[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / IPO / GlobalDCE.cpp
blobf010f7b703a6c67c758d130d20ba785c13f4e583
1 //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transform is designed to eliminate unreachable internal globals from the
10 // program. It uses an aggressive algorithm, searching out globals that are
11 // known to be alive. After it finds all of the globals which are needed, it
12 // deletes whatever is left over. This allows it to delete recursive chunks of
13 // the program which are unreachable.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/IPO/GlobalDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/TypeMetadataUtils.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Transforms/Utils/CtorUtils.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "globaldce"
34 static cl::opt<bool>
35 ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
36 cl::desc("Enable virtual function elimination"));
38 STATISTIC(NumAliases , "Number of global aliases removed");
39 STATISTIC(NumFunctions, "Number of functions removed");
40 STATISTIC(NumIFuncs, "Number of indirect functions removed");
41 STATISTIC(NumVariables, "Number of global variables removed");
42 STATISTIC(NumVFuncs, "Number of virtual functions removed");
44 namespace {
45 class GlobalDCELegacyPass : public ModulePass {
46 public:
47 static char ID; // Pass identification, replacement for typeid
48 GlobalDCELegacyPass() : ModulePass(ID) {
49 initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry());
52 // run - Do the GlobalDCE pass on the specified module, optionally updating
53 // the specified callgraph to reflect the changes.
55 bool runOnModule(Module &M) override {
56 if (skipModule(M))
57 return false;
59 // We need a minimally functional dummy module analysis manager. It needs
60 // to at least know about the possibility of proxying a function analysis
61 // manager.
62 FunctionAnalysisManager DummyFAM;
63 ModuleAnalysisManager DummyMAM;
64 DummyMAM.registerPass(
65 [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); });
67 auto PA = Impl.run(M, DummyMAM);
68 return !PA.areAllPreserved();
71 private:
72 GlobalDCEPass Impl;
76 char GlobalDCELegacyPass::ID = 0;
77 INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce",
78 "Dead Global Elimination", false, false)
80 // Public interface to the GlobalDCEPass.
81 ModulePass *llvm::createGlobalDCEPass() {
82 return new GlobalDCELegacyPass();
85 /// Returns true if F is effectively empty.
86 static bool isEmptyFunction(Function *F) {
87 BasicBlock &Entry = F->getEntryBlock();
88 for (auto &I : Entry) {
89 if (isa<DbgInfoIntrinsic>(I))
90 continue;
91 if (auto *RI = dyn_cast<ReturnInst>(&I))
92 return !RI->getReturnValue();
93 break;
95 return false;
98 /// Compute the set of GlobalValue that depends from V.
99 /// The recursion stops as soon as a GlobalValue is met.
100 void GlobalDCEPass::ComputeDependencies(Value *V,
101 SmallPtrSetImpl<GlobalValue *> &Deps) {
102 if (auto *I = dyn_cast<Instruction>(V)) {
103 Function *Parent = I->getParent()->getParent();
104 Deps.insert(Parent);
105 } else if (auto *GV = dyn_cast<GlobalValue>(V)) {
106 Deps.insert(GV);
107 } else if (auto *CE = dyn_cast<Constant>(V)) {
108 // Avoid walking the whole tree of a big ConstantExprs multiple times.
109 auto Where = ConstantDependenciesCache.find(CE);
110 if (Where != ConstantDependenciesCache.end()) {
111 auto const &K = Where->second;
112 Deps.insert(K.begin(), K.end());
113 } else {
114 SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE];
115 for (User *CEUser : CE->users())
116 ComputeDependencies(CEUser, LocalDeps);
117 Deps.insert(LocalDeps.begin(), LocalDeps.end());
122 void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
123 SmallPtrSet<GlobalValue *, 8> Deps;
124 for (User *User : GV.users())
125 ComputeDependencies(User, Deps);
126 Deps.erase(&GV); // Remove self-reference.
127 for (GlobalValue *GVU : Deps) {
128 // If this is a dep from a vtable to a virtual function, and we have
129 // complete information about all virtual call sites which could call
130 // though this vtable, then skip it, because the call site information will
131 // be more precise.
132 if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
133 LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
134 << GV.getName() << "\n");
135 continue;
137 GVDependencies[GVU].insert(&GV);
141 /// Mark Global value as Live
142 void GlobalDCEPass::MarkLive(GlobalValue &GV,
143 SmallVectorImpl<GlobalValue *> *Updates) {
144 auto const Ret = AliveGlobals.insert(&GV);
145 if (!Ret.second)
146 return;
148 if (Updates)
149 Updates->push_back(&GV);
150 if (Comdat *C = GV.getComdat()) {
151 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
152 MarkLive(*CM.second, Updates); // Recursion depth is only two because only
153 // globals in the same comdat are visited.
158 void GlobalDCEPass::ScanVTables(Module &M) {
159 SmallVector<MDNode *, 2> Types;
160 LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
162 auto *LTOPostLinkMD =
163 cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
164 bool LTOPostLink =
165 LTOPostLinkMD &&
166 (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
168 for (GlobalVariable &GV : M.globals()) {
169 Types.clear();
170 GV.getMetadata(LLVMContext::MD_type, Types);
171 if (GV.isDeclaration() || Types.empty())
172 continue;
174 // Use the typeid metadata on the vtable to build a mapping from typeids to
175 // the list of (GV, offset) pairs which are the possible vtables for that
176 // typeid.
177 for (MDNode *Type : Types) {
178 Metadata *TypeID = Type->getOperand(1).get();
180 uint64_t Offset =
181 cast<ConstantInt>(
182 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
183 ->getZExtValue();
185 TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
188 // If the type corresponding to the vtable is private to this translation
189 // unit, we know that we can see all virtual functions which might use it,
190 // so VFE is safe.
191 if (auto GO = dyn_cast<GlobalObject>(&GV)) {
192 GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility();
193 if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
194 (LTOPostLink &&
195 TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
196 LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
197 VFESafeVTables.insert(&GV);
203 void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
204 uint64_t CallOffset) {
205 for (auto &VTableInfo : TypeIdMap[TypeId]) {
206 GlobalVariable *VTable = VTableInfo.first;
207 uint64_t VTableOffset = VTableInfo.second;
209 Constant *Ptr =
210 getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
211 *Caller->getParent());
212 if (!Ptr) {
213 LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
214 VFESafeVTables.erase(VTable);
215 return;
218 auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
219 if (!Callee) {
220 LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
221 VFESafeVTables.erase(VTable);
222 return;
225 LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
226 << Callee->getName() << "\n");
227 GVDependencies[Caller].insert(Callee);
231 void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
232 LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
233 Function *TypeCheckedLoadFunc =
234 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
236 if (!TypeCheckedLoadFunc)
237 return;
239 for (auto U : TypeCheckedLoadFunc->users()) {
240 auto CI = dyn_cast<CallInst>(U);
241 if (!CI)
242 continue;
244 auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
245 Value *TypeIdValue = CI->getArgOperand(2);
246 auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
248 if (Offset) {
249 ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
250 } else {
251 // type.checked.load with a non-constant offset, so assume every entry in
252 // every matching vtable is used.
253 for (auto &VTableInfo : TypeIdMap[TypeId]) {
254 VFESafeVTables.erase(VTableInfo.first);
260 void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
261 if (!ClEnableVFE)
262 return;
264 ScanVTables(M);
266 if (VFESafeVTables.empty())
267 return;
269 ScanTypeCheckedLoadIntrinsics(M);
271 LLVM_DEBUG(
272 dbgs() << "VFE safe vtables:\n";
273 for (auto *VTable : VFESafeVTables)
274 dbgs() << " " << VTable->getName() << "\n";
278 PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
279 bool Changed = false;
281 // The algorithm first computes the set L of global variables that are
282 // trivially live. Then it walks the initialization of these variables to
283 // compute the globals used to initialize them, which effectively builds a
284 // directed graph where nodes are global variables, and an edge from A to B
285 // means B is used to initialize A. Finally, it propagates the liveness
286 // information through the graph starting from the nodes in L. Nodes note
287 // marked as alive are discarded.
289 // Remove empty functions from the global ctors list.
290 Changed |= optimizeGlobalCtorsList(M, isEmptyFunction);
292 // Collect the set of members for each comdat.
293 for (Function &F : M)
294 if (Comdat *C = F.getComdat())
295 ComdatMembers.insert(std::make_pair(C, &F));
296 for (GlobalVariable &GV : M.globals())
297 if (Comdat *C = GV.getComdat())
298 ComdatMembers.insert(std::make_pair(C, &GV));
299 for (GlobalAlias &GA : M.aliases())
300 if (Comdat *C = GA.getComdat())
301 ComdatMembers.insert(std::make_pair(C, &GA));
303 // Add dependencies between virtual call sites and the virtual functions they
304 // might call, if we have that information.
305 AddVirtualFunctionDependencies(M);
307 // Loop over the module, adding globals which are obviously necessary.
308 for (GlobalObject &GO : M.global_objects()) {
309 Changed |= RemoveUnusedGlobalValue(GO);
310 // Functions with external linkage are needed if they have a body.
311 // Externally visible & appending globals are needed, if they have an
312 // initializer.
313 if (!GO.isDeclaration())
314 if (!GO.isDiscardableIfUnused())
315 MarkLive(GO);
317 UpdateGVDependencies(GO);
320 // Compute direct dependencies of aliases.
321 for (GlobalAlias &GA : M.aliases()) {
322 Changed |= RemoveUnusedGlobalValue(GA);
323 // Externally visible aliases are needed.
324 if (!GA.isDiscardableIfUnused())
325 MarkLive(GA);
327 UpdateGVDependencies(GA);
330 // Compute direct dependencies of ifuncs.
331 for (GlobalIFunc &GIF : M.ifuncs()) {
332 Changed |= RemoveUnusedGlobalValue(GIF);
333 // Externally visible ifuncs are needed.
334 if (!GIF.isDiscardableIfUnused())
335 MarkLive(GIF);
337 UpdateGVDependencies(GIF);
340 // Propagate liveness from collected Global Values through the computed
341 // dependencies.
342 SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(),
343 AliveGlobals.end()};
344 while (!NewLiveGVs.empty()) {
345 GlobalValue *LGV = NewLiveGVs.pop_back_val();
346 for (auto *GVD : GVDependencies[LGV])
347 MarkLive(*GVD, &NewLiveGVs);
350 // Now that all globals which are needed are in the AliveGlobals set, we loop
351 // through the program, deleting those which are not alive.
354 // The first pass is to drop initializers of global variables which are dead.
355 std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals
356 for (GlobalVariable &GV : M.globals())
357 if (!AliveGlobals.count(&GV)) {
358 DeadGlobalVars.push_back(&GV); // Keep track of dead globals
359 if (GV.hasInitializer()) {
360 Constant *Init = GV.getInitializer();
361 GV.setInitializer(nullptr);
362 if (isSafeToDestroyConstant(Init))
363 Init->destroyConstant();
367 // The second pass drops the bodies of functions which are dead...
368 std::vector<Function *> DeadFunctions;
369 for (Function &F : M)
370 if (!AliveGlobals.count(&F)) {
371 DeadFunctions.push_back(&F); // Keep track of dead globals
372 if (!F.isDeclaration())
373 F.deleteBody();
376 // The third pass drops targets of aliases which are dead...
377 std::vector<GlobalAlias*> DeadAliases;
378 for (GlobalAlias &GA : M.aliases())
379 if (!AliveGlobals.count(&GA)) {
380 DeadAliases.push_back(&GA);
381 GA.setAliasee(nullptr);
384 // The fourth pass drops targets of ifuncs which are dead...
385 std::vector<GlobalIFunc*> DeadIFuncs;
386 for (GlobalIFunc &GIF : M.ifuncs())
387 if (!AliveGlobals.count(&GIF)) {
388 DeadIFuncs.push_back(&GIF);
389 GIF.setResolver(nullptr);
392 // Now that all interferences have been dropped, delete the actual objects
393 // themselves.
394 auto EraseUnusedGlobalValue = [&](GlobalValue *GV) {
395 RemoveUnusedGlobalValue(*GV);
396 GV->eraseFromParent();
397 Changed = true;
400 NumFunctions += DeadFunctions.size();
401 for (Function *F : DeadFunctions) {
402 if (!F->use_empty()) {
403 // Virtual functions might still be referenced by one or more vtables,
404 // but if we've proven them to be unused then it's safe to replace the
405 // virtual function pointers with null, allowing us to remove the
406 // function itself.
407 ++NumVFuncs;
408 F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType()));
410 EraseUnusedGlobalValue(F);
413 NumVariables += DeadGlobalVars.size();
414 for (GlobalVariable *GV : DeadGlobalVars)
415 EraseUnusedGlobalValue(GV);
417 NumAliases += DeadAliases.size();
418 for (GlobalAlias *GA : DeadAliases)
419 EraseUnusedGlobalValue(GA);
421 NumIFuncs += DeadIFuncs.size();
422 for (GlobalIFunc *GIF : DeadIFuncs)
423 EraseUnusedGlobalValue(GIF);
425 // Make sure that all memory is released
426 AliveGlobals.clear();
427 ConstantDependenciesCache.clear();
428 GVDependencies.clear();
429 ComdatMembers.clear();
430 TypeIdMap.clear();
431 VFESafeVTables.clear();
433 if (Changed)
434 return PreservedAnalyses::none();
435 return PreservedAnalyses::all();
438 // RemoveUnusedGlobalValue - Loop over all of the uses of the specified
439 // GlobalValue, looking for the constant pointer ref that may be pointing to it.
440 // If found, check to see if the constant pointer ref is safe to destroy, and if
441 // so, nuke it. This will reduce the reference count on the global value, which
442 // might make it deader.
444 bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) {
445 if (GV.use_empty())
446 return false;
447 GV.removeDeadConstantUsers();
448 return GV.use_empty();