case X86::Orig##rr: return X86::New##rr; \
1494 case X86::Orig##rrkz: return X86::New##rrkz; \
1495 case X86::Orig##rm: return X86::New##rm; \
1496 case X86::Orig##rmkz: return X86::New##rmkz;
1498 #define VPERM_CASES_BROADCAST(Orig, New) \
1499 VPERM_CASES(Orig, New) \
1500 case X86::Orig##128rmb: return X86::New##128rmb; \
1501 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1502 case X86::Orig##256rmb: return X86::New##256rmb; \
1503 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1504 case X86::Orig##rmb: return X86::New##rmb; \
1505 case X86::Orig##rmbkz: return X86::New##rmbkz;
1508 VPERM_CASES(VPERMI2B
, VPERMT2B
)
1509 VPERM_CASES_BROADCAST(VPERMI2D
, VPERMT2D
)
1510 VPERM_CASES_BROADCAST(VPERMI2PD
, VPERMT2PD
)
1511 VPERM_CASES_BROADCAST(VPERMI2PS
, VPERMT2PS
)
1512 VPERM_CASES_BROADCAST(VPERMI2Q
, VPERMT2Q
)
1513 VPERM_CASES(VPERMI2W
, VPERMT2W
)
1514 VPERM_CASES(VPERMT2B
, VPERMI2B
)
1515 VPERM_CASES_BROADCAST(VPERMT2D
, VPERMI2D
)
1516 VPERM_CASES_BROADCAST(VPERMT2PD
, VPERMI2PD
)
1517 VPERM_CASES_BROADCAST(VPERMT2PS
, VPERMI2PS
)
1518 VPERM_CASES_BROADCAST(VPERMT2Q
, VPERMI2Q
)
1519 VPERM_CASES(VPERMT2W
, VPERMI2W
)
1522 llvm_unreachable("Unreachable!");
1523 #undef VPERM_CASES_BROADCAST
1527 MachineInstr
*X86InstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
1529 unsigned OpIdx2
) const {
1530 auto cloneIfNew
= [NewMI
](MachineInstr
&MI
) -> MachineInstr
& {
1532 return *MI
.getParent()->getParent()->CloneMachineInstr(&MI
);
1536 switch (MI
.getOpcode()) {
1537 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1538 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1539 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1540 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1541 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1542 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1545 switch (MI
.getOpcode()) {
1546 default: llvm_unreachable("Unreachable!");
1547 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1548 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1549 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1550 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1551 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1552 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1554 unsigned Amt
= MI
.getOperand(3).getImm();
1555 auto &WorkingMI
= cloneIfNew(MI
);
1556 WorkingMI
.setDesc(get(Opc
));
1557 WorkingMI
.getOperand(3).setImm(Size
- Amt
);
1558 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1562 case X86::PFSUBRrr
: {
1563 // PFSUB x, y: x = x - y
1564 // PFSUBR x, y: x = y - x
1566 (X86::PFSUBRrr
== MI
.getOpcode() ? X86::PFSUBrr
: X86::PFSUBRrr
);
1567 auto &WorkingMI
= cloneIfNew(MI
);
1568 WorkingMI
.setDesc(get(Opc
));
1569 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1572 case X86::BLENDPDrri
:
1573 case X86::BLENDPSrri
:
1574 case X86::VBLENDPDrri
:
1575 case X86::VBLENDPSrri
:
1576 // If we're optimizing for size, try to use MOVSD/MOVSS.
1577 if (MI
.getParent()->getParent()->getFunction().hasOptSize()) {
1579 switch (MI
.getOpcode()) {
1580 default: llvm_unreachable("Unreachable!");
1581 case X86::BLENDPDrri
: Opc
= X86::MOVSDrr
; Mask
= 0x03; break;
1582 case X86::BLENDPSrri
: Opc
= X86::MOVSSrr
; Mask
= 0x0F; break;
1583 case X86::VBLENDPDrri
: Opc
= X86::VMOVSDrr
; Mask
= 0x03; break;
1584 case X86::VBLENDPSrri
: Opc
= X86::VMOVSSrr
; Mask
= 0x0F; break;
1586 if ((MI
.getOperand(3).getImm() ^ Mask
) == 1) {
1587 auto &WorkingMI
= cloneIfNew(MI
);
1588 WorkingMI
.setDesc(get(Opc
));
1589 WorkingMI
.RemoveOperand(3);
1590 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
,
1596 case X86::PBLENDWrri
:
1597 case X86::VBLENDPDYrri
:
1598 case X86::VBLENDPSYrri
:
1599 case X86::VPBLENDDrri
:
1600 case X86::VPBLENDWrri
:
1601 case X86::VPBLENDDYrri
:
1602 case X86::VPBLENDWYrri
:{
1604 switch (MI
.getOpcode()) {
1605 default: llvm_unreachable("Unreachable!");
1606 case X86::BLENDPDrri
: Mask
= (int8_t)0x03; break;
1607 case X86::BLENDPSrri
: Mask
= (int8_t)0x0F; break;
1608 case X86::PBLENDWrri
: Mask
= (int8_t)0xFF; break;
1609 case X86::VBLENDPDrri
: Mask
= (int8_t)0x03; break;
1610 case X86::VBLENDPSrri
: Mask
= (int8_t)0x0F; break;
1611 case X86::VBLENDPDYrri
: Mask
= (int8_t)0x0F; break;
1612 case X86::VBLENDPSYrri
: Mask
= (int8_t)0xFF; break;
1613 case X86::VPBLENDDrri
: Mask
= (int8_t)0x0F; break;
1614 case X86::VPBLENDWrri
: Mask
= (int8_t)0xFF; break;
1615 case X86::VPBLENDDYrri
: Mask
= (int8_t)0xFF; break;
1616 case X86::VPBLENDWYrri
: Mask
= (int8_t)0xFF; break;
1618 // Only the least significant bits of Imm are used.
1619 // Using int8_t to ensure it will be sign extended to the int64_t that
1620 // setImm takes in order to match isel behavior.
1621 int8_t Imm
= MI
.getOperand(3).getImm() & Mask
;
1622 auto &WorkingMI
= cloneIfNew(MI
);
1623 WorkingMI
.getOperand(3).setImm(Mask
^ Imm
);
1624 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1627 case X86::INSERTPSrr
:
1628 case X86::VINSERTPSrr
:
1629 case X86::VINSERTPSZrr
: {
1630 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
1631 unsigned ZMask
= Imm
& 15;
1632 unsigned DstIdx
= (Imm
>> 4) & 3;
1633 unsigned SrcIdx
= (Imm
>> 6) & 3;
1635 // We can commute insertps if we zero 2 of the elements, the insertion is
1636 // "inline" and we don't override the insertion with a zero.
1637 if (DstIdx
== SrcIdx
&& (ZMask
& (1 << DstIdx
)) == 0 &&
1638 countPopulation(ZMask
) == 2) {
1639 unsigned AltIdx
= findFirstSet((ZMask
| (1 << DstIdx
)) ^ 15);
1640 assert(AltIdx
< 4 && "Illegal insertion index");
1641 unsigned AltImm
= (AltIdx
<< 6) | (AltIdx
<< 4) | ZMask
;
1642 auto &WorkingMI
= cloneIfNew(MI
);
1643 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(AltImm
);
1644 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1652 case X86::VMOVSSrr
:{
1653 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1654 if (Subtarget
.hasSSE41()) {
1656 switch (MI
.getOpcode()) {
1657 default: llvm_unreachable("Unreachable!");
1658 case X86::MOVSDrr
: Opc
= X86::BLENDPDrri
; Mask
= 0x02; break;
1659 case X86::MOVSSrr
: Opc
= X86::BLENDPSrri
; Mask
= 0x0E; break;
1660 case X86::VMOVSDrr
: Opc
= X86::VBLENDPDrri
; Mask
= 0x02; break;
1661 case X86::VMOVSSrr
: Opc
= X86::VBLENDPSrri
; Mask
= 0x0E; break;
1664 auto &WorkingMI
= cloneIfNew(MI
);
1665 WorkingMI
.setDesc(get(Opc
));
1666 WorkingMI
.addOperand(MachineOperand::CreateImm(Mask
));
1667 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1671 // Convert to SHUFPD.
1672 assert(MI
.getOpcode() == X86::MOVSDrr
&&
1673 "Can only commute MOVSDrr without SSE4.1");
1675 auto &WorkingMI
= cloneIfNew(MI
);
1676 WorkingMI
.setDesc(get(X86::SHUFPDrri
));
1677 WorkingMI
.addOperand(MachineOperand::CreateImm(0x02));
1678 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1681 case X86::SHUFPDrri
: {
1682 // Commute to MOVSD.
1683 assert(MI
.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1684 auto &WorkingMI
= cloneIfNew(MI
);
1685 WorkingMI
.setDesc(get(X86::MOVSDrr
));
1686 WorkingMI
.RemoveOperand(3);
1687 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1690 case X86::PCLMULQDQrr
:
1691 case X86::VPCLMULQDQrr
:
1692 case X86::VPCLMULQDQYrr
:
1693 case X86::VPCLMULQDQZrr
:
1694 case X86::VPCLMULQDQZ128rr
:
1695 case X86::VPCLMULQDQZ256rr
: {
1696 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1697 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1698 unsigned Imm
= MI
.getOperand(3).getImm();
1699 unsigned Src1Hi
= Imm
& 0x01;
1700 unsigned Src2Hi
= Imm
& 0x10;
1701 auto &WorkingMI
= cloneIfNew(MI
);
1702 WorkingMI
.getOperand(3).setImm((Src1Hi
<< 4) | (Src2Hi
>> 4));
1703 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1706 case X86::VPCMPBZ128rri
: case X86::VPCMPUBZ128rri
:
1707 case X86::VPCMPBZ256rri
: case X86::VPCMPUBZ256rri
:
1708 case X86::VPCMPBZrri
: case X86::VPCMPUBZrri
:
1709 case X86::VPCMPDZ128rri
: case X86::VPCMPUDZ128rri
:
1710 case X86::VPCMPDZ256rri
: case X86::VPCMPUDZ256rri
:
1711 case X86::VPCMPDZrri
: case X86::VPCMPUDZrri
:
1712 case X86::VPCMPQZ128rri
: case X86::VPCMPUQZ128rri
:
1713 case X86::VPCMPQZ256rri
: case X86::VPCMPUQZ256rri
:
1714 case X86::VPCMPQZrri
: case X86::VPCMPUQZrri
:
1715 case X86::VPCMPWZ128rri
: case X86::VPCMPUWZ128rri
:
1716 case X86::VPCMPWZ256rri
: case X86::VPCMPUWZ256rri
:
1717 case X86::VPCMPWZrri
: case X86::VPCMPUWZrri
:
1718 case X86::VPCMPBZ128rrik
: case X86::VPCMPUBZ128rrik
:
1719 case X86::VPCMPBZ256rrik
: case X86::VPCMPUBZ256rrik
:
1720 case X86::VPCMPBZrrik
: case X86::VPCMPUBZrrik
:
1721 case X86::VPCMPDZ128rrik
: case X86::VPCMPUDZ128rrik
:
1722 case X86::VPCMPDZ256rrik
: case X86::VPCMPUDZ256rrik
:
1723 case X86::VPCMPDZrrik
: case X86::VPCMPUDZrrik
:
1724 case X86::VPCMPQZ128rrik
: case X86::VPCMPUQZ128rrik
:
1725 case X86::VPCMPQZ256rrik
: case X86::VPCMPUQZ256rrik
:
1726 case X86::VPCMPQZrrik
: case X86::VPCMPUQZrrik
:
1727 case X86::VPCMPWZ128rrik
: case X86::VPCMPUWZ128rrik
:
1728 case X86::VPCMPWZ256rrik
: case X86::VPCMPUWZ256rrik
:
1729 case X86::VPCMPWZrrik
: case X86::VPCMPUWZrrik
: {
1730 // Flip comparison mode immediate (if necessary).
1731 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x7;
1732 Imm
= X86::getSwappedVPCMPImm(Imm
);
1733 auto &WorkingMI
= cloneIfNew(MI
);
1734 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(Imm
);
1735 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1738 case X86::VPCOMBri
: case X86::VPCOMUBri
:
1739 case X86::VPCOMDri
: case X86::VPCOMUDri
:
1740 case X86::VPCOMQri
: case X86::VPCOMUQri
:
1741 case X86::VPCOMWri
: case X86::VPCOMUWri
: {
1742 // Flip comparison mode immediate (if necessary).
1743 unsigned Imm
= MI
.getOperand(3).getImm() & 0x7;
1744 Imm
= X86::getSwappedVPCOMImm(Imm
);
1745 auto &WorkingMI
= cloneIfNew(MI
);
1746 WorkingMI
.getOperand(3).setImm(Imm
);
1747 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1750 case X86::VCMPSDZrr
:
1751 case X86::VCMPSSZrr
:
1752 case X86::VCMPPDZrri
:
1753 case X86::VCMPPSZrri
:
1754 case X86::VCMPPDZ128rri
:
1755 case X86::VCMPPSZ128rri
:
1756 case X86::VCMPPDZ256rri
:
1757 case X86::VCMPPSZ256rri
:
1758 case X86::VCMPPDZrrik
:
1759 case X86::VCMPPSZrrik
:
1760 case X86::VCMPPDZ128rrik
:
1761 case X86::VCMPPSZ128rrik
:
1762 case X86::VCMPPDZ256rrik
:
1763 case X86::VCMPPSZ256rrik
: {
1764 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x1f;
1765 Imm
= X86::getSwappedVCMPImm(Imm
);
1766 auto &WorkingMI
= cloneIfNew(MI
);
1767 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(Imm
);
1768 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1771 case X86::VPERM2F128rr
:
1772 case X86::VPERM2I128rr
: {
1773 // Flip permute source immediate.
1774 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1775 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1776 int8_t Imm
= MI
.getOperand(3).getImm() & 0xFF;
1777 auto &WorkingMI
= cloneIfNew(MI
);
1778 WorkingMI
.getOperand(3).setImm(Imm
^ 0x22);
1779 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1782 case X86::MOVHLPSrr
:
1783 case X86::UNPCKHPDrr
:
1784 case X86::VMOVHLPSrr
:
1785 case X86::VUNPCKHPDrr
:
1786 case X86::VMOVHLPSZrr
:
1787 case X86::VUNPCKHPDZ128rr
: {
1788 assert(Subtarget
.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1790 unsigned Opc
= MI
.getOpcode();
1792 default: llvm_unreachable("Unreachable!");
1793 case X86::MOVHLPSrr
: Opc
= X86::UNPCKHPDrr
; break;
1794 case X86::UNPCKHPDrr
: Opc
= X86::MOVHLPSrr
; break;
1795 case X86::VMOVHLPSrr
: Opc
= X86::VUNPCKHPDrr
; break;
1796 case X86::VUNPCKHPDrr
: Opc
= X86::VMOVHLPSrr
; break;
1797 case X86::VMOVHLPSZrr
: Opc
= X86::VUNPCKHPDZ128rr
; break;
1798 case X86::VUNPCKHPDZ128rr
: Opc
= X86::VMOVHLPSZrr
; break;
1800 auto &WorkingMI
= cloneIfNew(MI
);
1801 WorkingMI
.setDesc(get(Opc
));
1802 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1805 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
: {
1806 auto &WorkingMI
= cloneIfNew(MI
);
1807 unsigned OpNo
= MI
.getDesc().getNumOperands() - 1;
1808 X86::CondCode CC
= static_cast<X86::CondCode
>(MI
.getOperand(OpNo
).getImm());
1809 WorkingMI
.getOperand(OpNo
).setImm(X86::GetOppositeBranchCondition(CC
));
1810 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1813 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
1814 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
1815 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
1816 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
1817 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
1818 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
1819 case X86::VPTERNLOGDZrrik
:
1820 case X86::VPTERNLOGDZ128rrik
:
1821 case X86::VPTERNLOGDZ256rrik
:
1822 case X86::VPTERNLOGQZrrik
:
1823 case X86::VPTERNLOGQZ128rrik
:
1824 case X86::VPTERNLOGQZ256rrik
:
1825 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
1826 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
1827 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
1828 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
1829 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
1830 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
1831 case X86::VPTERNLOGDZ128rmbi
:
1832 case X86::VPTERNLOGDZ256rmbi
:
1833 case X86::VPTERNLOGDZrmbi
:
1834 case X86::VPTERNLOGQZ128rmbi
:
1835 case X86::VPTERNLOGQZ256rmbi
:
1836 case X86::VPTERNLOGQZrmbi
:
1837 case X86::VPTERNLOGDZ128rmbikz
:
1838 case X86::VPTERNLOGDZ256rmbikz
:
1839 case X86::VPTERNLOGDZrmbikz
:
1840 case X86::VPTERNLOGQZ128rmbikz
:
1841 case X86::VPTERNLOGQZ256rmbikz
:
1842 case X86::VPTERNLOGQZrmbikz
: {
1843 auto &WorkingMI
= cloneIfNew(MI
);
1844 commuteVPTERNLOG(WorkingMI
, OpIdx1
, OpIdx2
);
1845 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1849 if (isCommutableVPERMV3Instruction(MI
.getOpcode())) {
1850 unsigned Opc
= getCommutedVPERMV3Opcode(MI
.getOpcode());
1851 auto &WorkingMI
= cloneIfNew(MI
);
1852 WorkingMI
.setDesc(get(Opc
));
1853 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1857 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
1858 MI
.getDesc().TSFlags
);
1861 getFMA3OpcodeToCommuteOperands(MI
, OpIdx1
, OpIdx2
, *FMA3Group
);
1862 auto &WorkingMI
= cloneIfNew(MI
);
1863 WorkingMI
.setDesc(get(Opc
));
1864 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1868 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
1874 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
1875 unsigned &SrcOpIdx1
,
1876 unsigned &SrcOpIdx2
,
1877 bool IsIntrinsic
) const {
1878 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
1880 unsigned FirstCommutableVecOp
= 1;
1881 unsigned LastCommutableVecOp
= 3;
1882 unsigned KMaskOp
= -1U;
1883 if (X86II::isKMasked(TSFlags
)) {
1884 // For k-zero-masked operations it is Ok to commute the first vector
1886 // For regular k-masked operations a conservative choice is done as the
1887 // elements of the first vector operand, for which the corresponding bit
1888 // in the k-mask operand is set to 0, are copied to the result of the
1890 // TODO/FIXME: The commute still may be legal if it is known that the
1891 // k-mask operand is set to either all ones or all zeroes.
1892 // It is also Ok to commute the 1st operand if all users of MI use only
1893 // the elements enabled by the k-mask operand. For example,
1894 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1896 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1897 // // Ok, to commute v1 in FMADD213PSZrk.
1899 // The k-mask operand has index = 2 for masked and zero-masked operations.
1902 // The operand with index = 1 is used as a source for those elements for
1903 // which the corresponding bit in the k-mask is set to 0.
1904 if (X86II::isKMergeMasked(TSFlags
))
1905 FirstCommutableVecOp
= 3;
1907 LastCommutableVecOp
++;
1908 } else if (IsIntrinsic
) {
1909 // Commuting the first operand of an intrinsic instruction isn't possible
1910 // unless we can prove that only the lowest element of the result is used.
1911 FirstCommutableVecOp
= 2;
1914 if (isMem(MI
, LastCommutableVecOp
))
1915 LastCommutableVecOp
--;
1917 // Only the first RegOpsNum operands are commutable.
1918 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1919 // that the operand is not specified/fixed.
1920 if (SrcOpIdx1
!= CommuteAnyOperandIndex
&&
1921 (SrcOpIdx1
< FirstCommutableVecOp
|| SrcOpIdx1
> LastCommutableVecOp
||
1922 SrcOpIdx1
== KMaskOp
))
1924 if (SrcOpIdx2
!= CommuteAnyOperandIndex
&&
1925 (SrcOpIdx2
< FirstCommutableVecOp
|| SrcOpIdx2
> LastCommutableVecOp
||
1926 SrcOpIdx2
== KMaskOp
))
1929 // Look for two different register operands assumed to be commutable
1930 // regardless of the FMA opcode. The FMA opcode is adjusted later.
1931 if (SrcOpIdx1
== CommuteAnyOperandIndex
||
1932 SrcOpIdx2
== CommuteAnyOperandIndex
) {
1933 unsigned CommutableOpIdx2
= SrcOpIdx2
;
1935 // At least one of operands to be commuted is not specified and
1936 // this method is free to choose appropriate commutable operands.
1937 if (SrcOpIdx1
== SrcOpIdx2
)
1938 // Both of operands are not fixed. By default set one of commutable
1939 // operands to the last register operand of the instruction.
1940 CommutableOpIdx2
= LastCommutableVecOp
;
1941 else if (SrcOpIdx2
== CommuteAnyOperandIndex
)
1942 // Only one of operands is not fixed.
1943 CommutableOpIdx2
= SrcOpIdx1
;
1945 // CommutableOpIdx2 is well defined now. Let's choose another commutable
1946 // operand and assign its index to CommutableOpIdx1.
1947 Register Op2Reg
= MI
.getOperand(CommutableOpIdx2
).getReg();
1949 unsigned CommutableOpIdx1
;
1950 for (CommutableOpIdx1
= LastCommutableVecOp
;
1951 CommutableOpIdx1
>= FirstCommutableVecOp
; CommutableOpIdx1
--) {
1952 // Just ignore and skip the k-mask operand.
1953 if (CommutableOpIdx1
== KMaskOp
)
1956 // The commuted operands must have different registers.
1957 // Otherwise, the commute transformation does not change anything and
1959 if (Op2Reg
!= MI
.getOperand(CommutableOpIdx1
).getReg())
1963 // No appropriate commutable operands were found.
1964 if (CommutableOpIdx1
< FirstCommutableVecOp
)
1967 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1968 // to return those values.
1969 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
1970 CommutableOpIdx1
, CommutableOpIdx2
))
1977 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
1978 unsigned &SrcOpIdx1
,
1979 unsigned &SrcOpIdx2
) const {
1980 const MCInstrDesc
&Desc
= MI
.getDesc();
1981 if (!Desc
.isCommutable())
1984 switch (MI
.getOpcode()) {
1991 case X86::VCMPPDrri
:
1992 case X86::VCMPPSrri
:
1993 case X86::VCMPPDYrri
:
1994 case X86::VCMPPSYrri
:
1995 case X86::VCMPSDZrr
:
1996 case X86::VCMPSSZrr
:
1997 case X86::VCMPPDZrri
:
1998 case X86::VCMPPSZrri
:
1999 case X86::VCMPPDZ128rri
:
2000 case X86::VCMPPSZ128rri
:
2001 case X86::VCMPPDZ256rri
:
2002 case X86::VCMPPSZ256rri
:
2003 case X86::VCMPPDZrrik
:
2004 case X86::VCMPPSZrrik
:
2005 case X86::VCMPPDZ128rrik
:
2006 case X86::VCMPPSZ128rrik
:
2007 case X86::VCMPPDZ256rrik
:
2008 case X86::VCMPPSZ256rrik
: {
2009 unsigned OpOffset
= X86II::isKMasked(Desc
.TSFlags
) ? 1 : 0;
2011 // Float comparison can be safely commuted for
2012 // Ordered/Unordered/Equal/NotEqual tests
2013 unsigned Imm
= MI
.getOperand(3 + OpOffset
).getImm() & 0x7;
2016 // EVEX versions can be commuted.
2017 if ((Desc
.TSFlags
& X86II::EncodingMask
) == X86II::EVEX
)
2021 case 0x03: // UNORDERED
2022 case 0x04: // NOT EQUAL
2023 case 0x07: // ORDERED
2027 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2029 // Assign them to the returned operand indices here.
2030 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 1 + OpOffset
,
2034 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2035 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2036 // AVX implies sse4.1.
2037 if (Subtarget
.hasSSE41())
2038 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2040 case X86::SHUFPDrri
:
2041 // We can commute this to MOVSD.
2042 if (MI
.getOperand(3).getImm() == 0x02)
2043 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2045 case X86::MOVHLPSrr
:
2046 case X86::UNPCKHPDrr
:
2047 case X86::VMOVHLPSrr
:
2048 case X86::VUNPCKHPDrr
:
2049 case X86::VMOVHLPSZrr
:
2050 case X86::VUNPCKHPDZ128rr
:
2051 if (Subtarget
.hasSSE2())
2052 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2054 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
2055 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
2056 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
2057 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
2058 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
2059 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
2060 case X86::VPTERNLOGDZrrik
:
2061 case X86::VPTERNLOGDZ128rrik
:
2062 case X86::VPTERNLOGDZ256rrik
:
2063 case X86::VPTERNLOGQZrrik
:
2064 case X86::VPTERNLOGQZ128rrik
:
2065 case X86::VPTERNLOGQZ256rrik
:
2066 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
2067 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
2068 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
2069 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
2070 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
2071 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
2072 case X86::VPTERNLOGDZ128rmbi
:
2073 case X86::VPTERNLOGDZ256rmbi
:
2074 case X86::VPTERNLOGDZrmbi
:
2075 case X86::VPTERNLOGQZ128rmbi
:
2076 case X86::VPTERNLOGQZ256rmbi
:
2077 case X86::VPTERNLOGQZrmbi
:
2078 case X86::VPTERNLOGDZ128rmbikz
:
2079 case X86::VPTERNLOGDZ256rmbikz
:
2080 case X86::VPTERNLOGDZrmbikz
:
2081 case X86::VPTERNLOGQZ128rmbikz
:
2082 case X86::VPTERNLOGQZ256rmbikz
:
2083 case X86::VPTERNLOGQZrmbikz
:
2084 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2085 case X86::VPDPWSSDZ128r
:
2086 case X86::VPDPWSSDZ128rk
:
2087 case X86::VPDPWSSDZ128rkz
:
2088 case X86::VPDPWSSDZ256r
:
2089 case X86::VPDPWSSDZ256rk
:
2090 case X86::VPDPWSSDZ256rkz
:
2091 case X86::VPDPWSSDZr
:
2092 case X86::VPDPWSSDZrk
:
2093 case X86::VPDPWSSDZrkz
:
2094 case X86::VPDPWSSDSZ128r
:
2095 case X86::VPDPWSSDSZ128rk
:
2096 case X86::VPDPWSSDSZ128rkz
:
2097 case X86::VPDPWSSDSZ256r
:
2098 case X86::VPDPWSSDSZ256rk
:
2099 case X86::VPDPWSSDSZ256rkz
:
2100 case X86::VPDPWSSDSZr
:
2101 case X86::VPDPWSSDSZrk
:
2102 case X86::VPDPWSSDSZrkz
:
2103 case X86::VPMADD52HUQZ128r
:
2104 case X86::VPMADD52HUQZ128rk
:
2105 case X86::VPMADD52HUQZ128rkz
:
2106 case X86::VPMADD52HUQZ256r
:
2107 case X86::VPMADD52HUQZ256rk
:
2108 case X86::VPMADD52HUQZ256rkz
:
2109 case X86::VPMADD52HUQZr
:
2110 case X86::VPMADD52HUQZrk
:
2111 case X86::VPMADD52HUQZrkz
:
2112 case X86::VPMADD52LUQZ128r
:
2113 case X86::VPMADD52LUQZ128rk
:
2114 case X86::VPMADD52LUQZ128rkz
:
2115 case X86::VPMADD52LUQZ256r
:
2116 case X86::VPMADD52LUQZ256rk
:
2117 case X86::VPMADD52LUQZ256rkz
:
2118 case X86::VPMADD52LUQZr
:
2119 case X86::VPMADD52LUQZrk
:
2120 case X86::VPMADD52LUQZrkz
: {
2121 unsigned CommutableOpIdx1
= 2;
2122 unsigned CommutableOpIdx2
= 3;
2123 if (X86II::isKMasked(Desc
.TSFlags
)) {
2124 // Skip the mask register.
2128 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2129 CommutableOpIdx1
, CommutableOpIdx2
))
2131 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2132 !MI
.getOperand(SrcOpIdx2
).isReg())
2139 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
2140 MI
.getDesc().TSFlags
);
2142 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
,
2143 FMA3Group
->isIntrinsic());
2145 // Handled masked instructions since we need to skip over the mask input
2146 // and the preserved input.
2147 if (X86II::isKMasked(Desc
.TSFlags
)) {
2148 // First assume that the first input is the mask operand and skip past it.
2149 unsigned CommutableOpIdx1
= Desc
.getNumDefs() + 1;
2150 unsigned CommutableOpIdx2
= Desc
.getNumDefs() + 2;
2151 // Check if the first input is tied. If there isn't one then we only
2152 // need to skip the mask operand which we did above.
2153 if ((MI
.getDesc().getOperandConstraint(Desc
.getNumDefs(),
2154 MCOI::TIED_TO
) != -1)) {
2155 // If this is zero masking instruction with a tied operand, we need to
2156 // move the first index back to the first input since this must
2157 // be a 3 input instruction and we want the first two non-mask inputs.
2158 // Otherwise this is a 2 input instruction with a preserved input and
2159 // mask, so we need to move the indices to skip one more input.
2160 if (X86II::isKMergeMasked(Desc
.TSFlags
)) {
2168 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2169 CommutableOpIdx1
, CommutableOpIdx2
))
2172 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2173 !MI
.getOperand(SrcOpIdx2
).isReg())
2179 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2184 X86::CondCode
X86::getCondFromBranch(const MachineInstr
&MI
) {
2185 switch (MI
.getOpcode()) {
2186 default: return X86::COND_INVALID
;
2188 return static_cast<X86::CondCode
>(
2189 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2193 /// Return condition code of a SETCC opcode.
2194 X86::CondCode
X86::getCondFromSETCC(const MachineInstr
&MI
) {
2195 switch (MI
.getOpcode()) {
2196 default: return X86::COND_INVALID
;
2197 case X86::SETCCr
: case X86::SETCCm
:
2198 return static_cast<X86::CondCode
>(
2199 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2203 /// Return condition code of a CMov opcode.
2204 X86::CondCode
X86::getCondFromCMov(const MachineInstr
&MI
) {
2205 switch (MI
.getOpcode()) {
2206 default: return X86::COND_INVALID
;
2207 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
:
2208 case X86::CMOV16rm
: case X86::CMOV32rm
: case X86::CMOV64rm
:
2209 return static_cast<X86::CondCode
>(
2210 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2214 /// Return the inverse of the specified condition,
2215 /// e.g. turning COND_E to COND_NE.
2216 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
2218 default: llvm_unreachable("Illegal condition code!");
2219 case X86::COND_E
: return X86::COND_NE
;
2220 case X86::COND_NE
: return X86::COND_E
;
2221 case X86::COND_L
: return X86::COND_GE
;
2222 case X86::COND_LE
: return X86::COND_G
;
2223 case X86::COND_G
: return X86::COND_LE
;
2224 case X86::COND_GE
: return X86::COND_L
;
2225 case X86::COND_B
: return X86::COND_AE
;
2226 case X86::COND_BE
: return X86::COND_A
;
2227 case X86::COND_A
: return X86::COND_BE
;
2228 case X86::COND_AE
: return X86::COND_B
;
2229 case X86::COND_S
: return X86::COND_NS
;
2230 case X86::COND_NS
: return X86::COND_S
;
2231 case X86::COND_P
: return X86::COND_NP
;
2232 case X86::COND_NP
: return X86::COND_P
;
2233 case X86::COND_O
: return X86::COND_NO
;
2234 case X86::COND_NO
: return X86::COND_O
;
2235 case X86::COND_NE_OR_P
: return X86::COND_E_AND_NP
;
2236 case X86::COND_E_AND_NP
: return X86::COND_NE_OR_P
;
2240 /// Assuming the flags are set by MI(a,b), return the condition code if we
2241 /// modify the instructions such that flags are set by MI(b,a).
2242 static X86::CondCode
getSwappedCondition(X86::CondCode CC
) {
2244 default: return X86::COND_INVALID
;
2245 case X86::COND_E
: return X86::COND_E
;
2246 case X86::COND_NE
: return X86::COND_NE
;
2247 case X86::COND_L
: return X86::COND_G
;
2248 case X86::COND_LE
: return X86::COND_GE
;
2249 case X86::COND_G
: return X86::COND_L
;
2250 case X86::COND_GE
: return X86::COND_LE
;
2251 case X86::COND_B
: return X86::COND_A
;
2252 case X86::COND_BE
: return X86::COND_AE
;
2253 case X86::COND_A
: return X86::COND_B
;
2254 case X86::COND_AE
: return X86::COND_BE
;
2258 std::pair
<X86::CondCode
, bool>
2259 X86::getX86ConditionCode(CmpInst::Predicate Predicate
) {
2260 X86::CondCode CC
= X86::COND_INVALID
;
2261 bool NeedSwap
= false;
2262 switch (Predicate
) {
2264 // Floating-point Predicates
2265 case CmpInst::FCMP_UEQ
: CC
= X86::COND_E
; break;
2266 case CmpInst::FCMP_OLT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2267 case CmpInst::FCMP_OGT
: CC
= X86::COND_A
; break;
2268 case CmpInst::FCMP_OLE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2269 case CmpInst::FCMP_OGE
: CC
= X86::COND_AE
; break;
2270 case CmpInst::FCMP_UGT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2271 case CmpInst::FCMP_ULT
: CC
= X86::COND_B
; break;
2272 case CmpInst::FCMP_UGE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2273 case CmpInst::FCMP_ULE
: CC
= X86::COND_BE
; break;
2274 case CmpInst::FCMP_ONE
: CC
= X86::COND_NE
; break;
2275 case CmpInst::FCMP_UNO
: CC
= X86::COND_P
; break;
2276 case CmpInst::FCMP_ORD
: CC
= X86::COND_NP
; break;
2277 case CmpInst::FCMP_OEQ
: LLVM_FALLTHROUGH
;
2278 case CmpInst::FCMP_UNE
: CC
= X86::COND_INVALID
; break;
2280 // Integer Predicates
2281 case CmpInst::ICMP_EQ
: CC
= X86::COND_E
; break;
2282 case CmpInst::ICMP_NE
: CC
= X86::COND_NE
; break;
2283 case CmpInst::ICMP_UGT
: CC
= X86::COND_A
; break;
2284 case CmpInst::ICMP_UGE
: CC
= X86::COND_AE
; break;
2285 case CmpInst::ICMP_ULT
: CC
= X86::COND_B
; break;
2286 case CmpInst::ICMP_ULE
: CC
= X86::COND_BE
; break;
2287 case CmpInst::ICMP_SGT
: CC
= X86::COND_G
; break;
2288 case CmpInst::ICMP_SGE
: CC
= X86::COND_GE
; break;
2289 case CmpInst::ICMP_SLT
: CC
= X86::COND_L
; break;
2290 case CmpInst::ICMP_SLE
: CC
= X86::COND_LE
; break;
2293 return std::make_pair(CC
, NeedSwap
);
2296 /// Return a setcc opcode based on whether it has memory operand.
2297 unsigned X86::getSETOpc(bool HasMemoryOperand
) {
2298 return HasMemoryOperand
? X86::SETCCr
: X86::SETCCm
;
2301 /// Return a cmov opcode for the given register size in bytes, and operand type.
2302 unsigned X86::getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
) {
2304 default: llvm_unreachable("Illegal register size!");
2305 case 2: return HasMemoryOperand
? X86::CMOV16rm
: X86::CMOV16rr
;
2306 case 4: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV32rr
;
2307 case 8: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV64rr
;
2311 /// Get the VPCMP immediate for the given condition.
2312 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC
) {
2314 default: llvm_unreachable("Unexpected SETCC condition");
2315 case ISD::SETNE
: return 4;
2316 case ISD::SETEQ
: return 0;
2318 case ISD::SETLT
: return 1;
2320 case ISD::SETGT
: return 6;
2322 case ISD::SETGE
: return 5;
2324 case ISD::SETLE
: return 2;
2328 /// Get the VPCMP immediate if the operands are swapped.
2329 unsigned X86::getSwappedVPCMPImm(unsigned Imm
) {
2331 default: llvm_unreachable("Unreachable!");
2332 case 0x01: Imm
= 0x06; break; // LT -> NLE
2333 case 0x02: Imm
= 0x05; break; // LE -> NLT
2334 case 0x05: Imm
= 0x02; break; // NLT -> LE
2335 case 0x06: Imm
= 0x01; break; // NLE -> LT
2346 /// Get the VPCOM immediate if the operands are swapped.
2347 unsigned X86::getSwappedVPCOMImm(unsigned Imm
) {
2349 default: llvm_unreachable("Unreachable!");
2350 case 0x00: Imm
= 0x02; break; // LT -> GT
2351 case 0x01: Imm
= 0x03; break; // LE -> GE
2352 case 0x02: Imm
= 0x00; break; // GT -> LT
2353 case 0x03: Imm
= 0x01; break; // GE -> LE
2364 /// Get the VCMP immediate if the operands are swapped.
2365 unsigned X86::getSwappedVCMPImm(unsigned Imm
) {
2366 // Only need the lower 2 bits to distinquish.
2367 switch (Imm
& 0x3) {
2368 default: llvm_unreachable("Unreachable!");
2369 case 0x00: case 0x03:
2370 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2372 case 0x01: case 0x02:
2373 // Need to toggle bits 3:0. Bit 4 stays the same.
2381 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
2382 if (!MI
.isTerminator()) return false;
2384 // Conditional branch is a special case.
2385 if (MI
.isBranch() && !MI
.isBarrier())
2387 if (!MI
.isPredicable())
2389 return !isPredicated(MI
);
2392 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr
&MI
) const {
2393 switch (MI
.getOpcode()) {
2394 case X86::TCRETURNdi
:
2395 case X86::TCRETURNri
:
2396 case X86::TCRETURNmi
:
2397 case X86::TCRETURNdi64
:
2398 case X86::TCRETURNri64
:
2399 case X86::TCRETURNmi64
:
2406 bool X86InstrInfo::canMakeTailCallConditional(
2407 SmallVectorImpl
<MachineOperand
> &BranchCond
,
2408 const MachineInstr
&TailCall
) const {
2409 if (TailCall
.getOpcode() != X86::TCRETURNdi
&&
2410 TailCall
.getOpcode() != X86::TCRETURNdi64
) {
2411 // Only direct calls can be done with a conditional branch.
2415 const MachineFunction
*MF
= TailCall
.getParent()->getParent();
2416 if (Subtarget
.isTargetWin64() && MF
->hasWinCFI()) {
2417 // Conditional tail calls confuse the Win64 unwinder.
2421 assert(BranchCond
.size() == 1);
2422 if (BranchCond
[0].getImm() > X86::LAST_VALID_COND
) {
2423 // Can't make a conditional tail call with this condition.
2427 const X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
2428 if (X86FI
->getTCReturnAddrDelta() != 0 ||
2429 TailCall
.getOperand(1).getImm() != 0) {
2430 // A conditional tail call cannot do any stack adjustment.
2437 void X86InstrInfo::replaceBranchWithTailCall(
2438 MachineBasicBlock
&MBB
, SmallVectorImpl
<MachineOperand
> &BranchCond
,
2439 const MachineInstr
&TailCall
) const {
2440 assert(canMakeTailCallConditional(BranchCond
, TailCall
));
2442 MachineBasicBlock::iterator I
= MBB
.end();
2443 while (I
!= MBB
.begin()) {
2445 if (I
->isDebugInstr())
2448 assert(0 && "Can't find the branch to replace!");
2450 X86::CondCode CC
= X86::getCondFromBranch(*I
);
2451 assert(BranchCond
.size() == 1);
2452 if (CC
!= BranchCond
[0].getImm())
2458 unsigned Opc
= TailCall
.getOpcode() == X86::TCRETURNdi
? X86::TCRETURNdicc
2459 : X86::TCRETURNdi64cc
;
2461 auto MIB
= BuildMI(MBB
, I
, MBB
.findDebugLoc(I
), get(Opc
));
2462 MIB
->addOperand(TailCall
.getOperand(0)); // Destination.
2463 MIB
.addImm(0); // Stack offset (not used).
2464 MIB
->addOperand(BranchCond
[0]); // Condition.
2465 MIB
.copyImplicitOps(TailCall
); // Regmask and (imp-used) parameters.
2467 // Add implicit uses and defs of all live regs potentially clobbered by the
2468 // call. This way they still appear live across the call.
2469 LivePhysRegs
LiveRegs(getRegisterInfo());
2470 LiveRegs
.addLiveOuts(MBB
);
2471 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 8> Clobbers
;
2472 LiveRegs
.stepForward(*MIB
, Clobbers
);
2473 for (const auto &C
: Clobbers
) {
2474 MIB
.addReg(C
.first
, RegState::Implicit
);
2475 MIB
.addReg(C
.first
, RegState::Implicit
| RegState::Define
);
2478 I
->eraseFromParent();
2481 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2482 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2483 // fallthrough MBB cannot be identified.
2484 static MachineBasicBlock
*getFallThroughMBB(MachineBasicBlock
*MBB
,
2485 MachineBasicBlock
*TBB
) {
2486 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2487 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2488 // and fallthrough MBB. If we find more than one, we cannot identify the
2489 // fallthrough MBB and should return nullptr.
2490 MachineBasicBlock
*FallthroughBB
= nullptr;
2491 for (auto SI
= MBB
->succ_begin(), SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
2492 if ((*SI
)->isEHPad() || (*SI
== TBB
&& FallthroughBB
))
2494 // Return a nullptr if we found more than one fallthrough successor.
2495 if (FallthroughBB
&& FallthroughBB
!= TBB
)
2497 FallthroughBB
= *SI
;
2499 return FallthroughBB
;
2502 bool X86InstrInfo::AnalyzeBranchImpl(
2503 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
2504 SmallVectorImpl
<MachineOperand
> &Cond
,
2505 SmallVectorImpl
<MachineInstr
*> &CondBranches
, bool AllowModify
) const {
2507 // Start from the bottom of the block and work up, examining the
2508 // terminator instructions.
2509 MachineBasicBlock::iterator I
= MBB
.end();
2510 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
2511 while (I
!= MBB
.begin()) {
2513 if (I
->isDebugInstr())
2516 // Working from the bottom, when we see a non-terminator instruction, we're
2518 if (!isUnpredicatedTerminator(*I
))
2521 // A terminator that isn't a branch can't easily be handled by this
2526 // Handle unconditional branches.
2527 if (I
->getOpcode() == X86::JMP_1
) {
2531 TBB
= I
->getOperand(0).getMBB();
2535 // If the block has any instructions after a JMP, delete them.
2536 while (std::next(I
) != MBB
.end())
2537 std::next(I
)->eraseFromParent();
2542 // Delete the JMP if it's equivalent to a fall-through.
2543 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
2545 I
->eraseFromParent();
2547 UnCondBrIter
= MBB
.end();
2551 // TBB is used to indicate the unconditional destination.
2552 TBB
= I
->getOperand(0).getMBB();
2556 // Handle conditional branches.
2557 X86::CondCode BranchCode
= X86::getCondFromBranch(*I
);
2558 if (BranchCode
== X86::COND_INVALID
)
2559 return true; // Can't handle indirect branch.
2561 // In practice we should never have an undef eflags operand, if we do
2562 // abort here as we are not prepared to preserve the flag.
2563 if (I
->findRegisterUseOperand(X86::EFLAGS
)->isUndef())
2566 // Working from the bottom, handle the first conditional branch.
2568 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
2569 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
2570 MBB
.isLayoutSuccessor(TargetBB
)) {
2571 // If we can modify the code and it ends in something like:
2579 // Then we can change this to:
2586 // Which is a bit more efficient.
2587 // We conditionally jump to the fall-through block.
2588 BranchCode
= GetOppositeBranchCondition(BranchCode
);
2589 MachineBasicBlock::iterator OldInst
= I
;
2591 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JCC_1
))
2592 .addMBB(UnCondBrIter
->getOperand(0).getMBB())
2593 .addImm(BranchCode
);
2594 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_1
))
2597 OldInst
->eraseFromParent();
2598 UnCondBrIter
->eraseFromParent();
2600 // Restart the analysis.
2601 UnCondBrIter
= MBB
.end();
2607 TBB
= I
->getOperand(0).getMBB();
2608 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
2609 CondBranches
.push_back(&*I
);
2613 // Handle subsequent conditional branches. Only handle the case where all
2614 // conditional branches branch to the same destination and their condition
2615 // opcodes fit one of the special multi-branch idioms.
2616 assert(Cond
.size() == 1);
2619 // If the conditions are the same, we can leave them alone.
2620 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
2621 auto NewTBB
= I
->getOperand(0).getMBB();
2622 if (OldBranchCode
== BranchCode
&& TBB
== NewTBB
)
2625 // If they differ, see if they fit one of the known patterns. Theoretically,
2626 // we could handle more patterns here, but we shouldn't expect to see them
2627 // if instruction selection has done a reasonable job.
2628 if (TBB
== NewTBB
&&
2629 ((OldBranchCode
== X86::COND_P
&& BranchCode
== X86::COND_NE
) ||
2630 (OldBranchCode
== X86::COND_NE
&& BranchCode
== X86::COND_P
))) {
2631 BranchCode
= X86::COND_NE_OR_P
;
2632 } else if ((OldBranchCode
== X86::COND_NP
&& BranchCode
== X86::COND_NE
) ||
2633 (OldBranchCode
== X86::COND_E
&& BranchCode
== X86::COND_P
)) {
2634 if (NewTBB
!= (FBB
? FBB
: getFallThroughMBB(&MBB
, TBB
)))
2637 // X86::COND_E_AND_NP usually has two different branch destinations.
2645 // Here this condition branches to B2 only if NP && E. It has another
2654 // Similarly it branches to B2 only if E && NP. That is why this condition
2655 // is named with COND_E_AND_NP.
2656 BranchCode
= X86::COND_E_AND_NP
;
2660 // Update the MachineOperand.
2661 Cond
[0].setImm(BranchCode
);
2662 CondBranches
.push_back(&*I
);
2668 bool X86InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
2669 MachineBasicBlock
*&TBB
,
2670 MachineBasicBlock
*&FBB
,
2671 SmallVectorImpl
<MachineOperand
> &Cond
,
2672 bool AllowModify
) const {
2673 SmallVector
<MachineInstr
*, 4> CondBranches
;
2674 return AnalyzeBranchImpl(MBB
, TBB
, FBB
, Cond
, CondBranches
, AllowModify
);
2677 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock
&MBB
,
2678 MachineBranchPredicate
&MBP
,
2679 bool AllowModify
) const {
2680 using namespace std::placeholders
;
2682 SmallVector
<MachineOperand
, 4> Cond
;
2683 SmallVector
<MachineInstr
*, 4> CondBranches
;
2684 if (AnalyzeBranchImpl(MBB
, MBP
.TrueDest
, MBP
.FalseDest
, Cond
, CondBranches
,
2688 if (Cond
.size() != 1)
2691 assert(MBP
.TrueDest
&& "expected!");
2694 MBP
.FalseDest
= MBB
.getNextNode();
2696 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2698 MachineInstr
*ConditionDef
= nullptr;
2699 bool SingleUseCondition
= true;
2701 for (auto I
= std::next(MBB
.rbegin()), E
= MBB
.rend(); I
!= E
; ++I
) {
2702 if (I
->modifiesRegister(X86::EFLAGS
, TRI
)) {
2707 if (I
->readsRegister(X86::EFLAGS
, TRI
))
2708 SingleUseCondition
= false;
2714 if (SingleUseCondition
) {
2715 for (auto *Succ
: MBB
.successors())
2716 if (Succ
->isLiveIn(X86::EFLAGS
))
2717 SingleUseCondition
= false;
2720 MBP
.ConditionDef
= ConditionDef
;
2721 MBP
.SingleUseCondition
= SingleUseCondition
;
2723 // Currently we only recognize the simple pattern:
2728 const unsigned TestOpcode
=
2729 Subtarget
.is64Bit() ? X86::TEST64rr
: X86::TEST32rr
;
2731 if (ConditionDef
->getOpcode() == TestOpcode
&&
2732 ConditionDef
->getNumOperands() == 3 &&
2733 ConditionDef
->getOperand(0).isIdenticalTo(ConditionDef
->getOperand(1)) &&
2734 (Cond
[0].getImm() == X86::COND_NE
|| Cond
[0].getImm() == X86::COND_E
)) {
2735 MBP
.LHS
= ConditionDef
->getOperand(0);
2736 MBP
.RHS
= MachineOperand::CreateImm(0);
2737 MBP
.Predicate
= Cond
[0].getImm() == X86::COND_NE
2738 ? MachineBranchPredicate::PRED_NE
2739 : MachineBranchPredicate::PRED_EQ
;
2746 unsigned X86InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
2747 int *BytesRemoved
) const {
2748 assert(!BytesRemoved
&& "code size not handled");
2750 MachineBasicBlock::iterator I
= MBB
.end();
2753 while (I
!= MBB
.begin()) {
2755 if (I
->isDebugInstr())
2757 if (I
->getOpcode() != X86::JMP_1
&&
2758 X86::getCondFromBranch(*I
) == X86::COND_INVALID
)
2760 // Remove the branch.
2761 I
->eraseFromParent();
2769 unsigned X86InstrInfo::insertBranch(MachineBasicBlock
&MBB
,
2770 MachineBasicBlock
*TBB
,
2771 MachineBasicBlock
*FBB
,
2772 ArrayRef
<MachineOperand
> Cond
,
2774 int *BytesAdded
) const {
2775 // Shouldn't be a fall through.
2776 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
2777 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
2778 "X86 branch conditions have one component!");
2779 assert(!BytesAdded
&& "code size not handled");
2782 // Unconditional branch?
2783 assert(!FBB
&& "Unconditional branch with multiple successors!");
2784 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(TBB
);
2788 // If FBB is null, it is implied to be a fall-through block.
2789 bool FallThru
= FBB
== nullptr;
2791 // Conditional branch.
2793 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
2795 case X86::COND_NE_OR_P
:
2796 // Synthesize NE_OR_P with two branches.
2797 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NE
);
2799 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_P
);
2802 case X86::COND_E_AND_NP
:
2803 // Use the next block of MBB as FBB if it is null.
2804 if (FBB
== nullptr) {
2805 FBB
= getFallThroughMBB(&MBB
, TBB
);
2806 assert(FBB
&& "MBB cannot be the last block in function when the false "
2807 "body is a fall-through.");
2809 // Synthesize COND_E_AND_NP with two branches.
2810 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(FBB
).addImm(X86::COND_NE
);
2812 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NP
);
2816 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(CC
);
2821 // Two-way Conditional branch. Insert the second branch.
2822 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(FBB
);
2829 canInsertSelect(const MachineBasicBlock
&MBB
,
2830 ArrayRef
<MachineOperand
> Cond
,
2831 unsigned TrueReg
, unsigned FalseReg
,
2832 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
2833 // Not all subtargets have cmov instructions.
2834 if (!Subtarget
.hasCMov())
2836 if (Cond
.size() != 1)
2838 // We cannot do the composite conditions, at least not in SSA form.
2839 if ((X86::CondCode
)Cond
[0].getImm() > X86::LAST_VALID_COND
)
2842 // Check register classes.
2843 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2844 const TargetRegisterClass
*RC
=
2845 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
2849 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2850 if (X86::GR16RegClass
.hasSubClassEq(RC
) ||
2851 X86::GR32RegClass
.hasSubClassEq(RC
) ||
2852 X86::GR64RegClass
.hasSubClassEq(RC
)) {
2853 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2854 // Bridge. Probably Ivy Bridge as well.
2861 // Can't do vectors.
2865 void X86InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
2866 MachineBasicBlock::iterator I
,
2867 const DebugLoc
&DL
, unsigned DstReg
,
2868 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
2869 unsigned FalseReg
) const {
2870 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2871 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
2872 const TargetRegisterClass
&RC
= *MRI
.getRegClass(DstReg
);
2873 assert(Cond
.size() == 1 && "Invalid Cond array");
2874 unsigned Opc
= X86::getCMovOpcode(TRI
.getRegSizeInBits(RC
) / 8,
2875 false /*HasMemoryOperand*/);
2876 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
2879 .addImm(Cond
[0].getImm());
2882 /// Test if the given register is a physical h register.
2883 static bool isHReg(unsigned Reg
) {
2884 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
2887 // Try and copy between VR128/VR64 and GR64 registers.
2888 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
,
2889 const X86Subtarget
&Subtarget
) {
2890 bool HasAVX
= Subtarget
.hasAVX();
2891 bool HasAVX512
= Subtarget
.hasAVX512();
2893 // SrcReg(MaskReg) -> DestReg(GR64)
2894 // SrcReg(MaskReg) -> DestReg(GR32)
2896 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2897 if (X86::VK16RegClass
.contains(SrcReg
)) {
2898 if (X86::GR64RegClass
.contains(DestReg
)) {
2899 assert(Subtarget
.hasBWI());
2900 return X86::KMOVQrk
;
2902 if (X86::GR32RegClass
.contains(DestReg
))
2903 return Subtarget
.hasBWI() ? X86::KMOVDrk
: X86::KMOVWrk
;
2906 // SrcReg(GR64) -> DestReg(MaskReg)
2907 // SrcReg(GR32) -> DestReg(MaskReg)
2909 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2910 if (X86::VK16RegClass
.contains(DestReg
)) {
2911 if (X86::GR64RegClass
.contains(SrcReg
)) {
2912 assert(Subtarget
.hasBWI());
2913 return X86::KMOVQkr
;
2915 if (X86::GR32RegClass
.contains(SrcReg
))
2916 return Subtarget
.hasBWI() ? X86::KMOVDkr
: X86::KMOVWkr
;
2920 // SrcReg(VR128) -> DestReg(GR64)
2921 // SrcReg(VR64) -> DestReg(GR64)
2922 // SrcReg(GR64) -> DestReg(VR128)
2923 // SrcReg(GR64) -> DestReg(VR64)
2925 if (X86::GR64RegClass
.contains(DestReg
)) {
2926 if (X86::VR128XRegClass
.contains(SrcReg
))
2927 // Copy from a VR128 register to a GR64 register.
2928 return HasAVX512
? X86::VMOVPQIto64Zrr
:
2929 HasAVX
? X86::VMOVPQIto64rr
:
2931 if (X86::VR64RegClass
.contains(SrcReg
))
2932 // Copy from a VR64 register to a GR64 register.
2933 return X86::MMX_MOVD64from64rr
;
2934 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
2935 // Copy from a GR64 register to a VR128 register.
2936 if (X86::VR128XRegClass
.contains(DestReg
))
2937 return HasAVX512
? X86::VMOV64toPQIZrr
:
2938 HasAVX
? X86::VMOV64toPQIrr
:
2940 // Copy from a GR64 register to a VR64 register.
2941 if (X86::VR64RegClass
.contains(DestReg
))
2942 return X86::MMX_MOVD64to64rr
;
2945 // SrcReg(VR128) -> DestReg(GR32)
2946 // SrcReg(GR32) -> DestReg(VR128)
2948 if (X86::GR32RegClass
.contains(DestReg
) &&
2949 X86::VR128XRegClass
.contains(SrcReg
))
2950 // Copy from a VR128 register to a GR32 register.
2951 return HasAVX512
? X86::VMOVPDI2DIZrr
:
2952 HasAVX
? X86::VMOVPDI2DIrr
:
2955 if (X86::VR128XRegClass
.contains(DestReg
) &&
2956 X86::GR32RegClass
.contains(SrcReg
))
2957 // Copy from a VR128 register to a VR128 register.
2958 return HasAVX512
? X86::VMOVDI2PDIZrr
:
2959 HasAVX
? X86::VMOVDI2PDIrr
:
2964 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
2965 MachineBasicBlock::iterator MI
,
2966 const DebugLoc
&DL
, unsigned DestReg
,
2967 unsigned SrcReg
, bool KillSrc
) const {
2968 // First deal with the normal symmetric copies.
2969 bool HasAVX
= Subtarget
.hasAVX();
2970 bool HasVLX
= Subtarget
.hasVLX();
2972 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
2974 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
2976 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
2978 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
2979 // Copying to or from a physical H register on x86-64 requires a NOREX
2980 // move. Otherwise use a normal move.
2981 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
2982 Subtarget
.is64Bit()) {
2983 Opc
= X86::MOV8rr_NOREX
;
2984 // Both operands must be encodable without an REX prefix.
2985 assert(X86::GR8_NOREXRegClass
.contains(SrcReg
, DestReg
) &&
2986 "8-bit H register can not be copied outside GR8_NOREX");
2990 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
2991 Opc
= X86::MMX_MOVQ64rr
;
2992 else if (X86::VR128XRegClass
.contains(DestReg
, SrcReg
)) {
2994 Opc
= X86::VMOVAPSZ128rr
;
2995 else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
2996 Opc
= HasAVX
? X86::VMOVAPSrr
: X86::MOVAPSrr
;
2998 // If this an extended register and we don't have VLX we need to use a
3000 Opc
= X86::VMOVAPSZrr
;
3001 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3002 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_xmm
,
3003 &X86::VR512RegClass
);
3004 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
,
3005 &X86::VR512RegClass
);
3007 } else if (X86::VR256XRegClass
.contains(DestReg
, SrcReg
)) {
3009 Opc
= X86::VMOVAPSZ256rr
;
3010 else if (X86::VR256RegClass
.contains(DestReg
, SrcReg
))
3011 Opc
= X86::VMOVAPSYrr
;
3013 // If this an extended register and we don't have VLX we need to use a
3015 Opc
= X86::VMOVAPSZrr
;
3016 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3017 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_ymm
,
3018 &X86::VR512RegClass
);
3019 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
,
3020 &X86::VR512RegClass
);
3022 } else if (X86::VR512RegClass
.contains(DestReg
, SrcReg
))
3023 Opc
= X86::VMOVAPSZrr
;
3024 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3025 else if (X86::VK16RegClass
.contains(DestReg
, SrcReg
))
3026 Opc
= Subtarget
.hasBWI() ? X86::KMOVQkk
: X86::KMOVWkk
;
3028 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
, Subtarget
);
3031 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
3032 .addReg(SrcReg
, getKillRegState(KillSrc
));
3036 if (SrcReg
== X86::EFLAGS
|| DestReg
== X86::EFLAGS
) {
3037 // FIXME: We use a fatal error here because historically LLVM has tried
3038 // lower some of these physreg copies and we want to ensure we get
3039 // reasonable bug reports if someone encounters a case no other testing
3040 // found. This path should be removed after the LLVM 7 release.
3041 report_fatal_error("Unable to copy EFLAGS physical register!");
3044 LLVM_DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
) << " to "
3045 << RI
.getName(DestReg
) << '\n');
3046 report_fatal_error("Cannot emit physreg copy instruction");
3049 bool X86InstrInfo::isCopyInstrImpl(const MachineInstr
&MI
,
3050 const MachineOperand
*&Src
,
3051 const MachineOperand
*&Dest
) const {
3052 if (MI
.isMoveReg()) {
3053 Dest
= &MI
.getOperand(0);
3054 Src
= &MI
.getOperand(1);
3060 static unsigned getLoadStoreRegOpcode(unsigned Reg
,
3061 const TargetRegisterClass
*RC
,
3062 bool isStackAligned
,
3063 const X86Subtarget
&STI
,
3065 bool HasAVX
= STI
.hasAVX();
3066 bool HasAVX512
= STI
.hasAVX512();
3067 bool HasVLX
= STI
.hasVLX();
3069 switch (STI
.getRegisterInfo()->getSpillSize(*RC
)) {
3071 llvm_unreachable("Unknown spill size");
3073 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
3075 // Copying to or from a physical H register on x86-64 requires a NOREX
3076 // move. Otherwise use a normal move.
3077 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
3078 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
3079 return load
? X86::MOV8rm
: X86::MOV8mr
;
3081 if (X86::VK16RegClass
.hasSubClassEq(RC
))
3082 return load
? X86::KMOVWkm
: X86::KMOVWmk
;
3083 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
3084 return load
? X86::MOV16rm
: X86::MOV16mr
;
3086 if (X86::GR32RegClass
.hasSubClassEq(RC
))
3087 return load
? X86::MOV32rm
: X86::MOV32mr
;
3088 if (X86::FR32XRegClass
.hasSubClassEq(RC
))
3090 (HasAVX512
? X86::VMOVSSZrm_alt
:
3091 HasAVX
? X86::VMOVSSrm_alt
:
3093 (HasAVX512
? X86::VMOVSSZmr
:
3094 HasAVX
? X86::VMOVSSmr
:
3096 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
3097 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
3098 if (X86::VK32RegClass
.hasSubClassEq(RC
)) {
3099 assert(STI
.hasBWI() && "KMOVD requires BWI");
3100 return load
? X86::KMOVDkm
: X86::KMOVDmk
;
3102 // All of these mask pair classes have the same spill size, the same kind
3103 // of kmov instructions can be used with all of them.
3104 if (X86::VK1PAIRRegClass
.hasSubClassEq(RC
) ||
3105 X86::VK2PAIRRegClass
.hasSubClassEq(RC
) ||
3106 X86::VK4PAIRRegClass
.hasSubClassEq(RC
) ||
3107 X86::VK8PAIRRegClass
.hasSubClassEq(RC
) ||
3108 X86::VK16PAIRRegClass
.hasSubClassEq(RC
))
3109 return load
? X86::MASKPAIR16LOAD
: X86::MASKPAIR16STORE
;
3110 llvm_unreachable("Unknown 4-byte regclass");
3112 if (X86::GR64RegClass
.hasSubClassEq(RC
))
3113 return load
? X86::MOV64rm
: X86::MOV64mr
;
3114 if (X86::FR64XRegClass
.hasSubClassEq(RC
))
3116 (HasAVX512
? X86::VMOVSDZrm_alt
:
3117 HasAVX
? X86::VMOVSDrm_alt
:
3119 (HasAVX512
? X86::VMOVSDZmr
:
3120 HasAVX
? X86::VMOVSDmr
:
3122 if (X86::VR64RegClass
.hasSubClassEq(RC
))
3123 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
3124 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
3125 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
3126 if (X86::VK64RegClass
.hasSubClassEq(RC
)) {
3127 assert(STI
.hasBWI() && "KMOVQ requires BWI");
3128 return load
? X86::KMOVQkm
: X86::KMOVQmk
;
3130 llvm_unreachable("Unknown 8-byte regclass");
3132 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
3133 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
3135 if (X86::VR128XRegClass
.hasSubClassEq(RC
)) {
3136 // If stack is realigned we can use aligned stores.
3139 (HasVLX
? X86::VMOVAPSZ128rm
:
3140 HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
:
3141 HasAVX
? X86::VMOVAPSrm
:
3143 (HasVLX
? X86::VMOVAPSZ128mr
:
3144 HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
:
3145 HasAVX
? X86::VMOVAPSmr
:
3149 (HasVLX
? X86::VMOVUPSZ128rm
:
3150 HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
:
3151 HasAVX
? X86::VMOVUPSrm
:
3153 (HasVLX
? X86::VMOVUPSZ128mr
:
3154 HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
:
3155 HasAVX
? X86::VMOVUPSmr
:
3158 if (X86::BNDRRegClass
.hasSubClassEq(RC
)) {
3160 return load
? X86::BNDMOV64rm
: X86::BNDMOV64mr
;
3162 return load
? X86::BNDMOV32rm
: X86::BNDMOV32mr
;
3164 llvm_unreachable("Unknown 16-byte regclass");
3167 assert(X86::VR256XRegClass
.hasSubClassEq(RC
) && "Unknown 32-byte regclass");
3168 // If stack is realigned we can use aligned stores.
3171 (HasVLX
? X86::VMOVAPSZ256rm
:
3172 HasAVX512
? X86::VMOVAPSZ256rm_NOVLX
:
3174 (HasVLX
? X86::VMOVAPSZ256mr
:
3175 HasAVX512
? X86::VMOVAPSZ256mr_NOVLX
:
3179 (HasVLX
? X86::VMOVUPSZ256rm
:
3180 HasAVX512
? X86::VMOVUPSZ256rm_NOVLX
:
3182 (HasVLX
? X86::VMOVUPSZ256mr
:
3183 HasAVX512
? X86::VMOVUPSZ256mr_NOVLX
:
3186 assert(X86::VR512RegClass
.hasSubClassEq(RC
) && "Unknown 64-byte regclass");
3187 assert(STI
.hasAVX512() && "Using 512-bit register requires AVX512");
3189 return load
? X86::VMOVAPSZrm
: X86::VMOVAPSZmr
;
3191 return load
? X86::VMOVUPSZrm
: X86::VMOVUPSZmr
;
3195 bool X86InstrInfo::getMemOperandWithOffset(
3196 const MachineInstr
&MemOp
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
3197 const TargetRegisterInfo
*TRI
) const {
3198 const MCInstrDesc
&Desc
= MemOp
.getDesc();
3199 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3200 if (MemRefBegin
< 0)
3203 MemRefBegin
+= X86II::getOperandBias(Desc
);
3205 BaseOp
= &MemOp
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
3206 if (!BaseOp
->isReg()) // Can be an MO_FrameIndex
3209 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm() != 1)
3212 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg() !=
3216 const MachineOperand
&DispMO
= MemOp
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3218 // Displacement can be symbolic
3219 if (!DispMO
.isImm())
3222 Offset
= DispMO
.getImm();
3224 assert(BaseOp
->isReg() && "getMemOperandWithOffset only supports base "
3225 "operands of type register.");
3229 static unsigned getStoreRegOpcode(unsigned SrcReg
,
3230 const TargetRegisterClass
*RC
,
3231 bool isStackAligned
,
3232 const X86Subtarget
&STI
) {
3233 return getLoadStoreRegOpcode(SrcReg
, RC
, isStackAligned
, STI
, false);
3237 static unsigned getLoadRegOpcode(unsigned DestReg
,
3238 const TargetRegisterClass
*RC
,
3239 bool isStackAligned
,
3240 const X86Subtarget
&STI
) {
3241 return getLoadStoreRegOpcode(DestReg
, RC
, isStackAligned
, STI
, true);
3244 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
3245 MachineBasicBlock::iterator MI
,
3246 unsigned SrcReg
, bool isKill
, int FrameIdx
,
3247 const TargetRegisterClass
*RC
,
3248 const TargetRegisterInfo
*TRI
) const {
3249 const MachineFunction
&MF
= *MBB
.getParent();
3250 assert(MF
.getFrameInfo().getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
3251 "Stack slot too small for store");
3252 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3254 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3255 RI
.canRealignStack(MF
);
3256 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3257 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
3258 .addReg(SrcReg
, getKillRegState(isKill
));
3261 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
3262 MachineBasicBlock::iterator MI
,
3263 unsigned DestReg
, int FrameIdx
,
3264 const TargetRegisterClass
*RC
,
3265 const TargetRegisterInfo
*TRI
) const {
3266 const MachineFunction
&MF
= *MBB
.getParent();
3267 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3269 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3270 RI
.canRealignStack(MF
);
3271 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3272 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
), FrameIdx
);
3275 bool X86InstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
3276 unsigned &SrcReg2
, int &CmpMask
,
3277 int &CmpValue
) const {
3278 switch (MI
.getOpcode()) {
3280 case X86::CMP64ri32
:
3287 SrcReg
= MI
.getOperand(0).getReg();
3289 if (MI
.getOperand(1).isImm()) {
3291 CmpValue
= MI
.getOperand(1).getImm();
3293 CmpMask
= CmpValue
= 0;
3296 // A SUB can be used to perform comparison.
3301 SrcReg
= MI
.getOperand(1).getReg();
3310 SrcReg
= MI
.getOperand(1).getReg();
3311 SrcReg2
= MI
.getOperand(2).getReg();
3315 case X86::SUB64ri32
:
3322 SrcReg
= MI
.getOperand(1).getReg();
3324 if (MI
.getOperand(2).isImm()) {
3326 CmpValue
= MI
.getOperand(2).getImm();
3328 CmpMask
= CmpValue
= 0;
3335 SrcReg
= MI
.getOperand(0).getReg();
3336 SrcReg2
= MI
.getOperand(1).getReg();
3344 SrcReg
= MI
.getOperand(0).getReg();
3345 if (MI
.getOperand(1).getReg() != SrcReg
)
3347 // Compare against zero.
3356 /// Check whether the first instruction, whose only
3357 /// purpose is to update flags, can be made redundant.
3358 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3359 /// This function can be extended later on.
3360 /// SrcReg, SrcRegs: register operands for FlagI.
3361 /// ImmValue: immediate for FlagI if it takes an immediate.
3362 inline static bool isRedundantFlagInstr(const MachineInstr
&FlagI
,
3363 unsigned SrcReg
, unsigned SrcReg2
,
3364 int ImmMask
, int ImmValue
,
3365 const MachineInstr
&OI
) {
3366 if (((FlagI
.getOpcode() == X86::CMP64rr
&& OI
.getOpcode() == X86::SUB64rr
) ||
3367 (FlagI
.getOpcode() == X86::CMP32rr
&& OI
.getOpcode() == X86::SUB32rr
) ||
3368 (FlagI
.getOpcode() == X86::CMP16rr
&& OI
.getOpcode() == X86::SUB16rr
) ||
3369 (FlagI
.getOpcode() == X86::CMP8rr
&& OI
.getOpcode() == X86::SUB8rr
)) &&
3370 ((OI
.getOperand(1).getReg() == SrcReg
&&
3371 OI
.getOperand(2).getReg() == SrcReg2
) ||
3372 (OI
.getOperand(1).getReg() == SrcReg2
&&
3373 OI
.getOperand(2).getReg() == SrcReg
)))
3377 ((FlagI
.getOpcode() == X86::CMP64ri32
&&
3378 OI
.getOpcode() == X86::SUB64ri32
) ||
3379 (FlagI
.getOpcode() == X86::CMP64ri8
&&
3380 OI
.getOpcode() == X86::SUB64ri8
) ||
3381 (FlagI
.getOpcode() == X86::CMP32ri
&& OI
.getOpcode() == X86::SUB32ri
) ||
3382 (FlagI
.getOpcode() == X86::CMP32ri8
&&
3383 OI
.getOpcode() == X86::SUB32ri8
) ||
3384 (FlagI
.getOpcode() == X86::CMP16ri
&& OI
.getOpcode() == X86::SUB16ri
) ||
3385 (FlagI
.getOpcode() == X86::CMP16ri8
&&
3386 OI
.getOpcode() == X86::SUB16ri8
) ||
3387 (FlagI
.getOpcode() == X86::CMP8ri
&& OI
.getOpcode() == X86::SUB8ri
)) &&
3388 OI
.getOperand(1).getReg() == SrcReg
&&
3389 OI
.getOperand(2).getImm() == ImmValue
)
3394 /// Check whether the definition can be converted
3395 /// to remove a comparison against zero.
3396 inline static bool isDefConvertible(const MachineInstr
&MI
, bool &NoSignFlag
) {
3399 switch (MI
.getOpcode()) {
3400 default: return false;
3402 // The shift instructions only modify ZF if their shift count is non-zero.
3403 // N.B.: The processor truncates the shift count depending on the encoding.
3404 case X86::SAR8ri
: case X86::SAR16ri
: case X86::SAR32ri
:case X86::SAR64ri
:
3405 case X86::SHR8ri
: case X86::SHR16ri
: case X86::SHR32ri
:case X86::SHR64ri
:
3406 return getTruncatedShiftCount(MI
, 2) != 0;
3408 // Some left shift instructions can be turned into LEA instructions but only
3409 // if their flags aren't used. Avoid transforming such instructions.
3410 case X86::SHL8ri
: case X86::SHL16ri
: case X86::SHL32ri
:case X86::SHL64ri
:{
3411 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
3412 if (isTruncatedShiftCountForLEA(ShAmt
)) return false;
3416 case X86::SHRD16rri8
:case X86::SHRD32rri8
:case X86::SHRD64rri8
:
3417 case X86::SHLD16rri8
:case X86::SHLD32rri8
:case X86::SHLD64rri8
:
3418 return getTruncatedShiftCount(MI
, 3) != 0;
3420 case X86::SUB64ri32
: case X86::SUB64ri8
: case X86::SUB32ri
:
3421 case X86::SUB32ri8
: case X86::SUB16ri
: case X86::SUB16ri8
:
3422 case X86::SUB8ri
: case X86::SUB64rr
: case X86::SUB32rr
:
3423 case X86::SUB16rr
: case X86::SUB8rr
: case X86::SUB64rm
:
3424 case X86::SUB32rm
: case X86::SUB16rm
: case X86::SUB8rm
:
3425 case X86::DEC64r
: case X86::DEC32r
: case X86::DEC16r
: case X86::DEC8r
:
3426 case X86::ADD64ri32
: case X86::ADD64ri8
: case X86::ADD32ri
:
3427 case X86::ADD32ri8
: case X86::ADD16ri
: case X86::ADD16ri8
:
3428 case X86::ADD8ri
: case X86::ADD64rr
: case X86::ADD32rr
:
3429 case X86::ADD16rr
: case X86::ADD8rr
: case X86::ADD64rm
:
3430 case X86::ADD32rm
: case X86::ADD16rm
: case X86::ADD8rm
:
3431 case X86::INC64r
: case X86::INC32r
: case X86::INC16r
: case X86::INC8r
:
3432 case X86::AND64ri32
: case X86::AND64ri8
: case X86::AND32ri
:
3433 case X86::AND32ri8
: case X86::AND16ri
: case X86::AND16ri8
:
3434 case X86::AND8ri
: case X86::AND64rr
: case X86::AND32rr
:
3435 case X86::AND16rr
: case X86::AND8rr
: case X86::AND64rm
:
3436 case X86::AND32rm
: case X86::AND16rm
: case X86::AND8rm
:
3437 case X86::XOR64ri32
: case X86::XOR64ri8
: case X86::XOR32ri
:
3438 case X86::XOR32ri8
: case X86::XOR16ri
: case X86::XOR16ri8
:
3439 case X86::XOR8ri
: case X86::XOR64rr
: case X86::XOR32rr
:
3440 case X86::XOR16rr
: case X86::XOR8rr
: case X86::XOR64rm
:
3441 case X86::XOR32rm
: case X86::XOR16rm
: case X86::XOR8rm
:
3442 case X86::OR64ri32
: case X86::OR64ri8
: case X86::OR32ri
:
3443 case X86::OR32ri8
: case X86::OR16ri
: case X86::OR16ri8
:
3444 case X86::OR8ri
: case X86::OR64rr
: case X86::OR32rr
:
3445 case X86::OR16rr
: case X86::OR8rr
: case X86::OR64rm
:
3446 case X86::OR32rm
: case X86::OR16rm
: case X86::OR8rm
:
3447 case X86::ADC64ri32
: case X86::ADC64ri8
: case X86::ADC32ri
:
3448 case X86::ADC32ri8
: case X86::ADC16ri
: case X86::ADC16ri8
:
3449 case X86::ADC8ri
: case X86::ADC64rr
: case X86::ADC32rr
:
3450 case X86::ADC16rr
: case X86::ADC8rr
: case X86::ADC64rm
:
3451 case X86::ADC32rm
: case X86::ADC16rm
: case X86::ADC8rm
:
3452 case X86::SBB64ri32
: case X86::SBB64ri8
: case X86::SBB32ri
:
3453 case X86::SBB32ri8
: case X86::SBB16ri
: case X86::SBB16ri8
:
3454 case X86::SBB8ri
: case X86::SBB64rr
: case X86::SBB32rr
:
3455 case X86::SBB16rr
: case X86::SBB8rr
: case X86::SBB64rm
:
3456 case X86::SBB32rm
: case X86::SBB16rm
: case X86::SBB8rm
:
3457 case X86::NEG8r
: case X86::NEG16r
: case X86::NEG32r
: case X86::NEG64r
:
3458 case X86::SAR8r1
: case X86::SAR16r1
: case X86::SAR32r1
:case X86::SAR64r1
:
3459 case X86::SHR8r1
: case X86::SHR16r1
: case X86::SHR32r1
:case X86::SHR64r1
:
3460 case X86::SHL8r1
: case X86::SHL16r1
: case X86::SHL32r1
:case X86::SHL64r1
:
3461 case X86::ANDN32rr
: case X86::ANDN32rm
:
3462 case X86::ANDN64rr
: case X86::ANDN64rm
:
3463 case X86::BLSI32rr
: case X86::BLSI32rm
:
3464 case X86::BLSI64rr
: case X86::BLSI64rm
:
3465 case X86::BLSMSK32rr
:case X86::BLSMSK32rm
:
3466 case X86::BLSMSK64rr
:case X86::BLSMSK64rm
:
3467 case X86::BLSR32rr
: case X86::BLSR32rm
:
3468 case X86::BLSR64rr
: case X86::BLSR64rm
:
3469 case X86::BZHI32rr
: case X86::BZHI32rm
:
3470 case X86::BZHI64rr
: case X86::BZHI64rm
:
3471 case X86::LZCNT16rr
: case X86::LZCNT16rm
:
3472 case X86::LZCNT32rr
: case X86::LZCNT32rm
:
3473 case X86::LZCNT64rr
: case X86::LZCNT64rm
:
3474 case X86::POPCNT16rr
:case X86::POPCNT16rm
:
3475 case X86::POPCNT32rr
:case X86::POPCNT32rm
:
3476 case X86::POPCNT64rr
:case X86::POPCNT64rm
:
3477 case X86::TZCNT16rr
: case X86::TZCNT16rm
:
3478 case X86::TZCNT32rr
: case X86::TZCNT32rm
:
3479 case X86::TZCNT64rr
: case X86::TZCNT64rm
:
3480 case X86::BLCFILL32rr
: case X86::BLCFILL32rm
:
3481 case X86::BLCFILL64rr
: case X86::BLCFILL64rm
:
3482 case X86::BLCI32rr
: case X86::BLCI32rm
:
3483 case X86::BLCI64rr
: case X86::BLCI64rm
:
3484 case X86::BLCIC32rr
: case X86::BLCIC32rm
:
3485 case X86::BLCIC64rr
: case X86::BLCIC64rm
:
3486 case X86::BLCMSK32rr
: case X86::BLCMSK32rm
:
3487 case X86::BLCMSK64rr
: case X86::BLCMSK64rm
:
3488 case X86::BLCS32rr
: case X86::BLCS32rm
:
3489 case X86::BLCS64rr
: case X86::BLCS64rm
:
3490 case X86::BLSFILL32rr
: case X86::BLSFILL32rm
:
3491 case X86::BLSFILL64rr
: case X86::BLSFILL64rm
:
3492 case X86::BLSIC32rr
: case X86::BLSIC32rm
:
3493 case X86::BLSIC64rr
: case X86::BLSIC64rm
:
3494 case X86::T1MSKC32rr
: case X86::T1MSKC32rm
:
3495 case X86::T1MSKC64rr
: case X86::T1MSKC64rm
:
3496 case X86::TZMSK32rr
: case X86::TZMSK32rm
:
3497 case X86::TZMSK64rr
: case X86::TZMSK64rm
:
3499 case X86::BEXTR32rr
: case X86::BEXTR64rr
:
3500 case X86::BEXTR32rm
: case X86::BEXTR64rm
:
3501 case X86::BEXTRI32ri
: case X86::BEXTRI32mi
:
3502 case X86::BEXTRI64ri
: case X86::BEXTRI64mi
:
3503 // BEXTR doesn't update the sign flag so we can't use it.
3509 /// Check whether the use can be converted to remove a comparison against zero.
3510 static X86::CondCode
isUseDefConvertible(const MachineInstr
&MI
) {
3511 switch (MI
.getOpcode()) {
3512 default: return X86::COND_INVALID
;
3517 return X86::COND_AE
;
3518 case X86::LZCNT16rr
:
3519 case X86::LZCNT32rr
:
3520 case X86::LZCNT64rr
:
3522 case X86::POPCNT16rr
:
3523 case X86::POPCNT32rr
:
3524 case X86::POPCNT64rr
:
3526 case X86::TZCNT16rr
:
3527 case X86::TZCNT32rr
:
3528 case X86::TZCNT64rr
:
3539 return X86::COND_AE
;
3542 case X86::BLSMSK32rr
:
3543 case X86::BLSMSK64rr
:
3545 // TODO: TBM instructions.
3549 /// Check if there exists an earlier instruction that
3550 /// operates on the same source operands and sets flags in the same way as
3551 /// Compare; remove Compare if possible.
3552 bool X86InstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
3553 unsigned SrcReg2
, int CmpMask
,
3555 const MachineRegisterInfo
*MRI
) const {
3556 // Check whether we can replace SUB with CMP.
3557 switch (CmpInstr
.getOpcode()) {
3559 case X86::SUB64ri32
:
3574 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
3576 // There is no use of the destination register, we can replace SUB with CMP.
3577 unsigned NewOpcode
= 0;
3578 switch (CmpInstr
.getOpcode()) {
3579 default: llvm_unreachable("Unreachable!");
3580 case X86::SUB64rm
: NewOpcode
= X86::CMP64rm
; break;
3581 case X86::SUB32rm
: NewOpcode
= X86::CMP32rm
; break;
3582 case X86::SUB16rm
: NewOpcode
= X86::CMP16rm
; break;
3583 case X86::SUB8rm
: NewOpcode
= X86::CMP8rm
; break;
3584 case X86::SUB64rr
: NewOpcode
= X86::CMP64rr
; break;
3585 case X86::SUB32rr
: NewOpcode
= X86::CMP32rr
; break;
3586 case X86::SUB16rr
: NewOpcode
= X86::CMP16rr
; break;
3587 case X86::SUB8rr
: NewOpcode
= X86::CMP8rr
; break;
3588 case X86::SUB64ri32
: NewOpcode
= X86::CMP64ri32
; break;
3589 case X86::SUB64ri8
: NewOpcode
= X86::CMP64ri8
; break;
3590 case X86::SUB32ri
: NewOpcode
= X86::CMP32ri
; break;
3591 case X86::SUB32ri8
: NewOpcode
= X86::CMP32ri8
; break;
3592 case X86::SUB16ri
: NewOpcode
= X86::CMP16ri
; break;
3593 case X86::SUB16ri8
: NewOpcode
= X86::CMP16ri8
; break;
3594 case X86::SUB8ri
: NewOpcode
= X86::CMP8ri
; break;
3596 CmpInstr
.setDesc(get(NewOpcode
));
3597 CmpInstr
.RemoveOperand(0);
3598 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3599 if (NewOpcode
== X86::CMP64rm
|| NewOpcode
== X86::CMP32rm
||
3600 NewOpcode
== X86::CMP16rm
|| NewOpcode
== X86::CMP8rm
)
3605 // Get the unique definition of SrcReg.
3606 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
3607 if (!MI
) return false;
3609 // CmpInstr is the first instruction of the BB.
3610 MachineBasicBlock::iterator I
= CmpInstr
, Def
= MI
;
3612 // If we are comparing against zero, check whether we can use MI to update
3613 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3614 bool IsCmpZero
= (CmpMask
!= 0 && CmpValue
== 0);
3615 if (IsCmpZero
&& MI
->getParent() != CmpInstr
.getParent())
3618 // If we have a use of the source register between the def and our compare
3619 // instruction we can eliminate the compare iff the use sets EFLAGS in the
3621 bool ShouldUpdateCC
= false;
3622 bool NoSignFlag
= false;
3623 X86::CondCode NewCC
= X86::COND_INVALID
;
3624 if (IsCmpZero
&& !isDefConvertible(*MI
, NoSignFlag
)) {
3625 // Scan forward from the use until we hit the use we're looking for or the
3626 // compare instruction.
3627 for (MachineBasicBlock::iterator J
= MI
;; ++J
) {
3628 // Do we have a convertible instruction?
3629 NewCC
= isUseDefConvertible(*J
);
3630 if (NewCC
!= X86::COND_INVALID
&& J
->getOperand(1).isReg() &&
3631 J
->getOperand(1).getReg() == SrcReg
) {
3632 assert(J
->definesRegister(X86::EFLAGS
) && "Must be an EFLAGS def!");
3633 ShouldUpdateCC
= true; // Update CC later on.
3634 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3635 // with the new def.
3646 // We are searching for an earlier instruction that can make CmpInstr
3647 // redundant and that instruction will be saved in Sub.
3648 MachineInstr
*Sub
= nullptr;
3649 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3651 // We iterate backward, starting from the instruction before CmpInstr and
3652 // stop when reaching the definition of a source register or done with the BB.
3653 // RI points to the instruction before CmpInstr.
3654 // If the definition is in this basic block, RE points to the definition;
3655 // otherwise, RE is the rend of the basic block.
3656 MachineBasicBlock::reverse_iterator
3657 RI
= ++I
.getReverse(),
3658 RE
= CmpInstr
.getParent() == MI
->getParent()
3659 ? Def
.getReverse() /* points to MI */
3660 : CmpInstr
.getParent()->rend();
3661 MachineInstr
*Movr0Inst
= nullptr;
3662 for (; RI
!= RE
; ++RI
) {
3663 MachineInstr
&Instr
= *RI
;
3664 // Check whether CmpInstr can be made redundant by the current instruction.
3665 if (!IsCmpZero
&& isRedundantFlagInstr(CmpInstr
, SrcReg
, SrcReg2
, CmpMask
,
3671 if (Instr
.modifiesRegister(X86::EFLAGS
, TRI
) ||
3672 Instr
.readsRegister(X86::EFLAGS
, TRI
)) {
3673 // This instruction modifies or uses EFLAGS.
3675 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3676 // They are safe to move up, if the definition to EFLAGS is dead and
3677 // earlier instructions do not read or write EFLAGS.
3678 if (!Movr0Inst
&& Instr
.getOpcode() == X86::MOV32r0
&&
3679 Instr
.registerDefIsDead(X86::EFLAGS
, TRI
)) {
3684 // We can't remove CmpInstr.
3689 // Return false if no candidates exist.
3690 if (!IsCmpZero
&& !Sub
)
3694 (SrcReg2
!= 0 && Sub
&& Sub
->getOperand(1).getReg() == SrcReg2
&&
3695 Sub
->getOperand(2).getReg() == SrcReg
);
3697 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3698 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3699 // If we are done with the basic block, we need to check whether EFLAGS is
3701 bool IsSafe
= false;
3702 SmallVector
<std::pair
<MachineInstr
*, X86::CondCode
>, 4> OpsToUpdate
;
3703 MachineBasicBlock::iterator E
= CmpInstr
.getParent()->end();
3704 for (++I
; I
!= E
; ++I
) {
3705 const MachineInstr
&Instr
= *I
;
3706 bool ModifyEFLAGS
= Instr
.modifiesRegister(X86::EFLAGS
, TRI
);
3707 bool UseEFLAGS
= Instr
.readsRegister(X86::EFLAGS
, TRI
);
3708 // We should check the usage if this instruction uses and updates EFLAGS.
3709 if (!UseEFLAGS
&& ModifyEFLAGS
) {
3710 // It is safe to remove CmpInstr if EFLAGS is updated again.
3714 if (!UseEFLAGS
&& !ModifyEFLAGS
)
3717 // EFLAGS is used by this instruction.
3718 X86::CondCode OldCC
= X86::COND_INVALID
;
3719 if (IsCmpZero
|| IsSwapped
) {
3720 // We decode the condition code from opcode.
3721 if (Instr
.isBranch())
3722 OldCC
= X86::getCondFromBranch(Instr
);
3724 OldCC
= X86::getCondFromSETCC(Instr
);
3725 if (OldCC
== X86::COND_INVALID
)
3726 OldCC
= X86::getCondFromCMov(Instr
);
3728 if (OldCC
== X86::COND_INVALID
) return false;
3730 X86::CondCode ReplacementCC
= X86::COND_INVALID
;
3734 case X86::COND_A
: case X86::COND_AE
:
3735 case X86::COND_B
: case X86::COND_BE
:
3736 case X86::COND_G
: case X86::COND_GE
:
3737 case X86::COND_L
: case X86::COND_LE
:
3738 case X86::COND_O
: case X86::COND_NO
:
3739 // CF and OF are used, we can't perform this optimization.
3741 case X86::COND_S
: case X86::COND_NS
:
3742 // If SF is used, but the instruction doesn't update the SF, then we
3743 // can't do the optimization.
3749 // If we're updating the condition code check if we have to reverse the
3756 ReplacementCC
= NewCC
;
3759 ReplacementCC
= GetOppositeBranchCondition(NewCC
);
3762 } else if (IsSwapped
) {
3763 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3764 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3765 // We swap the condition code and synthesize the new opcode.
3766 ReplacementCC
= getSwappedCondition(OldCC
);
3767 if (ReplacementCC
== X86::COND_INVALID
) return false;
3770 if ((ShouldUpdateCC
|| IsSwapped
) && ReplacementCC
!= OldCC
) {
3771 // Push the MachineInstr to OpsToUpdate.
3772 // If it is safe to remove CmpInstr, the condition code of these
3773 // instructions will be modified.
3774 OpsToUpdate
.push_back(std::make_pair(&*I
, ReplacementCC
));
3776 if (ModifyEFLAGS
|| Instr
.killsRegister(X86::EFLAGS
, TRI
)) {
3777 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3783 // If EFLAGS is not killed nor re-defined, we should check whether it is
3784 // live-out. If it is live-out, do not optimize.
3785 if ((IsCmpZero
|| IsSwapped
) && !IsSafe
) {
3786 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
3787 for (MachineBasicBlock
*Successor
: MBB
->successors())
3788 if (Successor
->isLiveIn(X86::EFLAGS
))
3792 // The instruction to be updated is either Sub or MI.
3793 Sub
= IsCmpZero
? MI
: Sub
;
3794 // Move Movr0Inst to the appropriate place before Sub.
3796 // Look backwards until we find a def that doesn't use the current EFLAGS.
3798 MachineBasicBlock::reverse_iterator InsertI
= Def
.getReverse(),
3799 InsertE
= Sub
->getParent()->rend();
3800 for (; InsertI
!= InsertE
; ++InsertI
) {
3801 MachineInstr
*Instr
= &*InsertI
;
3802 if (!Instr
->readsRegister(X86::EFLAGS
, TRI
) &&
3803 Instr
->modifiesRegister(X86::EFLAGS
, TRI
)) {
3804 Sub
->getParent()->remove(Movr0Inst
);
3805 Instr
->getParent()->insert(MachineBasicBlock::iterator(Instr
),
3810 if (InsertI
== InsertE
)
3814 // Make sure Sub instruction defines EFLAGS and mark the def live.
3815 MachineOperand
*FlagDef
= Sub
->findRegisterDefOperand(X86::EFLAGS
);
3816 assert(FlagDef
&& "Unable to locate a def EFLAGS operand");
3817 FlagDef
->setIsDead(false);
3819 CmpInstr
.eraseFromParent();
3821 // Modify the condition code of instructions in OpsToUpdate.
3822 for (auto &Op
: OpsToUpdate
) {
3823 Op
.first
->getOperand(Op
.first
->getDesc().getNumOperands() - 1)
3829 /// Try to remove the load by folding it to a register
3830 /// operand at the use. We fold the load instructions if load defines a virtual
3831 /// register, the virtual register is used once in the same BB, and the
3832 /// instructions in-between do not load or store, and have no side effects.
3833 MachineInstr
*X86InstrInfo::optimizeLoadInstr(MachineInstr
&MI
,
3834 const MachineRegisterInfo
*MRI
,
3835 unsigned &FoldAsLoadDefReg
,
3836 MachineInstr
*&DefMI
) const {
3837 // Check whether we can move DefMI here.
3838 DefMI
= MRI
->getVRegDef(FoldAsLoadDefReg
);
3840 bool SawStore
= false;
3841 if (!DefMI
->isSafeToMove(nullptr, SawStore
))
3844 // Collect information about virtual register operands of MI.
3845 SmallVector
<unsigned, 1> SrcOperandIds
;
3846 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
3847 MachineOperand
&MO
= MI
.getOperand(i
);
3850 Register Reg
= MO
.getReg();
3851 if (Reg
!= FoldAsLoadDefReg
)
3853 // Do not fold if we have a subreg use or a def.
3854 if (MO
.getSubReg() || MO
.isDef())
3856 SrcOperandIds
.push_back(i
);
3858 if (SrcOperandIds
.empty())
3861 // Check whether we can fold the def into SrcOperandId.
3862 if (MachineInstr
*FoldMI
= foldMemoryOperand(MI
, SrcOperandIds
, *DefMI
)) {
3863 FoldAsLoadDefReg
= 0;
3870 /// Expand a single-def pseudo instruction to a two-addr
3871 /// instruction with two undef reads of the register being defined.
3872 /// This is used for mapping:
3875 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
3877 static bool Expand2AddrUndef(MachineInstrBuilder
&MIB
,
3878 const MCInstrDesc
&Desc
) {
3879 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3880 Register Reg
= MIB
->getOperand(0).getReg();
3883 // MachineInstr::addOperand() will insert explicit operands before any
3884 // implicit operands.
3885 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3886 // But we don't trust that.
3887 assert(MIB
->getOperand(1).getReg() == Reg
&&
3888 MIB
->getOperand(2).getReg() == Reg
&& "Misplaced operand");
3892 /// Expand a single-def pseudo instruction to a two-addr
3893 /// instruction with two %k0 reads.
3894 /// This is used for mapping:
3897 /// %k4 = KXNORrr %k0, %k0
3898 static bool Expand2AddrKreg(MachineInstrBuilder
&MIB
,
3899 const MCInstrDesc
&Desc
, unsigned Reg
) {
3900 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3902 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3906 static bool expandMOV32r1(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
,
3908 MachineBasicBlock
&MBB
= *MIB
->getParent();
3909 DebugLoc DL
= MIB
->getDebugLoc();
3910 Register Reg
= MIB
->getOperand(0).getReg();
3913 BuildMI(MBB
, MIB
.getInstr(), DL
, TII
.get(X86::XOR32rr
), Reg
)
3914 .addReg(Reg
, RegState::Undef
)
3915 .addReg(Reg
, RegState::Undef
);
3917 // Turn the pseudo into an INC or DEC.
3918 MIB
->setDesc(TII
.get(MinusOne
? X86::DEC32r
: X86::INC32r
));
3924 static bool ExpandMOVImmSExti8(MachineInstrBuilder
&MIB
,
3925 const TargetInstrInfo
&TII
,
3926 const X86Subtarget
&Subtarget
) {
3927 MachineBasicBlock
&MBB
= *MIB
->getParent();
3928 DebugLoc DL
= MIB
->getDebugLoc();
3929 int64_t Imm
= MIB
->getOperand(1).getImm();
3930 assert(Imm
!= 0 && "Using push/pop for 0 is not efficient.");
3931 MachineBasicBlock::iterator I
= MIB
.getInstr();
3933 int StackAdjustment
;
3935 if (Subtarget
.is64Bit()) {
3936 assert(MIB
->getOpcode() == X86::MOV64ImmSExti8
||
3937 MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3939 // Can't use push/pop lowering if the function might write to the red zone.
3940 X86MachineFunctionInfo
*X86FI
=
3941 MBB
.getParent()->getInfo
<X86MachineFunctionInfo
>();
3942 if (X86FI
->getUsesRedZone()) {
3943 MIB
->setDesc(TII
.get(MIB
->getOpcode() ==
3944 X86::MOV32ImmSExti8
? X86::MOV32ri
: X86::MOV64ri
));
3948 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3949 // widen the register if necessary.
3950 StackAdjustment
= 8;
3951 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH64i8
)).addImm(Imm
);
3952 MIB
->setDesc(TII
.get(X86::POP64r
));
3954 .setReg(getX86SubSuperRegister(MIB
->getOperand(0).getReg(), 64));
3956 assert(MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3957 StackAdjustment
= 4;
3958 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH32i8
)).addImm(Imm
);
3959 MIB
->setDesc(TII
.get(X86::POP32r
));
3962 // Build CFI if necessary.
3963 MachineFunction
&MF
= *MBB
.getParent();
3964 const X86FrameLowering
*TFL
= Subtarget
.getFrameLowering();
3965 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
3966 bool NeedsDwarfCFI
=
3968 (MF
.getMMI().hasDebugInfo() || MF
.getFunction().needsUnwindTableEntry());
3969 bool EmitCFI
= !TFL
->hasFP(MF
) && NeedsDwarfCFI
;
3971 TFL
->BuildCFI(MBB
, I
, DL
,
3972 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment
));
3973 TFL
->BuildCFI(MBB
, std::next(I
), DL
,
3974 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment
));
3980 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3981 // code sequence is needed for other targets.
3982 static void expandLoadStackGuard(MachineInstrBuilder
&MIB
,
3983 const TargetInstrInfo
&TII
) {
3984 MachineBasicBlock
&MBB
= *MIB
->getParent();
3985 DebugLoc DL
= MIB
->getDebugLoc();
3986 Register Reg
= MIB
->getOperand(0).getReg();
3987 const GlobalValue
*GV
=
3988 cast
<GlobalValue
>((*MIB
->memoperands_begin())->getValue());
3989 auto Flags
= MachineMemOperand::MOLoad
|
3990 MachineMemOperand::MODereferenceable
|
3991 MachineMemOperand::MOInvariant
;
3992 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
3993 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 8, 8);
3994 MachineBasicBlock::iterator I
= MIB
.getInstr();
3996 BuildMI(MBB
, I
, DL
, TII
.get(X86::MOV64rm
), Reg
).addReg(X86::RIP
).addImm(1)
3997 .addReg(0).addGlobalAddress(GV
, 0, X86II::MO_GOTPCREL
).addReg(0)
3998 .addMemOperand(MMO
);
3999 MIB
->setDebugLoc(DL
);
4000 MIB
->setDesc(TII
.get(X86::MOV64rm
));
4001 MIB
.addReg(Reg
, RegState::Kill
).addImm(1).addReg(0).addImm(0).addReg(0);
4004 static bool expandXorFP(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
) {
4005 MachineBasicBlock
&MBB
= *MIB
->getParent();
4006 MachineFunction
&MF
= *MBB
.getParent();
4007 const X86Subtarget
&Subtarget
= MF
.getSubtarget
<X86Subtarget
>();
4008 const X86RegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
4010 MIB
->getOpcode() == X86::XOR64_FP
? X86::XOR64rr
: X86::XOR32rr
;
4011 MIB
->setDesc(TII
.get(XorOp
));
4012 MIB
.addReg(TRI
->getFrameRegister(MF
), RegState::Undef
);
4016 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4017 // but not VLX. If it uses an extended register we need to use an instruction
4018 // that loads the lower 128/256-bit, but is available with only AVX512F.
4019 static bool expandNOVLXLoad(MachineInstrBuilder
&MIB
,
4020 const TargetRegisterInfo
*TRI
,
4021 const MCInstrDesc
&LoadDesc
,
4022 const MCInstrDesc
&BroadcastDesc
,
4024 Register DestReg
= MIB
->getOperand(0).getReg();
4025 // Check if DestReg is XMM16-31 or YMM16-31.
4026 if (TRI
->getEncodingValue(DestReg
) < 16) {
4027 // We can use a normal VEX encoded load.
4028 MIB
->setDesc(LoadDesc
);
4030 // Use a 128/256-bit VBROADCAST instruction.
4031 MIB
->setDesc(BroadcastDesc
);
4032 // Change the destination to a 512-bit register.
4033 DestReg
= TRI
->getMatchingSuperReg(DestReg
, SubIdx
, &X86::VR512RegClass
);
4034 MIB
->getOperand(0).setReg(DestReg
);
4039 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4040 // but not VLX. If it uses an extended register we need to use an instruction
4041 // that stores the lower 128/256-bit, but is available with only AVX512F.
4042 static bool expandNOVLXStore(MachineInstrBuilder
&MIB
,
4043 const TargetRegisterInfo
*TRI
,
4044 const MCInstrDesc
&StoreDesc
,
4045 const MCInstrDesc
&ExtractDesc
,
4047 Register SrcReg
= MIB
->getOperand(X86::AddrNumOperands
).getReg();
4048 // Check if DestReg is XMM16-31 or YMM16-31.
4049 if (TRI
->getEncodingValue(SrcReg
) < 16) {
4050 // We can use a normal VEX encoded store.
4051 MIB
->setDesc(StoreDesc
);
4053 // Use a VEXTRACTF instruction.
4054 MIB
->setDesc(ExtractDesc
);
4055 // Change the destination to a 512-bit register.
4056 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, SubIdx
, &X86::VR512RegClass
);
4057 MIB
->getOperand(X86::AddrNumOperands
).setReg(SrcReg
);
4058 MIB
.addImm(0x0); // Append immediate to extract from the lower bits.
4064 static bool expandSHXDROT(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
) {
4066 int64_t ShiftAmt
= MIB
->getOperand(2).getImm();
4067 // Temporarily remove the immediate so we can add another source register.
4068 MIB
->RemoveOperand(2);
4069 // Add the register. Don't copy the kill flag if there is one.
4070 MIB
.addReg(MIB
->getOperand(1).getReg(),
4071 getUndefRegState(MIB
->getOperand(1).isUndef()));
4072 // Add back the immediate.
4073 MIB
.addImm(ShiftAmt
);
4077 bool X86InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
4078 bool HasAVX
= Subtarget
.hasAVX();
4079 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
4080 switch (MI
.getOpcode()) {
4082 return Expand2AddrUndef(MIB
, get(X86::XOR32rr
));
4084 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ false);
4086 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ true);
4087 case X86::MOV32ImmSExti8
:
4088 case X86::MOV64ImmSExti8
:
4089 return ExpandMOVImmSExti8(MIB
, *this, Subtarget
);
4091 return Expand2AddrUndef(MIB
, get(X86::SBB8rr
));
4092 case X86::SETB_C16r
:
4093 return Expand2AddrUndef(MIB
, get(X86::SBB16rr
));
4094 case X86::SETB_C32r
:
4095 return Expand2AddrUndef(MIB
, get(X86::SBB32rr
));
4096 case X86::SETB_C64r
:
4097 return Expand2AddrUndef(MIB
, get(X86::SBB64rr
));
4099 return Expand2AddrUndef(MIB
, get(X86::MMX_PXORirr
));
4103 case X86::FsFLD0F128
:
4104 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VXORPSrr
: X86::XORPSrr
));
4105 case X86::AVX_SET0
: {
4106 assert(HasAVX
&& "AVX not supported");
4107 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4108 Register SrcReg
= MIB
->getOperand(0).getReg();
4109 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4110 MIB
->getOperand(0).setReg(XReg
);
4111 Expand2AddrUndef(MIB
, get(X86::VXORPSrr
));
4112 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4115 case X86::AVX512_128_SET0
:
4116 case X86::AVX512_FsFLD0SS
:
4117 case X86::AVX512_FsFLD0SD
:
4118 case X86::AVX512_FsFLD0F128
: {
4119 bool HasVLX
= Subtarget
.hasVLX();
4120 Register SrcReg
= MIB
->getOperand(0).getReg();
4121 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4122 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16)
4123 return Expand2AddrUndef(MIB
,
4124 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4125 // Extended register without VLX. Use a larger XOR.
4127 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
4128 MIB
->getOperand(0).setReg(SrcReg
);
4129 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4131 case X86::AVX512_256_SET0
:
4132 case X86::AVX512_512_SET0
: {
4133 bool HasVLX
= Subtarget
.hasVLX();
4134 Register SrcReg
= MIB
->getOperand(0).getReg();
4135 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4136 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16) {
4137 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
4138 MIB
->getOperand(0).setReg(XReg
);
4139 Expand2AddrUndef(MIB
,
4140 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4141 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4144 if (MI
.getOpcode() == X86::AVX512_256_SET0
) {
4145 // No VLX so we must reference a zmm.
4147 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4148 MIB
->getOperand(0).setReg(ZReg
);
4150 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4152 case X86::V_SETALLONES
:
4153 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VPCMPEQDrr
: X86::PCMPEQDrr
));
4154 case X86::AVX2_SETALLONES
:
4155 return Expand2AddrUndef(MIB
, get(X86::VPCMPEQDYrr
));
4156 case X86::AVX1_SETALLONES
: {
4157 Register Reg
= MIB
->getOperand(0).getReg();
4158 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4159 MIB
->setDesc(get(X86::VCMPPSYrri
));
4160 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xf);
4163 case X86::AVX512_512_SETALLONES
: {
4164 Register Reg
= MIB
->getOperand(0).getReg();
4165 MIB
->setDesc(get(X86::VPTERNLOGDZrri
));
4166 // VPTERNLOGD needs 3 register inputs and an immediate.
4167 // 0xff will return 1s for any input.
4168 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
)
4169 .addReg(Reg
, RegState::Undef
).addImm(0xff);
4172 case X86::AVX512_512_SEXT_MASK_32
:
4173 case X86::AVX512_512_SEXT_MASK_64
: {
4174 Register Reg
= MIB
->getOperand(0).getReg();
4175 Register MaskReg
= MIB
->getOperand(1).getReg();
4176 unsigned MaskState
= getRegState(MIB
->getOperand(1));
4177 unsigned Opc
= (MI
.getOpcode() == X86::AVX512_512_SEXT_MASK_64
) ?
4178 X86::VPTERNLOGQZrrikz
: X86::VPTERNLOGDZrrikz
;
4179 MI
.RemoveOperand(1);
4180 MIB
->setDesc(get(Opc
));
4181 // VPTERNLOG needs 3 register inputs and an immediate.
4182 // 0xff will return 1s for any input.
4183 MIB
.addReg(Reg
, RegState::Undef
).addReg(MaskReg
, MaskState
)
4184 .addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xff);
4187 case X86::VMOVAPSZ128rm_NOVLX
:
4188 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSrm
),
4189 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4190 case X86::VMOVUPSZ128rm_NOVLX
:
4191 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSrm
),
4192 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4193 case X86::VMOVAPSZ256rm_NOVLX
:
4194 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYrm
),
4195 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4196 case X86::VMOVUPSZ256rm_NOVLX
:
4197 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYrm
),
4198 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4199 case X86::VMOVAPSZ128mr_NOVLX
:
4200 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSmr
),
4201 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4202 case X86::VMOVUPSZ128mr_NOVLX
:
4203 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSmr
),
4204 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4205 case X86::VMOVAPSZ256mr_NOVLX
:
4206 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYmr
),
4207 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4208 case X86::VMOVUPSZ256mr_NOVLX
:
4209 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYmr
),
4210 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4211 case X86::MOV32ri64
: {
4212 Register Reg
= MIB
->getOperand(0).getReg();
4213 Register Reg32
= RI
.getSubReg(Reg
, X86::sub_32bit
);
4214 MI
.setDesc(get(X86::MOV32ri
));
4215 MIB
->getOperand(0).setReg(Reg32
);
4216 MIB
.addReg(Reg
, RegState::ImplicitDefine
);
4220 // KNL does not recognize dependency-breaking idioms for mask registers,
4221 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4222 // Using %k0 as the undef input register is a performance heuristic based
4223 // on the assumption that %k0 is used less frequently than the other mask
4224 // registers, since it is not usable as a write mask.
4225 // FIXME: A more advanced approach would be to choose the best input mask
4226 // register based on context.
4227 case X86::KSET0W
: return Expand2AddrKreg(MIB
, get(X86::KXORWrr
), X86::K0
);
4228 case X86::KSET0D
: return Expand2AddrKreg(MIB
, get(X86::KXORDrr
), X86::K0
);
4229 case X86::KSET0Q
: return Expand2AddrKreg(MIB
, get(X86::KXORQrr
), X86::K0
);
4230 case X86::KSET1W
: return Expand2AddrKreg(MIB
, get(X86::KXNORWrr
), X86::K0
);
4231 case X86::KSET1D
: return Expand2AddrKreg(MIB
, get(X86::KXNORDrr
), X86::K0
);
4232 case X86::KSET1Q
: return Expand2AddrKreg(MIB
, get(X86::KXNORQrr
), X86::K0
);
4233 case TargetOpcode::LOAD_STACK_GUARD
:
4234 expandLoadStackGuard(MIB
, *this);
4238 return expandXorFP(MIB
, *this);
4239 case X86::SHLDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHLD32rri8
));
4240 case X86::SHLDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHLD64rri8
));
4241 case X86::SHRDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHRD32rri8
));
4242 case X86::SHRDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHRD64rri8
));
4243 case X86::ADD8rr_DB
: MIB
->setDesc(get(X86::OR8rr
)); break;
4244 case X86::ADD16rr_DB
: MIB
->setDesc(get(X86::OR16rr
)); break;
4245 case X86::ADD32rr_DB
: MIB
->setDesc(get(X86::OR32rr
)); break;
4246 case X86::ADD64rr_DB
: MIB
->setDesc(get(X86::OR64rr
)); break;
4247 case X86::ADD8ri_DB
: MIB
->setDesc(get(X86::OR8ri
)); break;
4248 case X86::ADD16ri_DB
: MIB
->setDesc(get(X86::OR16ri
)); break;
4249 case X86::ADD32ri_DB
: MIB
->setDesc(get(X86::OR32ri
)); break;
4250 case X86::ADD64ri32_DB
: MIB
->setDesc(get(X86::OR64ri32
)); break;
4251 case X86::ADD16ri8_DB
: MIB
->setDesc(get(X86::OR16ri8
)); break;
4252 case X86::ADD32ri8_DB
: MIB
->setDesc(get(X86::OR32ri8
)); break;
4253 case X86::ADD64ri8_DB
: MIB
->setDesc(get(X86::OR64ri8
)); break;
4258 /// Return true for all instructions that only update
4259 /// the first 32 or 64-bits of the destination register and leave the rest
4260 /// unmodified. This can be used to avoid folding loads if the instructions
4261 /// only update part of the destination register, and the non-updated part is
4262 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4263 /// instructions breaks the partial register dependency and it can improve
4264 /// performance. e.g.:
4266 /// movss (%rdi), %xmm0
4267 /// cvtss2sd %xmm0, %xmm0
4270 /// cvtss2sd (%rdi), %xmm0
4272 /// FIXME: This should be turned into a TSFlags.
4274 static bool hasPartialRegUpdate(unsigned Opcode
,
4275 const X86Subtarget
&Subtarget
,
4276 bool ForLoadFold
= false) {
4278 case X86::CVTSI2SSrr
:
4279 case X86::CVTSI2SSrm
:
4280 case X86::CVTSI642SSrr
:
4281 case X86::CVTSI642SSrm
:
4282 case X86::CVTSI2SDrr
:
4283 case X86::CVTSI2SDrm
:
4284 case X86::CVTSI642SDrr
:
4285 case X86::CVTSI642SDrm
:
4286 // Load folding won't effect the undef register update since the input is
4288 return !ForLoadFold
;
4289 case X86::CVTSD2SSrr
:
4290 case X86::CVTSD2SSrm
:
4291 case X86::CVTSS2SDrr
:
4292 case X86::CVTSS2SDrm
:
4299 case X86::RCPSSr_Int
:
4300 case X86::RCPSSm_Int
:
4307 case X86::RSQRTSSr_Int
:
4308 case X86::RSQRTSSm_Int
:
4311 case X86::SQRTSSr_Int
:
4312 case X86::SQRTSSm_Int
:
4315 case X86::SQRTSDr_Int
:
4316 case X86::SQRTSDm_Int
:
4319 case X86::POPCNT32rm
:
4320 case X86::POPCNT32rr
:
4321 case X86::POPCNT64rm
:
4322 case X86::POPCNT64rr
:
4323 return Subtarget
.hasPOPCNTFalseDeps();
4324 case X86::LZCNT32rm
:
4325 case X86::LZCNT32rr
:
4326 case X86::LZCNT64rm
:
4327 case X86::LZCNT64rr
:
4328 case X86::TZCNT32rm
:
4329 case X86::TZCNT32rr
:
4330 case X86::TZCNT64rm
:
4331 case X86::TZCNT64rr
:
4332 return Subtarget
.hasLZCNTFalseDeps();
4338 /// Inform the BreakFalseDeps pass how many idle
4339 /// instructions we would like before a partial register update.
4340 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4341 const MachineInstr
&MI
, unsigned OpNum
,
4342 const TargetRegisterInfo
*TRI
) const {
4343 if (OpNum
!= 0 || !hasPartialRegUpdate(MI
.getOpcode(), Subtarget
))
4346 // If MI is marked as reading Reg, the partial register update is wanted.
4347 const MachineOperand
&MO
= MI
.getOperand(0);
4348 Register Reg
= MO
.getReg();
4349 if (Register::isVirtualRegister(Reg
)) {
4350 if (MO
.readsReg() || MI
.readsVirtualRegister(Reg
))
4353 if (MI
.readsRegister(Reg
, TRI
))
4357 // If any instructions in the clearance range are reading Reg, insert a
4358 // dependency breaking instruction, which is inexpensive and is likely to
4359 // be hidden in other instruction's cycles.
4360 return PartialRegUpdateClearance
;
4363 // Return true for any instruction the copies the high bits of the first source
4364 // operand into the unused high bits of the destination operand.
4365 static bool hasUndefRegUpdate(unsigned Opcode
, unsigned &OpNum
,
4366 bool ForLoadFold
= false) {
4367 // Set the OpNum parameter to the first source operand.
4370 case X86::VCVTSI2SSrr
:
4371 case X86::VCVTSI2SSrm
:
4372 case X86::VCVTSI2SSrr_Int
:
4373 case X86::VCVTSI2SSrm_Int
:
4374 case X86::VCVTSI642SSrr
:
4375 case X86::VCVTSI642SSrm
:
4376 case X86::VCVTSI642SSrr_Int
:
4377 case X86::VCVTSI642SSrm_Int
:
4378 case X86::VCVTSI2SDrr
:
4379 case X86::VCVTSI2SDrm
:
4380 case X86::VCVTSI2SDrr_Int
:
4381 case X86::VCVTSI2SDrm_Int
:
4382 case X86::VCVTSI642SDrr
:
4383 case X86::VCVTSI642SDrm
:
4384 case X86::VCVTSI642SDrr_Int
:
4385 case X86::VCVTSI642SDrm_Int
:
4387 case X86::VCVTSI2SSZrr
:
4388 case X86::VCVTSI2SSZrm
:
4389 case X86::VCVTSI2SSZrr_Int
:
4390 case X86::VCVTSI2SSZrrb_Int
:
4391 case X86::VCVTSI2SSZrm_Int
:
4392 case X86::VCVTSI642SSZrr
:
4393 case X86::VCVTSI642SSZrm
:
4394 case X86::VCVTSI642SSZrr_Int
:
4395 case X86::VCVTSI642SSZrrb_Int
:
4396 case X86::VCVTSI642SSZrm_Int
:
4397 case X86::VCVTSI2SDZrr
:
4398 case X86::VCVTSI2SDZrm
:
4399 case X86::VCVTSI2SDZrr_Int
:
4400 case X86::VCVTSI2SDZrm_Int
:
4401 case X86::VCVTSI642SDZrr
:
4402 case X86::VCVTSI642SDZrm
:
4403 case X86::VCVTSI642SDZrr_Int
:
4404 case X86::VCVTSI642SDZrrb_Int
:
4405 case X86::VCVTSI642SDZrm_Int
:
4406 case X86::VCVTUSI2SSZrr
:
4407 case X86::VCVTUSI2SSZrm
:
4408 case X86::VCVTUSI2SSZrr_Int
:
4409 case X86::VCVTUSI2SSZrrb_Int
:
4410 case X86::VCVTUSI2SSZrm_Int
:
4411 case X86::VCVTUSI642SSZrr
:
4412 case X86::VCVTUSI642SSZrm
:
4413 case X86::VCVTUSI642SSZrr_Int
:
4414 case X86::VCVTUSI642SSZrrb_Int
:
4415 case X86::VCVTUSI642SSZrm_Int
:
4416 case X86::VCVTUSI2SDZrr
:
4417 case X86::VCVTUSI2SDZrm
:
4418 case X86::VCVTUSI2SDZrr_Int
:
4419 case X86::VCVTUSI2SDZrm_Int
:
4420 case X86::VCVTUSI642SDZrr
:
4421 case X86::VCVTUSI642SDZrm
:
4422 case X86::VCVTUSI642SDZrr_Int
:
4423 case X86::VCVTUSI642SDZrrb_Int
:
4424 case X86::VCVTUSI642SDZrm_Int
:
4425 // Load folding won't effect the undef register update since the input is
4427 return !ForLoadFold
;
4428 case X86::VCVTSD2SSrr
:
4429 case X86::VCVTSD2SSrm
:
4430 case X86::VCVTSD2SSrr_Int
:
4431 case X86::VCVTSD2SSrm_Int
:
4432 case X86::VCVTSS2SDrr
:
4433 case X86::VCVTSS2SDrm
:
4434 case X86::VCVTSS2SDrr_Int
:
4435 case X86::VCVTSS2SDrm_Int
:
4437 case X86::VRCPSSr_Int
:
4439 case X86::VRCPSSm_Int
:
4440 case X86::VROUNDSDr
:
4441 case X86::VROUNDSDm
:
4442 case X86::VROUNDSDr_Int
:
4443 case X86::VROUNDSDm_Int
:
4444 case X86::VROUNDSSr
:
4445 case X86::VROUNDSSm
:
4446 case X86::VROUNDSSr_Int
:
4447 case X86::VROUNDSSm_Int
:
4448 case X86::VRSQRTSSr
:
4449 case X86::VRSQRTSSr_Int
:
4450 case X86::VRSQRTSSm
:
4451 case X86::VRSQRTSSm_Int
:
4453 case X86::VSQRTSSr_Int
:
4455 case X86::VSQRTSSm_Int
:
4457 case X86::VSQRTSDr_Int
:
4459 case X86::VSQRTSDm_Int
:
4461 case X86::VCVTSD2SSZrr
:
4462 case X86::VCVTSD2SSZrr_Int
:
4463 case X86::VCVTSD2SSZrrb_Int
:
4464 case X86::VCVTSD2SSZrm
:
4465 case X86::VCVTSD2SSZrm_Int
:
4466 case X86::VCVTSS2SDZrr
:
4467 case X86::VCVTSS2SDZrr_Int
:
4468 case X86::VCVTSS2SDZrrb_Int
:
4469 case X86::VCVTSS2SDZrm
:
4470 case X86::VCVTSS2SDZrm_Int
:
4471 case X86::VGETEXPSDZr
:
4472 case X86::VGETEXPSDZrb
:
4473 case X86::VGETEXPSDZm
:
4474 case X86::VGETEXPSSZr
:
4475 case X86::VGETEXPSSZrb
:
4476 case X86::VGETEXPSSZm
:
4477 case X86::VGETMANTSDZrri
:
4478 case X86::VGETMANTSDZrrib
:
4479 case X86::VGETMANTSDZrmi
:
4480 case X86::VGETMANTSSZrri
:
4481 case X86::VGETMANTSSZrrib
:
4482 case X86::VGETMANTSSZrmi
:
4483 case X86::VRNDSCALESDZr
:
4484 case X86::VRNDSCALESDZr_Int
:
4485 case X86::VRNDSCALESDZrb_Int
:
4486 case X86::VRNDSCALESDZm
:
4487 case X86::VRNDSCALESDZm_Int
:
4488 case X86::VRNDSCALESSZr
:
4489 case X86::VRNDSCALESSZr_Int
:
4490 case X86::VRNDSCALESSZrb_Int
:
4491 case X86::VRNDSCALESSZm
:
4492 case X86::VRNDSCALESSZm_Int
:
4493 case X86::VRCP14SDZrr
:
4494 case X86::VRCP14SDZrm
:
4495 case X86::VRCP14SSZrr
:
4496 case X86::VRCP14SSZrm
:
4497 case X86::VRCP28SDZr
:
4498 case X86::VRCP28SDZrb
:
4499 case X86::VRCP28SDZm
:
4500 case X86::VRCP28SSZr
:
4501 case X86::VRCP28SSZrb
:
4502 case X86::VRCP28SSZm
:
4503 case X86::VREDUCESSZrmi
:
4504 case X86::VREDUCESSZrri
:
4505 case X86::VREDUCESSZrrib
:
4506 case X86::VRSQRT14SDZrr
:
4507 case X86::VRSQRT14SDZrm
:
4508 case X86::VRSQRT14SSZrr
:
4509 case X86::VRSQRT14SSZrm
:
4510 case X86::VRSQRT28SDZr
:
4511 case X86::VRSQRT28SDZrb
:
4512 case X86::VRSQRT28SDZm
:
4513 case X86::VRSQRT28SSZr
:
4514 case X86::VRSQRT28SSZrb
:
4515 case X86::VRSQRT28SSZm
:
4516 case X86::VSQRTSSZr
:
4517 case X86::VSQRTSSZr_Int
:
4518 case X86::VSQRTSSZrb_Int
:
4519 case X86::VSQRTSSZm
:
4520 case X86::VSQRTSSZm_Int
:
4521 case X86::VSQRTSDZr
:
4522 case X86::VSQRTSDZr_Int
:
4523 case X86::VSQRTSDZrb_Int
:
4524 case X86::VSQRTSDZm
:
4525 case X86::VSQRTSDZm_Int
:
4527 case X86::VMOVSSZrrk
:
4528 case X86::VMOVSDZrrk
:
4531 case X86::VMOVSSZrrkz
:
4532 case X86::VMOVSDZrrkz
:
4540 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4541 /// before certain undef register reads.
4543 /// This catches the VCVTSI2SD family of instructions:
4545 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4547 /// We should to be careful *not* to catch VXOR idioms which are presumably
4548 /// handled specially in the pipeline:
4550 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4552 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4553 /// high bits that are passed-through are not live.
4555 X86InstrInfo::getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
4556 const TargetRegisterInfo
*TRI
) const {
4557 if (!hasUndefRegUpdate(MI
.getOpcode(), OpNum
))
4560 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
4561 if (MO
.isUndef() && Register::isPhysicalRegister(MO
.getReg())) {
4562 return UndefRegClearance
;
4567 void X86InstrInfo::breakPartialRegDependency(
4568 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
4569 Register Reg
= MI
.getOperand(OpNum
).getReg();
4570 // If MI kills this register, the false dependence is already broken.
4571 if (MI
.killsRegister(Reg
, TRI
))
4574 if (X86::VR128RegClass
.contains(Reg
)) {
4575 // These instructions are all floating point domain, so xorps is the best
4577 unsigned Opc
= Subtarget
.hasAVX() ? X86::VXORPSrr
: X86::XORPSrr
;
4578 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(Opc
), Reg
)
4579 .addReg(Reg
, RegState::Undef
)
4580 .addReg(Reg
, RegState::Undef
);
4581 MI
.addRegisterKilled(Reg
, TRI
, true);
4582 } else if (X86::VR256RegClass
.contains(Reg
)) {
4583 // Use vxorps to clear the full ymm register.
4584 // It wants to read and write the xmm sub-register.
4585 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
4586 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VXORPSrr
), XReg
)
4587 .addReg(XReg
, RegState::Undef
)
4588 .addReg(XReg
, RegState::Undef
)
4589 .addReg(Reg
, RegState::ImplicitDefine
);
4590 MI
.addRegisterKilled(Reg
, TRI
, true);
4591 } else if (X86::GR64RegClass
.contains(Reg
)) {
4592 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4594 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_32bit
);
4595 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), XReg
)
4596 .addReg(XReg
, RegState::Undef
)
4597 .addReg(XReg
, RegState::Undef
)
4598 .addReg(Reg
, RegState::ImplicitDefine
);
4599 MI
.addRegisterKilled(Reg
, TRI
, true);
4600 } else if (X86::GR32RegClass
.contains(Reg
)) {
4601 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), Reg
)
4602 .addReg(Reg
, RegState::Undef
)
4603 .addReg(Reg
, RegState::Undef
);
4604 MI
.addRegisterKilled(Reg
, TRI
, true);
4608 static void addOperands(MachineInstrBuilder
&MIB
, ArrayRef
<MachineOperand
> MOs
,
4609 int PtrOffset
= 0) {
4610 unsigned NumAddrOps
= MOs
.size();
4612 if (NumAddrOps
< 4) {
4613 // FrameIndex only - add an immediate offset (whether its zero or not).
4614 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
4616 addOffset(MIB
, PtrOffset
);
4618 // General Memory Addressing - we need to add any offset to an existing
4620 assert(MOs
.size() == 5 && "Unexpected memory operand list length");
4621 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
) {
4622 const MachineOperand
&MO
= MOs
[i
];
4623 if (i
== 3 && PtrOffset
!= 0) {
4624 MIB
.addDisp(MO
, PtrOffset
);
4632 static void updateOperandRegConstraints(MachineFunction
&MF
,
4633 MachineInstr
&NewMI
,
4634 const TargetInstrInfo
&TII
) {
4635 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4636 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
4638 for (int Idx
: llvm::seq
<int>(0, NewMI
.getNumOperands())) {
4639 MachineOperand
&MO
= NewMI
.getOperand(Idx
);
4640 // We only need to update constraints on virtual register operands.
4643 Register Reg
= MO
.getReg();
4644 if (!Register::isVirtualRegister(Reg
))
4647 auto *NewRC
= MRI
.constrainRegClass(
4648 Reg
, TII
.getRegClass(NewMI
.getDesc(), Idx
, &TRI
, MF
));
4651 dbgs() << "WARNING: Unable to update register constraint for operand "
4652 << Idx
<< " of instruction:\n";
4653 NewMI
.dump(); dbgs() << "\n");
4658 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
4659 ArrayRef
<MachineOperand
> MOs
,
4660 MachineBasicBlock::iterator InsertPt
,
4662 const TargetInstrInfo
&TII
) {
4663 // Create the base instruction with the memory operand as the first part.
4664 // Omit the implicit operands, something BuildMI can't do.
4665 MachineInstr
*NewMI
=
4666 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4667 MachineInstrBuilder
MIB(MF
, NewMI
);
4668 addOperands(MIB
, MOs
);
4670 // Loop over the rest of the ri operands, converting them over.
4671 unsigned NumOps
= MI
.getDesc().getNumOperands() - 2;
4672 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4673 MachineOperand
&MO
= MI
.getOperand(i
+ 2);
4676 for (unsigned i
= NumOps
+ 2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4677 MachineOperand
&MO
= MI
.getOperand(i
);
4681 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4683 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4684 MBB
->insert(InsertPt
, NewMI
);
4689 static MachineInstr
*FuseInst(MachineFunction
&MF
, unsigned Opcode
,
4690 unsigned OpNo
, ArrayRef
<MachineOperand
> MOs
,
4691 MachineBasicBlock::iterator InsertPt
,
4692 MachineInstr
&MI
, const TargetInstrInfo
&TII
,
4693 int PtrOffset
= 0) {
4694 // Omit the implicit operands, something BuildMI can't do.
4695 MachineInstr
*NewMI
=
4696 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4697 MachineInstrBuilder
MIB(MF
, NewMI
);
4699 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4700 MachineOperand
&MO
= MI
.getOperand(i
);
4702 assert(MO
.isReg() && "Expected to fold into reg operand!");
4703 addOperands(MIB
, MOs
, PtrOffset
);
4709 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4711 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4712 MBB
->insert(InsertPt
, NewMI
);
4717 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
4718 ArrayRef
<MachineOperand
> MOs
,
4719 MachineBasicBlock::iterator InsertPt
,
4721 MachineInstrBuilder MIB
= BuildMI(*InsertPt
->getParent(), InsertPt
,
4722 MI
.getDebugLoc(), TII
.get(Opcode
));
4723 addOperands(MIB
, MOs
);
4724 return MIB
.addImm(0);
4727 MachineInstr
*X86InstrInfo::foldMemoryOperandCustom(
4728 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4729 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4730 unsigned Size
, unsigned Align
) const {
4731 switch (MI
.getOpcode()) {
4732 case X86::INSERTPSrr
:
4733 case X86::VINSERTPSrr
:
4734 case X86::VINSERTPSZrr
:
4735 // Attempt to convert the load of inserted vector into a fold load
4736 // of a single float.
4738 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
4739 unsigned ZMask
= Imm
& 15;
4740 unsigned DstIdx
= (Imm
>> 4) & 3;
4741 unsigned SrcIdx
= (Imm
>> 6) & 3;
4743 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4744 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4745 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4746 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 4 <= Align
) {
4747 int PtrOffset
= SrcIdx
* 4;
4748 unsigned NewImm
= (DstIdx
<< 4) | ZMask
;
4749 unsigned NewOpCode
=
4750 (MI
.getOpcode() == X86::VINSERTPSZrr
) ? X86::VINSERTPSZrm
:
4751 (MI
.getOpcode() == X86::VINSERTPSrr
) ? X86::VINSERTPSrm
:
4753 MachineInstr
*NewMI
=
4754 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, PtrOffset
);
4755 NewMI
->getOperand(NewMI
->getNumOperands() - 1).setImm(NewImm
);
4760 case X86::MOVHLPSrr
:
4761 case X86::VMOVHLPSrr
:
4762 case X86::VMOVHLPSZrr
:
4763 // Move the upper 64-bits of the second operand to the lower 64-bits.
4764 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4765 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4767 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4768 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4769 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4770 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 8 <= Align
) {
4771 unsigned NewOpCode
=
4772 (MI
.getOpcode() == X86::VMOVHLPSZrr
) ? X86::VMOVLPSZ128rm
:
4773 (MI
.getOpcode() == X86::VMOVHLPSrr
) ? X86::VMOVLPSrm
:
4775 MachineInstr
*NewMI
=
4776 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
4781 case X86::UNPCKLPDrr
:
4782 // If we won't be able to fold this to the memory form of UNPCKL, use
4783 // MOVHPD instead. Done as custom because we can't have this in the load
4786 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4787 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4788 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4789 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Align
< 16) {
4790 MachineInstr
*NewMI
=
4791 FuseInst(MF
, X86::MOVHPDrm
, OpNum
, MOs
, InsertPt
, MI
, *this);
4801 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction
&MF
,
4804 if (!hasUndefRegUpdate(MI
.getOpcode(), Ignored
, /*ForLoadFold*/true) ||
4805 !MI
.getOperand(1).isReg())
4808 // The are two cases we need to handle depending on where in the pipeline
4809 // the folding attempt is being made.
4810 // -Register has the undef flag set.
4811 // -Register is produced by the IMPLICIT_DEF instruction.
4813 if (MI
.getOperand(1).isUndef())
4816 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
4817 MachineInstr
*VRegDef
= RegInfo
.getUniqueVRegDef(MI
.getOperand(1).getReg());
4818 return VRegDef
&& VRegDef
->isImplicitDef();
4822 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
4823 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4824 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4825 unsigned Size
, unsigned Align
, bool AllowCommute
) const {
4826 bool isSlowTwoMemOps
= Subtarget
.slowTwoMemOps();
4827 bool isTwoAddrFold
= false;
4829 // For CPUs that favor the register form of a call or push,
4830 // do not fold loads into calls or pushes, unless optimizing for size
4832 if (isSlowTwoMemOps
&& !MF
.getFunction().hasMinSize() &&
4833 (MI
.getOpcode() == X86::CALL32r
|| MI
.getOpcode() == X86::CALL64r
||
4834 MI
.getOpcode() == X86::PUSH16r
|| MI
.getOpcode() == X86::PUSH32r
||
4835 MI
.getOpcode() == X86::PUSH64r
))
4838 // Avoid partial and undef register update stalls unless optimizing for size.
4839 if (!MF
.getFunction().hasOptSize() &&
4840 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
4841 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
4844 unsigned NumOps
= MI
.getDesc().getNumOperands();
4846 NumOps
> 1 && MI
.getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
4848 // FIXME: AsmPrinter doesn't know how to handle
4849 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4850 if (MI
.getOpcode() == X86::ADD32ri
&&
4851 MI
.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
4854 // GOTTPOFF relocation loads can only be folded into add instructions.
4855 // FIXME: Need to exclude other relocations that only support specific
4857 if (MOs
.size() == X86::AddrNumOperands
&&
4858 MOs
[X86::AddrDisp
].getTargetFlags() == X86II::MO_GOTTPOFF
&&
4859 MI
.getOpcode() != X86::ADD64rr
)
4862 MachineInstr
*NewMI
= nullptr;
4864 // Attempt to fold any custom cases we have.
4865 if (MachineInstr
*CustomMI
=
4866 foldMemoryOperandCustom(MF
, MI
, OpNum
, MOs
, InsertPt
, Size
, Align
))
4869 const X86MemoryFoldTableEntry
*I
= nullptr;
4871 // Folding a memory location into the two-address part of a two-address
4872 // instruction is different than folding it other places. It requires
4873 // replacing the *two* registers with the memory location.
4874 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2 && MI
.getOperand(0).isReg() &&
4875 MI
.getOperand(1).isReg() &&
4876 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
4877 I
= lookupTwoAddrFoldTable(MI
.getOpcode());
4878 isTwoAddrFold
= true;
4881 if (MI
.getOpcode() == X86::MOV32r0
) {
4882 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, InsertPt
, MI
);
4888 I
= lookupFoldTable(MI
.getOpcode(), OpNum
);
4892 unsigned Opcode
= I
->DstOp
;
4893 unsigned MinAlign
= (I
->Flags
& TB_ALIGN_MASK
) >> TB_ALIGN_SHIFT
;
4894 MinAlign
= MinAlign
? 1 << (MinAlign
- 1) : 0;
4895 if (Align
< MinAlign
)
4897 bool NarrowToMOV32rm
= false;
4899 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4900 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
,
4902 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4903 if (Size
< RCSize
) {
4904 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4905 // Check if it's safe to fold the load. If the size of the object is
4906 // narrower than the load width, then it's not.
4907 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
4909 // If this is a 64-bit load, but the spill slot is 32, then we can do
4910 // a 32-bit load which is implicitly zero-extended. This likely is
4911 // due to live interval analysis remat'ing a load from stack slot.
4912 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
4914 Opcode
= X86::MOV32rm
;
4915 NarrowToMOV32rm
= true;
4920 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, InsertPt
, MI
, *this);
4922 NewMI
= FuseInst(MF
, Opcode
, OpNum
, MOs
, InsertPt
, MI
, *this);
4924 if (NarrowToMOV32rm
) {
4925 // If this is the special case where we use a MOV32rm to load a 32-bit
4926 // value and zero-extend the top bits. Change the destination register
4928 Register DstReg
= NewMI
->getOperand(0).getReg();
4929 if (Register::isPhysicalRegister(DstReg
))
4930 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
, X86::sub_32bit
));
4932 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
4937 // If the instruction and target operand are commutable, commute the
4938 // instruction and try again.
4940 unsigned CommuteOpIdx1
= OpNum
, CommuteOpIdx2
= CommuteAnyOperandIndex
;
4941 if (findCommutedOpIndices(MI
, CommuteOpIdx1
, CommuteOpIdx2
)) {
4942 bool HasDef
= MI
.getDesc().getNumDefs();
4943 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
4944 Register Reg1
= MI
.getOperand(CommuteOpIdx1
).getReg();
4945 Register Reg2
= MI
.getOperand(CommuteOpIdx2
).getReg();
4947 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx1
, MCOI::TIED_TO
);
4949 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx2
, MCOI::TIED_TO
);
4951 // If either of the commutable operands are tied to the destination
4952 // then we can not commute + fold.
4953 if ((HasDef
&& Reg0
== Reg1
&& Tied1
) ||
4954 (HasDef
&& Reg0
== Reg2
&& Tied2
))
4957 MachineInstr
*CommutedMI
=
4958 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4960 // Unable to commute.
4963 if (CommutedMI
!= &MI
) {
4964 // New instruction. We can't fold from this.
4965 CommutedMI
->eraseFromParent();
4969 // Attempt to fold with the commuted version of the instruction.
4970 NewMI
= foldMemoryOperandImpl(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
,
4971 Size
, Align
, /*AllowCommute=*/false);
4975 // Folding failed again - undo the commute before returning.
4976 MachineInstr
*UncommutedMI
=
4977 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4978 if (!UncommutedMI
) {
4979 // Unable to commute.
4982 if (UncommutedMI
!= &MI
) {
4983 // New instruction. It doesn't need to be kept.
4984 UncommutedMI
->eraseFromParent();
4988 // Return here to prevent duplicate fuse failure report.
4994 if (PrintFailedFusing
&& !MI
.isCopy())
4995 dbgs() << "We failed to fuse operand " << OpNum
<< " in " << MI
;
5000 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
5001 ArrayRef
<unsigned> Ops
,
5002 MachineBasicBlock::iterator InsertPt
,
5003 int FrameIndex
, LiveIntervals
*LIS
,
5004 VirtRegMap
*VRM
) const {
5005 // Check switch flag
5009 // Avoid partial and undef register update stalls unless optimizing for size.
5010 if (!MF
.getFunction().hasOptSize() &&
5011 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5012 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5015 // Don't fold subreg spills, or reloads that use a high subreg.
5016 for (auto Op
: Ops
) {
5017 MachineOperand
&MO
= MI
.getOperand(Op
);
5018 auto SubReg
= MO
.getSubReg();
5019 if (SubReg
&& (MO
.isDef() || SubReg
== X86::sub_8bit_hi
))
5023 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5024 unsigned Size
= MFI
.getObjectSize(FrameIndex
);
5025 unsigned Alignment
= MFI
.getObjectAlignment(FrameIndex
);
5026 // If the function stack isn't realigned we don't want to fold instructions
5027 // that need increased alignment.
5028 if (!RI
.needsStackRealignment(MF
))
5030 std::min(Alignment
, Subtarget
.getFrameLowering()->getStackAlignment());
5031 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
5032 unsigned NewOpc
= 0;
5033 unsigned RCSize
= 0;
5034 switch (MI
.getOpcode()) {
5035 default: return nullptr;
5036 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
5037 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
5038 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
5039 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
5041 // Check if it's safe to fold the load. If the size of the object is
5042 // narrower than the load width, then it's not.
5045 // Change to CMPXXri r, 0 first.
5046 MI
.setDesc(get(NewOpc
));
5047 MI
.getOperand(1).ChangeToImmediate(0);
5048 } else if (Ops
.size() != 1)
5051 return foldMemoryOperandImpl(MF
, MI
, Ops
[0],
5052 MachineOperand::CreateFI(FrameIndex
), InsertPt
,
5053 Size
, Alignment
, /*AllowCommute=*/true);
5056 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5057 /// because the latter uses contents that wouldn't be defined in the folded
5058 /// version. For instance, this transformation isn't legal:
5059 /// movss (%rdi), %xmm0
5060 /// addps %xmm0, %xmm0
5062 /// addps (%rdi), %xmm0
5064 /// But this one is:
5065 /// movss (%rdi), %xmm0
5066 /// addss %xmm0, %xmm0
5068 /// addss (%rdi), %xmm0
5070 static bool isNonFoldablePartialRegisterLoad(const MachineInstr
&LoadMI
,
5071 const MachineInstr
&UserMI
,
5072 const MachineFunction
&MF
) {
5073 unsigned Opc
= LoadMI
.getOpcode();
5074 unsigned UserOpc
= UserMI
.getOpcode();
5075 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5076 const TargetRegisterClass
*RC
=
5077 MF
.getRegInfo().getRegClass(LoadMI
.getOperand(0).getReg());
5078 unsigned RegSize
= TRI
.getRegSizeInBits(*RC
);
5080 if ((Opc
== X86::MOVSSrm
|| Opc
== X86::VMOVSSrm
|| Opc
== X86::VMOVSSZrm
||
5081 Opc
== X86::MOVSSrm_alt
|| Opc
== X86::VMOVSSrm_alt
||
5082 Opc
== X86::VMOVSSZrm_alt
) &&
5084 // These instructions only load 32 bits, we can't fold them if the
5085 // destination register is wider than 32 bits (4 bytes), and its user
5086 // instruction isn't scalar (SS).
5088 case X86::ADDSSrr_Int
: case X86::VADDSSrr_Int
: case X86::VADDSSZrr_Int
:
5089 case X86::CMPSSrr_Int
: case X86::VCMPSSrr_Int
: case X86::VCMPSSZrr_Int
:
5090 case X86::DIVSSrr_Int
: case X86::VDIVSSrr_Int
: case X86::VDIVSSZrr_Int
:
5091 case X86::MAXSSrr_Int
: case X86::VMAXSSrr_Int
: case X86::VMAXSSZrr_Int
:
5092 case X86::MINSSrr_Int
: case X86::VMINSSrr_Int
: case X86::VMINSSZrr_Int
:
5093 case X86::MULSSrr_Int
: case X86::VMULSSrr_Int
: case X86::VMULSSZrr_Int
:
5094 case X86::SUBSSrr_Int
: case X86::VSUBSSrr_Int
: case X86::VSUBSSZrr_Int
:
5095 case X86::VADDSSZrr_Intk
: case X86::VADDSSZrr_Intkz
:
5096 case X86::VCMPSSZrr_Intk
:
5097 case X86::VDIVSSZrr_Intk
: case X86::VDIVSSZrr_Intkz
:
5098 case X86::VMAXSSZrr_Intk
: case X86::VMAXSSZrr_Intkz
:
5099 case X86::VMINSSZrr_Intk
: case X86::VMINSSZrr_Intkz
:
5100 case X86::VMULSSZrr_Intk
: case X86::VMULSSZrr_Intkz
:
5101 case X86::VSUBSSZrr_Intk
: case X86::VSUBSSZrr_Intkz
:
5102 case X86::VFMADDSS4rr_Int
: case X86::VFNMADDSS4rr_Int
:
5103 case X86::VFMSUBSS4rr_Int
: case X86::VFNMSUBSS4rr_Int
:
5104 case X86::VFMADD132SSr_Int
: case X86::VFNMADD132SSr_Int
:
5105 case X86::VFMADD213SSr_Int
: case X86::VFNMADD213SSr_Int
:
5106 case X86::VFMADD231SSr_Int
: case X86::VFNMADD231SSr_Int
:
5107 case X86::VFMSUB132SSr_Int
: case X86::VFNMSUB132SSr_Int
:
5108 case X86::VFMSUB213SSr_Int
: case X86::VFNMSUB213SSr_Int
:
5109 case X86::VFMSUB231SSr_Int
: case X86::VFNMSUB231SSr_Int
:
5110 case X86::VFMADD132SSZr_Int
: case X86::VFNMADD132SSZr_Int
:
5111 case X86::VFMADD213SSZr_Int
: case X86::VFNMADD213SSZr_Int
:
5112 case X86::VFMADD231SSZr_Int
: case X86::VFNMADD231SSZr_Int
:
5113 case X86::VFMSUB132SSZr_Int
: case X86::VFNMSUB132SSZr_Int
:
5114 case X86::VFMSUB213SSZr_Int
: case X86::VFNMSUB213SSZr_Int
:
5115 case X86::VFMSUB231SSZr_Int
: case X86::VFNMSUB231SSZr_Int
:
5116 case X86::VFMADD132SSZr_Intk
: case X86::VFNMADD132SSZr_Intk
:
5117 case X86::VFMADD213SSZr_Intk
: case X86::VFNMADD213SSZr_Intk
:
5118 case X86::VFMADD231SSZr_Intk
: case X86::VFNMADD231SSZr_Intk
:
5119 case X86::VFMSUB132SSZr_Intk
: case X86::VFNMSUB132SSZr_Intk
:
5120 case X86::VFMSUB213SSZr_Intk
: case X86::VFNMSUB213SSZr_Intk
:
5121 case X86::VFMSUB231SSZr_Intk
: case X86::VFNMSUB231SSZr_Intk
:
5122 case X86::VFMADD132SSZr_Intkz
: case X86::VFNMADD132SSZr_Intkz
:
5123 case X86::VFMADD213SSZr_Intkz
: case X86::VFNMADD213SSZr_Intkz
:
5124 case X86::VFMADD231SSZr_Intkz
: case X86::VFNMADD231SSZr_Intkz
:
5125 case X86::VFMSUB132SSZr_Intkz
: case X86::VFNMSUB132SSZr_Intkz
:
5126 case X86::VFMSUB213SSZr_Intkz
: case X86::VFNMSUB213SSZr_Intkz
:
5127 case X86::VFMSUB231SSZr_Intkz
: case X86::VFNMSUB231SSZr_Intkz
:
5134 if ((Opc
== X86::MOVSDrm
|| Opc
== X86::VMOVSDrm
|| Opc
== X86::VMOVSDZrm
||
5135 Opc
== X86::MOVSDrm_alt
|| Opc
== X86::VMOVSDrm_alt
||
5136 Opc
== X86::VMOVSDZrm_alt
) &&
5138 // These instructions only load 64 bits, we can't fold them if the
5139 // destination register is wider than 64 bits (8 bytes), and its user
5140 // instruction isn't scalar (SD).
5142 case X86::ADDSDrr_Int
: case X86::VADDSDrr_Int
: case X86::VADDSDZrr_Int
:
5143 case X86::CMPSDrr_Int
: case X86::VCMPSDrr_Int
: case X86::VCMPSDZrr_Int
:
5144 case X86::DIVSDrr_Int
: case X86::VDIVSDrr_Int
: case X86::VDIVSDZrr_Int
:
5145 case X86::MAXSDrr_Int
: case X86::VMAXSDrr_Int
: case X86::VMAXSDZrr_Int
:
5146 case X86::MINSDrr_Int
: case X86::VMINSDrr_Int
: case X86::VMINSDZrr_Int
:
5147 case X86::MULSDrr_Int
: case X86::VMULSDrr_Int
: case X86::VMULSDZrr_Int
:
5148 case X86::SUBSDrr_Int
: case X86::VSUBSDrr_Int
: case X86::VSUBSDZrr_Int
:
5149 case X86::VADDSDZrr_Intk
: case X86::VADDSDZrr_Intkz
:
5150 case X86::VCMPSDZrr_Intk
:
5151 case X86::VDIVSDZrr_Intk
: case X86::VDIVSDZrr_Intkz
:
5152 case X86::VMAXSDZrr_Intk
: case X86::VMAXSDZrr_Intkz
:
5153 case X86::VMINSDZrr_Intk
: case X86::VMINSDZrr_Intkz
:
5154 case X86::VMULSDZrr_Intk
: case X86::VMULSDZrr_Intkz
:
5155 case X86::VSUBSDZrr_Intk
: case X86::VSUBSDZrr_Intkz
:
5156 case X86::VFMADDSD4rr_Int
: case X86::VFNMADDSD4rr_Int
:
5157 case X86::VFMSUBSD4rr_Int
: case X86::VFNMSUBSD4rr_Int
:
5158 case X86::VFMADD132SDr_Int
: case X86::VFNMADD132SDr_Int
:
5159 case X86::VFMADD213SDr_Int
: case X86::VFNMADD213SDr_Int
:
5160 case X86::VFMADD231SDr_Int
: case X86::VFNMADD231SDr_Int
:
5161 case X86::VFMSUB132SDr_Int
: case X86::VFNMSUB132SDr_Int
:
5162 case X86::VFMSUB213SDr_Int
: case X86::VFNMSUB213SDr_Int
:
5163 case X86::VFMSUB231SDr_Int
: case X86::VFNMSUB231SDr_Int
:
5164 case X86::VFMADD132SDZr_Int
: case X86::VFNMADD132SDZr_Int
:
5165 case X86::VFMADD213SDZr_Int
: case X86::VFNMADD213SDZr_Int
:
5166 case X86::VFMADD231SDZr_Int
: case X86::VFNMADD231SDZr_Int
:
5167 case X86::VFMSUB132SDZr_Int
: case X86::VFNMSUB132SDZr_Int
:
5168 case X86::VFMSUB213SDZr_Int
: case X86::VFNMSUB213SDZr_Int
:
5169 case X86::VFMSUB231SDZr_Int
: case X86::VFNMSUB231SDZr_Int
:
5170 case X86::VFMADD132SDZr_Intk
: case X86::VFNMADD132SDZr_Intk
:
5171 case X86::VFMADD213SDZr_Intk
: case X86::VFNMADD213SDZr_Intk
:
5172 case X86::VFMADD231SDZr_Intk
: case X86::VFNMADD231SDZr_Intk
:
5173 case X86::VFMSUB132SDZr_Intk
: case X86::VFNMSUB132SDZr_Intk
:
5174 case X86::VFMSUB213SDZr_Intk
: case X86::VFNMSUB213SDZr_Intk
:
5175 case X86::VFMSUB231SDZr_Intk
: case X86::VFNMSUB231SDZr_Intk
:
5176 case X86::VFMADD132SDZr_Intkz
: case X86::VFNMADD132SDZr_Intkz
:
5177 case X86::VFMADD213SDZr_Intkz
: case X86::VFNMADD213SDZr_Intkz
:
5178 case X86::VFMADD231SDZr_Intkz
: case X86::VFNMADD231SDZr_Intkz
:
5179 case X86::VFMSUB132SDZr_Intkz
: case X86::VFNMSUB132SDZr_Intkz
:
5180 case X86::VFMSUB213SDZr_Intkz
: case X86::VFNMSUB213SDZr_Intkz
:
5181 case X86::VFMSUB231SDZr_Intkz
: case X86::VFNMSUB231SDZr_Intkz
:
5191 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
5192 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
5193 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
5194 LiveIntervals
*LIS
) const {
5196 // TODO: Support the case where LoadMI loads a wide register, but MI
5197 // only uses a subreg.
5198 for (auto Op
: Ops
) {
5199 if (MI
.getOperand(Op
).getSubReg())
5203 // If loading from a FrameIndex, fold directly from the FrameIndex.
5204 unsigned NumOps
= LoadMI
.getDesc().getNumOperands();
5206 if (isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
5207 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5209 return foldMemoryOperandImpl(MF
, MI
, Ops
, InsertPt
, FrameIndex
, LIS
);
5212 // Check switch flag
5213 if (NoFusing
) return nullptr;
5215 // Avoid partial and undef register update stalls unless optimizing for size.
5216 if (!MF
.getFunction().hasOptSize() &&
5217 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5218 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5221 // Determine the alignment of the load.
5222 unsigned Alignment
= 0;
5223 if (LoadMI
.hasOneMemOperand())
5224 Alignment
= (*LoadMI
.memoperands_begin())->getAlignment();
5226 switch (LoadMI
.getOpcode()) {
5227 case X86::AVX512_512_SET0
:
5228 case X86::AVX512_512_SETALLONES
:
5231 case X86::AVX2_SETALLONES
:
5232 case X86::AVX1_SETALLONES
:
5234 case X86::AVX512_256_SET0
:
5238 case X86::V_SETALLONES
:
5239 case X86::AVX512_128_SET0
:
5240 case X86::FsFLD0F128
:
5241 case X86::AVX512_FsFLD0F128
:
5246 case X86::AVX512_FsFLD0SD
:
5250 case X86::AVX512_FsFLD0SS
:
5256 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
5257 unsigned NewOpc
= 0;
5258 switch (MI
.getOpcode()) {
5259 default: return nullptr;
5260 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
5261 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
5262 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
5263 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
5265 // Change to CMPXXri r, 0 first.
5266 MI
.setDesc(get(NewOpc
));
5267 MI
.getOperand(1).ChangeToImmediate(0);
5268 } else if (Ops
.size() != 1)
5271 // Make sure the subregisters match.
5272 // Otherwise we risk changing the size of the load.
5273 if (LoadMI
.getOperand(0).getSubReg() != MI
.getOperand(Ops
[0]).getSubReg())
5276 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
5277 switch (LoadMI
.getOpcode()) {
5280 case X86::V_SETALLONES
:
5281 case X86::AVX2_SETALLONES
:
5282 case X86::AVX1_SETALLONES
:
5284 case X86::AVX512_128_SET0
:
5285 case X86::AVX512_256_SET0
:
5286 case X86::AVX512_512_SET0
:
5287 case X86::AVX512_512_SETALLONES
:
5289 case X86::AVX512_FsFLD0SD
:
5291 case X86::AVX512_FsFLD0SS
:
5292 case X86::FsFLD0F128
:
5293 case X86::AVX512_FsFLD0F128
: {
5294 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5295 // Create a constant-pool entry and operands to load from it.
5297 // Medium and large mode can't fold loads this way.
5298 if (MF
.getTarget().getCodeModel() != CodeModel::Small
&&
5299 MF
.getTarget().getCodeModel() != CodeModel::Kernel
)
5302 // x86-32 PIC requires a PIC base register for constant pools.
5303 unsigned PICBase
= 0;
5304 if (MF
.getTarget().isPositionIndependent()) {
5305 if (Subtarget
.is64Bit())
5308 // FIXME: PICBase = getGlobalBaseReg(&MF);
5309 // This doesn't work for several reasons.
5310 // 1. GlobalBaseReg may have been spilled.
5311 // 2. It may not be live at MI.
5315 // Create a constant-pool entry.
5316 MachineConstantPool
&MCP
= *MF
.getConstantPool();
5318 unsigned Opc
= LoadMI
.getOpcode();
5319 if (Opc
== X86::FsFLD0SS
|| Opc
== X86::AVX512_FsFLD0SS
)
5320 Ty
= Type::getFloatTy(MF
.getFunction().getContext());
5321 else if (Opc
== X86::FsFLD0SD
|| Opc
== X86::AVX512_FsFLD0SD
)
5322 Ty
= Type::getDoubleTy(MF
.getFunction().getContext());
5323 else if (Opc
== X86::FsFLD0F128
|| Opc
== X86::AVX512_FsFLD0F128
)
5324 Ty
= Type::getFP128Ty(MF
.getFunction().getContext());
5325 else if (Opc
== X86::AVX512_512_SET0
|| Opc
== X86::AVX512_512_SETALLONES
)
5326 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),16);
5327 else if (Opc
== X86::AVX2_SETALLONES
|| Opc
== X86::AVX_SET0
||
5328 Opc
== X86::AVX512_256_SET0
|| Opc
== X86::AVX1_SETALLONES
)
5329 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 8);
5330 else if (Opc
== X86::MMX_SET0
)
5331 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 2);
5333 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 4);
5335 bool IsAllOnes
= (Opc
== X86::V_SETALLONES
|| Opc
== X86::AVX2_SETALLONES
||
5336 Opc
== X86::AVX512_512_SETALLONES
||
5337 Opc
== X86::AVX1_SETALLONES
);
5338 const Constant
*C
= IsAllOnes
? Constant::getAllOnesValue(Ty
) :
5339 Constant::getNullValue(Ty
);
5340 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
5342 // Create operands to load from the constant pool entry.
5343 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
5344 MOs
.push_back(MachineOperand::CreateImm(1));
5345 MOs
.push_back(MachineOperand::CreateReg(0, false));
5346 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
5347 MOs
.push_back(MachineOperand::CreateReg(0, false));
5351 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5354 // Folding a normal load. Just copy the load's address operands.
5355 MOs
.append(LoadMI
.operands_begin() + NumOps
- X86::AddrNumOperands
,
5356 LoadMI
.operands_begin() + NumOps
);
5360 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, InsertPt
,
5361 /*Size=*/0, Alignment
, /*AllowCommute=*/true);
5364 static SmallVector
<MachineMemOperand
*, 2>
5365 extractLoadMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5366 SmallVector
<MachineMemOperand
*, 2> LoadMMOs
;
5368 for (MachineMemOperand
*MMO
: MMOs
) {
5372 if (!MMO
->isStore()) {
5374 LoadMMOs
.push_back(MMO
);
5376 // Clone the MMO and unset the store flag.
5377 LoadMMOs
.push_back(MF
.getMachineMemOperand(
5378 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOStore
));
5385 static SmallVector
<MachineMemOperand
*, 2>
5386 extractStoreMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5387 SmallVector
<MachineMemOperand
*, 2> StoreMMOs
;
5389 for (MachineMemOperand
*MMO
: MMOs
) {
5390 if (!MMO
->isStore())
5393 if (!MMO
->isLoad()) {
5395 StoreMMOs
.push_back(MMO
);
5397 // Clone the MMO and unset the load flag.
5398 StoreMMOs
.push_back(MF
.getMachineMemOperand(
5399 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOLoad
));
5406 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry
*I
,
5407 const TargetRegisterClass
*RC
,
5408 const X86Subtarget
&STI
) {
5409 assert(STI
.hasAVX512() && "Expected at least AVX512!");
5410 unsigned SpillSize
= STI
.getRegisterInfo()->getSpillSize(*RC
);
5411 assert((SpillSize
== 64 || STI
.hasVLX()) &&
5412 "Can't broadcast less than 64 bytes without AVX512VL!");
5414 switch (I
->Flags
& TB_BCAST_MASK
) {
5415 default: llvm_unreachable("Unexpected broadcast type!");
5417 switch (SpillSize
) {
5418 default: llvm_unreachable("Unknown spill size");
5419 case 16: return X86::VPBROADCASTDZ128m
;
5420 case 32: return X86::VPBROADCASTDZ256m
;
5421 case 64: return X86::VPBROADCASTDZm
;
5425 switch (SpillSize
) {
5426 default: llvm_unreachable("Unknown spill size");
5427 case 16: return X86::VPBROADCASTQZ128m
;
5428 case 32: return X86::VPBROADCASTQZ256m
;
5429 case 64: return X86::VPBROADCASTQZm
;
5433 switch (SpillSize
) {
5434 default: llvm_unreachable("Unknown spill size");
5435 case 16: return X86::VBROADCASTSSZ128m
;
5436 case 32: return X86::VBROADCASTSSZ256m
;
5437 case 64: return X86::VBROADCASTSSZm
;
5441 switch (SpillSize
) {
5442 default: llvm_unreachable("Unknown spill size");
5443 case 16: return X86::VMOVDDUPZ128rm
;
5444 case 32: return X86::VBROADCASTSDZ256m
;
5445 case 64: return X86::VBROADCASTSDZm
;
5451 bool X86InstrInfo::unfoldMemoryOperand(
5452 MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
, bool UnfoldLoad
,
5453 bool UnfoldStore
, SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
5454 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(MI
.getOpcode());
5457 unsigned Opc
= I
->DstOp
;
5458 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5459 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5460 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5461 bool FoldedBCast
= I
->Flags
& TB_FOLDED_BCAST
;
5462 if (UnfoldLoad
&& !FoldedLoad
)
5464 UnfoldLoad
&= FoldedLoad
;
5465 if (UnfoldStore
&& !FoldedStore
)
5467 UnfoldStore
&= FoldedStore
;
5469 const MCInstrDesc
&MCID
= get(Opc
);
5471 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5472 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5473 // TODO: Check if 32-byte or greater accesses are slow too?
5474 if (!MI
.hasOneMemOperand() && RC
== &X86::VR128RegClass
&&
5475 Subtarget
.isUnalignedMem16Slow())
5476 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5477 // conservatively assume the address is unaligned. That's bad for
5480 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
5481 SmallVector
<MachineOperand
,2> BeforeOps
;
5482 SmallVector
<MachineOperand
,2> AfterOps
;
5483 SmallVector
<MachineOperand
,4> ImpOps
;
5484 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5485 MachineOperand
&Op
= MI
.getOperand(i
);
5486 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
5487 AddrOps
.push_back(Op
);
5488 else if (Op
.isReg() && Op
.isImplicit())
5489 ImpOps
.push_back(Op
);
5491 BeforeOps
.push_back(Op
);
5493 AfterOps
.push_back(Op
);
5496 // Emit the load or broadcast instruction.
5498 auto MMOs
= extractLoadMMOs(MI
.memoperands(), MF
);
5502 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
5504 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5505 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5506 Opc
= getLoadRegOpcode(Reg
, RC
, isAligned
, Subtarget
);
5510 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), Reg
);
5511 for (unsigned i
= 0, e
= AddrOps
.size(); i
!= e
; ++i
)
5512 MIB
.add(AddrOps
[i
]);
5513 MIB
.setMemRefs(MMOs
);
5514 NewMIs
.push_back(MIB
);
5517 // Address operands cannot be marked isKill.
5518 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
5519 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
5521 MO
.setIsKill(false);
5526 // Emit the data processing instruction.
5527 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
.getDebugLoc(), true);
5528 MachineInstrBuilder
MIB(MF
, DataMI
);
5531 MIB
.addReg(Reg
, RegState::Define
);
5532 for (MachineOperand
&BeforeOp
: BeforeOps
)
5536 for (MachineOperand
&AfterOp
: AfterOps
)
5538 for (MachineOperand
&ImpOp
: ImpOps
) {
5539 MIB
.addReg(ImpOp
.getReg(),
5540 getDefRegState(ImpOp
.isDef()) |
5541 RegState::Implicit
|
5542 getKillRegState(ImpOp
.isKill()) |
5543 getDeadRegState(ImpOp
.isDead()) |
5544 getUndefRegState(ImpOp
.isUndef()));
5546 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5547 switch (DataMI
->getOpcode()) {
5549 case X86::CMP64ri32
:
5556 MachineOperand
&MO0
= DataMI
->getOperand(0);
5557 MachineOperand
&MO1
= DataMI
->getOperand(1);
5558 if (MO1
.getImm() == 0) {
5560 switch (DataMI
->getOpcode()) {
5561 default: llvm_unreachable("Unreachable!");
5563 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
5565 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
5567 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
5568 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
5570 DataMI
->setDesc(get(NewOpc
));
5571 MO1
.ChangeToRegister(MO0
.getReg(), false);
5575 NewMIs
.push_back(DataMI
);
5577 // Emit the store instruction.
5579 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5580 auto MMOs
= extractStoreMMOs(MI
.memoperands(), MF
);
5581 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*DstRC
), 16);
5582 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5583 unsigned Opc
= getStoreRegOpcode(Reg
, DstRC
, isAligned
, Subtarget
);
5585 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
5586 for (unsigned i
= 0, e
= AddrOps
.size(); i
!= e
; ++i
)
5587 MIB
.add(AddrOps
[i
]);
5588 MIB
.addReg(Reg
, RegState::Kill
);
5589 MIB
.setMemRefs(MMOs
);
5590 NewMIs
.push_back(MIB
);
5597 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
5598 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
5599 if (!N
->isMachineOpcode())
5602 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(N
->getMachineOpcode());
5605 unsigned Opc
= I
->DstOp
;
5606 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5607 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5608 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5609 bool FoldedBCast
= I
->Flags
& TB_FOLDED_BCAST
;
5610 const MCInstrDesc
&MCID
= get(Opc
);
5611 MachineFunction
&MF
= DAG
.getMachineFunction();
5612 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5613 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5614 unsigned NumDefs
= MCID
.NumDefs
;
5615 std::vector
<SDValue
> AddrOps
;
5616 std::vector
<SDValue
> BeforeOps
;
5617 std::vector
<SDValue
> AfterOps
;
5619 unsigned NumOps
= N
->getNumOperands();
5620 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
5621 SDValue Op
= N
->getOperand(i
);
5622 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
5623 AddrOps
.push_back(Op
);
5624 else if (i
< Index
-NumDefs
)
5625 BeforeOps
.push_back(Op
);
5626 else if (i
> Index
-NumDefs
)
5627 AfterOps
.push_back(Op
);
5629 SDValue Chain
= N
->getOperand(NumOps
-1);
5630 AddrOps
.push_back(Chain
);
5632 // Emit the load instruction.
5633 SDNode
*Load
= nullptr;
5635 EVT VT
= *TRI
.legalclasstypes_begin(*RC
);
5636 auto MMOs
= extractLoadMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5637 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5638 Subtarget
.isUnalignedMem16Slow())
5639 // Do not introduce a slow unaligned load.
5641 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5642 // memory access is slow above.
5646 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
5648 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5649 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5650 Opc
= getLoadRegOpcode(0, RC
, isAligned
, Subtarget
);
5653 Load
= DAG
.getMachineNode(Opc
, dl
, VT
, MVT::Other
, AddrOps
);
5654 NewNodes
.push_back(Load
);
5656 // Preserve memory reference information.
5657 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Load
), MMOs
);
5660 // Emit the data processing instruction.
5661 std::vector
<EVT
> VTs
;
5662 const TargetRegisterClass
*DstRC
= nullptr;
5663 if (MCID
.getNumDefs() > 0) {
5664 DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5665 VTs
.push_back(*TRI
.legalclasstypes_begin(*DstRC
));
5667 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
5668 EVT VT
= N
->getValueType(i
);
5669 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
5673 BeforeOps
.push_back(SDValue(Load
, 0));
5674 BeforeOps
.insert(BeforeOps
.end(), AfterOps
.begin(), AfterOps
.end());
5675 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5678 case X86::CMP64ri32
:
5685 if (isNullConstant(BeforeOps
[1])) {
5687 default: llvm_unreachable("Unreachable!");
5689 case X86::CMP64ri32
: Opc
= X86::TEST64rr
; break;
5691 case X86::CMP32ri
: Opc
= X86::TEST32rr
; break;
5693 case X86::CMP16ri
: Opc
= X86::TEST16rr
; break;
5694 case X86::CMP8ri
: Opc
= X86::TEST8rr
; break;
5696 BeforeOps
[1] = BeforeOps
[0];
5699 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, BeforeOps
);
5700 NewNodes
.push_back(NewNode
);
5702 // Emit the store instruction.
5705 AddrOps
.push_back(SDValue(NewNode
, 0));
5706 AddrOps
.push_back(Chain
);
5707 auto MMOs
= extractStoreMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5708 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5709 Subtarget
.isUnalignedMem16Slow())
5710 // Do not introduce a slow unaligned store.
5712 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5713 // memory access is slow above.
5714 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5715 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5717 DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
, isAligned
, Subtarget
),
5718 dl
, MVT::Other
, AddrOps
);
5719 NewNodes
.push_back(Store
);
5721 // Preserve memory reference information.
5722 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Store
), MMOs
);
5728 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
5729 bool UnfoldLoad
, bool UnfoldStore
,
5730 unsigned *LoadRegIndex
) const {
5731 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(Opc
);
5734 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5735 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5736 if (UnfoldLoad
&& !FoldedLoad
)
5738 if (UnfoldStore
&& !FoldedStore
)
5741 *LoadRegIndex
= I
->Flags
& TB_INDEX_MASK
;
5746 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
5747 int64_t &Offset1
, int64_t &Offset2
) const {
5748 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
5750 unsigned Opc1
= Load1
->getMachineOpcode();
5751 unsigned Opc2
= Load2
->getMachineOpcode();
5753 default: return false;
5762 case X86::MOVSSrm_alt
:
5764 case X86::MOVSDrm_alt
:
5765 case X86::MMX_MOVD64rm
:
5766 case X86::MMX_MOVQ64rm
:
5773 // AVX load instructions
5775 case X86::VMOVSSrm_alt
:
5777 case X86::VMOVSDrm_alt
:
5778 case X86::VMOVAPSrm
:
5779 case X86::VMOVUPSrm
:
5780 case X86::VMOVAPDrm
:
5781 case X86::VMOVUPDrm
:
5782 case X86::VMOVDQArm
:
5783 case X86::VMOVDQUrm
:
5784 case X86::VMOVAPSYrm
:
5785 case X86::VMOVUPSYrm
:
5786 case X86::VMOVAPDYrm
:
5787 case X86::VMOVUPDYrm
:
5788 case X86::VMOVDQAYrm
:
5789 case X86::VMOVDQUYrm
:
5790 // AVX512 load instructions
5791 case X86::VMOVSSZrm
:
5792 case X86::VMOVSSZrm_alt
:
5793 case X86::VMOVSDZrm
:
5794 case X86::VMOVSDZrm_alt
:
5795 case X86::VMOVAPSZ128rm
:
5796 case X86::VMOVUPSZ128rm
:
5797 case X86::VMOVAPSZ128rm_NOVLX
:
5798 case X86::VMOVUPSZ128rm_NOVLX
:
5799 case X86::VMOVAPDZ128rm
:
5800 case X86::VMOVUPDZ128rm
:
5801 case X86::VMOVDQU8Z128rm
:
5802 case X86::VMOVDQU16Z128rm
:
5803 case X86::VMOVDQA32Z128rm
:
5804 case X86::VMOVDQU32Z128rm
:
5805 case X86::VMOVDQA64Z128rm
:
5806 case X86::VMOVDQU64Z128rm
:
5807 case X86::VMOVAPSZ256rm
:
5808 case X86::VMOVUPSZ256rm
:
5809 case X86::VMOVAPSZ256rm_NOVLX
:
5810 case X86::VMOVUPSZ256rm_NOVLX
:
5811 case X86::VMOVAPDZ256rm
:
5812 case X86::VMOVUPDZ256rm
:
5813 case X86::VMOVDQU8Z256rm
:
5814 case X86::VMOVDQU16Z256rm
:
5815 case X86::VMOVDQA32Z256rm
:
5816 case X86::VMOVDQU32Z256rm
:
5817 case X86::VMOVDQA64Z256rm
:
5818 case X86::VMOVDQU64Z256rm
:
5819 case X86::VMOVAPSZrm
:
5820 case X86::VMOVUPSZrm
:
5821 case X86::VMOVAPDZrm
:
5822 case X86::VMOVUPDZrm
:
5823 case X86::VMOVDQU8Zrm
:
5824 case X86::VMOVDQU16Zrm
:
5825 case X86::VMOVDQA32Zrm
:
5826 case X86::VMOVDQU32Zrm
:
5827 case X86::VMOVDQA64Zrm
:
5828 case X86::VMOVDQU64Zrm
:
5836 default: return false;
5845 case X86::MOVSSrm_alt
:
5847 case X86::MOVSDrm_alt
:
5848 case X86::MMX_MOVD64rm
:
5849 case X86::MMX_MOVQ64rm
:
5856 // AVX load instructions
5858 case X86::VMOVSSrm_alt
:
5860 case X86::VMOVSDrm_alt
:
5861 case X86::VMOVAPSrm
:
5862 case X86::VMOVUPSrm
:
5863 case X86::VMOVAPDrm
:
5864 case X86::VMOVUPDrm
:
5865 case X86::VMOVDQArm
:
5866 case X86::VMOVDQUrm
:
5867 case X86::VMOVAPSYrm
:
5868 case X86::VMOVUPSYrm
:
5869 case X86::VMOVAPDYrm
:
5870 case X86::VMOVUPDYrm
:
5871 case X86::VMOVDQAYrm
:
5872 case X86::VMOVDQUYrm
:
5873 // AVX512 load instructions
5874 case X86::VMOVSSZrm
:
5875 case X86::VMOVSSZrm_alt
:
5876 case X86::VMOVSDZrm
:
5877 case X86::VMOVSDZrm_alt
:
5878 case X86::VMOVAPSZ128rm
:
5879 case X86::VMOVUPSZ128rm
:
5880 case X86::VMOVAPSZ128rm_NOVLX
:
5881 case X86::VMOVUPSZ128rm_NOVLX
:
5882 case X86::VMOVAPDZ128rm
:
5883 case X86::VMOVUPDZ128rm
:
5884 case X86::VMOVDQU8Z128rm
:
5885 case X86::VMOVDQU16Z128rm
:
5886 case X86::VMOVDQA32Z128rm
:
5887 case X86::VMOVDQU32Z128rm
:
5888 case X86::VMOVDQA64Z128rm
:
5889 case X86::VMOVDQU64Z128rm
:
5890 case X86::VMOVAPSZ256rm
:
5891 case X86::VMOVUPSZ256rm
:
5892 case X86::VMOVAPSZ256rm_NOVLX
:
5893 case X86::VMOVUPSZ256rm_NOVLX
:
5894 case X86::VMOVAPDZ256rm
:
5895 case X86::VMOVUPDZ256rm
:
5896 case X86::VMOVDQU8Z256rm
:
5897 case X86::VMOVDQU16Z256rm
:
5898 case X86::VMOVDQA32Z256rm
:
5899 case X86::VMOVDQU32Z256rm
:
5900 case X86::VMOVDQA64Z256rm
:
5901 case X86::VMOVDQU64Z256rm
:
5902 case X86::VMOVAPSZrm
:
5903 case X86::VMOVUPSZrm
:
5904 case X86::VMOVAPDZrm
:
5905 case X86::VMOVUPDZrm
:
5906 case X86::VMOVDQU8Zrm
:
5907 case X86::VMOVDQU16Zrm
:
5908 case X86::VMOVDQA32Zrm
:
5909 case X86::VMOVDQU32Zrm
:
5910 case X86::VMOVDQA64Zrm
:
5911 case X86::VMOVDQU64Zrm
:
5919 // Lambda to check if both the loads have the same value for an operand index.
5920 auto HasSameOp
= [&](int I
) {
5921 return Load1
->getOperand(I
) == Load2
->getOperand(I
);
5924 // All operands except the displacement should match.
5925 if (!HasSameOp(X86::AddrBaseReg
) || !HasSameOp(X86::AddrScaleAmt
) ||
5926 !HasSameOp(X86::AddrIndexReg
) || !HasSameOp(X86::AddrSegmentReg
))
5929 // Chain Operand must be the same.
5933 // Now let's examine if the displacements are constants.
5934 auto Disp1
= dyn_cast
<ConstantSDNode
>(Load1
->getOperand(X86::AddrDisp
));
5935 auto Disp2
= dyn_cast
<ConstantSDNode
>(Load2
->getOperand(X86::AddrDisp
));
5936 if (!Disp1
|| !Disp2
)
5939 Offset1
= Disp1
->getSExtValue();
5940 Offset2
= Disp2
->getSExtValue();
5944 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
5945 int64_t Offset1
, int64_t Offset2
,
5946 unsigned NumLoads
) const {
5947 assert(Offset2
> Offset1
);
5948 if ((Offset2
- Offset1
) / 8 > 64)
5951 unsigned Opc1
= Load1
->getMachineOpcode();
5952 unsigned Opc2
= Load2
->getMachineOpcode();
5954 return false; // FIXME: overly conservative?
5961 case X86::MMX_MOVD64rm
:
5962 case X86::MMX_MOVQ64rm
:
5966 EVT VT
= Load1
->getValueType(0);
5967 switch (VT
.getSimpleVT().SimpleTy
) {
5969 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5970 // have 16 of them to play with.
5971 if (Subtarget
.is64Bit()) {
5974 } else if (NumLoads
) {
5993 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
5994 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
5995 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
5996 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
6001 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
6002 // FIXME: Return false for x87 stack register classes for now. We can't
6003 // allow any loads of these registers before FpGet_ST0_80.
6004 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::DFCCRRegClass
||
6005 RC
== &X86::RFP32RegClass
|| RC
== &X86::RFP64RegClass
||
6006 RC
== &X86::RFP80RegClass
);
6009 /// Return a virtual register initialized with the
6010 /// the global base register value. Output instructions required to
6011 /// initialize the register in the function entry block, if necessary.
6013 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
6015 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
6016 assert((!Subtarget
.is64Bit() ||
6017 MF
->getTarget().getCodeModel() == CodeModel::Medium
||
6018 MF
->getTarget().getCodeModel() == CodeModel::Large
) &&
6019 "X86-64 PIC uses RIP relative addressing");
6021 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
6022 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
6023 if (GlobalBaseReg
!= 0)
6024 return GlobalBaseReg
;
6026 // Create the register. The code to initialize it is inserted
6027 // later, by the CGBR pass (below).
6028 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
6029 GlobalBaseReg
= RegInfo
.createVirtualRegister(
6030 Subtarget
.is64Bit() ? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
);
6031 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
6032 return GlobalBaseReg
;
6035 // These are the replaceable SSE instructions. Some of these have Int variants
6036 // that we don't include here. We don't want to replace instructions selected
6038 static const uint16_t ReplaceableInstrs
[][3] = {
6039 //PackedSingle PackedDouble PackedInt
6040 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
6041 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
6042 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
6043 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
6044 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
6045 { X86::MOVLPSmr
, X86::MOVLPDmr
, X86::MOVPQI2QImr
},
6046 { X86::MOVSDmr
, X86::MOVSDmr
, X86::MOVPQI2QImr
},
6047 { X86::MOVSSmr
, X86::MOVSSmr
, X86::MOVPDI2DImr
},
6048 { X86::MOVSDrm
, X86::MOVSDrm
, X86::MOVQI2PQIrm
},
6049 { X86::MOVSDrm_alt
,X86::MOVSDrm_alt
,X86::MOVQI2PQIrm
},
6050 { X86::MOVSSrm
, X86::MOVSSrm
, X86::MOVDI2PDIrm
},
6051 { X86::MOVSSrm_alt
,X86::MOVSSrm_alt
,X86::MOVDI2PDIrm
},
6052 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
6053 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
6054 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
6055 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
6056 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
6057 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
6058 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
6059 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
6060 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
6061 { X86::UNPCKLPDrm
, X86::UNPCKLPDrm
, X86::PUNPCKLQDQrm
},
6062 { X86::MOVLHPSrr
, X86::UNPCKLPDrr
, X86::PUNPCKLQDQrr
},
6063 { X86::UNPCKHPDrm
, X86::UNPCKHPDrm
, X86::PUNPCKHQDQrm
},
6064 { X86::UNPCKHPDrr
, X86::UNPCKHPDrr
, X86::PUNPCKHQDQrr
},
6065 { X86::UNPCKLPSrm
, X86::UNPCKLPSrm
, X86::PUNPCKLDQrm
},
6066 { X86::UNPCKLPSrr
, X86::UNPCKLPSrr
, X86::PUNPCKLDQrr
},
6067 { X86::UNPCKHPSrm
, X86::UNPCKHPSrm
, X86::PUNPCKHDQrm
},
6068 { X86::UNPCKHPSrr
, X86::UNPCKHPSrr
, X86::PUNPCKHDQrr
},
6069 { X86::EXTRACTPSmr
, X86::EXTRACTPSmr
, X86::PEXTRDmr
},
6070 { X86::EXTRACTPSrr
, X86::EXTRACTPSrr
, X86::PEXTRDrr
},
6071 // AVX 128-bit support
6072 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
6073 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
6074 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
6075 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
6076 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
6077 { X86::VMOVLPSmr
, X86::VMOVLPDmr
, X86::VMOVPQI2QImr
},
6078 { X86::VMOVSDmr
, X86::VMOVSDmr
, X86::VMOVPQI2QImr
},
6079 { X86::VMOVSSmr
, X86::VMOVSSmr
, X86::VMOVPDI2DImr
},
6080 { X86::VMOVSDrm
, X86::VMOVSDrm
, X86::VMOVQI2PQIrm
},
6081 { X86::VMOVSDrm_alt
,X86::VMOVSDrm_alt
,X86::VMOVQI2PQIrm
},
6082 { X86::VMOVSSrm
, X86::VMOVSSrm
, X86::VMOVDI2PDIrm
},
6083 { X86::VMOVSSrm_alt
,X86::VMOVSSrm_alt
,X86::VMOVDI2PDIrm
},
6084 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
6085 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
6086 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
6087 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
6088 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
6089 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
6090 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
6091 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
6092 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
6093 { X86::VUNPCKLPDrm
, X86::VUNPCKLPDrm
, X86::VPUNPCKLQDQrm
},
6094 { X86::VMOVLHPSrr
, X86::VUNPCKLPDrr
, X86::VPUNPCKLQDQrr
},
6095 { X86::VUNPCKHPDrm
, X86::VUNPCKHPDrm
, X86::VPUNPCKHQDQrm
},
6096 { X86::VUNPCKHPDrr
, X86::VUNPCKHPDrr
, X86::VPUNPCKHQDQrr
},
6097 { X86::VUNPCKLPSrm
, X86::VUNPCKLPSrm
, X86::VPUNPCKLDQrm
},
6098 { X86::VUNPCKLPSrr
, X86::VUNPCKLPSrr
, X86::VPUNPCKLDQrr
},
6099 { X86::VUNPCKHPSrm
, X86::VUNPCKHPSrm
, X86::VPUNPCKHDQrm
},
6100 { X86::VUNPCKHPSrr
, X86::VUNPCKHPSrr
, X86::VPUNPCKHDQrr
},
6101 { X86::VEXTRACTPSmr
, X86::VEXTRACTPSmr
, X86::VPEXTRDmr
},
6102 { X86::VEXTRACTPSrr
, X86::VEXTRACTPSrr
, X86::VPEXTRDrr
},
6103 // AVX 256-bit support
6104 { X86::VMOVAPSYmr
, X86::VMOVAPDYmr
, X86::VMOVDQAYmr
},
6105 { X86::VMOVAPSYrm
, X86::VMOVAPDYrm
, X86::VMOVDQAYrm
},
6106 { X86::VMOVAPSYrr
, X86::VMOVAPDYrr
, X86::VMOVDQAYrr
},
6107 { X86::VMOVUPSYmr
, X86::VMOVUPDYmr
, X86::VMOVDQUYmr
},
6108 { X86::VMOVUPSYrm
, X86::VMOVUPDYrm
, X86::VMOVDQUYrm
},
6109 { X86::VMOVNTPSYmr
, X86::VMOVNTPDYmr
, X86::VMOVNTDQYmr
},
6110 { X86::VPERMPSYrm
, X86::VPERMPSYrm
, X86::VPERMDYrm
},
6111 { X86::VPERMPSYrr
, X86::VPERMPSYrr
, X86::VPERMDYrr
},
6112 { X86::VPERMPDYmi
, X86::VPERMPDYmi
, X86::VPERMQYmi
},
6113 { X86::VPERMPDYri
, X86::VPERMPDYri
, X86::VPERMQYri
},
6115 { X86::VMOVLPSZ128mr
, X86::VMOVLPDZ128mr
, X86::VMOVPQI2QIZmr
},
6116 { X86::VMOVNTPSZ128mr
, X86::VMOVNTPDZ128mr
, X86::VMOVNTDQZ128mr
},
6117 { X86::VMOVNTPSZ256mr
, X86::VMOVNTPDZ256mr
, X86::VMOVNTDQZ256mr
},
6118 { X86::VMOVNTPSZmr
, X86::VMOVNTPDZmr
, X86::VMOVNTDQZmr
},
6119 { X86::VMOVSDZmr
, X86::VMOVSDZmr
, X86::VMOVPQI2QIZmr
},
6120 { X86::VMOVSSZmr
, X86::VMOVSSZmr
, X86::VMOVPDI2DIZmr
},
6121 { X86::VMOVSDZrm
, X86::VMOVSDZrm
, X86::VMOVQI2PQIZrm
},
6122 { X86::VMOVSDZrm_alt
, X86::VMOVSDZrm_alt
, X86::VMOVQI2PQIZrm
},
6123 { X86::VMOVSSZrm
, X86::VMOVSSZrm
, X86::VMOVDI2PDIZrm
},
6124 { X86::VMOVSSZrm_alt
, X86::VMOVSSZrm_alt
, X86::VMOVDI2PDIZrm
},
6125 { X86::VBROADCASTSSZ128r
, X86::VBROADCASTSSZ128r
, X86::VPBROADCASTDZ128r
},
6126 { X86::VBROADCASTSSZ128m
, X86::VBROADCASTSSZ128m
, X86::VPBROADCASTDZ128m
},
6127 { X86::VBROADCASTSSZ256r
, X86::VBROADCASTSSZ256r
, X86::VPBROADCASTDZ256r
},
6128 { X86::VBROADCASTSSZ256m
, X86::VBROADCASTSSZ256m
, X86::VPBROADCASTDZ256m
},
6129 { X86::VBROADCASTSSZr
, X86::VBROADCASTSSZr
, X86::VPBROADCASTDZr
},
6130 { X86::VBROADCASTSSZm
, X86::VBROADCASTSSZm
, X86::VPBROADCASTDZm
},
6131 { X86::VMOVDDUPZ128rr
, X86::VMOVDDUPZ128rr
, X86::VPBROADCASTQZ128r
},
6132 { X86::VMOVDDUPZ128rm
, X86::VMOVDDUPZ128rm
, X86::VPBROADCASTQZ128m
},
6133 { X86::VBROADCASTSDZ256r
, X86::VBROADCASTSDZ256r
, X86::VPBROADCASTQZ256r
},
6134 { X86::VBROADCASTSDZ256m
, X86::VBROADCASTSDZ256m
, X86::VPBROADCASTQZ256m
},
6135 { X86::VBROADCASTSDZr
, X86::VBROADCASTSDZr
, X86::VPBROADCASTQZr
},
6136 { X86::VBROADCASTSDZm
, X86::VBROADCASTSDZm
, X86::VPBROADCASTQZm
},
6137 { X86::VINSERTF32x4Zrr
, X86::VINSERTF32x4Zrr
, X86::VINSERTI32x4Zrr
},
6138 { X86::VINSERTF32x4Zrm
, X86::VINSERTF32x4Zrm
, X86::VINSERTI32x4Zrm
},
6139 { X86::VINSERTF32x8Zrr
, X86::VINSERTF32x8Zrr
, X86::VINSERTI32x8Zrr
},
6140 { X86::VINSERTF32x8Zrm
, X86::VINSERTF32x8Zrm
, X86::VINSERTI32x8Zrm
},
6141 { X86::VINSERTF64x2Zrr
, X86::VINSERTF64x2Zrr
, X86::VINSERTI64x2Zrr
},
6142 { X86::VINSERTF64x2Zrm
, X86::VINSERTF64x2Zrm
, X86::VINSERTI64x2Zrm
},
6143 { X86::VINSERTF64x4Zrr
, X86::VINSERTF64x4Zrr
, X86::VINSERTI64x4Zrr
},
6144 { X86::VINSERTF64x4Zrm
, X86::VINSERTF64x4Zrm
, X86::VINSERTI64x4Zrm
},
6145 { X86::VINSERTF32x4Z256rr
,X86::VINSERTF32x4Z256rr
,X86::VINSERTI32x4Z256rr
},
6146 { X86::VINSERTF32x4Z256rm
,X86::VINSERTF32x4Z256rm
,X86::VINSERTI32x4Z256rm
},
6147 { X86::VINSERTF64x2Z256rr
,X86::VINSERTF64x2Z256rr
,X86::VINSERTI64x2Z256rr
},
6148 { X86::VINSERTF64x2Z256rm
,X86::VINSERTF64x2Z256rm
,X86::VINSERTI64x2Z256rm
},
6149 { X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTI32x4Zrr
},
6150 { X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTI32x4Zmr
},
6151 { X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTI32x8Zrr
},
6152 { X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTI32x8Zmr
},
6153 { X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTI64x2Zrr
},
6154 { X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTI64x2Zmr
},
6155 { X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTI64x4Zrr
},
6156 { X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTI64x4Zmr
},
6157 { X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTI32x4Z256rr
},
6158 { X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTI32x4Z256mr
},
6159 { X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTI64x2Z256rr
},
6160 { X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTI64x2Z256mr
},
6161 { X86::VPERMILPSmi
, X86::VPERMILPSmi
, X86::VPSHUFDmi
},
6162 { X86::VPERMILPSri
, X86::VPERMILPSri
, X86::VPSHUFDri
},
6163 { X86::VPERMILPSZ128mi
, X86::VPERMILPSZ128mi
, X86::VPSHUFDZ128mi
},
6164 { X86::VPERMILPSZ128ri
, X86::VPERMILPSZ128ri
, X86::VPSHUFDZ128ri
},
6165 { X86::VPERMILPSZ256mi
, X86::VPERMILPSZ256mi
, X86::VPSHUFDZ256mi
},
6166 { X86::VPERMILPSZ256ri
, X86::VPERMILPSZ256ri
, X86::VPSHUFDZ256ri
},
6167 { X86::VPERMILPSZmi
, X86::VPERMILPSZmi
, X86::VPSHUFDZmi
},
6168 { X86::VPERMILPSZri
, X86::VPERMILPSZri
, X86::VPSHUFDZri
},
6169 { X86::VPERMPSZ256rm
, X86::VPERMPSZ256rm
, X86::VPERMDZ256rm
},
6170 { X86::VPERMPSZ256rr
, X86::VPERMPSZ256rr
, X86::VPERMDZ256rr
},
6171 { X86::VPERMPDZ256mi
, X86::VPERMPDZ256mi
, X86::VPERMQZ256mi
},
6172 { X86::VPERMPDZ256ri
, X86::VPERMPDZ256ri
, X86::VPERMQZ256ri
},
6173 { X86::VPERMPDZ256rm
, X86::VPERMPDZ256rm
, X86::VPERMQZ256rm
},
6174 { X86::VPERMPDZ256rr
, X86::VPERMPDZ256rr
, X86::VPERMQZ256rr
},
6175 { X86::VPERMPSZrm
, X86::VPERMPSZrm
, X86::VPERMDZrm
},
6176 { X86::VPERMPSZrr
, X86::VPERMPSZrr
, X86::VPERMDZrr
},
6177 { X86::VPERMPDZmi
, X86::VPERMPDZmi
, X86::VPERMQZmi
},
6178 { X86::VPERMPDZri
, X86::VPERMPDZri
, X86::VPERMQZri
},
6179 { X86::VPERMPDZrm
, X86::VPERMPDZrm
, X86::VPERMQZrm
},
6180 { X86::VPERMPDZrr
, X86::VPERMPDZrr
, X86::VPERMQZrr
},
6181 { X86::VUNPCKLPDZ256rm
, X86::VUNPCKLPDZ256rm
, X86::VPUNPCKLQDQZ256rm
},
6182 { X86::VUNPCKLPDZ256rr
, X86::VUNPCKLPDZ256rr
, X86::VPUNPCKLQDQZ256rr
},
6183 { X86::VUNPCKHPDZ256rm
, X86::VUNPCKHPDZ256rm
, X86::VPUNPCKHQDQZ256rm
},
6184 { X86::VUNPCKHPDZ256rr
, X86::VUNPCKHPDZ256rr
, X86::VPUNPCKHQDQZ256rr
},
6185 { X86::VUNPCKLPSZ256rm
, X86::VUNPCKLPSZ256rm
, X86::VPUNPCKLDQZ256rm
},
6186 { X86::VUNPCKLPSZ256rr
, X86::VUNPCKLPSZ256rr
, X86::VPUNPCKLDQZ256rr
},
6187 { X86::VUNPCKHPSZ256rm
, X86::VUNPCKHPSZ256rm
, X86::VPUNPCKHDQZ256rm
},
6188 { X86::VUNPCKHPSZ256rr
, X86::VUNPCKHPSZ256rr
, X86::VPUNPCKHDQZ256rr
},
6189 { X86::VUNPCKLPDZ128rm
, X86::VUNPCKLPDZ128rm
, X86::VPUNPCKLQDQZ128rm
},
6190 { X86::VMOVLHPSZrr
, X86::VUNPCKLPDZ128rr
, X86::VPUNPCKLQDQZ128rr
},
6191 { X86::VUNPCKHPDZ128rm
, X86::VUNPCKHPDZ128rm
, X86::VPUNPCKHQDQZ128rm
},
6192 { X86::VUNPCKHPDZ128rr
, X86::VUNPCKHPDZ128rr
, X86::VPUNPCKHQDQZ128rr
},
6193 { X86::VUNPCKLPSZ128rm
, X86::VUNPCKLPSZ128rm
, X86::VPUNPCKLDQZ128rm
},
6194 { X86::VUNPCKLPSZ128rr
, X86::VUNPCKLPSZ128rr
, X86::VPUNPCKLDQZ128rr
},
6195 { X86::VUNPCKHPSZ128rm
, X86::VUNPCKHPSZ128rm
, X86::VPUNPCKHDQZ128rm
},
6196 { X86::VUNPCKHPSZ128rr
, X86::VUNPCKHPSZ128rr
, X86::VPUNPCKHDQZ128rr
},
6197 { X86::VUNPCKLPDZrm
, X86::VUNPCKLPDZrm
, X86::VPUNPCKLQDQZrm
},
6198 { X86::VUNPCKLPDZrr
, X86::VUNPCKLPDZrr
, X86::VPUNPCKLQDQZrr
},
6199 { X86::VUNPCKHPDZrm
, X86::VUNPCKHPDZrm
, X86::VPUNPCKHQDQZrm
},
6200 { X86::VUNPCKHPDZrr
, X86::VUNPCKHPDZrr
, X86::VPUNPCKHQDQZrr
},
6201 { X86::VUNPCKLPSZrm
, X86::VUNPCKLPSZrm
, X86::VPUNPCKLDQZrm
},
6202 { X86::VUNPCKLPSZrr
, X86::VUNPCKLPSZrr
, X86::VPUNPCKLDQZrr
},
6203 { X86::VUNPCKHPSZrm
, X86::VUNPCKHPSZrm
, X86::VPUNPCKHDQZrm
},
6204 { X86::VUNPCKHPSZrr
, X86::VUNPCKHPSZrr
, X86::VPUNPCKHDQZrr
},
6205 { X86::VEXTRACTPSZmr
, X86::VEXTRACTPSZmr
, X86::VPEXTRDZmr
},
6206 { X86::VEXTRACTPSZrr
, X86::VEXTRACTPSZrr
, X86::VPEXTRDZrr
},
6209 static const uint16_t ReplaceableInstrsAVX2
[][3] = {
6210 //PackedSingle PackedDouble PackedInt
6211 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNYrm
},
6212 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNYrr
},
6213 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDYrm
},
6214 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDYrr
},
6215 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORYrm
},
6216 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORYrr
},
6217 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORYrm
},
6218 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORYrr
},
6219 { X86::VPERM2F128rm
, X86::VPERM2F128rm
, X86::VPERM2I128rm
},
6220 { X86::VPERM2F128rr
, X86::VPERM2F128rr
, X86::VPERM2I128rr
},
6221 { X86::VBROADCASTSSrm
, X86::VBROADCASTSSrm
, X86::VPBROADCASTDrm
},
6222 { X86::VBROADCASTSSrr
, X86::VBROADCASTSSrr
, X86::VPBROADCASTDrr
},
6223 { X86::VMOVDDUPrm
, X86::VMOVDDUPrm
, X86::VPBROADCASTQrm
},
6224 { X86::VMOVDDUPrr
, X86::VMOVDDUPrr
, X86::VPBROADCASTQrr
},
6225 { X86::VBROADCASTSSYrr
, X86::VBROADCASTSSYrr
, X86::VPBROADCASTDYrr
},
6226 { X86::VBROADCASTSSYrm
, X86::VBROADCASTSSYrm
, X86::VPBROADCASTDYrm
},
6227 { X86::VBROADCASTSDYrr
, X86::VBROADCASTSDYrr
, X86::VPBROADCASTQYrr
},
6228 { X86::VBROADCASTSDYrm
, X86::VBROADCASTSDYrm
, X86::VPBROADCASTQYrm
},
6229 { X86::VBROADCASTF128
, X86::VBROADCASTF128
, X86::VBROADCASTI128
},
6230 { X86::VBLENDPSYrri
, X86::VBLENDPSYrri
, X86::VPBLENDDYrri
},
6231 { X86::VBLENDPSYrmi
, X86::VBLENDPSYrmi
, X86::VPBLENDDYrmi
},
6232 { X86::VPERMILPSYmi
, X86::VPERMILPSYmi
, X86::VPSHUFDYmi
},
6233 { X86::VPERMILPSYri
, X86::VPERMILPSYri
, X86::VPSHUFDYri
},
6234 { X86::VUNPCKLPDYrm
, X86::VUNPCKLPDYrm
, X86::VPUNPCKLQDQYrm
},
6235 { X86::VUNPCKLPDYrr
, X86::VUNPCKLPDYrr
, X86::VPUNPCKLQDQYrr
},
6236 { X86::VUNPCKHPDYrm
, X86::VUNPCKHPDYrm
, X86::VPUNPCKHQDQYrm
},
6237 { X86::VUNPCKHPDYrr
, X86::VUNPCKHPDYrr
, X86::VPUNPCKHQDQYrr
},
6238 { X86::VUNPCKLPSYrm
, X86::VUNPCKLPSYrm
, X86::VPUNPCKLDQYrm
},
6239 { X86::VUNPCKLPSYrr
, X86::VUNPCKLPSYrr
, X86::VPUNPCKLDQYrr
},
6240 { X86::VUNPCKHPSYrm
, X86::VUNPCKHPSYrm
, X86::VPUNPCKHDQYrm
},
6241 { X86::VUNPCKHPSYrr
, X86::VUNPCKHPSYrr
, X86::VPUNPCKHDQYrr
},
6244 static const uint16_t ReplaceableInstrsFP
[][3] = {
6245 //PackedSingle PackedDouble
6246 { X86::MOVLPSrm
, X86::MOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6247 { X86::MOVHPSrm
, X86::MOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6248 { X86::MOVHPSmr
, X86::MOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6249 { X86::VMOVLPSrm
, X86::VMOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6250 { X86::VMOVHPSrm
, X86::VMOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6251 { X86::VMOVHPSmr
, X86::VMOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6252 { X86::VMOVLPSZ128rm
, X86::VMOVLPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6253 { X86::VMOVHPSZ128rm
, X86::VMOVHPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6254 { X86::VMOVHPSZ128mr
, X86::VMOVHPDZ128mr
, X86::INSTRUCTION_LIST_END
},
6257 static const uint16_t ReplaceableInstrsAVX2InsertExtract
[][3] = {
6258 //PackedSingle PackedDouble PackedInt
6259 { X86::VEXTRACTF128mr
, X86::VEXTRACTF128mr
, X86::VEXTRACTI128mr
},
6260 { X86::VEXTRACTF128rr
, X86::VEXTRACTF128rr
, X86::VEXTRACTI128rr
},
6261 { X86::VINSERTF128rm
, X86::VINSERTF128rm
, X86::VINSERTI128rm
},
6262 { X86::VINSERTF128rr
, X86::VINSERTF128rr
, X86::VINSERTI128rr
},
6265 static const uint16_t ReplaceableInstrsAVX512
[][4] = {
6266 // Two integer columns for 64-bit and 32-bit elements.
6267 //PackedSingle PackedDouble PackedInt PackedInt
6268 { X86::VMOVAPSZ128mr
, X86::VMOVAPDZ128mr
, X86::VMOVDQA64Z128mr
, X86::VMOVDQA32Z128mr
},
6269 { X86::VMOVAPSZ128rm
, X86::VMOVAPDZ128rm
, X86::VMOVDQA64Z128rm
, X86::VMOVDQA32Z128rm
},
6270 { X86::VMOVAPSZ128rr
, X86::VMOVAPDZ128rr
, X86::VMOVDQA64Z128rr
, X86::VMOVDQA32Z128rr
},
6271 { X86::VMOVUPSZ128mr
, X86::VMOVUPDZ128mr
, X86::VMOVDQU64Z128mr
, X86::VMOVDQU32Z128mr
},
6272 { X86::VMOVUPSZ128rm
, X86::VMOVUPDZ128rm
, X86::VMOVDQU64Z128rm
, X86::VMOVDQU32Z128rm
},
6273 { X86::VMOVAPSZ256mr
, X86::VMOVAPDZ256mr
, X86::VMOVDQA64Z256mr
, X86::VMOVDQA32Z256mr
},
6274 { X86::VMOVAPSZ256rm
, X86::VMOVAPDZ256rm
, X86::VMOVDQA64Z256rm
, X86::VMOVDQA32Z256rm
},
6275 { X86::VMOVAPSZ256rr
, X86::VMOVAPDZ256rr
, X86::VMOVDQA64Z256rr
, X86::VMOVDQA32Z256rr
},
6276 { X86::VMOVUPSZ256mr
, X86::VMOVUPDZ256mr
, X86::VMOVDQU64Z256mr
, X86::VMOVDQU32Z256mr
},
6277 { X86::VMOVUPSZ256rm
, X86::VMOVUPDZ256rm
, X86::VMOVDQU64Z256rm
, X86::VMOVDQU32Z256rm
},
6278 { X86::VMOVAPSZmr
, X86::VMOVAPDZmr
, X86::VMOVDQA64Zmr
, X86::VMOVDQA32Zmr
},
6279 { X86::VMOVAPSZrm
, X86::VMOVAPDZrm
, X86::VMOVDQA64Zrm
, X86::VMOVDQA32Zrm
},
6280 { X86::VMOVAPSZrr
, X86::VMOVAPDZrr
, X86::VMOVDQA64Zrr
, X86::VMOVDQA32Zrr
},
6281 { X86::VMOVUPSZmr
, X86::VMOVUPDZmr
, X86::VMOVDQU64Zmr
, X86::VMOVDQU32Zmr
},
6282 { X86::VMOVUPSZrm
, X86::VMOVUPDZrm
, X86::VMOVDQU64Zrm
, X86::VMOVDQU32Zrm
},
6285 static const uint16_t ReplaceableInstrsAVX512DQ
[][4] = {
6286 // Two integer columns for 64-bit and 32-bit elements.
6287 //PackedSingle PackedDouble PackedInt PackedInt
6288 { X86::VANDNPSZ128rm
, X86::VANDNPDZ128rm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6289 { X86::VANDNPSZ128rr
, X86::VANDNPDZ128rr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6290 { X86::VANDPSZ128rm
, X86::VANDPDZ128rm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6291 { X86::VANDPSZ128rr
, X86::VANDPDZ128rr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6292 { X86::VORPSZ128rm
, X86::VORPDZ128rm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6293 { X86::VORPSZ128rr
, X86::VORPDZ128rr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6294 { X86::VXORPSZ128rm
, X86::VXORPDZ128rm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6295 { X86::VXORPSZ128rr
, X86::VXORPDZ128rr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6296 { X86::VANDNPSZ256rm
, X86::VANDNPDZ256rm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6297 { X86::VANDNPSZ256rr
, X86::VANDNPDZ256rr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6298 { X86::VANDPSZ256rm
, X86::VANDPDZ256rm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6299 { X86::VANDPSZ256rr
, X86::VANDPDZ256rr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6300 { X86::VORPSZ256rm
, X86::VORPDZ256rm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6301 { X86::VORPSZ256rr
, X86::VORPDZ256rr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6302 { X86::VXORPSZ256rm
, X86::VXORPDZ256rm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6303 { X86::VXORPSZ256rr
, X86::VXORPDZ256rr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6304 { X86::VANDNPSZrm
, X86::VANDNPDZrm
, X86::VPANDNQZrm
, X86::VPANDNDZrm
},
6305 { X86::VANDNPSZrr
, X86::VANDNPDZrr
, X86::VPANDNQZrr
, X86::VPANDNDZrr
},
6306 { X86::VANDPSZrm
, X86::VANDPDZrm
, X86::VPANDQZrm
, X86::VPANDDZrm
},
6307 { X86::VANDPSZrr
, X86::VANDPDZrr
, X86::VPANDQZrr
, X86::VPANDDZrr
},
6308 { X86::VORPSZrm
, X86::VORPDZrm
, X86::VPORQZrm
, X86::VPORDZrm
},
6309 { X86::VORPSZrr
, X86::VORPDZrr
, X86::VPORQZrr
, X86::VPORDZrr
},
6310 { X86::VXORPSZrm
, X86::VXORPDZrm
, X86::VPXORQZrm
, X86::VPXORDZrm
},
6311 { X86::VXORPSZrr
, X86::VXORPDZrr
, X86::VPXORQZrr
, X86::VPXORDZrr
},
6314 static const uint16_t ReplaceableInstrsAVX512DQMasked
[][4] = {
6315 // Two integer columns for 64-bit and 32-bit elements.
6316 //PackedSingle PackedDouble
6317 //PackedInt PackedInt
6318 { X86::VANDNPSZ128rmk
, X86::VANDNPDZ128rmk
,
6319 X86::VPANDNQZ128rmk
, X86::VPANDNDZ128rmk
},
6320 { X86::VANDNPSZ128rmkz
, X86::VANDNPDZ128rmkz
,
6321 X86::VPANDNQZ128rmkz
, X86::VPANDNDZ128rmkz
},
6322 { X86::VANDNPSZ128rrk
, X86::VANDNPDZ128rrk
,
6323 X86::VPANDNQZ128rrk
, X86::VPANDNDZ128rrk
},
6324 { X86::VANDNPSZ128rrkz
, X86::VANDNPDZ128rrkz
,
6325 X86::VPANDNQZ128rrkz
, X86::VPANDNDZ128rrkz
},
6326 { X86::VANDPSZ128rmk
, X86::VANDPDZ128rmk
,
6327 X86::VPANDQZ128rmk
, X86::VPANDDZ128rmk
},
6328 { X86::VANDPSZ128rmkz
, X86::VANDPDZ128rmkz
,
6329 X86::VPANDQZ128rmkz
, X86::VPANDDZ128rmkz
},
6330 { X86::VANDPSZ128rrk
, X86::VANDPDZ128rrk
,
6331 X86::VPANDQZ128rrk
, X86::VPANDDZ128rrk
},
6332 { X86::VANDPSZ128rrkz
, X86::VANDPDZ128rrkz
,
6333 X86::VPANDQZ128rrkz
, X86::VPANDDZ128rrkz
},
6334 { X86::VORPSZ128rmk
, X86::VORPDZ128rmk
,
6335 X86::VPORQZ128rmk
, X86::VPORDZ128rmk
},
6336 { X86::VORPSZ128rmkz
, X86::VORPDZ128rmkz
,
6337 X86::VPORQZ128rmkz
, X86::VPORDZ128rmkz
},
6338 { X86::VORPSZ128rrk
, X86::VORPDZ128rrk
,
6339 X86::VPORQZ128rrk
, X86::VPORDZ128rrk
},
6340 { X86::VORPSZ128rrkz
, X86::VORPDZ128rrkz
,
6341 X86::VPORQZ128rrkz
, X86::VPORDZ128rrkz
},
6342 { X86::VXORPSZ128rmk
, X86::VXORPDZ128rmk
,
6343 X86::VPXORQZ128rmk
, X86::VPXORDZ128rmk
},
6344 { X86::VXORPSZ128rmkz
, X86::VXORPDZ128rmkz
,
6345 X86::VPXORQZ128rmkz
, X86::VPXORDZ128rmkz
},
6346 { X86::VXORPSZ128rrk
, X86::VXORPDZ128rrk
,
6347 X86::VPXORQZ128rrk
, X86::VPXORDZ128rrk
},
6348 { X86::VXORPSZ128rrkz
, X86::VXORPDZ128rrkz
,
6349 X86::VPXORQZ128rrkz
, X86::VPXORDZ128rrkz
},
6350 { X86::VANDNPSZ256rmk
, X86::VANDNPDZ256rmk
,
6351 X86::VPANDNQZ256rmk
, X86::VPANDNDZ256rmk
},
6352 { X86::VANDNPSZ256rmkz
, X86::VANDNPDZ256rmkz
,
6353 X86::VPANDNQZ256rmkz
, X86::VPANDNDZ256rmkz
},
6354 { X86::VANDNPSZ256rrk
, X86::VANDNPDZ256rrk
,
6355 X86::VPANDNQZ256rrk
, X86::VPANDNDZ256rrk
},
6356 { X86::VANDNPSZ256rrkz
, X86::VANDNPDZ256rrkz
,
6357 X86::VPANDNQZ256rrkz
, X86::VPANDNDZ256rrkz
},
6358 { X86::VANDPSZ256rmk
, X86::VANDPDZ256rmk
,
6359 X86::VPANDQZ256rmk
, X86::VPANDDZ256rmk
},
6360 { X86::VANDPSZ256rmkz
, X86::VANDPDZ256rmkz
,
6361 X86::VPANDQZ256rmkz
, X86::VPANDDZ256rmkz
},
6362 { X86::VANDPSZ256rrk
, X86::VANDPDZ256rrk
,
6363 X86::VPANDQZ256rrk
, X86::VPANDDZ256rrk
},
6364 { X86::VANDPSZ256rrkz
, X86::VANDPDZ256rrkz
,
6365 X86::VPANDQZ256rrkz
, X86::VPANDDZ256rrkz
},
6366 { X86::VORPSZ256rmk
, X86::VORPDZ256rmk
,
6367 X86::VPORQZ256rmk
, X86::VPORDZ256rmk
},
6368 { X86::VORPSZ256rmkz
, X86::VORPDZ256rmkz
,
6369 X86::VPORQZ256rmkz
, X86::VPORDZ256rmkz
},
6370 { X86::VORPSZ256rrk
, X86::VORPDZ256rrk
,
6371 X86::VPORQZ256rrk
, X86::VPORDZ256rrk
},
6372 { X86::VORPSZ256rrkz
, X86::VORPDZ256rrkz
,
6373 X86::VPORQZ256rrkz
, X86::VPORDZ256rrkz
},
6374 { X86::VXORPSZ256rmk
, X86::VXORPDZ256rmk
,
6375 X86::VPXORQZ256rmk
, X86::VPXORDZ256rmk
},
6376 { X86::VXORPSZ256rmkz
, X86::VXORPDZ256rmkz
,
6377 X86::VPXORQZ256rmkz
, X86::VPXORDZ256rmkz
},
6378 { X86::VXORPSZ256rrk
, X86::VXORPDZ256rrk
,
6379 X86::VPXORQZ256rrk
, X86::VPXORDZ256rrk
},
6380 { X86::VXORPSZ256rrkz
, X86::VXORPDZ256rrkz
,
6381 X86::VPXORQZ256rrkz
, X86::VPXORDZ256rrkz
},
6382 { X86::VANDNPSZrmk
, X86::VANDNPDZrmk
,
6383 X86::VPANDNQZrmk
, X86::VPANDNDZrmk
},
6384 { X86::VANDNPSZrmkz
, X86::VANDNPDZrmkz
,
6385 X86::VPANDNQZrmkz
, X86::VPANDNDZrmkz
},
6386 { X86::VANDNPSZrrk
, X86::VANDNPDZrrk
,
6387 X86::VPANDNQZrrk
, X86::VPANDNDZrrk
},
6388 { X86::VANDNPSZrrkz
, X86::VANDNPDZrrkz
,
6389 X86::VPANDNQZrrkz
, X86::VPANDNDZrrkz
},
6390 { X86::VANDPSZrmk
, X86::VANDPDZrmk
,
6391 X86::VPANDQZrmk
, X86::VPANDDZrmk
},
6392 { X86::VANDPSZrmkz
, X86::VANDPDZrmkz
,
6393 X86::VPANDQZrmkz
, X86::VPANDDZrmkz
},
6394 { X86::VANDPSZrrk
, X86::VANDPDZrrk
,
6395 X86::VPANDQZrrk
, X86::VPANDDZrrk
},
6396 { X86::VANDPSZrrkz
, X86::VANDPDZrrkz
,
6397 X86::VPANDQZrrkz
, X86::VPANDDZrrkz
},
6398 { X86::VORPSZrmk
, X86::VORPDZrmk
,
6399 X86::VPORQZrmk
, X86::VPORDZrmk
},
6400 { X86::VORPSZrmkz
, X86::VORPDZrmkz
,
6401 X86::VPORQZrmkz
, X86::VPORDZrmkz
},
6402 { X86::VORPSZrrk
, X86::VORPDZrrk
,
6403 X86::VPORQZrrk
, X86::VPORDZrrk
},
6404 { X86::VORPSZrrkz
, X86::VORPDZrrkz
,
6405 X86::VPORQZrrkz
, X86::VPORDZrrkz
},
6406 { X86::VXORPSZrmk
, X86::VXORPDZrmk
,
6407 X86::VPXORQZrmk
, X86::VPXORDZrmk
},
6408 { X86::VXORPSZrmkz
, X86::VXORPDZrmkz
,
6409 X86::VPXORQZrmkz
, X86::VPXORDZrmkz
},
6410 { X86::VXORPSZrrk
, X86::VXORPDZrrk
,
6411 X86::VPXORQZrrk
, X86::VPXORDZrrk
},
6412 { X86::VXORPSZrrkz
, X86::VXORPDZrrkz
,
6413 X86::VPXORQZrrkz
, X86::VPXORDZrrkz
},
6414 // Broadcast loads can be handled the same as masked operations to avoid
6415 // changing element size.
6416 { X86::VANDNPSZ128rmb
, X86::VANDNPDZ128rmb
,
6417 X86::VPANDNQZ128rmb
, X86::VPANDNDZ128rmb
},
6418 { X86::VANDPSZ128rmb
, X86::VANDPDZ128rmb
,
6419 X86::VPANDQZ128rmb
, X86::VPANDDZ128rmb
},
6420 { X86::VORPSZ128rmb
, X86::VORPDZ128rmb
,
6421 X86::VPORQZ128rmb
, X86::VPORDZ128rmb
},
6422 { X86::VXORPSZ128rmb
, X86::VXORPDZ128rmb
,
6423 X86::VPXORQZ128rmb
, X86::VPXORDZ128rmb
},
6424 { X86::VANDNPSZ256rmb
, X86::VANDNPDZ256rmb
,
6425 X86::VPANDNQZ256rmb
, X86::VPANDNDZ256rmb
},
6426 { X86::VANDPSZ256rmb
, X86::VANDPDZ256rmb
,
6427 X86::VPANDQZ256rmb
, X86::VPANDDZ256rmb
},
6428 { X86::VORPSZ256rmb
, X86::VORPDZ256rmb
,
6429 X86::VPORQZ256rmb
, X86::VPORDZ256rmb
},
6430 { X86::VXORPSZ256rmb
, X86::VXORPDZ256rmb
,
6431 X86::VPXORQZ256rmb
, X86::VPXORDZ256rmb
},
6432 { X86::VANDNPSZrmb
, X86::VANDNPDZrmb
,
6433 X86::VPANDNQZrmb
, X86::VPANDNDZrmb
},
6434 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6435 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6436 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6437 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6438 { X86::VORPSZrmb
, X86::VORPDZrmb
,
6439 X86::VPORQZrmb
, X86::VPORDZrmb
},
6440 { X86::VXORPSZrmb
, X86::VXORPDZrmb
,
6441 X86::VPXORQZrmb
, X86::VPXORDZrmb
},
6442 { X86::VANDNPSZ128rmbk
, X86::VANDNPDZ128rmbk
,
6443 X86::VPANDNQZ128rmbk
, X86::VPANDNDZ128rmbk
},
6444 { X86::VANDPSZ128rmbk
, X86::VANDPDZ128rmbk
,
6445 X86::VPANDQZ128rmbk
, X86::VPANDDZ128rmbk
},
6446 { X86::VORPSZ128rmbk
, X86::VORPDZ128rmbk
,
6447 X86::VPORQZ128rmbk
, X86::VPORDZ128rmbk
},
6448 { X86::VXORPSZ128rmbk
, X86::VXORPDZ128rmbk
,
6449 X86::VPXORQZ128rmbk
, X86::VPXORDZ128rmbk
},
6450 { X86::VANDNPSZ256rmbk
, X86::VANDNPDZ256rmbk
,
6451 X86::VPANDNQZ256rmbk
, X86::VPANDNDZ256rmbk
},
6452 { X86::VANDPSZ256rmbk
, X86::VANDPDZ256rmbk
,
6453 X86::VPANDQZ256rmbk
, X86::VPANDDZ256rmbk
},
6454 { X86::VORPSZ256rmbk
, X86::VORPDZ256rmbk
,
6455 X86::VPORQZ256rmbk
, X86::VPORDZ256rmbk
},
6456 { X86::VXORPSZ256rmbk
, X86::VXORPDZ256rmbk
,
6457 X86::VPXORQZ256rmbk
, X86::VPXORDZ256rmbk
},
6458 { X86::VANDNPSZrmbk
, X86::VANDNPDZrmbk
,
6459 X86::VPANDNQZrmbk
, X86::VPANDNDZrmbk
},
6460 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6461 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6462 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6463 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6464 { X86::VORPSZrmbk
, X86::VORPDZrmbk
,
6465 X86::VPORQZrmbk
, X86::VPORDZrmbk
},
6466 { X86::VXORPSZrmbk
, X86::VXORPDZrmbk
,
6467 X86::VPXORQZrmbk
, X86::VPXORDZrmbk
},
6468 { X86::VANDNPSZ128rmbkz
,X86::VANDNPDZ128rmbkz
,
6469 X86::VPANDNQZ128rmbkz
,X86::VPANDNDZ128rmbkz
},
6470 { X86::VANDPSZ128rmbkz
, X86::VANDPDZ128rmbkz
,
6471 X86::VPANDQZ128rmbkz
, X86::VPANDDZ128rmbkz
},
6472 { X86::VORPSZ128rmbkz
, X86::VORPDZ128rmbkz
,
6473 X86::VPORQZ128rmbkz
, X86::VPORDZ128rmbkz
},
6474 { X86::VXORPSZ128rmbkz
, X86::VXORPDZ128rmbkz
,
6475 X86::VPXORQZ128rmbkz
, X86::VPXORDZ128rmbkz
},
6476 { X86::VANDNPSZ256rmbkz
,X86::VANDNPDZ256rmbkz
,
6477 X86::VPANDNQZ256rmbkz
,X86::VPANDNDZ256rmbkz
},
6478 { X86::VANDPSZ256rmbkz
, X86::VANDPDZ256rmbkz
,
6479 X86::VPANDQZ256rmbkz
, X86::VPANDDZ256rmbkz
},
6480 { X86::VORPSZ256rmbkz
, X86::VORPDZ256rmbkz
,
6481 X86::VPORQZ256rmbkz
, X86::VPORDZ256rmbkz
},
6482 { X86::VXORPSZ256rmbkz
, X86::VXORPDZ256rmbkz
,
6483 X86::VPXORQZ256rmbkz
, X86::VPXORDZ256rmbkz
},
6484 { X86::VANDNPSZrmbkz
, X86::VANDNPDZrmbkz
,
6485 X86::VPANDNQZrmbkz
, X86::VPANDNDZrmbkz
},
6486 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6487 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6488 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6489 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6490 { X86::VORPSZrmbkz
, X86::VORPDZrmbkz
,
6491 X86::VPORQZrmbkz
, X86::VPORDZrmbkz
},
6492 { X86::VXORPSZrmbkz
, X86::VXORPDZrmbkz
,
6493 X86::VPXORQZrmbkz
, X86::VPXORDZrmbkz
},
6496 // NOTE: These should only be used by the custom domain methods.
6497 static const uint16_t ReplaceableBlendInstrs
[][3] = {
6498 //PackedSingle PackedDouble PackedInt
6499 { X86::BLENDPSrmi
, X86::BLENDPDrmi
, X86::PBLENDWrmi
},
6500 { X86::BLENDPSrri
, X86::BLENDPDrri
, X86::PBLENDWrri
},
6501 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDWrmi
},
6502 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDWrri
},
6503 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDWYrmi
},
6504 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDWYrri
},
6506 static const uint16_t ReplaceableBlendAVX2Instrs
[][3] = {
6507 //PackedSingle PackedDouble PackedInt
6508 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDDrmi
},
6509 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDDrri
},
6510 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDDYrmi
},
6511 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDDYrri
},
6514 // Special table for changing EVEX logic instructions to VEX.
6515 // TODO: Should we run EVEX->VEX earlier?
6516 static const uint16_t ReplaceableCustomAVX512LogicInstrs
[][4] = {
6517 // Two integer columns for 64-bit and 32-bit elements.
6518 //PackedSingle PackedDouble PackedInt PackedInt
6519 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6520 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6521 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6522 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6523 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6524 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6525 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6526 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6527 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6528 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6529 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6530 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6531 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6532 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6533 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6534 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6537 // FIXME: Some shuffle and unpack instructions have equivalents in different
6538 // domains, but they require a bit more work than just switching opcodes.
6540 static const uint16_t *lookup(unsigned opcode
, unsigned domain
,
6541 ArrayRef
<uint16_t[3]> Table
) {
6542 for (const uint16_t (&Row
)[3] : Table
)
6543 if (Row
[domain
-1] == opcode
)
6548 static const uint16_t *lookupAVX512(unsigned opcode
, unsigned domain
,
6549 ArrayRef
<uint16_t[4]> Table
) {
6550 // If this is the integer domain make sure to check both integer columns.
6551 for (const uint16_t (&Row
)[4] : Table
)
6552 if (Row
[domain
-1] == opcode
|| (domain
== 3 && Row
[3] == opcode
))
6557 // Helper to attempt to widen/narrow blend masks.
6558 static bool AdjustBlendMask(unsigned OldMask
, unsigned OldWidth
,
6559 unsigned NewWidth
, unsigned *pNewMask
= nullptr) {
6560 assert(((OldWidth
% NewWidth
) == 0 || (NewWidth
% OldWidth
) == 0) &&
6561 "Illegal blend mask scale");
6562 unsigned NewMask
= 0;
6564 if ((OldWidth
% NewWidth
) == 0) {
6565 unsigned Scale
= OldWidth
/ NewWidth
;
6566 unsigned SubMask
= (1u << Scale
) - 1;
6567 for (unsigned i
= 0; i
!= NewWidth
; ++i
) {
6568 unsigned Sub
= (OldMask
>> (i
* Scale
)) & SubMask
;
6570 NewMask
|= (1u << i
);
6571 else if (Sub
!= 0x0)
6575 unsigned Scale
= NewWidth
/ OldWidth
;
6576 unsigned SubMask
= (1u << Scale
) - 1;
6577 for (unsigned i
= 0; i
!= OldWidth
; ++i
) {
6578 if (OldMask
& (1 << i
)) {
6579 NewMask
|= (SubMask
<< (i
* Scale
));
6585 *pNewMask
= NewMask
;
6589 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr
&MI
) const {
6590 unsigned Opcode
= MI
.getOpcode();
6591 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6593 auto GetBlendDomains
= [&](unsigned ImmWidth
, bool Is256
) {
6594 uint16_t validDomains
= 0;
6595 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6596 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm();
6597 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4))
6598 validDomains
|= 0x2; // PackedSingle
6599 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2))
6600 validDomains
|= 0x4; // PackedDouble
6601 if (!Is256
|| Subtarget
.hasAVX2())
6602 validDomains
|= 0x8; // PackedInt
6604 return validDomains
;
6608 case X86::BLENDPDrmi
:
6609 case X86::BLENDPDrri
:
6610 case X86::VBLENDPDrmi
:
6611 case X86::VBLENDPDrri
:
6612 return GetBlendDomains(2, false);
6613 case X86::VBLENDPDYrmi
:
6614 case X86::VBLENDPDYrri
:
6615 return GetBlendDomains(4, true);
6616 case X86::BLENDPSrmi
:
6617 case X86::BLENDPSrri
:
6618 case X86::VBLENDPSrmi
:
6619 case X86::VBLENDPSrri
:
6620 case X86::VPBLENDDrmi
:
6621 case X86::VPBLENDDrri
:
6622 return GetBlendDomains(4, false);
6623 case X86::VBLENDPSYrmi
:
6624 case X86::VBLENDPSYrri
:
6625 case X86::VPBLENDDYrmi
:
6626 case X86::VPBLENDDYrri
:
6627 return GetBlendDomains(8, true);
6628 case X86::PBLENDWrmi
:
6629 case X86::PBLENDWrri
:
6630 case X86::VPBLENDWrmi
:
6631 case X86::VPBLENDWrri
:
6632 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6633 case X86::VPBLENDWYrmi
:
6634 case X86::VPBLENDWYrri
:
6635 return GetBlendDomains(8, false);
6636 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6637 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6638 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6639 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6640 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6641 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6642 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6643 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6644 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6645 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6646 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6647 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6648 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6649 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6650 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6651 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
:
6652 // If we don't have DQI see if we can still switch from an EVEX integer
6653 // instruction to a VEX floating point instruction.
6654 if (Subtarget
.hasDQI())
6657 if (RI
.getEncodingValue(MI
.getOperand(0).getReg()) >= 16)
6659 if (RI
.getEncodingValue(MI
.getOperand(1).getReg()) >= 16)
6661 // Register forms will have 3 operands. Memory form will have more.
6662 if (NumOperands
== 3 &&
6663 RI
.getEncodingValue(MI
.getOperand(2).getReg()) >= 16)
6666 // All domains are valid.
6668 case X86::MOVHLPSrr
:
6669 // We can swap domains when both inputs are the same register.
6670 // FIXME: This doesn't catch all the cases we would like. If the input
6671 // register isn't KILLed by the instruction, the two address instruction
6672 // pass puts a COPY on one input. The other input uses the original
6673 // register. This prevents the same physical register from being used by
6675 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6676 MI
.getOperand(0).getSubReg() == 0 &&
6677 MI
.getOperand(1).getSubReg() == 0 &&
6678 MI
.getOperand(2).getSubReg() == 0)
6681 case X86::SHUFPDrri
:
6687 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr
&MI
,
6688 unsigned Domain
) const {
6689 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
6690 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6691 assert(dom
&& "Not an SSE instruction");
6693 unsigned Opcode
= MI
.getOpcode();
6694 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6696 auto SetBlendDomain
= [&](unsigned ImmWidth
, bool Is256
) {
6697 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6698 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm() & 255;
6699 Imm
= (ImmWidth
== 16 ? ((Imm
<< 8) | Imm
) : Imm
);
6700 unsigned NewImm
= Imm
;
6702 const uint16_t *table
= lookup(Opcode
, dom
, ReplaceableBlendInstrs
);
6704 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6706 if (Domain
== 1) { // PackedSingle
6707 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6708 } else if (Domain
== 2) { // PackedDouble
6709 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2, &NewImm
);
6710 } else if (Domain
== 3) { // PackedInt
6711 if (Subtarget
.hasAVX2()) {
6712 // If we are already VPBLENDW use that, else use VPBLENDD.
6713 if ((ImmWidth
/ (Is256
? 2 : 1)) != 8) {
6714 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6715 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6718 assert(!Is256
&& "128-bit vector expected");
6719 AdjustBlendMask(Imm
, ImmWidth
, 8, &NewImm
);
6723 assert(table
&& table
[Domain
- 1] && "Unknown domain op");
6724 MI
.setDesc(get(table
[Domain
- 1]));
6725 MI
.getOperand(NumOperands
- 1).setImm(NewImm
& 255);
6731 case X86::BLENDPDrmi
:
6732 case X86::BLENDPDrri
:
6733 case X86::VBLENDPDrmi
:
6734 case X86::VBLENDPDrri
:
6735 return SetBlendDomain(2, false);
6736 case X86::VBLENDPDYrmi
:
6737 case X86::VBLENDPDYrri
:
6738 return SetBlendDomain(4, true);
6739 case X86::BLENDPSrmi
:
6740 case X86::BLENDPSrri
:
6741 case X86::VBLENDPSrmi
:
6742 case X86::VBLENDPSrri
:
6743 case X86::VPBLENDDrmi
:
6744 case X86::VPBLENDDrri
:
6745 return SetBlendDomain(4, false);
6746 case X86::VBLENDPSYrmi
:
6747 case X86::VBLENDPSYrri
:
6748 case X86::VPBLENDDYrmi
:
6749 case X86::VPBLENDDYrri
:
6750 return SetBlendDomain(8, true);
6751 case X86::PBLENDWrmi
:
6752 case X86::PBLENDWrri
:
6753 case X86::VPBLENDWrmi
:
6754 case X86::VPBLENDWrri
:
6755 return SetBlendDomain(8, false);
6756 case X86::VPBLENDWYrmi
:
6757 case X86::VPBLENDWYrri
:
6758 return SetBlendDomain(16, true);
6759 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6760 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6761 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6762 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6763 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6764 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6765 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6766 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6767 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6768 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6769 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6770 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6771 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6772 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6773 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6774 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
: {
6775 // Without DQI, convert EVEX instructions to VEX instructions.
6776 if (Subtarget
.hasDQI())
6779 const uint16_t *table
= lookupAVX512(MI
.getOpcode(), dom
,
6780 ReplaceableCustomAVX512LogicInstrs
);
6781 assert(table
&& "Instruction not found in table?");
6782 // Don't change integer Q instructions to D instructions and
6783 // use D intructions if we started with a PS instruction.
6784 if (Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6786 MI
.setDesc(get(table
[Domain
- 1]));
6789 case X86::UNPCKHPDrr
:
6790 case X86::MOVHLPSrr
:
6791 // We just need to commute the instruction which will switch the domains.
6792 if (Domain
!= dom
&& Domain
!= 3 &&
6793 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6794 MI
.getOperand(0).getSubReg() == 0 &&
6795 MI
.getOperand(1).getSubReg() == 0 &&
6796 MI
.getOperand(2).getSubReg() == 0) {
6797 commuteInstruction(MI
, false);
6800 // We must always return true for MOVHLPSrr.
6801 if (Opcode
== X86::MOVHLPSrr
)
6804 case X86::SHUFPDrri
: {
6806 unsigned Imm
= MI
.getOperand(3).getImm();
6807 unsigned NewImm
= 0x44;
6808 if (Imm
& 1) NewImm
|= 0x0a;
6809 if (Imm
& 2) NewImm
|= 0xa0;
6810 MI
.getOperand(3).setImm(NewImm
);
6811 MI
.setDesc(get(X86::SHUFPSrri
));
6819 std::pair
<uint16_t, uint16_t>
6820 X86InstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
6821 uint16_t domain
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6822 unsigned opcode
= MI
.getOpcode();
6823 uint16_t validDomains
= 0;
6825 // Attempt to match for custom instructions.
6826 validDomains
= getExecutionDomainCustom(MI
);
6828 return std::make_pair(domain
, validDomains
);
6830 if (lookup(opcode
, domain
, ReplaceableInstrs
)) {
6832 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2
)) {
6833 validDomains
= Subtarget
.hasAVX2() ? 0xe : 0x6;
6834 } else if (lookup(opcode
, domain
, ReplaceableInstrsFP
)) {
6836 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2InsertExtract
)) {
6837 // Insert/extract instructions should only effect domain if AVX2
6839 if (!Subtarget
.hasAVX2())
6840 return std::make_pair(0, 0);
6842 } else if (lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512
)) {
6844 } else if (Subtarget
.hasDQI() && lookupAVX512(opcode
, domain
,
6845 ReplaceableInstrsAVX512DQ
)) {
6847 } else if (Subtarget
.hasDQI()) {
6848 if (const uint16_t *table
= lookupAVX512(opcode
, domain
,
6849 ReplaceableInstrsAVX512DQMasked
)) {
6850 if (domain
== 1 || (domain
== 3 && table
[3] == opcode
))
6857 return std::make_pair(domain
, validDomains
);
6860 void X86InstrInfo::setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {
6861 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
6862 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6863 assert(dom
&& "Not an SSE instruction");
6865 // Attempt to match for custom instructions.
6866 if (setExecutionDomainCustom(MI
, Domain
))
6869 const uint16_t *table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrs
);
6870 if (!table
) { // try the other table
6871 assert((Subtarget
.hasAVX2() || Domain
< 3) &&
6872 "256-bit vector operations only available in AVX2");
6873 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2
);
6875 if (!table
) { // try the FP table
6876 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsFP
);
6877 assert((!table
|| Domain
< 3) &&
6878 "Can only select PackedSingle or PackedDouble");
6880 if (!table
) { // try the other table
6881 assert(Subtarget
.hasAVX2() &&
6882 "256-bit insert/extract only available in AVX2");
6883 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2InsertExtract
);
6885 if (!table
) { // try the AVX512 table
6886 assert(Subtarget
.hasAVX512() && "Requires AVX-512");
6887 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512
);
6888 // Don't change integer Q instructions to D instructions.
6889 if (table
&& Domain
== 3 && table
[3] == MI
.getOpcode())
6892 if (!table
) { // try the AVX512DQ table
6893 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6894 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQ
);
6895 // Don't change integer Q instructions to D instructions and
6896 // use D intructions if we started with a PS instruction.
6897 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6900 if (!table
) { // try the AVX512DQMasked table
6901 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6902 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQMasked
);
6903 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6906 assert(table
&& "Cannot change domain");
6907 MI
.setDesc(get(table
[Domain
- 1]));
6910 /// Return the noop instruction to use for a noop.
6911 void X86InstrInfo::getNoop(MCInst
&NopInst
) const {
6912 NopInst
.setOpcode(X86::NOOP
);
6915 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
6917 default: return false;
6923 case X86::DIVSDrm_Int
:
6925 case X86::DIVSDrr_Int
:
6927 case X86::DIVSSrm_Int
:
6929 case X86::DIVSSrr_Int
:
6935 case X86::SQRTSDm_Int
:
6937 case X86::SQRTSDr_Int
:
6939 case X86::SQRTSSm_Int
:
6941 case X86::SQRTSSr_Int
:
6942 // AVX instructions with high latency
6945 case X86::VDIVPDYrm
:
6946 case X86::VDIVPDYrr
:
6949 case X86::VDIVPSYrm
:
6950 case X86::VDIVPSYrr
:
6952 case X86::VDIVSDrm_Int
:
6954 case X86::VDIVSDrr_Int
:
6956 case X86::VDIVSSrm_Int
:
6958 case X86::VDIVSSrr_Int
:
6961 case X86::VSQRTPDYm
:
6962 case X86::VSQRTPDYr
:
6965 case X86::VSQRTPSYm
:
6966 case X86::VSQRTPSYr
:
6968 case X86::VSQRTSDm_Int
:
6970 case X86::VSQRTSDr_Int
:
6972 case X86::VSQRTSSm_Int
:
6974 case X86::VSQRTSSr_Int
:
6975 // AVX512 instructions with high latency
6976 case X86::VDIVPDZ128rm
:
6977 case X86::VDIVPDZ128rmb
:
6978 case X86::VDIVPDZ128rmbk
:
6979 case X86::VDIVPDZ128rmbkz
:
6980 case X86::VDIVPDZ128rmk
:
6981 case X86::VDIVPDZ128rmkz
:
6982 case X86::VDIVPDZ128rr
:
6983 case X86::VDIVPDZ128rrk
:
6984 case X86::VDIVPDZ128rrkz
:
6985 case X86::VDIVPDZ256rm
:
6986 case X86::VDIVPDZ256rmb
:
6987 case X86::VDIVPDZ256rmbk
:
6988 case X86::VDIVPDZ256rmbkz
:
6989 case X86::VDIVPDZ256rmk
:
6990 case X86::VDIVPDZ256rmkz
:
6991 case X86::VDIVPDZ256rr
:
6992 case X86::VDIVPDZ256rrk
:
6993 case X86::VDIVPDZ256rrkz
:
6994 case X86::VDIVPDZrrb
:
6995 case X86::VDIVPDZrrbk
:
6996 case X86::VDIVPDZrrbkz
:
6997 case X86::VDIVPDZrm
:
6998 case X86::VDIVPDZrmb
:
6999 case X86::VDIVPDZrmbk
:
7000 case X86::VDIVPDZrmbkz
:
7001 case X86::VDIVPDZrmk
:
7002 case X86::VDIVPDZrmkz
:
7003 case X86::VDIVPDZrr
:
7004 case X86::VDIVPDZrrk
:
7005 case X86::VDIVPDZrrkz
:
7006 case X86::VDIVPSZ128rm
:
7007 case X86::VDIVPSZ128rmb
:
7008 case X86::VDIVPSZ128rmbk
:
7009 case X86::VDIVPSZ128rmbkz
:
7010 case X86::VDIVPSZ128rmk
:
7011 case X86::VDIVPSZ128rmkz
:
7012 case X86::VDIVPSZ128rr
:
7013 case X86::VDIVPSZ128rrk
:
7014 case X86::VDIVPSZ128rrkz
:
7015 case X86::VDIVPSZ256rm
:
7016 case X86::VDIVPSZ256rmb
:
7017 case X86::VDIVPSZ256rmbk
:
7018 case X86::VDIVPSZ256rmbkz
:
7019 case X86::VDIVPSZ256rmk
:
7020 case X86::VDIVPSZ256rmkz
:
7021 case X86::VDIVPSZ256rr
:
7022 case X86::VDIVPSZ256rrk
:
7023 case X86::VDIVPSZ256rrkz
:
7024 case X86::VDIVPSZrrb
:
7025 case X86::VDIVPSZrrbk
:
7026 case X86::VDIVPSZrrbkz
:
7027 case X86::VDIVPSZrm
:
7028 case X86::VDIVPSZrmb
:
7029 case X86::VDIVPSZrmbk
:
7030 case X86::VDIVPSZrmbkz
:
7031 case X86::VDIVPSZrmk
:
7032 case X86::VDIVPSZrmkz
:
7033 case X86::VDIVPSZrr
:
7034 case X86::VDIVPSZrrk
:
7035 case X86::VDIVPSZrrkz
:
7036 case X86::VDIVSDZrm
:
7037 case X86::VDIVSDZrr
:
7038 case X86::VDIVSDZrm_Int
:
7039 case X86::VDIVSDZrm_Intk
:
7040 case X86::VDIVSDZrm_Intkz
:
7041 case X86::VDIVSDZrr_Int
:
7042 case X86::VDIVSDZrr_Intk
:
7043 case X86::VDIVSDZrr_Intkz
:
7044 case X86::VDIVSDZrrb_Int
:
7045 case X86::VDIVSDZrrb_Intk
:
7046 case X86::VDIVSDZrrb_Intkz
:
7047 case X86::VDIVSSZrm
:
7048 case X86::VDIVSSZrr
:
7049 case X86::VDIVSSZrm_Int
:
7050 case X86::VDIVSSZrm_Intk
:
7051 case X86::VDIVSSZrm_Intkz
:
7052 case X86::VDIVSSZrr_Int
:
7053 case X86::VDIVSSZrr_Intk
:
7054 case X86::VDIVSSZrr_Intkz
:
7055 case X86::VDIVSSZrrb_Int
:
7056 case X86::VDIVSSZrrb_Intk
:
7057 case X86::VDIVSSZrrb_Intkz
:
7058 case X86::VSQRTPDZ128m
:
7059 case X86::VSQRTPDZ128mb
:
7060 case X86::VSQRTPDZ128mbk
:
7061 case X86::VSQRTPDZ128mbkz
:
7062 case X86::VSQRTPDZ128mk
:
7063 case X86::VSQRTPDZ128mkz
:
7064 case X86::VSQRTPDZ128r
:
7065 case X86::VSQRTPDZ128rk
:
7066 case X86::VSQRTPDZ128rkz
:
7067 case X86::VSQRTPDZ256m
:
7068 case X86::VSQRTPDZ256mb
:
7069 case X86::VSQRTPDZ256mbk
:
7070 case X86::VSQRTPDZ256mbkz
:
7071 case X86::VSQRTPDZ256mk
:
7072 case X86::VSQRTPDZ256mkz
:
7073 case X86::VSQRTPDZ256r
:
7074 case X86::VSQRTPDZ256rk
:
7075 case X86::VSQRTPDZ256rkz
:
7076 case X86::VSQRTPDZm
:
7077 case X86::VSQRTPDZmb
:
7078 case X86::VSQRTPDZmbk
:
7079 case X86::VSQRTPDZmbkz
:
7080 case X86::VSQRTPDZmk
:
7081 case X86::VSQRTPDZmkz
:
7082 case X86::VSQRTPDZr
:
7083 case X86::VSQRTPDZrb
:
7084 case X86::VSQRTPDZrbk
:
7085 case X86::VSQRTPDZrbkz
:
7086 case X86::VSQRTPDZrk
:
7087 case X86::VSQRTPDZrkz
:
7088 case X86::VSQRTPSZ128m
:
7089 case X86::VSQRTPSZ128mb
:
7090 case X86::VSQRTPSZ128mbk
:
7091 case X86::VSQRTPSZ128mbkz
:
7092 case X86::VSQRTPSZ128mk
:
7093 case X86::VSQRTPSZ128mkz
:
7094 case X86::VSQRTPSZ128r
:
7095 case X86::VSQRTPSZ128rk
:
7096 case X86::VSQRTPSZ128rkz
:
7097 case X86::VSQRTPSZ256m
:
7098 case X86::VSQRTPSZ256mb
:
7099 case X86::VSQRTPSZ256mbk
:
7100 case X86::VSQRTPSZ256mbkz
:
7101 case X86::VSQRTPSZ256mk
:
7102 case X86::VSQRTPSZ256mkz
:
7103 case X86::VSQRTPSZ256r
:
7104 case X86::VSQRTPSZ256rk
:
7105 case X86::VSQRTPSZ256rkz
:
7106 case X86::VSQRTPSZm
:
7107 case X86::VSQRTPSZmb
:
7108 case X86::VSQRTPSZmbk
:
7109 case X86::VSQRTPSZmbkz
:
7110 case X86::VSQRTPSZmk
:
7111 case X86::VSQRTPSZmkz
:
7112 case X86::VSQRTPSZr
:
7113 case X86::VSQRTPSZrb
:
7114 case X86::VSQRTPSZrbk
:
7115 case X86::VSQRTPSZrbkz
:
7116 case X86::VSQRTPSZrk
:
7117 case X86::VSQRTPSZrkz
:
7118 case X86::VSQRTSDZm
:
7119 case X86::VSQRTSDZm_Int
:
7120 case X86::VSQRTSDZm_Intk
:
7121 case X86::VSQRTSDZm_Intkz
:
7122 case X86::VSQRTSDZr
:
7123 case X86::VSQRTSDZr_Int
:
7124 case X86::VSQRTSDZr_Intk
:
7125 case X86::VSQRTSDZr_Intkz
:
7126 case X86::VSQRTSDZrb_Int
:
7127 case X86::VSQRTSDZrb_Intk
:
7128 case X86::VSQRTSDZrb_Intkz
:
7129 case X86::VSQRTSSZm
:
7130 case X86::VSQRTSSZm_Int
:
7131 case X86::VSQRTSSZm_Intk
:
7132 case X86::VSQRTSSZm_Intkz
:
7133 case X86::VSQRTSSZr
:
7134 case X86::VSQRTSSZr_Int
:
7135 case X86::VSQRTSSZr_Intk
:
7136 case X86::VSQRTSSZr_Intkz
:
7137 case X86::VSQRTSSZrb_Int
:
7138 case X86::VSQRTSSZrb_Intk
:
7139 case X86::VSQRTSSZrb_Intkz
:
7141 case X86::VGATHERDPDYrm
:
7142 case X86::VGATHERDPDZ128rm
:
7143 case X86::VGATHERDPDZ256rm
:
7144 case X86::VGATHERDPDZrm
:
7145 case X86::VGATHERDPDrm
:
7146 case X86::VGATHERDPSYrm
:
7147 case X86::VGATHERDPSZ128rm
:
7148 case X86::VGATHERDPSZ256rm
:
7149 case X86::VGATHERDPSZrm
:
7150 case X86::VGATHERDPSrm
:
7151 case X86::VGATHERPF0DPDm
:
7152 case X86::VGATHERPF0DPSm
:
7153 case X86::VGATHERPF0QPDm
:
7154 case X86::VGATHERPF0QPSm
:
7155 case X86::VGATHERPF1DPDm
:
7156 case X86::VGATHERPF1DPSm
:
7157 case X86::VGATHERPF1QPDm
:
7158 case X86::VGATHERPF1QPSm
:
7159 case X86::VGATHERQPDYrm
:
7160 case X86::VGATHERQPDZ128rm
:
7161 case X86::VGATHERQPDZ256rm
:
7162 case X86::VGATHERQPDZrm
:
7163 case X86::VGATHERQPDrm
:
7164 case X86::VGATHERQPSYrm
:
7165 case X86::VGATHERQPSZ128rm
:
7166 case X86::VGATHERQPSZ256rm
:
7167 case X86::VGATHERQPSZrm
:
7168 case X86::VGATHERQPSrm
:
7169 case X86::VPGATHERDDYrm
:
7170 case X86::VPGATHERDDZ128rm
:
7171 case X86::VPGATHERDDZ256rm
:
7172 case X86::VPGATHERDDZrm
:
7173 case X86::VPGATHERDDrm
:
7174 case X86::VPGATHERDQYrm
:
7175 case X86::VPGATHERDQZ128rm
:
7176 case X86::VPGATHERDQZ256rm
:
7177 case X86::VPGATHERDQZrm
:
7178 case X86::VPGATHERDQrm
:
7179 case X86::VPGATHERQDYrm
:
7180 case X86::VPGATHERQDZ128rm
:
7181 case X86::VPGATHERQDZ256rm
:
7182 case X86::VPGATHERQDZrm
:
7183 case X86::VPGATHERQDrm
:
7184 case X86::VPGATHERQQYrm
:
7185 case X86::VPGATHERQQZ128rm
:
7186 case X86::VPGATHERQQZ256rm
:
7187 case X86::VPGATHERQQZrm
:
7188 case X86::VPGATHERQQrm
:
7189 case X86::VSCATTERDPDZ128mr
:
7190 case X86::VSCATTERDPDZ256mr
:
7191 case X86::VSCATTERDPDZmr
:
7192 case X86::VSCATTERDPSZ128mr
:
7193 case X86::VSCATTERDPSZ256mr
:
7194 case X86::VSCATTERDPSZmr
:
7195 case X86::VSCATTERPF0DPDm
:
7196 case X86::VSCATTERPF0DPSm
:
7197 case X86::VSCATTERPF0QPDm
:
7198 case X86::VSCATTERPF0QPSm
:
7199 case X86::VSCATTERPF1DPDm
:
7200 case X86::VSCATTERPF1DPSm
:
7201 case X86::VSCATTERPF1QPDm
:
7202 case X86::VSCATTERPF1QPSm
:
7203 case X86::VSCATTERQPDZ128mr
:
7204 case X86::VSCATTERQPDZ256mr
:
7205 case X86::VSCATTERQPDZmr
:
7206 case X86::VSCATTERQPSZ128mr
:
7207 case X86::VSCATTERQPSZ256mr
:
7208 case X86::VSCATTERQPSZmr
:
7209 case X86::VPSCATTERDDZ128mr
:
7210 case X86::VPSCATTERDDZ256mr
:
7211 case X86::VPSCATTERDDZmr
:
7212 case X86::VPSCATTERDQZ128mr
:
7213 case X86::VPSCATTERDQZ256mr
:
7214 case X86::VPSCATTERDQZmr
:
7215 case X86::VPSCATTERQDZ128mr
:
7216 case X86::VPSCATTERQDZ256mr
:
7217 case X86::VPSCATTERQDZmr
:
7218 case X86::VPSCATTERQQZ128mr
:
7219 case X86::VPSCATTERQQZ256mr
:
7220 case X86::VPSCATTERQQZmr
:
7225 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
7226 const MachineRegisterInfo
*MRI
,
7227 const MachineInstr
&DefMI
,
7229 const MachineInstr
&UseMI
,
7230 unsigned UseIdx
) const {
7231 return isHighLatencyDef(DefMI
.getOpcode());
7234 bool X86InstrInfo::hasReassociableOperands(const MachineInstr
&Inst
,
7235 const MachineBasicBlock
*MBB
) const {
7236 assert((Inst
.getNumOperands() == 3 || Inst
.getNumOperands() == 4) &&
7237 "Reassociation needs binary operators");
7239 // Integer binary math/logic instructions have a third source operand:
7240 // the EFLAGS register. That operand must be both defined here and never
7241 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7242 // not change anything because rearranging the operands could affect other
7243 // instructions that depend on the exact status flags (zero, sign, etc.)
7244 // that are set by using these particular operands with this operation.
7245 if (Inst
.getNumOperands() == 4) {
7246 assert(Inst
.getOperand(3).isReg() &&
7247 Inst
.getOperand(3).getReg() == X86::EFLAGS
&&
7248 "Unexpected operand in reassociable instruction");
7249 if (!Inst
.getOperand(3).isDead())
7253 return TargetInstrInfo::hasReassociableOperands(Inst
, MBB
);
7256 // TODO: There are many more machine instruction opcodes to match:
7257 // 1. Other data types (integer, vectors)
7258 // 2. Other math / logic operations (xor, or)
7259 // 3. Other forms of the same operation (intrinsics and other variants)
7260 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
7261 switch (Inst
.getOpcode()) {
7306 case X86::VPANDDZ128rr
:
7307 case X86::VPANDDZ256rr
:
7308 case X86::VPANDDZrr
:
7309 case X86::VPANDQZ128rr
:
7310 case X86::VPANDQZ256rr
:
7311 case X86::VPANDQZrr
:
7314 case X86::VPORDZ128rr
:
7315 case X86::VPORDZ256rr
:
7317 case X86::VPORQZ128rr
:
7318 case X86::VPORQZ256rr
:
7322 case X86::VPXORDZ128rr
:
7323 case X86::VPXORDZ256rr
:
7324 case X86::VPXORDZrr
:
7325 case X86::VPXORQZ128rr
:
7326 case X86::VPXORQZ256rr
:
7327 case X86::VPXORQZrr
:
7330 case X86::VANDPDYrr
:
7331 case X86::VANDPSYrr
:
7332 case X86::VANDPDZ128rr
:
7333 case X86::VANDPSZ128rr
:
7334 case X86::VANDPDZ256rr
:
7335 case X86::VANDPSZ256rr
:
7336 case X86::VANDPDZrr
:
7337 case X86::VANDPSZrr
:
7342 case X86::VORPDZ128rr
:
7343 case X86::VORPSZ128rr
:
7344 case X86::VORPDZ256rr
:
7345 case X86::VORPSZ256rr
:
7350 case X86::VXORPDYrr
:
7351 case X86::VXORPSYrr
:
7352 case X86::VXORPDZ128rr
:
7353 case X86::VXORPSZ128rr
:
7354 case X86::VXORPDZ256rr
:
7355 case X86::VXORPSZ256rr
:
7356 case X86::VXORPDZrr
:
7357 case X86::VXORPSZrr
:
7378 case X86::VPADDBYrr
:
7379 case X86::VPADDWYrr
:
7380 case X86::VPADDDYrr
:
7381 case X86::VPADDQYrr
:
7382 case X86::VPADDBZ128rr
:
7383 case X86::VPADDWZ128rr
:
7384 case X86::VPADDDZ128rr
:
7385 case X86::VPADDQZ128rr
:
7386 case X86::VPADDBZ256rr
:
7387 case X86::VPADDWZ256rr
:
7388 case X86::VPADDDZ256rr
:
7389 case X86::VPADDQZ256rr
:
7390 case X86::VPADDBZrr
:
7391 case X86::VPADDWZrr
:
7392 case X86::VPADDDZrr
:
7393 case X86::VPADDQZrr
:
7394 case X86::VPMULLWrr
:
7395 case X86::VPMULLWYrr
:
7396 case X86::VPMULLWZ128rr
:
7397 case X86::VPMULLWZ256rr
:
7398 case X86::VPMULLWZrr
:
7399 case X86::VPMULLDrr
:
7400 case X86::VPMULLDYrr
:
7401 case X86::VPMULLDZ128rr
:
7402 case X86::VPMULLDZ256rr
:
7403 case X86::VPMULLDZrr
:
7404 case X86::VPMULLQZ128rr
:
7405 case X86::VPMULLQZ256rr
:
7406 case X86::VPMULLQZrr
:
7407 case X86::VPMAXSBrr
:
7408 case X86::VPMAXSBYrr
:
7409 case X86::VPMAXSBZ128rr
:
7410 case X86::VPMAXSBZ256rr
:
7411 case X86::VPMAXSBZrr
:
7412 case X86::VPMAXSDrr
:
7413 case X86::VPMAXSDYrr
:
7414 case X86::VPMAXSDZ128rr
:
7415 case X86::VPMAXSDZ256rr
:
7416 case X86::VPMAXSDZrr
:
7417 case X86::VPMAXSQZ128rr
:
7418 case X86::VPMAXSQZ256rr
:
7419 case X86::VPMAXSQZrr
:
7420 case X86::VPMAXSWrr
:
7421 case X86::VPMAXSWYrr
:
7422 case X86::VPMAXSWZ128rr
:
7423 case X86::VPMAXSWZ256rr
:
7424 case X86::VPMAXSWZrr
:
7425 case X86::VPMAXUBrr
:
7426 case X86::VPMAXUBYrr
:
7427 case X86::VPMAXUBZ128rr
:
7428 case X86::VPMAXUBZ256rr
:
7429 case X86::VPMAXUBZrr
:
7430 case X86::VPMAXUDrr
:
7431 case X86::VPMAXUDYrr
:
7432 case X86::VPMAXUDZ128rr
:
7433 case X86::VPMAXUDZ256rr
:
7434 case X86::VPMAXUDZrr
:
7435 case X86::VPMAXUQZ128rr
:
7436 case X86::VPMAXUQZ256rr
:
7437 case X86::VPMAXUQZrr
:
7438 case X86::VPMAXUWrr
:
7439 case X86::VPMAXUWYrr
:
7440 case X86::VPMAXUWZ128rr
:
7441 case X86::VPMAXUWZ256rr
:
7442 case X86::VPMAXUWZrr
:
7443 case X86::VPMINSBrr
:
7444 case X86::VPMINSBYrr
:
7445 case X86::VPMINSBZ128rr
:
7446 case X86::VPMINSBZ256rr
:
7447 case X86::VPMINSBZrr
:
7448 case X86::VPMINSDrr
:
7449 case X86::VPMINSDYrr
:
7450 case X86::VPMINSDZ128rr
:
7451 case X86::VPMINSDZ256rr
:
7452 case X86::VPMINSDZrr
:
7453 case X86::VPMINSQZ128rr
:
7454 case X86::VPMINSQZ256rr
:
7455 case X86::VPMINSQZrr
:
7456 case X86::VPMINSWrr
:
7457 case X86::VPMINSWYrr
:
7458 case X86::VPMINSWZ128rr
:
7459 case X86::VPMINSWZ256rr
:
7460 case X86::VPMINSWZrr
:
7461 case X86::VPMINUBrr
:
7462 case X86::VPMINUBYrr
:
7463 case X86::VPMINUBZ128rr
:
7464 case X86::VPMINUBZ256rr
:
7465 case X86::VPMINUBZrr
:
7466 case X86::VPMINUDrr
:
7467 case X86::VPMINUDYrr
:
7468 case X86::VPMINUDZ128rr
:
7469 case X86::VPMINUDZ256rr
:
7470 case X86::VPMINUDZrr
:
7471 case X86::VPMINUQZ128rr
:
7472 case X86::VPMINUQZ256rr
:
7473 case X86::VPMINUQZrr
:
7474 case X86::VPMINUWrr
:
7475 case X86::VPMINUWYrr
:
7476 case X86::VPMINUWZ128rr
:
7477 case X86::VPMINUWZ256rr
:
7478 case X86::VPMINUWZrr
:
7479 // Normal min/max instructions are not commutative because of NaN and signed
7480 // zero semantics, but these are. Thus, there's no need to check for global
7481 // relaxed math; the instructions themselves have the properties we need.
7490 case X86::VMAXCPDrr
:
7491 case X86::VMAXCPSrr
:
7492 case X86::VMAXCPDYrr
:
7493 case X86::VMAXCPSYrr
:
7494 case X86::VMAXCPDZ128rr
:
7495 case X86::VMAXCPSZ128rr
:
7496 case X86::VMAXCPDZ256rr
:
7497 case X86::VMAXCPSZ256rr
:
7498 case X86::VMAXCPDZrr
:
7499 case X86::VMAXCPSZrr
:
7500 case X86::VMAXCSDrr
:
7501 case X86::VMAXCSSrr
:
7502 case X86::VMAXCSDZrr
:
7503 case X86::VMAXCSSZrr
:
7504 case X86::VMINCPDrr
:
7505 case X86::VMINCPSrr
:
7506 case X86::VMINCPDYrr
:
7507 case X86::VMINCPSYrr
:
7508 case X86::VMINCPDZ128rr
:
7509 case X86::VMINCPSZ128rr
:
7510 case X86::VMINCPDZ256rr
:
7511 case X86::VMINCPSZ256rr
:
7512 case X86::VMINCPDZrr
:
7513 case X86::VMINCPSZrr
:
7514 case X86::VMINCSDrr
:
7515 case X86::VMINCSSrr
:
7516 case X86::VMINCSDZrr
:
7517 case X86::VMINCSSZrr
:
7529 case X86::VADDPDYrr
:
7530 case X86::VADDPSYrr
:
7531 case X86::VADDPDZ128rr
:
7532 case X86::VADDPSZ128rr
:
7533 case X86::VADDPDZ256rr
:
7534 case X86::VADDPSZ256rr
:
7535 case X86::VADDPDZrr
:
7536 case X86::VADDPSZrr
:
7539 case X86::VADDSDZrr
:
7540 case X86::VADDSSZrr
:
7543 case X86::VMULPDYrr
:
7544 case X86::VMULPSYrr
:
7545 case X86::VMULPDZ128rr
:
7546 case X86::VMULPSZ128rr
:
7547 case X86::VMULPDZ256rr
:
7548 case X86::VMULPSZ256rr
:
7549 case X86::VMULPDZrr
:
7550 case X86::VMULPSZrr
:
7553 case X86::VMULSDZrr
:
7554 case X86::VMULSSZrr
:
7555 return Inst
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
;
7561 Optional
<ParamLoadedValue
>
7562 X86InstrInfo::describeLoadedValue(const MachineInstr
&MI
) const {
7563 const MachineOperand
*Op
= nullptr;
7564 DIExpression
*Expr
= nullptr;
7566 switch (MI
.getOpcode()) {
7569 case X86::LEA64_32r
: {
7570 // Operand 4 could be global address. For now we do not support
7572 if (!MI
.getOperand(4).isImm() || !MI
.getOperand(2).isImm())
7575 const MachineOperand
&Op1
= MI
.getOperand(1);
7576 const MachineOperand
&Op2
= MI
.getOperand(3);
7577 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
7578 assert(Op2
.isReg() && (Op2
.getReg() == X86::NoRegister
||
7579 Register::isPhysicalRegister(Op2
.getReg())));
7581 // Omit situations like:
7582 // %rsi = lea %rsi, 4, ...
7583 if ((Op1
.isReg() && Op1
.getReg() == MI
.getOperand(0).getReg()) ||
7584 Op2
.getReg() == MI
.getOperand(0).getReg())
7586 else if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
&&
7587 TRI
->regsOverlap(Op1
.getReg(), MI
.getOperand(0).getReg())) ||
7588 (Op2
.getReg() != X86::NoRegister
&&
7589 TRI
->regsOverlap(Op2
.getReg(), MI
.getOperand(0).getReg())))
7592 int64_t Coef
= MI
.getOperand(2).getImm();
7593 int64_t Offset
= MI
.getOperand(4).getImm();
7594 SmallVector
<uint64_t, 8> Ops
;
7596 if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
)) {
7598 } else if (Op1
.isFI())
7601 if (Op
&& Op
->isReg() && Op
->getReg() == Op2
.getReg() && Coef
> 0) {
7602 Ops
.push_back(dwarf::DW_OP_constu
);
7603 Ops
.push_back(Coef
+ 1);
7604 Ops
.push_back(dwarf::DW_OP_mul
);
7606 if (Op
&& Op2
.getReg() != X86::NoRegister
) {
7607 int dwarfReg
= TRI
->getDwarfRegNum(Op2
.getReg(), false);
7610 else if (dwarfReg
< 32) {
7611 Ops
.push_back(dwarf::DW_OP_breg0
+ dwarfReg
);
7614 Ops
.push_back(dwarf::DW_OP_bregx
);
7615 Ops
.push_back(dwarfReg
);
7619 assert(Op2
.getReg() != X86::NoRegister
);
7624 assert(Op2
.getReg() != X86::NoRegister
);
7625 Ops
.push_back(dwarf::DW_OP_constu
);
7626 Ops
.push_back(Coef
);
7627 Ops
.push_back(dwarf::DW_OP_mul
);
7630 if (((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
) || Op1
.isFI()) &&
7631 Op2
.getReg() != X86::NoRegister
) {
7632 Ops
.push_back(dwarf::DW_OP_plus
);
7636 DIExpression::appendOffset(Ops
, Offset
);
7637 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), Ops
);
7639 return ParamLoadedValue(*Op
, Expr
);;
7641 case X86::XOR32rr
: {
7642 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
7643 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr
);
7647 return TargetInstrInfo::describeLoadedValue(MI
);
7651 /// This is an architecture-specific helper function of reassociateOps.
7652 /// Set special operand attributes for new instructions after reassociation.
7653 void X86InstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
7654 MachineInstr
&OldMI2
,
7655 MachineInstr
&NewMI1
,
7656 MachineInstr
&NewMI2
) const {
7657 // Integer instructions define an implicit EFLAGS source register operand as
7658 // the third source (fourth total) operand.
7659 if (OldMI1
.getNumOperands() != 4 || OldMI2
.getNumOperands() != 4)
7662 assert(NewMI1
.getNumOperands() == 4 && NewMI2
.getNumOperands() == 4 &&
7663 "Unexpected instruction type for reassociation");
7665 MachineOperand
&OldOp1
= OldMI1
.getOperand(3);
7666 MachineOperand
&OldOp2
= OldMI2
.getOperand(3);
7667 MachineOperand
&NewOp1
= NewMI1
.getOperand(3);
7668 MachineOperand
&NewOp2
= NewMI2
.getOperand(3);
7670 assert(OldOp1
.isReg() && OldOp1
.getReg() == X86::EFLAGS
&& OldOp1
.isDead() &&
7671 "Must have dead EFLAGS operand in reassociable instruction");
7672 assert(OldOp2
.isReg() && OldOp2
.getReg() == X86::EFLAGS
&& OldOp2
.isDead() &&
7673 "Must have dead EFLAGS operand in reassociable instruction");
7678 assert(NewOp1
.isReg() && NewOp1
.getReg() == X86::EFLAGS
&&
7679 "Unexpected operand in reassociable instruction");
7680 assert(NewOp2
.isReg() && NewOp2
.getReg() == X86::EFLAGS
&&
7681 "Unexpected operand in reassociable instruction");
7683 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7684 // of this pass or other passes. The EFLAGS operands must be dead in these new
7685 // instructions because the EFLAGS operands in the original instructions must
7686 // be dead in order for reassociation to occur.
7691 std::pair
<unsigned, unsigned>
7692 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
7693 return std::make_pair(TF
, 0u);
7696 ArrayRef
<std::pair
<unsigned, const char *>>
7697 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7698 using namespace X86II
;
7699 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
7700 {MO_GOT_ABSOLUTE_ADDRESS
, "x86-got-absolute-address"},
7701 {MO_PIC_BASE_OFFSET
, "x86-pic-base-offset"},
7702 {MO_GOT
, "x86-got"},
7703 {MO_GOTOFF
, "x86-gotoff"},
7704 {MO_GOTPCREL
, "x86-gotpcrel"},
7705 {MO_PLT
, "x86-plt"},
7706 {MO_TLSGD
, "x86-tlsgd"},
7707 {MO_TLSLD
, "x86-tlsld"},
7708 {MO_TLSLDM
, "x86-tlsldm"},
7709 {MO_GOTTPOFF
, "x86-gottpoff"},
7710 {MO_INDNTPOFF
, "x86-indntpoff"},
7711 {MO_TPOFF
, "x86-tpoff"},
7712 {MO_DTPOFF
, "x86-dtpoff"},
7713 {MO_NTPOFF
, "x86-ntpoff"},
7714 {MO_GOTNTPOFF
, "x86-gotntpoff"},
7715 {MO_DLLIMPORT
, "x86-dllimport"},
7716 {MO_DARWIN_NONLAZY
, "x86-darwin-nonlazy"},
7717 {MO_DARWIN_NONLAZY_PIC_BASE
, "x86-darwin-nonlazy-pic-base"},
7718 {MO_TLVP
, "x86-tlvp"},
7719 {MO_TLVP_PIC_BASE
, "x86-tlvp-pic-base"},
7720 {MO_SECREL
, "x86-secrel"},
7721 {MO_COFFSTUB
, "x86-coffstub"}};
7722 return makeArrayRef(TargetFlags
);
7726 /// Create Global Base Reg pass. This initializes the PIC
7727 /// global base register for x86-32.
7728 struct CGBR
: public MachineFunctionPass
{
7730 CGBR() : MachineFunctionPass(ID
) {}
7732 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7733 const X86TargetMachine
*TM
=
7734 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
7735 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
7737 // Don't do anything in the 64-bit small and kernel code models. They use
7738 // RIP-relative addressing for everything.
7739 if (STI
.is64Bit() && (TM
->getCodeModel() == CodeModel::Small
||
7740 TM
->getCodeModel() == CodeModel::Kernel
))
7743 // Only emit a global base reg in PIC mode.
7744 if (!TM
->isPositionIndependent())
7747 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7748 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
7750 // If we didn't need a GlobalBaseReg, don't insert code.
7751 if (GlobalBaseReg
== 0)
7754 // Insert the set of GlobalBaseReg into the first MBB of the function
7755 MachineBasicBlock
&FirstMBB
= MF
.front();
7756 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
7757 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
7758 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7759 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7762 if (STI
.isPICStyleGOT())
7763 PC
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
7767 if (STI
.is64Bit()) {
7768 if (TM
->getCodeModel() == CodeModel::Medium
) {
7769 // In the medium code model, use a RIP-relative LEA to materialize the
7771 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PC
)
7775 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7777 } else if (TM
->getCodeModel() == CodeModel::Large
) {
7778 // In the large code model, we are aiming for this code, though the
7779 // register allocation may vary:
7780 // leaq .LN$pb(%rip), %rax
7781 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7783 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7784 Register PBReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7785 Register GOTReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7786 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PBReg
)
7790 .addSym(MF
.getPICBaseSymbol())
7792 std::prev(MBBI
)->setPreInstrSymbol(MF
, MF
.getPICBaseSymbol());
7793 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOV64ri
), GOTReg
)
7794 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7795 X86II::MO_PIC_BASE_OFFSET
);
7796 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD64rr
), PC
)
7797 .addReg(PBReg
, RegState::Kill
)
7798 .addReg(GOTReg
, RegState::Kill
);
7800 llvm_unreachable("unexpected code model");
7803 // Operand of MovePCtoStack is completely ignored by asm printer. It's
7804 // only used in JIT code emission as displacement to pc.
7805 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
7807 // If we're using vanilla 'GOT' PIC style, we should use relative
7808 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7809 if (STI
.isPICStyleGOT()) {
7810 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7812 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
7814 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7815 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
7822 StringRef
getPassName() const override
{
7823 return "X86 PIC Global Base Reg Initialization";
7826 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7827 AU
.setPreservesCFG();
7828 MachineFunctionPass::getAnalysisUsage(AU
);
7835 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7838 struct LDTLSCleanup
: public MachineFunctionPass
{
7840 LDTLSCleanup() : MachineFunctionPass(ID
) {}
7842 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7843 if (skipFunction(MF
.getFunction()))
7846 X86MachineFunctionInfo
*MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7847 if (MFI
->getNumLocalDynamicTLSAccesses() < 2) {
7848 // No point folding accesses if there isn't at least two.
7852 MachineDominatorTree
*DT
= &getAnalysis
<MachineDominatorTree
>();
7853 return VisitNode(DT
->getRootNode(), 0);
7856 // Visit the dominator subtree rooted at Node in pre-order.
7857 // If TLSBaseAddrReg is non-null, then use that to replace any
7858 // TLS_base_addr instructions. Otherwise, create the register
7859 // when the first such instruction is seen, and then use it
7860 // as we encounter more instructions.
7861 bool VisitNode(MachineDomTreeNode
*Node
, unsigned TLSBaseAddrReg
) {
7862 MachineBasicBlock
*BB
= Node
->getBlock();
7863 bool Changed
= false;
7865 // Traverse the current block.
7866 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
7868 switch (I
->getOpcode()) {
7869 case X86::TLS_base_addr32
:
7870 case X86::TLS_base_addr64
:
7872 I
= ReplaceTLSBaseAddrCall(*I
, TLSBaseAddrReg
);
7874 I
= SetRegister(*I
, &TLSBaseAddrReg
);
7882 // Visit the children of this block in the dominator tree.
7883 for (MachineDomTreeNode::iterator I
= Node
->begin(), E
= Node
->end();
7885 Changed
|= VisitNode(*I
, TLSBaseAddrReg
);
7891 // Replace the TLS_base_addr instruction I with a copy from
7892 // TLSBaseAddrReg, returning the new instruction.
7893 MachineInstr
*ReplaceTLSBaseAddrCall(MachineInstr
&I
,
7894 unsigned TLSBaseAddrReg
) {
7895 MachineFunction
*MF
= I
.getParent()->getParent();
7896 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7897 const bool is64Bit
= STI
.is64Bit();
7898 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7900 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7901 MachineInstr
*Copy
=
7902 BuildMI(*I
.getParent(), I
, I
.getDebugLoc(),
7903 TII
->get(TargetOpcode::COPY
), is64Bit
? X86::RAX
: X86::EAX
)
7904 .addReg(TLSBaseAddrReg
);
7906 // Erase the TLS_base_addr instruction.
7907 I
.eraseFromParent();
7912 // Create a virtual register in *TLSBaseAddrReg, and populate it by
7913 // inserting a copy instruction after I. Returns the new instruction.
7914 MachineInstr
*SetRegister(MachineInstr
&I
, unsigned *TLSBaseAddrReg
) {
7915 MachineFunction
*MF
= I
.getParent()->getParent();
7916 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7917 const bool is64Bit
= STI
.is64Bit();
7918 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7920 // Create a virtual register for the TLS base address.
7921 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
7922 *TLSBaseAddrReg
= RegInfo
.createVirtualRegister(is64Bit
7923 ? &X86::GR64RegClass
7924 : &X86::GR32RegClass
);
7926 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7927 MachineInstr
*Next
= I
.getNextNode();
7928 MachineInstr
*Copy
=
7929 BuildMI(*I
.getParent(), Next
, I
.getDebugLoc(),
7930 TII
->get(TargetOpcode::COPY
), *TLSBaseAddrReg
)
7931 .addReg(is64Bit
? X86::RAX
: X86::EAX
);
7936 StringRef
getPassName() const override
{
7937 return "Local Dynamic TLS Access Clean-up";
7940 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7941 AU
.setPreservesCFG();
7942 AU
.addRequired
<MachineDominatorTree
>();
7943 MachineFunctionPass::getAnalysisUsage(AU
);
7948 char LDTLSCleanup::ID
= 0;
7950 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7952 /// Constants defining how certain sequences should be outlined.
7954 /// \p MachineOutlinerDefault implies that the function is called with a call
7955 /// instruction, and a return must be emitted for the outlined function frame.
7959 /// I1 OUTLINED_FUNCTION:
7960 /// I2 --> call OUTLINED_FUNCTION I1
7965 /// * Call construction overhead: 1 (call instruction)
7966 /// * Frame construction overhead: 1 (return instruction)
7968 /// \p MachineOutlinerTailCall implies that the function is being tail called.
7969 /// A jump is emitted instead of a call, and the return is already present in
7970 /// the outlined sequence. That is,
7972 /// I1 OUTLINED_FUNCTION:
7973 /// I2 --> jmp OUTLINED_FUNCTION I1
7977 /// * Call construction overhead: 1 (jump instruction)
7978 /// * Frame construction overhead: 0 (don't need to return)
7980 enum MachineOutlinerClass
{
7981 MachineOutlinerDefault
,
7982 MachineOutlinerTailCall
7985 outliner::OutlinedFunction
X86InstrInfo::getOutliningCandidateInfo(
7986 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
7987 unsigned SequenceSize
=
7988 std::accumulate(RepeatedSequenceLocs
[0].front(),
7989 std::next(RepeatedSequenceLocs
[0].back()), 0,
7990 [](unsigned Sum
, const MachineInstr
&MI
) {
7991 // FIXME: x86 doesn't implement getInstSizeInBytes, so
7992 // we can't tell the cost. Just assume each instruction
7994 if (MI
.isDebugInstr() || MI
.isKill())
7999 // FIXME: Use real size in bytes for call and ret instructions.
8000 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
8001 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
8002 C
.setCallInfo(MachineOutlinerTailCall
, 1);
8004 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
8005 0, // Number of bytes to emit frame.
8006 MachineOutlinerTailCall
// Type of frame.
8010 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
8011 C
.setCallInfo(MachineOutlinerDefault
, 1);
8013 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
, 1,
8014 MachineOutlinerDefault
);
8017 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
8018 bool OutlineFromLinkOnceODRs
) const {
8019 const Function
&F
= MF
.getFunction();
8021 // Does the function use a red zone? If it does, then we can't risk messing
8023 if (Subtarget
.getFrameLowering()->has128ByteRedZone(MF
)) {
8024 // It could have a red zone. If it does, then we don't want to touch it.
8025 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
8026 if (!X86FI
|| X86FI
->getUsesRedZone())
8030 // If we *don't* want to outline from things that could potentially be deduped
8031 // then return false.
8032 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
8035 // This function is viable for outlining, so return true.
8040 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
8041 MachineInstr
&MI
= *MIT
;
8042 // Don't allow debug values to impact outlining type.
8043 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
8044 return outliner::InstrType::Invisible
;
8046 // At this point, KILL instructions don't really tell us much so we can go
8047 // ahead and skip over them.
8049 return outliner::InstrType::Invisible
;
8051 // Is this a tail call? If yes, we can outline as a tail call.
8053 return outliner::InstrType::Legal
;
8055 // Is this the terminator of a basic block?
8056 if (MI
.isTerminator() || MI
.isReturn()) {
8058 // Does its parent have any successors in its MachineFunction?
8059 if (MI
.getParent()->succ_empty())
8060 return outliner::InstrType::Legal
;
8062 // It does, so we can't tail call it.
8063 return outliner::InstrType::Illegal
;
8066 // Don't outline anything that modifies or reads from the stack pointer.
8068 // FIXME: There are instructions which are being manually built without
8069 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
8070 // able to remove the extra checks once those are fixed up. For example,
8071 // sometimes we might get something like %rax = POP64r 1. This won't be
8072 // caught by modifiesRegister or readsRegister even though the instruction
8073 // really ought to be formed so that modifiesRegister/readsRegister would
8075 if (MI
.modifiesRegister(X86::RSP
, &RI
) || MI
.readsRegister(X86::RSP
, &RI
) ||
8076 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RSP
) ||
8077 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RSP
))
8078 return outliner::InstrType::Illegal
;
8080 // Outlined calls change the instruction pointer, so don't read from it.
8081 if (MI
.readsRegister(X86::RIP
, &RI
) ||
8082 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RIP
) ||
8083 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RIP
))
8084 return outliner::InstrType::Illegal
;
8086 // Positions can't safely be outlined.
8087 if (MI
.isPosition())
8088 return outliner::InstrType::Illegal
;
8090 // Make sure none of the operands of this instruction do anything tricky.
8091 for (const MachineOperand
&MOP
: MI
.operands())
8092 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
8093 MOP
.isTargetIndex())
8094 return outliner::InstrType::Illegal
;
8096 return outliner::InstrType::Legal
;
8099 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock
&MBB
,
8100 MachineFunction
&MF
,
8101 const outliner::OutlinedFunction
&OF
)
8103 // If we're a tail call, we already have a return, so don't do anything.
8104 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
)
8107 // We're a normal call, so our sequence doesn't have a return instruction.
8109 MachineInstr
*retq
= BuildMI(MF
, DebugLoc(), get(X86::RETQ
));
8110 MBB
.insert(MBB
.end(), retq
);
8113 MachineBasicBlock::iterator
8114 X86InstrInfo::insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
8115 MachineBasicBlock::iterator
&It
,
8116 MachineFunction
&MF
,
8117 const outliner::Candidate
&C
) const {
8118 // Is it a tail call?
8119 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
8120 // Yes, just insert a JMP.
8122 BuildMI(MF
, DebugLoc(), get(X86::TAILJMPd64
))
8123 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
8125 // No, insert a call.
8127 BuildMI(MF
, DebugLoc(), get(X86::CALL64pcrel32
))
8128 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
8134 #define GET_INSTRINFO_HELPERS
8135 #include "X86GenInstrInfo.inc"