1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CGSCCPassManager.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/LazyCallGraph.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
66 #define DEBUG_TYPE "functionattrs"
68 STATISTIC(NumReadNone
, "Number of functions marked readnone");
69 STATISTIC(NumReadOnly
, "Number of functions marked readonly");
70 STATISTIC(NumWriteOnly
, "Number of functions marked writeonly");
71 STATISTIC(NumNoCapture
, "Number of arguments marked nocapture");
72 STATISTIC(NumReturned
, "Number of arguments marked returned");
73 STATISTIC(NumReadNoneArg
, "Number of arguments marked readnone");
74 STATISTIC(NumReadOnlyArg
, "Number of arguments marked readonly");
75 STATISTIC(NumNoAlias
, "Number of function returns marked noalias");
76 STATISTIC(NumNonNullReturn
, "Number of function returns marked nonnull");
77 STATISTIC(NumNoRecurse
, "Number of functions marked as norecurse");
78 STATISTIC(NumNoUnwind
, "Number of functions marked as nounwind");
79 STATISTIC(NumNoFree
, "Number of functions marked as nofree");
81 static cl::opt
<bool> EnableNonnullArgPropagation(
82 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden
,
83 cl::desc("Try to propagate nonnull argument attributes from callsites to "
84 "caller functions."));
86 static cl::opt
<bool> DisableNoUnwindInference(
87 "disable-nounwind-inference", cl::Hidden
,
88 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
90 static cl::opt
<bool> DisableNoFreeInference(
91 "disable-nofree-inference", cl::Hidden
,
92 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
96 using SCCNodeSet
= SmallSetVector
<Function
*, 8>;
98 } // end anonymous namespace
100 /// Returns the memory access attribute for function F using AAR for AA results,
101 /// where SCCNodes is the current SCC.
103 /// If ThisBody is true, this function may examine the function body and will
104 /// return a result pertaining to this copy of the function. If it is false, the
105 /// result will be based only on AA results for the function declaration; it
106 /// will be assumed that some other (perhaps less optimized) version of the
107 /// function may be selected at link time.
108 static MemoryAccessKind
checkFunctionMemoryAccess(Function
&F
, bool ThisBody
,
110 const SCCNodeSet
&SCCNodes
) {
111 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(&F
);
112 if (MRB
== FMRB_DoesNotAccessMemory
)
117 if (AliasAnalysis::onlyReadsMemory(MRB
))
120 if (AliasAnalysis::doesNotReadMemory(MRB
))
121 return MAK_WriteOnly
;
123 // Conservatively assume it reads and writes to memory.
127 // Scan the function body for instructions that may read or write memory.
128 bool ReadsMemory
= false;
129 bool WritesMemory
= false;
130 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
131 Instruction
*I
= &*II
;
133 // Some instructions can be ignored even if they read or write memory.
134 // Detect these now, skipping to the next instruction if one is found.
135 if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
136 // Ignore calls to functions in the same SCC, as long as the call sites
137 // don't have operand bundles. Calls with operand bundles are allowed to
138 // have memory effects not described by the memory effects of the call
140 if (!Call
->hasOperandBundles() && Call
->getCalledFunction() &&
141 SCCNodes
.count(Call
->getCalledFunction()))
143 FunctionModRefBehavior MRB
= AAR
.getModRefBehavior(Call
);
144 ModRefInfo MRI
= createModRefInfo(MRB
);
146 // If the call doesn't access memory, we're done.
150 if (!AliasAnalysis::onlyAccessesArgPointees(MRB
)) {
151 // The call could access any memory. If that includes writes, note it.
154 // If it reads, note it.
160 // Check whether all pointer arguments point to local memory, and
161 // ignore calls that only access local memory.
162 for (CallSite::arg_iterator CI
= Call
->arg_begin(), CE
= Call
->arg_end();
165 if (!Arg
->getType()->isPtrOrPtrVectorTy())
169 I
->getAAMetadata(AAInfo
);
170 MemoryLocation
Loc(Arg
, LocationSize::unknown(), AAInfo
);
172 // Skip accesses to local or constant memory as they don't impact the
173 // externally visible mod/ref behavior.
174 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
178 // Writes non-local memory.
181 // Ok, it reads non-local memory.
185 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
186 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
187 if (!LI
->isVolatile()) {
188 MemoryLocation Loc
= MemoryLocation::get(LI
);
189 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
192 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
193 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
194 if (!SI
->isVolatile()) {
195 MemoryLocation Loc
= MemoryLocation::get(SI
);
196 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
199 } else if (VAArgInst
*VI
= dyn_cast
<VAArgInst
>(I
)) {
200 // Ignore vaargs on local memory.
201 MemoryLocation Loc
= MemoryLocation::get(VI
);
202 if (AAR
.pointsToConstantMemory(Loc
, /*OrLocal=*/true))
206 // Any remaining instructions need to be taken seriously! Check if they
207 // read or write memory.
209 // Writes memory, remember that.
210 WritesMemory
|= I
->mayWriteToMemory();
212 // If this instruction may read memory, remember that.
213 ReadsMemory
|= I
->mayReadFromMemory();
218 return MAK_WriteOnly
;
223 return ReadsMemory
? MAK_ReadOnly
: MAK_ReadNone
;
226 MemoryAccessKind
llvm::computeFunctionBodyMemoryAccess(Function
&F
,
228 return checkFunctionMemoryAccess(F
, /*ThisBody=*/true, AAR
, {});
231 /// Deduce readonly/readnone attributes for the SCC.
232 template <typename AARGetterT
>
233 static bool addReadAttrs(const SCCNodeSet
&SCCNodes
, AARGetterT
&&AARGetter
) {
234 // Check if any of the functions in the SCC read or write memory. If they
235 // write memory then they can't be marked readnone or readonly.
236 bool ReadsMemory
= false;
237 bool WritesMemory
= false;
238 for (Function
*F
: SCCNodes
) {
239 // Call the callable parameter to look up AA results for this function.
240 AAResults
&AAR
= AARGetter(*F
);
242 // Non-exact function definitions may not be selected at link time, and an
243 // alternative version that writes to memory may be selected. See the
244 // comment on GlobalValue::isDefinitionExact for more details.
245 switch (checkFunctionMemoryAccess(*F
, F
->hasExactDefinition(),
261 // If the SCC contains both functions that read and functions that write, then
262 // we cannot add readonly attributes.
263 if (ReadsMemory
&& WritesMemory
)
266 // Success! Functions in this SCC do not access memory, or only read memory.
267 // Give them the appropriate attribute.
268 bool MadeChange
= false;
270 for (Function
*F
: SCCNodes
) {
271 if (F
->doesNotAccessMemory())
275 if (F
->onlyReadsMemory() && ReadsMemory
)
279 if (F
->doesNotReadMemory() && WritesMemory
)
284 // Clear out any existing attributes.
285 F
->removeFnAttr(Attribute::ReadOnly
);
286 F
->removeFnAttr(Attribute::ReadNone
);
287 F
->removeFnAttr(Attribute::WriteOnly
);
289 if (!WritesMemory
&& !ReadsMemory
) {
290 // Clear out any "access range attributes" if readnone was deduced.
291 F
->removeFnAttr(Attribute::ArgMemOnly
);
292 F
->removeFnAttr(Attribute::InaccessibleMemOnly
);
293 F
->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly
);
296 // Add in the new attribute.
297 if (WritesMemory
&& !ReadsMemory
)
298 F
->addFnAttr(Attribute::WriteOnly
);
300 F
->addFnAttr(ReadsMemory
? Attribute::ReadOnly
: Attribute::ReadNone
);
302 if (WritesMemory
&& !ReadsMemory
)
304 else if (ReadsMemory
)
315 /// For a given pointer Argument, this retains a list of Arguments of functions
316 /// in the same SCC that the pointer data flows into. We use this to build an
317 /// SCC of the arguments.
318 struct ArgumentGraphNode
{
319 Argument
*Definition
;
320 SmallVector
<ArgumentGraphNode
*, 4> Uses
;
323 class ArgumentGraph
{
324 // We store pointers to ArgumentGraphNode objects, so it's important that
325 // that they not move around upon insert.
326 using ArgumentMapTy
= std::map
<Argument
*, ArgumentGraphNode
>;
328 ArgumentMapTy ArgumentMap
;
330 // There is no root node for the argument graph, in fact:
331 // void f(int *x, int *y) { if (...) f(x, y); }
332 // is an example where the graph is disconnected. The SCCIterator requires a
333 // single entry point, so we maintain a fake ("synthetic") root node that
334 // uses every node. Because the graph is directed and nothing points into
335 // the root, it will not participate in any SCCs (except for its own).
336 ArgumentGraphNode SyntheticRoot
;
339 ArgumentGraph() { SyntheticRoot
.Definition
= nullptr; }
341 using iterator
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
343 iterator
begin() { return SyntheticRoot
.Uses
.begin(); }
344 iterator
end() { return SyntheticRoot
.Uses
.end(); }
345 ArgumentGraphNode
*getEntryNode() { return &SyntheticRoot
; }
347 ArgumentGraphNode
*operator[](Argument
*A
) {
348 ArgumentGraphNode
&Node
= ArgumentMap
[A
];
350 SyntheticRoot
.Uses
.push_back(&Node
);
355 /// This tracker checks whether callees are in the SCC, and if so it does not
356 /// consider that a capture, instead adding it to the "Uses" list and
357 /// continuing with the analysis.
358 struct ArgumentUsesTracker
: public CaptureTracker
{
359 ArgumentUsesTracker(const SCCNodeSet
&SCCNodes
) : SCCNodes(SCCNodes
) {}
361 void tooManyUses() override
{ Captured
= true; }
363 bool captured(const Use
*U
) override
{
364 CallSite
CS(U
->getUser());
365 if (!CS
.getInstruction()) {
370 Function
*F
= CS
.getCalledFunction();
371 if (!F
|| !F
->hasExactDefinition() || !SCCNodes
.count(F
)) {
376 // Note: the callee and the two successor blocks *follow* the argument
377 // operands. This means there is no need to adjust UseIndex to account for
381 std::distance(const_cast<const Use
*>(CS
.arg_begin()), U
);
383 assert(UseIndex
< CS
.data_operands_size() &&
384 "Indirect function calls should have been filtered above!");
386 if (UseIndex
>= CS
.getNumArgOperands()) {
387 // Data operand, but not a argument operand -- must be a bundle operand
388 assert(CS
.hasOperandBundles() && "Must be!");
390 // CaptureTracking told us that we're being captured by an operand bundle
391 // use. In this case it does not matter if the callee is within our SCC
392 // or not -- we've been captured in some unknown way, and we have to be
398 if (UseIndex
>= F
->arg_size()) {
399 assert(F
->isVarArg() && "More params than args in non-varargs call");
404 Uses
.push_back(&*std::next(F
->arg_begin(), UseIndex
));
408 // True only if certainly captured (used outside our SCC).
409 bool Captured
= false;
411 // Uses within our SCC.
412 SmallVector
<Argument
*, 4> Uses
;
414 const SCCNodeSet
&SCCNodes
;
417 } // end anonymous namespace
421 template <> struct GraphTraits
<ArgumentGraphNode
*> {
422 using NodeRef
= ArgumentGraphNode
*;
423 using ChildIteratorType
= SmallVectorImpl
<ArgumentGraphNode
*>::iterator
;
425 static NodeRef
getEntryNode(NodeRef A
) { return A
; }
426 static ChildIteratorType
child_begin(NodeRef N
) { return N
->Uses
.begin(); }
427 static ChildIteratorType
child_end(NodeRef N
) { return N
->Uses
.end(); }
431 struct GraphTraits
<ArgumentGraph
*> : public GraphTraits
<ArgumentGraphNode
*> {
432 static NodeRef
getEntryNode(ArgumentGraph
*AG
) { return AG
->getEntryNode(); }
434 static ChildIteratorType
nodes_begin(ArgumentGraph
*AG
) {
438 static ChildIteratorType
nodes_end(ArgumentGraph
*AG
) { return AG
->end(); }
441 } // end namespace llvm
443 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
444 static Attribute::AttrKind
445 determinePointerReadAttrs(Argument
*A
,
446 const SmallPtrSet
<Argument
*, 8> &SCCNodes
) {
447 SmallVector
<Use
*, 32> Worklist
;
448 SmallPtrSet
<Use
*, 32> Visited
;
450 // inalloca arguments are always clobbered by the call.
451 if (A
->hasInAllocaAttr())
452 return Attribute::None
;
455 // We don't need to track IsWritten. If A is written to, return immediately.
457 for (Use
&U
: A
->uses()) {
459 Worklist
.push_back(&U
);
462 while (!Worklist
.empty()) {
463 Use
*U
= Worklist
.pop_back_val();
464 Instruction
*I
= cast
<Instruction
>(U
->getUser());
466 switch (I
->getOpcode()) {
467 case Instruction::BitCast
:
468 case Instruction::GetElementPtr
:
469 case Instruction::PHI
:
470 case Instruction::Select
:
471 case Instruction::AddrSpaceCast
:
472 // The original value is not read/written via this if the new value isn't.
473 for (Use
&UU
: I
->uses())
474 if (Visited
.insert(&UU
).second
)
475 Worklist
.push_back(&UU
);
478 case Instruction::Call
:
479 case Instruction::Invoke
: {
480 bool Captures
= true;
482 if (I
->getType()->isVoidTy())
485 auto AddUsersToWorklistIfCapturing
= [&] {
487 for (Use
&UU
: I
->uses())
488 if (Visited
.insert(&UU
).second
)
489 Worklist
.push_back(&UU
);
493 if (CS
.doesNotAccessMemory()) {
494 AddUsersToWorklistIfCapturing();
498 Function
*F
= CS
.getCalledFunction();
500 if (CS
.onlyReadsMemory()) {
502 AddUsersToWorklistIfCapturing();
505 return Attribute::None
;
508 // Note: the callee and the two successor blocks *follow* the argument
509 // operands. This means there is no need to adjust UseIndex to account
512 unsigned UseIndex
= std::distance(CS
.arg_begin(), U
);
514 // U cannot be the callee operand use: since we're exploring the
515 // transitive uses of an Argument, having such a use be a callee would
516 // imply the CallSite is an indirect call or invoke; and we'd take the
518 assert(UseIndex
< CS
.data_operands_size() &&
519 "Data operand use expected!");
521 bool IsOperandBundleUse
= UseIndex
>= CS
.getNumArgOperands();
523 if (UseIndex
>= F
->arg_size() && !IsOperandBundleUse
) {
524 assert(F
->isVarArg() && "More params than args in non-varargs call");
525 return Attribute::None
;
528 Captures
&= !CS
.doesNotCapture(UseIndex
);
530 // Since the optimizer (by design) cannot see the data flow corresponding
531 // to a operand bundle use, these cannot participate in the optimistic SCC
532 // analysis. Instead, we model the operand bundle uses as arguments in
533 // call to a function external to the SCC.
534 if (IsOperandBundleUse
||
535 !SCCNodes
.count(&*std::next(F
->arg_begin(), UseIndex
))) {
537 // The accessors used on CallSite here do the right thing for calls and
538 // invokes with operand bundles.
540 if (!CS
.onlyReadsMemory() && !CS
.onlyReadsMemory(UseIndex
))
541 return Attribute::None
;
542 if (!CS
.doesNotAccessMemory(UseIndex
))
546 AddUsersToWorklistIfCapturing();
550 case Instruction::Load
:
551 // A volatile load has side effects beyond what readonly can be relied
553 if (cast
<LoadInst
>(I
)->isVolatile())
554 return Attribute::None
;
559 case Instruction::ICmp
:
560 case Instruction::Ret
:
564 return Attribute::None
;
568 return IsRead
? Attribute::ReadOnly
: Attribute::ReadNone
;
571 /// Deduce returned attributes for the SCC.
572 static bool addArgumentReturnedAttrs(const SCCNodeSet
&SCCNodes
) {
573 bool Changed
= false;
575 // Check each function in turn, determining if an argument is always returned.
576 for (Function
*F
: SCCNodes
) {
577 // We can infer and propagate function attributes only when we know that the
578 // definition we'll get at link time is *exactly* the definition we see now.
579 // For more details, see GlobalValue::mayBeDerefined.
580 if (!F
->hasExactDefinition())
583 if (F
->getReturnType()->isVoidTy())
586 // There is nothing to do if an argument is already marked as 'returned'.
587 if (llvm::any_of(F
->args(),
588 [](const Argument
&Arg
) { return Arg
.hasReturnedAttr(); }))
591 auto FindRetArg
= [&]() -> Value
* {
592 Value
*RetArg
= nullptr;
593 for (BasicBlock
&BB
: *F
)
594 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
595 // Note that stripPointerCasts should look through functions with
596 // returned arguments.
597 Value
*RetVal
= Ret
->getReturnValue()->stripPointerCasts();
598 if (!isa
<Argument
>(RetVal
) || RetVal
->getType() != F
->getReturnType())
603 else if (RetArg
!= RetVal
)
610 if (Value
*RetArg
= FindRetArg()) {
611 auto *A
= cast
<Argument
>(RetArg
);
612 A
->addAttr(Attribute::Returned
);
621 /// If a callsite has arguments that are also arguments to the parent function,
622 /// try to propagate attributes from the callsite's arguments to the parent's
623 /// arguments. This may be important because inlining can cause information loss
624 /// when attribute knowledge disappears with the inlined call.
625 static bool addArgumentAttrsFromCallsites(Function
&F
) {
626 if (!EnableNonnullArgPropagation
)
629 bool Changed
= false;
631 // For an argument attribute to transfer from a callsite to the parent, the
632 // call must be guaranteed to execute every time the parent is called.
633 // Conservatively, just check for calls in the entry block that are guaranteed
635 // TODO: This could be enhanced by testing if the callsite post-dominates the
636 // entry block or by doing simple forward walks or backward walks to the
638 BasicBlock
&Entry
= F
.getEntryBlock();
639 for (Instruction
&I
: Entry
) {
640 if (auto CS
= CallSite(&I
)) {
641 if (auto *CalledFunc
= CS
.getCalledFunction()) {
642 for (auto &CSArg
: CalledFunc
->args()) {
643 if (!CSArg
.hasNonNullAttr())
646 // If the non-null callsite argument operand is an argument to 'F'
647 // (the caller) and the call is guaranteed to execute, then the value
648 // must be non-null throughout 'F'.
649 auto *FArg
= dyn_cast
<Argument
>(CS
.getArgOperand(CSArg
.getArgNo()));
650 if (FArg
&& !FArg
->hasNonNullAttr()) {
651 FArg
->addAttr(Attribute::NonNull
);
657 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
664 static bool addReadAttr(Argument
*A
, Attribute::AttrKind R
) {
665 assert((R
== Attribute::ReadOnly
|| R
== Attribute::ReadNone
)
666 && "Must be a Read attribute.");
667 assert(A
&& "Argument must not be null.");
669 // If the argument already has the attribute, nothing needs to be done.
670 if (A
->hasAttribute(R
))
673 // Otherwise, remove potentially conflicting attribute, add the new one,
674 // and update statistics.
675 A
->removeAttr(Attribute::WriteOnly
);
676 A
->removeAttr(Attribute::ReadOnly
);
677 A
->removeAttr(Attribute::ReadNone
);
679 R
== Attribute::ReadOnly
? ++NumReadOnlyArg
: ++NumReadNoneArg
;
683 /// Deduce nocapture attributes for the SCC.
684 static bool addArgumentAttrs(const SCCNodeSet
&SCCNodes
) {
685 bool Changed
= false;
689 // Check each function in turn, determining which pointer arguments are not
691 for (Function
*F
: SCCNodes
) {
692 // We can infer and propagate function attributes only when we know that the
693 // definition we'll get at link time is *exactly* the definition we see now.
694 // For more details, see GlobalValue::mayBeDerefined.
695 if (!F
->hasExactDefinition())
698 Changed
|= addArgumentAttrsFromCallsites(*F
);
700 // Functions that are readonly (or readnone) and nounwind and don't return
701 // a value can't capture arguments. Don't analyze them.
702 if (F
->onlyReadsMemory() && F
->doesNotThrow() &&
703 F
->getReturnType()->isVoidTy()) {
704 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
706 if (A
->getType()->isPointerTy() && !A
->hasNoCaptureAttr()) {
707 A
->addAttr(Attribute::NoCapture
);
715 for (Function::arg_iterator A
= F
->arg_begin(), E
= F
->arg_end(); A
!= E
;
717 if (!A
->getType()->isPointerTy())
719 bool HasNonLocalUses
= false;
720 if (!A
->hasNoCaptureAttr()) {
721 ArgumentUsesTracker
Tracker(SCCNodes
);
722 PointerMayBeCaptured(&*A
, &Tracker
);
723 if (!Tracker
.Captured
) {
724 if (Tracker
.Uses
.empty()) {
725 // If it's trivially not captured, mark it nocapture now.
726 A
->addAttr(Attribute::NoCapture
);
730 // If it's not trivially captured and not trivially not captured,
731 // then it must be calling into another function in our SCC. Save
732 // its particulars for Argument-SCC analysis later.
733 ArgumentGraphNode
*Node
= AG
[&*A
];
734 for (Argument
*Use
: Tracker
.Uses
) {
735 Node
->Uses
.push_back(AG
[Use
]);
737 HasNonLocalUses
= true;
741 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
743 if (!HasNonLocalUses
&& !A
->onlyReadsMemory()) {
744 // Can we determine that it's readonly/readnone without doing an SCC?
745 // Note that we don't allow any calls at all here, or else our result
746 // will be dependent on the iteration order through the functions in the
748 SmallPtrSet
<Argument
*, 8> Self
;
750 Attribute::AttrKind R
= determinePointerReadAttrs(&*A
, Self
);
751 if (R
!= Attribute::None
)
752 Changed
= addReadAttr(A
, R
);
757 // The graph we've collected is partial because we stopped scanning for
758 // argument uses once we solved the argument trivially. These partial nodes
759 // show up as ArgumentGraphNode objects with an empty Uses list, and for
760 // these nodes the final decision about whether they capture has already been
761 // made. If the definition doesn't have a 'nocapture' attribute by now, it
764 for (scc_iterator
<ArgumentGraph
*> I
= scc_begin(&AG
); !I
.isAtEnd(); ++I
) {
765 const std::vector
<ArgumentGraphNode
*> &ArgumentSCC
= *I
;
766 if (ArgumentSCC
.size() == 1) {
767 if (!ArgumentSCC
[0]->Definition
)
768 continue; // synthetic root node
770 // eg. "void f(int* x) { if (...) f(x); }"
771 if (ArgumentSCC
[0]->Uses
.size() == 1 &&
772 ArgumentSCC
[0]->Uses
[0] == ArgumentSCC
[0]) {
773 Argument
*A
= ArgumentSCC
[0]->Definition
;
774 A
->addAttr(Attribute::NoCapture
);
781 bool SCCCaptured
= false;
782 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
783 I
!= E
&& !SCCCaptured
; ++I
) {
784 ArgumentGraphNode
*Node
= *I
;
785 if (Node
->Uses
.empty()) {
786 if (!Node
->Definition
->hasNoCaptureAttr())
793 SmallPtrSet
<Argument
*, 8> ArgumentSCCNodes
;
794 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
795 // quickly looking up whether a given Argument is in this ArgumentSCC.
796 for (ArgumentGraphNode
*I
: ArgumentSCC
) {
797 ArgumentSCCNodes
.insert(I
->Definition
);
800 for (auto I
= ArgumentSCC
.begin(), E
= ArgumentSCC
.end();
801 I
!= E
&& !SCCCaptured
; ++I
) {
802 ArgumentGraphNode
*N
= *I
;
803 for (ArgumentGraphNode
*Use
: N
->Uses
) {
804 Argument
*A
= Use
->Definition
;
805 if (A
->hasNoCaptureAttr() || ArgumentSCCNodes
.count(A
))
814 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
815 Argument
*A
= ArgumentSCC
[i
]->Definition
;
816 A
->addAttr(Attribute::NoCapture
);
821 // We also want to compute readonly/readnone. With a small number of false
822 // negatives, we can assume that any pointer which is captured isn't going
823 // to be provably readonly or readnone, since by definition we can't
824 // analyze all uses of a captured pointer.
826 // The false negatives happen when the pointer is captured by a function
827 // that promises readonly/readnone behaviour on the pointer, then the
828 // pointer's lifetime ends before anything that writes to arbitrary memory.
829 // Also, a readonly/readnone pointer may be returned, but returning a
830 // pointer is capturing it.
832 Attribute::AttrKind ReadAttr
= Attribute::ReadNone
;
833 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
834 Argument
*A
= ArgumentSCC
[i
]->Definition
;
835 Attribute::AttrKind K
= determinePointerReadAttrs(A
, ArgumentSCCNodes
);
836 if (K
== Attribute::ReadNone
)
838 if (K
== Attribute::ReadOnly
) {
839 ReadAttr
= Attribute::ReadOnly
;
846 if (ReadAttr
!= Attribute::None
) {
847 for (unsigned i
= 0, e
= ArgumentSCC
.size(); i
!= e
; ++i
) {
848 Argument
*A
= ArgumentSCC
[i
]->Definition
;
849 Changed
= addReadAttr(A
, ReadAttr
);
857 /// Tests whether a function is "malloc-like".
859 /// A function is "malloc-like" if it returns either null or a pointer that
860 /// doesn't alias any other pointer visible to the caller.
861 static bool isFunctionMallocLike(Function
*F
, const SCCNodeSet
&SCCNodes
) {
862 SmallSetVector
<Value
*, 8> FlowsToReturn
;
863 for (BasicBlock
&BB
: *F
)
864 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
865 FlowsToReturn
.insert(Ret
->getReturnValue());
867 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
868 Value
*RetVal
= FlowsToReturn
[i
];
870 if (Constant
*C
= dyn_cast
<Constant
>(RetVal
)) {
871 if (!C
->isNullValue() && !isa
<UndefValue
>(C
))
877 if (isa
<Argument
>(RetVal
))
880 if (Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
))
881 switch (RVI
->getOpcode()) {
882 // Extend the analysis by looking upwards.
883 case Instruction::BitCast
:
884 case Instruction::GetElementPtr
:
885 case Instruction::AddrSpaceCast
:
886 FlowsToReturn
.insert(RVI
->getOperand(0));
888 case Instruction::Select
: {
889 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
890 FlowsToReturn
.insert(SI
->getTrueValue());
891 FlowsToReturn
.insert(SI
->getFalseValue());
894 case Instruction::PHI
: {
895 PHINode
*PN
= cast
<PHINode
>(RVI
);
896 for (Value
*IncValue
: PN
->incoming_values())
897 FlowsToReturn
.insert(IncValue
);
901 // Check whether the pointer came from an allocation.
902 case Instruction::Alloca
:
904 case Instruction::Call
:
905 case Instruction::Invoke
: {
907 if (CS
.hasRetAttr(Attribute::NoAlias
))
909 if (CS
.getCalledFunction() && SCCNodes
.count(CS
.getCalledFunction()))
914 return false; // Did not come from an allocation.
917 if (PointerMayBeCaptured(RetVal
, false, /*StoreCaptures=*/false))
924 /// Deduce noalias attributes for the SCC.
925 static bool addNoAliasAttrs(const SCCNodeSet
&SCCNodes
) {
926 // Check each function in turn, determining which functions return noalias
928 for (Function
*F
: SCCNodes
) {
930 if (F
->returnDoesNotAlias())
933 // We can infer and propagate function attributes only when we know that the
934 // definition we'll get at link time is *exactly* the definition we see now.
935 // For more details, see GlobalValue::mayBeDerefined.
936 if (!F
->hasExactDefinition())
939 // We annotate noalias return values, which are only applicable to
941 if (!F
->getReturnType()->isPointerTy())
944 if (!isFunctionMallocLike(F
, SCCNodes
))
948 bool MadeChange
= false;
949 for (Function
*F
: SCCNodes
) {
950 if (F
->returnDoesNotAlias() ||
951 !F
->getReturnType()->isPointerTy())
954 F
->setReturnDoesNotAlias();
962 /// Tests whether this function is known to not return null.
964 /// Requires that the function returns a pointer.
966 /// Returns true if it believes the function will not return a null, and sets
967 /// \p Speculative based on whether the returned conclusion is a speculative
968 /// conclusion due to SCC calls.
969 static bool isReturnNonNull(Function
*F
, const SCCNodeSet
&SCCNodes
,
971 assert(F
->getReturnType()->isPointerTy() &&
972 "nonnull only meaningful on pointer types");
975 SmallSetVector
<Value
*, 8> FlowsToReturn
;
976 for (BasicBlock
&BB
: *F
)
977 if (auto *Ret
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
978 FlowsToReturn
.insert(Ret
->getReturnValue());
980 auto &DL
= F
->getParent()->getDataLayout();
982 for (unsigned i
= 0; i
!= FlowsToReturn
.size(); ++i
) {
983 Value
*RetVal
= FlowsToReturn
[i
];
985 // If this value is locally known to be non-null, we're good
986 if (isKnownNonZero(RetVal
, DL
))
989 // Otherwise, we need to look upwards since we can't make any local
991 Instruction
*RVI
= dyn_cast
<Instruction
>(RetVal
);
994 switch (RVI
->getOpcode()) {
995 // Extend the analysis by looking upwards.
996 case Instruction::BitCast
:
997 case Instruction::GetElementPtr
:
998 case Instruction::AddrSpaceCast
:
999 FlowsToReturn
.insert(RVI
->getOperand(0));
1001 case Instruction::Select
: {
1002 SelectInst
*SI
= cast
<SelectInst
>(RVI
);
1003 FlowsToReturn
.insert(SI
->getTrueValue());
1004 FlowsToReturn
.insert(SI
->getFalseValue());
1007 case Instruction::PHI
: {
1008 PHINode
*PN
= cast
<PHINode
>(RVI
);
1009 for (int i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
1010 FlowsToReturn
.insert(PN
->getIncomingValue(i
));
1013 case Instruction::Call
:
1014 case Instruction::Invoke
: {
1016 Function
*Callee
= CS
.getCalledFunction();
1017 // A call to a node within the SCC is assumed to return null until
1019 if (Callee
&& SCCNodes
.count(Callee
)) {
1026 return false; // Unknown source, may be null
1028 llvm_unreachable("should have either continued or returned");
1034 /// Deduce nonnull attributes for the SCC.
1035 static bool addNonNullAttrs(const SCCNodeSet
&SCCNodes
) {
1036 // Speculative that all functions in the SCC return only nonnull
1037 // pointers. We may refute this as we analyze functions.
1038 bool SCCReturnsNonNull
= true;
1040 bool MadeChange
= false;
1042 // Check each function in turn, determining which functions return nonnull
1044 for (Function
*F
: SCCNodes
) {
1046 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1047 Attribute::NonNull
))
1050 // We can infer and propagate function attributes only when we know that the
1051 // definition we'll get at link time is *exactly* the definition we see now.
1052 // For more details, see GlobalValue::mayBeDerefined.
1053 if (!F
->hasExactDefinition())
1056 // We annotate nonnull return values, which are only applicable to
1058 if (!F
->getReturnType()->isPointerTy())
1061 bool Speculative
= false;
1062 if (isReturnNonNull(F
, SCCNodes
, Speculative
)) {
1064 // Mark the function eagerly since we may discover a function
1065 // which prevents us from speculating about the entire SCC
1066 LLVM_DEBUG(dbgs() << "Eagerly marking " << F
->getName()
1067 << " as nonnull\n");
1068 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1074 // At least one function returns something which could be null, can't
1075 // speculate any more.
1076 SCCReturnsNonNull
= false;
1079 if (SCCReturnsNonNull
) {
1080 for (Function
*F
: SCCNodes
) {
1081 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1082 Attribute::NonNull
) ||
1083 !F
->getReturnType()->isPointerTy())
1086 LLVM_DEBUG(dbgs() << "SCC marking " << F
->getName() << " as nonnull\n");
1087 F
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
1098 /// Collects a set of attribute inference requests and performs them all in one
1099 /// go on a single SCC Node. Inference involves scanning function bodies
1100 /// looking for instructions that violate attribute assumptions.
1101 /// As soon as all the bodies are fine we are free to set the attribute.
1102 /// Customization of inference for individual attributes is performed by
1103 /// providing a handful of predicates for each attribute.
1104 class AttributeInferer
{
1106 /// Describes a request for inference of a single attribute.
1107 struct InferenceDescriptor
{
1109 /// Returns true if this function does not have to be handled.
1110 /// General intent for this predicate is to provide an optimization
1111 /// for functions that do not need this attribute inference at all
1112 /// (say, for functions that already have the attribute).
1113 std::function
<bool(const Function
&)> SkipFunction
;
1115 /// Returns true if this instruction violates attribute assumptions.
1116 std::function
<bool(Instruction
&)> InstrBreaksAttribute
;
1118 /// Sets the inferred attribute for this function.
1119 std::function
<void(Function
&)> SetAttribute
;
1121 /// Attribute we derive.
1122 Attribute::AttrKind AKind
;
1124 /// If true, only "exact" definitions can be used to infer this attribute.
1125 /// See GlobalValue::isDefinitionExact.
1126 bool RequiresExactDefinition
;
1128 InferenceDescriptor(Attribute::AttrKind AK
,
1129 std::function
<bool(const Function
&)> SkipFunc
,
1130 std::function
<bool(Instruction
&)> InstrScan
,
1131 std::function
<void(Function
&)> SetAttr
,
1133 : SkipFunction(SkipFunc
), InstrBreaksAttribute(InstrScan
),
1134 SetAttribute(SetAttr
), AKind(AK
),
1135 RequiresExactDefinition(ReqExactDef
) {}
1139 SmallVector
<InferenceDescriptor
, 4> InferenceDescriptors
;
1142 void registerAttrInference(InferenceDescriptor AttrInference
) {
1143 InferenceDescriptors
.push_back(AttrInference
);
1146 bool run(const SCCNodeSet
&SCCNodes
);
1149 /// Perform all the requested attribute inference actions according to the
1150 /// attribute predicates stored before.
1151 bool AttributeInferer::run(const SCCNodeSet
&SCCNodes
) {
1152 SmallVector
<InferenceDescriptor
, 4> InferInSCC
= InferenceDescriptors
;
1153 // Go through all the functions in SCC and check corresponding attribute
1154 // assumptions for each of them. Attributes that are invalid for this SCC
1155 // will be removed from InferInSCC.
1156 for (Function
*F
: SCCNodes
) {
1158 // No attributes whose assumptions are still valid - done.
1159 if (InferInSCC
.empty())
1162 // Check if our attributes ever need scanning/can be scanned.
1163 llvm::erase_if(InferInSCC
, [F
](const InferenceDescriptor
&ID
) {
1164 if (ID
.SkipFunction(*F
))
1167 // Remove from further inference (invalidate) when visiting a function
1168 // that has no instructions to scan/has an unsuitable definition.
1169 return F
->isDeclaration() ||
1170 (ID
.RequiresExactDefinition
&& !F
->hasExactDefinition());
1173 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1174 // set up the F instructions scan to verify assumptions of the attribute.
1175 SmallVector
<InferenceDescriptor
, 4> InferInThisFunc
;
1177 InferInSCC
, std::back_inserter(InferInThisFunc
),
1178 [F
](const InferenceDescriptor
&ID
) { return !ID
.SkipFunction(*F
); });
1180 if (InferInThisFunc
.empty())
1183 // Start instruction scan.
1184 for (Instruction
&I
: instructions(*F
)) {
1185 llvm::erase_if(InferInThisFunc
, [&](const InferenceDescriptor
&ID
) {
1186 if (!ID
.InstrBreaksAttribute(I
))
1188 // Remove attribute from further inference on any other functions
1189 // because attribute assumptions have just been violated.
1190 llvm::erase_if(InferInSCC
, [&ID
](const InferenceDescriptor
&D
) {
1191 return D
.AKind
== ID
.AKind
;
1193 // Remove attribute from the rest of current instruction scan.
1197 if (InferInThisFunc
.empty())
1202 if (InferInSCC
.empty())
1205 bool Changed
= false;
1206 for (Function
*F
: SCCNodes
)
1207 // At this point InferInSCC contains only functions that were either:
1208 // - explicitly skipped from scan/inference, or
1209 // - verified to have no instructions that break attribute assumptions.
1210 // Hence we just go and force the attribute for all non-skipped functions.
1211 for (auto &ID
: InferInSCC
) {
1212 if (ID
.SkipFunction(*F
))
1215 ID
.SetAttribute(*F
);
1220 } // end anonymous namespace
1222 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1223 static bool InstrBreaksNonConvergent(Instruction
&I
,
1224 const SCCNodeSet
&SCCNodes
) {
1225 const CallSite
CS(&I
);
1226 // Breaks non-convergent assumption if CS is a convergent call to a function
1228 return CS
&& CS
.isConvergent() && SCCNodes
.count(CS
.getCalledFunction()) == 0;
1231 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1232 static bool InstrBreaksNonThrowing(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1235 if (const auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1236 if (Function
*Callee
= CI
->getCalledFunction()) {
1237 // I is a may-throw call to a function inside our SCC. This doesn't
1238 // invalidate our current working assumption that the SCC is no-throw; we
1239 // just have to scan that other function.
1240 if (SCCNodes
.count(Callee
) > 0)
1247 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1248 static bool InstrBreaksNoFree(Instruction
&I
, const SCCNodeSet
&SCCNodes
) {
1253 Function
*Callee
= CS
.getCalledFunction();
1257 if (Callee
->doesNotFreeMemory())
1260 if (SCCNodes
.count(Callee
) > 0)
1266 /// Infer attributes from all functions in the SCC by scanning every
1267 /// instruction for compliance to the attribute assumptions. Currently it
1269 /// - removal of Convergent attribute
1270 /// - addition of NoUnwind attribute
1272 /// Returns true if any changes to function attributes were made.
1273 static bool inferAttrsFromFunctionBodies(const SCCNodeSet
&SCCNodes
) {
1275 AttributeInferer AI
;
1277 // Request to remove the convergent attribute from all functions in the SCC
1278 // if every callsite within the SCC is not convergent (except for calls
1279 // to functions within the SCC).
1280 // Note: Removal of the attr from the callsites will happen in
1281 // InstCombineCalls separately.
1282 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1283 Attribute::Convergent
,
1284 // Skip non-convergent functions.
1285 [](const Function
&F
) { return !F
.isConvergent(); },
1286 // Instructions that break non-convergent assumption.
1287 [SCCNodes
](Instruction
&I
) {
1288 return InstrBreaksNonConvergent(I
, SCCNodes
);
1291 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F
.getName()
1293 F
.setNotConvergent();
1295 /* RequiresExactDefinition= */ false});
1297 if (!DisableNoUnwindInference
)
1298 // Request to infer nounwind attribute for all the functions in the SCC if
1299 // every callsite within the SCC is not throwing (except for calls to
1300 // functions within the SCC). Note that nounwind attribute suffers from
1301 // derefinement - results may change depending on how functions are
1302 // optimized. Thus it can be inferred only from exact definitions.
1303 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1304 Attribute::NoUnwind
,
1305 // Skip non-throwing functions.
1306 [](const Function
&F
) { return F
.doesNotThrow(); },
1307 // Instructions that break non-throwing assumption.
1308 [SCCNodes
](Instruction
&I
) {
1309 return InstrBreaksNonThrowing(I
, SCCNodes
);
1313 << "Adding nounwind attr to fn " << F
.getName() << "\n");
1314 F
.setDoesNotThrow();
1317 /* RequiresExactDefinition= */ true});
1319 if (!DisableNoFreeInference
)
1320 // Request to infer nofree attribute for all the functions in the SCC if
1321 // every callsite within the SCC does not directly or indirectly free
1322 // memory (except for calls to functions within the SCC). Note that nofree
1323 // attribute suffers from derefinement - results may change depending on
1324 // how functions are optimized. Thus it can be inferred only from exact
1326 AI
.registerAttrInference(AttributeInferer::InferenceDescriptor
{
1328 // Skip functions known not to free memory.
1329 [](const Function
&F
) { return F
.doesNotFreeMemory(); },
1330 // Instructions that break non-deallocating assumption.
1331 [SCCNodes
](Instruction
&I
) {
1332 return InstrBreaksNoFree(I
, SCCNodes
);
1336 << "Adding nofree attr to fn " << F
.getName() << "\n");
1337 F
.setDoesNotFreeMemory();
1340 /* RequiresExactDefinition= */ true});
1342 // Perform all the requested attribute inference actions.
1343 return AI
.run(SCCNodes
);
1346 static bool setDoesNotRecurse(Function
&F
) {
1347 if (F
.doesNotRecurse())
1349 F
.setDoesNotRecurse();
1354 static bool addNoRecurseAttrs(const SCCNodeSet
&SCCNodes
) {
1355 // Try and identify functions that do not recurse.
1357 // If the SCC contains multiple nodes we know for sure there is recursion.
1358 if (SCCNodes
.size() != 1)
1361 Function
*F
= *SCCNodes
.begin();
1362 if (!F
|| !F
->hasExactDefinition() || F
->doesNotRecurse())
1365 // If all of the calls in F are identifiable and are to norecurse functions, F
1366 // is norecurse. This check also detects self-recursion as F is not currently
1367 // marked norecurse, so any called from F to F will not be marked norecurse.
1369 for (auto &I
: BB
.instructionsWithoutDebug())
1370 if (auto CS
= CallSite(&I
)) {
1371 Function
*Callee
= CS
.getCalledFunction();
1372 if (!Callee
|| Callee
== F
|| !Callee
->doesNotRecurse())
1373 // Function calls a potentially recursive function.
1377 // Every call was to a non-recursive function other than this function, and
1378 // we have no indirect recursion as the SCC size is one. This function cannot
1380 return setDoesNotRecurse(*F
);
1383 template <typename AARGetterT
>
1384 static bool deriveAttrsInPostOrder(SCCNodeSet
&SCCNodes
,
1385 AARGetterT
&&AARGetter
,
1386 bool HasUnknownCall
) {
1387 bool Changed
= false;
1389 // Bail if the SCC only contains optnone functions.
1390 if (SCCNodes
.empty())
1393 Changed
|= addArgumentReturnedAttrs(SCCNodes
);
1394 Changed
|= addReadAttrs(SCCNodes
, AARGetter
);
1395 Changed
|= addArgumentAttrs(SCCNodes
);
1397 // If we have no external nodes participating in the SCC, we can deduce some
1398 // more precise attributes as well.
1399 if (!HasUnknownCall
) {
1400 Changed
|= addNoAliasAttrs(SCCNodes
);
1401 Changed
|= addNonNullAttrs(SCCNodes
);
1402 Changed
|= inferAttrsFromFunctionBodies(SCCNodes
);
1403 Changed
|= addNoRecurseAttrs(SCCNodes
);
1409 PreservedAnalyses
PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC
&C
,
1410 CGSCCAnalysisManager
&AM
,
1412 CGSCCUpdateResult
&) {
1413 FunctionAnalysisManager
&FAM
=
1414 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
1416 // We pass a lambda into functions to wire them up to the analysis manager
1417 // for getting function analyses.
1418 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
1419 return FAM
.getResult
<AAManager
>(F
);
1422 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1423 // any external or opt-none nodes that will prevent us from optimizing any
1425 SCCNodeSet SCCNodes
;
1426 bool HasUnknownCall
= false;
1427 for (LazyCallGraph::Node
&N
: C
) {
1428 Function
&F
= N
.getFunction();
1429 if (F
.hasOptNone() || F
.hasFnAttribute(Attribute::Naked
)) {
1430 // Treat any function we're trying not to optimize as if it were an
1431 // indirect call and omit it from the node set used below.
1432 HasUnknownCall
= true;
1435 // Track whether any functions in this SCC have an unknown call edge.
1436 // Note: if this is ever a performance hit, we can common it with
1437 // subsequent routines which also do scans over the instructions of the
1439 if (!HasUnknownCall
)
1440 for (Instruction
&I
: instructions(F
))
1441 if (auto CS
= CallSite(&I
))
1442 if (!CS
.getCalledFunction()) {
1443 HasUnknownCall
= true;
1447 SCCNodes
.insert(&F
);
1450 if (deriveAttrsInPostOrder(SCCNodes
, AARGetter
, HasUnknownCall
))
1451 return PreservedAnalyses::none();
1453 return PreservedAnalyses::all();
1458 struct PostOrderFunctionAttrsLegacyPass
: public CallGraphSCCPass
{
1459 // Pass identification, replacement for typeid
1462 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID
) {
1463 initializePostOrderFunctionAttrsLegacyPassPass(
1464 *PassRegistry::getPassRegistry());
1467 bool runOnSCC(CallGraphSCC
&SCC
) override
;
1469 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1470 AU
.setPreservesCFG();
1471 AU
.addRequired
<AssumptionCacheTracker
>();
1472 getAAResultsAnalysisUsage(AU
);
1473 CallGraphSCCPass::getAnalysisUsage(AU
);
1477 } // end anonymous namespace
1479 char PostOrderFunctionAttrsLegacyPass::ID
= 0;
1480 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1481 "Deduce function attributes", false, false)
1482 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1483 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1484 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass
, "functionattrs",
1485 "Deduce function attributes", false, false)
1487 Pass
*llvm::createPostOrderFunctionAttrsLegacyPass() {
1488 return new PostOrderFunctionAttrsLegacyPass();
1491 template <typename AARGetterT
>
1492 static bool runImpl(CallGraphSCC
&SCC
, AARGetterT AARGetter
) {
1494 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1495 // whether a given CallGraphNode is in this SCC. Also track whether there are
1496 // any external or opt-none nodes that will prevent us from optimizing any
1498 SCCNodeSet SCCNodes
;
1499 bool ExternalNode
= false;
1500 for (CallGraphNode
*I
: SCC
) {
1501 Function
*F
= I
->getFunction();
1502 if (!F
|| F
->hasOptNone() || F
->hasFnAttribute(Attribute::Naked
)) {
1503 // External node or function we're trying not to optimize - we both avoid
1504 // transform them and avoid leveraging information they provide.
1505 ExternalNode
= true;
1512 return deriveAttrsInPostOrder(SCCNodes
, AARGetter
, ExternalNode
);
1515 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC
&SCC
) {
1518 return runImpl(SCC
, LegacyAARGetter(*this));
1523 struct ReversePostOrderFunctionAttrsLegacyPass
: public ModulePass
{
1524 // Pass identification, replacement for typeid
1527 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID
) {
1528 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1529 *PassRegistry::getPassRegistry());
1532 bool runOnModule(Module
&M
) override
;
1534 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1535 AU
.setPreservesCFG();
1536 AU
.addRequired
<CallGraphWrapperPass
>();
1537 AU
.addPreserved
<CallGraphWrapperPass
>();
1541 } // end anonymous namespace
1543 char ReversePostOrderFunctionAttrsLegacyPass::ID
= 0;
1545 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1546 "Deduce function attributes in RPO", false, false)
1547 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
1548 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass
, "rpo-functionattrs",
1549 "Deduce function attributes in RPO", false, false)
1551 Pass
*llvm::createReversePostOrderFunctionAttrsPass() {
1552 return new ReversePostOrderFunctionAttrsLegacyPass();
1555 static bool addNoRecurseAttrsTopDown(Function
&F
) {
1556 // We check the preconditions for the function prior to calling this to avoid
1557 // the cost of building up a reversible post-order list. We assert them here
1558 // to make sure none of the invariants this relies on were violated.
1559 assert(!F
.isDeclaration() && "Cannot deduce norecurse without a definition!");
1560 assert(!F
.doesNotRecurse() &&
1561 "This function has already been deduced as norecurs!");
1562 assert(F
.hasInternalLinkage() &&
1563 "Can only do top-down deduction for internal linkage functions!");
1565 // If F is internal and all of its uses are calls from a non-recursive
1566 // functions, then none of its calls could in fact recurse without going
1567 // through a function marked norecurse, and so we can mark this function too
1568 // as norecurse. Note that the uses must actually be calls -- otherwise
1569 // a pointer to this function could be returned from a norecurse function but
1570 // this function could be recursively (indirectly) called. Note that this
1571 // also detects if F is directly recursive as F is not yet marked as
1572 // a norecurse function.
1573 for (auto *U
: F
.users()) {
1574 auto *I
= dyn_cast
<Instruction
>(U
);
1578 if (!CS
|| !CS
.getParent()->getParent()->doesNotRecurse())
1581 return setDoesNotRecurse(F
);
1584 static bool deduceFunctionAttributeInRPO(Module
&M
, CallGraph
&CG
) {
1585 // We only have a post-order SCC traversal (because SCCs are inherently
1586 // discovered in post-order), so we accumulate them in a vector and then walk
1587 // it in reverse. This is simpler than using the RPO iterator infrastructure
1588 // because we need to combine SCC detection and the PO walk of the call
1589 // graph. We can also cheat egregiously because we're primarily interested in
1590 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1591 // with multiple functions in them will clearly be recursive.
1592 SmallVector
<Function
*, 16> Worklist
;
1593 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
); !I
.isAtEnd(); ++I
) {
1597 Function
*F
= I
->front()->getFunction();
1598 if (F
&& !F
->isDeclaration() && !F
->doesNotRecurse() &&
1599 F
->hasInternalLinkage())
1600 Worklist
.push_back(F
);
1603 bool Changed
= false;
1604 for (auto *F
: llvm::reverse(Worklist
))
1605 Changed
|= addNoRecurseAttrsTopDown(*F
);
1610 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module
&M
) {
1614 auto &CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
1616 return deduceFunctionAttributeInRPO(M
, CG
);
1620 ReversePostOrderFunctionAttrsPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
1621 auto &CG
= AM
.getResult
<CallGraphAnalysis
>(M
);
1623 if (!deduceFunctionAttributeInRPO(M
, CG
))
1624 return PreservedAnalyses::all();
1626 PreservedAnalyses PA
;
1627 PA
.preserve
<CallGraphAnalysis
>();