1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LazyCallGraph.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
62 #include "llvm/Transforms/Utils/ModuleUtils.h"
73 #define DEBUG_TYPE "inline"
75 STATISTIC(NumInlined
, "Number of functions inlined");
76 STATISTIC(NumCallsDeleted
, "Number of call sites deleted, not inlined");
77 STATISTIC(NumDeleted
, "Number of functions deleted because all callers found");
78 STATISTIC(NumMergedAllocas
, "Number of allocas merged together");
80 // This weirdly named statistic tracks the number of times that, when attempting
81 // to inline a function A into B, we analyze the callers of B in order to see
82 // if those would be more profitable and blocked inline steps.
83 STATISTIC(NumCallerCallersAnalyzed
, "Number of caller-callers analyzed");
85 /// Flag to disable manual alloca merging.
87 /// Merging of allocas was originally done as a stack-size saving technique
88 /// prior to LLVM's code generator having support for stack coloring based on
89 /// lifetime markers. It is now in the process of being removed. To experiment
90 /// with disabling it and relying fully on lifetime marker based stack
91 /// coloring, you can pass this flag to LLVM.
93 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
94 cl::init(false), cl::Hidden
);
98 enum class InlinerFunctionImportStatsOpts
{
104 } // end anonymous namespace
106 static cl::opt
<InlinerFunctionImportStatsOpts
> InlinerFunctionImportStats(
107 "inliner-function-import-stats",
108 cl::init(InlinerFunctionImportStatsOpts::No
),
109 cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic
, "basic",
111 clEnumValN(InlinerFunctionImportStatsOpts::Verbose
, "verbose",
112 "printing of statistics for each inlined function")),
113 cl::Hidden
, cl::desc("Enable inliner stats for imported functions"));
115 /// Flag to add inline messages as callsite attributes 'inline-remark'.
117 InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
119 cl::desc("Enable adding inline-remark attribute to"
120 " callsites processed by inliner but decided"
121 " to be not inlined"));
123 LegacyInlinerBase::LegacyInlinerBase(char &ID
) : CallGraphSCCPass(ID
) {}
125 LegacyInlinerBase::LegacyInlinerBase(char &ID
, bool InsertLifetime
)
126 : CallGraphSCCPass(ID
), InsertLifetime(InsertLifetime
) {}
128 /// For this class, we declare that we require and preserve the call graph.
129 /// If the derived class implements this method, it should
130 /// always explicitly call the implementation here.
131 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage
&AU
) const {
132 AU
.addRequired
<AssumptionCacheTracker
>();
133 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
134 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
135 getAAResultsAnalysisUsage(AU
);
136 CallGraphSCCPass::getAnalysisUsage(AU
);
139 using InlinedArrayAllocasTy
= DenseMap
<ArrayType
*, std::vector
<AllocaInst
*>>;
141 /// Look at all of the allocas that we inlined through this call site. If we
142 /// have already inlined other allocas through other calls into this function,
143 /// then we know that they have disjoint lifetimes and that we can merge them.
145 /// There are many heuristics possible for merging these allocas, and the
146 /// different options have different tradeoffs. One thing that we *really*
147 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
148 /// longer address taken and so they can be promoted.
150 /// Our "solution" for that is to only merge allocas whose outermost type is an
151 /// array type. These are usually not promoted because someone is using a
152 /// variable index into them. These are also often the most important ones to
155 /// A better solution would be to have real memory lifetime markers in the IR
156 /// and not have the inliner do any merging of allocas at all. This would
157 /// allow the backend to do proper stack slot coloring of all allocas that
158 /// *actually make it to the backend*, which is really what we want.
160 /// Because we don't have this information, we do this simple and useful hack.
161 static void mergeInlinedArrayAllocas(
162 Function
*Caller
, InlineFunctionInfo
&IFI
,
163 InlinedArrayAllocasTy
&InlinedArrayAllocas
, int InlineHistory
) {
164 SmallPtrSet
<AllocaInst
*, 16> UsedAllocas
;
166 // When processing our SCC, check to see if CS was inlined from some other
167 // call site. For example, if we're processing "A" in this code:
169 // B() { x = alloca ... C() }
170 // C() { y = alloca ... }
171 // Assume that C was not inlined into B initially, and so we're processing A
172 // and decide to inline B into A. Doing this makes an alloca available for
173 // reuse and makes a callsite (C) available for inlining. When we process
174 // the C call site we don't want to do any alloca merging between X and Y
175 // because their scopes are not disjoint. We could make this smarter by
176 // keeping track of the inline history for each alloca in the
177 // InlinedArrayAllocas but this isn't likely to be a significant win.
178 if (InlineHistory
!= -1) // Only do merging for top-level call sites in SCC.
181 // Loop over all the allocas we have so far and see if they can be merged with
182 // a previously inlined alloca. If not, remember that we had it.
183 for (unsigned AllocaNo
= 0, e
= IFI
.StaticAllocas
.size(); AllocaNo
!= e
;
185 AllocaInst
*AI
= IFI
.StaticAllocas
[AllocaNo
];
187 // Don't bother trying to merge array allocations (they will usually be
188 // canonicalized to be an allocation *of* an array), or allocations whose
189 // type is not itself an array (because we're afraid of pessimizing SRoA).
190 ArrayType
*ATy
= dyn_cast
<ArrayType
>(AI
->getAllocatedType());
191 if (!ATy
|| AI
->isArrayAllocation())
194 // Get the list of all available allocas for this array type.
195 std::vector
<AllocaInst
*> &AllocasForType
= InlinedArrayAllocas
[ATy
];
197 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
198 // that we have to be careful not to reuse the same "available" alloca for
199 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
200 // set to keep track of which "available" allocas are being used by this
201 // function. Also, AllocasForType can be empty of course!
202 bool MergedAwayAlloca
= false;
203 for (AllocaInst
*AvailableAlloca
: AllocasForType
) {
204 unsigned Align1
= AI
->getAlignment(),
205 Align2
= AvailableAlloca
->getAlignment();
207 // The available alloca has to be in the right function, not in some other
208 // function in this SCC.
209 if (AvailableAlloca
->getParent() != AI
->getParent())
212 // If the inlined function already uses this alloca then we can't reuse
214 if (!UsedAllocas
.insert(AvailableAlloca
).second
)
217 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
219 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
220 << "\n\t\tINTO: " << *AvailableAlloca
<< '\n');
222 // Move affected dbg.declare calls immediately after the new alloca to
223 // avoid the situation when a dbg.declare precedes its alloca.
224 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
225 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
226 for (User
*U
: MDV
->users())
227 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(U
))
228 DDI
->moveBefore(AvailableAlloca
->getNextNode());
230 AI
->replaceAllUsesWith(AvailableAlloca
);
232 if (Align1
!= Align2
) {
233 if (!Align1
|| !Align2
) {
234 const DataLayout
&DL
= Caller
->getParent()->getDataLayout();
235 unsigned TypeAlign
= DL
.getABITypeAlignment(AI
->getAllocatedType());
237 Align1
= Align1
? Align1
: TypeAlign
;
238 Align2
= Align2
? Align2
: TypeAlign
;
242 AvailableAlloca
->setAlignment(MaybeAlign(AI
->getAlignment()));
245 AI
->eraseFromParent();
246 MergedAwayAlloca
= true;
248 IFI
.StaticAllocas
[AllocaNo
] = nullptr;
252 // If we already nuked the alloca, we're done with it.
253 if (MergedAwayAlloca
)
256 // If we were unable to merge away the alloca either because there are no
257 // allocas of the right type available or because we reused them all
258 // already, remember that this alloca came from an inlined function and mark
259 // it used so we don't reuse it for other allocas from this inline
261 AllocasForType
.push_back(AI
);
262 UsedAllocas
.insert(AI
);
266 /// If it is possible to inline the specified call site,
267 /// do so and update the CallGraph for this operation.
269 /// This function also does some basic book-keeping to update the IR. The
270 /// InlinedArrayAllocas map keeps track of any allocas that are already
271 /// available from other functions inlined into the caller. If we are able to
272 /// inline this call site we attempt to reuse already available allocas or add
273 /// any new allocas to the set if not possible.
274 static InlineResult
InlineCallIfPossible(
275 CallSite CS
, InlineFunctionInfo
&IFI
,
276 InlinedArrayAllocasTy
&InlinedArrayAllocas
, int InlineHistory
,
277 bool InsertLifetime
, function_ref
<AAResults
&(Function
&)> &AARGetter
,
278 ImportedFunctionsInliningStatistics
&ImportedFunctionsStats
) {
279 Function
*Callee
= CS
.getCalledFunction();
280 Function
*Caller
= CS
.getCaller();
282 AAResults
&AAR
= AARGetter(*Callee
);
284 // Try to inline the function. Get the list of static allocas that were
286 InlineResult IR
= InlineFunction(CS
, IFI
, &AAR
, InsertLifetime
);
290 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
291 ImportedFunctionsStats
.recordInline(*Caller
, *Callee
);
293 AttributeFuncs::mergeAttributesForInlining(*Caller
, *Callee
);
295 if (!DisableInlinedAllocaMerging
)
296 mergeInlinedArrayAllocas(Caller
, IFI
, InlinedArrayAllocas
, InlineHistory
);
298 return IR
; // success
301 /// Return true if inlining of CS can block the caller from being
302 /// inlined which is proved to be more beneficial. \p IC is the
303 /// estimated inline cost associated with callsite \p CS.
304 /// \p TotalSecondaryCost will be set to the estimated cost of inlining the
305 /// caller if \p CS is suppressed for inlining.
307 shouldBeDeferred(Function
*Caller
, CallSite CS
, InlineCost IC
,
308 int &TotalSecondaryCost
,
309 function_ref
<InlineCost(CallSite CS
)> GetInlineCost
) {
310 // For now we only handle local or inline functions.
311 if (!Caller
->hasLocalLinkage() && !Caller
->hasLinkOnceODRLinkage())
313 // If the cost of inlining CS is non-positive, it is not going to prevent the
314 // caller from being inlined into its callers and hence we don't need to
316 if (IC
.getCost() <= 0)
318 // Try to detect the case where the current inlining candidate caller (call
319 // it B) is a static or linkonce-ODR function and is an inlining candidate
320 // elsewhere, and the current candidate callee (call it C) is large enough
321 // that inlining it into B would make B too big to inline later. In these
322 // circumstances it may be best not to inline C into B, but to inline B into
325 // This only applies to static and linkonce-ODR functions because those are
326 // expected to be available for inlining in the translation units where they
327 // are used. Thus we will always have the opportunity to make local inlining
328 // decisions. Importantly the linkonce-ODR linkage covers inline functions
329 // and templates in C++.
331 // FIXME: All of this logic should be sunk into getInlineCost. It relies on
332 // the internal implementation of the inline cost metrics rather than
333 // treating them as truly abstract units etc.
334 TotalSecondaryCost
= 0;
335 // The candidate cost to be imposed upon the current function.
336 int CandidateCost
= IC
.getCost() - 1;
337 // If the caller has local linkage and can be inlined to all its callers, we
338 // can apply a huge negative bonus to TotalSecondaryCost.
339 bool ApplyLastCallBonus
= Caller
->hasLocalLinkage() && !Caller
->hasOneUse();
340 // This bool tracks what happens if we DO inline C into B.
341 bool inliningPreventsSomeOuterInline
= false;
342 for (User
*U
: Caller
->users()) {
343 // If the caller will not be removed (either because it does not have a
344 // local linkage or because the LastCallToStaticBonus has been already
345 // applied), then we can exit the loop early.
346 if (!ApplyLastCallBonus
&& TotalSecondaryCost
>= IC
.getCost())
350 // If this isn't a call to Caller (it could be some other sort
351 // of reference) skip it. Such references will prevent the caller
352 // from being removed.
353 if (!CS2
|| CS2
.getCalledFunction() != Caller
) {
354 ApplyLastCallBonus
= false;
358 InlineCost IC2
= GetInlineCost(CS2
);
359 ++NumCallerCallersAnalyzed
;
361 ApplyLastCallBonus
= false;
367 // See if inlining of the original callsite would erase the cost delta of
368 // this callsite. We subtract off the penalty for the call instruction,
369 // which we would be deleting.
370 if (IC2
.getCostDelta() <= CandidateCost
) {
371 inliningPreventsSomeOuterInline
= true;
372 TotalSecondaryCost
+= IC2
.getCost();
375 // If all outer calls to Caller would get inlined, the cost for the last
376 // one is set very low by getInlineCost, in anticipation that Caller will
377 // be removed entirely. We did not account for this above unless there
378 // is only one caller of Caller.
379 if (ApplyLastCallBonus
)
380 TotalSecondaryCost
-= InlineConstants::LastCallToStaticBonus
;
382 if (inliningPreventsSomeOuterInline
&& TotalSecondaryCost
< IC
.getCost())
388 static std::basic_ostream
<char> &operator<<(std::basic_ostream
<char> &R
,
389 const ore::NV
&Arg
) {
393 template <class RemarkT
>
394 RemarkT
&operator<<(RemarkT
&&R
, const InlineCost
&IC
) {
397 R
<< "(cost=always)";
398 } else if (IC
.isNever()) {
401 R
<< "(cost=" << ore::NV("Cost", IC
.getCost())
402 << ", threshold=" << ore::NV("Threshold", IC
.getThreshold()) << ")";
404 if (const char *Reason
= IC
.getReason())
405 R
<< ": " << ore::NV("Reason", Reason
);
409 static std::string
inlineCostStr(const InlineCost
&IC
) {
410 std::stringstream Remark
;
415 /// Return the cost only if the inliner should attempt to inline at the given
416 /// CallSite. If we return the cost, we will emit an optimisation remark later
417 /// using that cost, so we won't do so from this function.
418 static Optional
<InlineCost
>
419 shouldInline(CallSite CS
, function_ref
<InlineCost(CallSite CS
)> GetInlineCost
,
420 OptimizationRemarkEmitter
&ORE
) {
423 InlineCost IC
= GetInlineCost(CS
);
424 Instruction
*Call
= CS
.getInstruction();
425 Function
*Callee
= CS
.getCalledFunction();
426 Function
*Caller
= CS
.getCaller();
429 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC
)
430 << ", Call: " << *CS
.getInstruction() << "\n");
435 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC
)
436 << ", Call: " << *CS
.getInstruction() << "\n");
438 return OptimizationRemarkMissed(DEBUG_TYPE
, "NeverInline", Call
)
439 << NV("Callee", Callee
) << " not inlined into "
440 << NV("Caller", Caller
) << " because it should never be inlined "
447 LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC
)
448 << ", Call: " << *CS
.getInstruction() << "\n");
450 return OptimizationRemarkMissed(DEBUG_TYPE
, "TooCostly", Call
)
451 << NV("Callee", Callee
) << " not inlined into "
452 << NV("Caller", Caller
) << " because too costly to inline " << IC
;
457 int TotalSecondaryCost
= 0;
458 if (shouldBeDeferred(Caller
, CS
, IC
, TotalSecondaryCost
, GetInlineCost
)) {
459 LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS
.getInstruction()
460 << " Cost = " << IC
.getCost()
461 << ", outer Cost = " << TotalSecondaryCost
<< '\n');
463 return OptimizationRemarkMissed(DEBUG_TYPE
, "IncreaseCostInOtherContexts",
465 << "Not inlining. Cost of inlining " << NV("Callee", Callee
)
466 << " increases the cost of inlining " << NV("Caller", Caller
)
467 << " in other contexts";
470 // IC does not bool() to false, so get an InlineCost that will.
471 // This will not be inspected to make an error message.
475 LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC
)
476 << ", Call: " << *CS
.getInstruction() << '\n');
480 /// Return true if the specified inline history ID
481 /// indicates an inline history that includes the specified function.
482 static bool InlineHistoryIncludes(
483 Function
*F
, int InlineHistoryID
,
484 const SmallVectorImpl
<std::pair
<Function
*, int>> &InlineHistory
) {
485 while (InlineHistoryID
!= -1) {
486 assert(unsigned(InlineHistoryID
) < InlineHistory
.size() &&
487 "Invalid inline history ID");
488 if (InlineHistory
[InlineHistoryID
].first
== F
)
490 InlineHistoryID
= InlineHistory
[InlineHistoryID
].second
;
495 bool LegacyInlinerBase::doInitialization(CallGraph
&CG
) {
496 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
497 ImportedFunctionsStats
.setModuleInfo(CG
.getModule());
498 return false; // No changes to CallGraph.
501 bool LegacyInlinerBase::runOnSCC(CallGraphSCC
&SCC
) {
504 return inlineCalls(SCC
);
507 static void emit_inlined_into(OptimizationRemarkEmitter
&ORE
, DebugLoc
&DLoc
,
508 const BasicBlock
*Block
, const Function
&Callee
,
509 const Function
&Caller
, const InlineCost
&IC
) {
511 bool AlwaysInline
= IC
.isAlways();
512 StringRef RemarkName
= AlwaysInline
? "AlwaysInline" : "Inlined";
513 return OptimizationRemark(DEBUG_TYPE
, RemarkName
, DLoc
, Block
)
514 << ore::NV("Callee", &Callee
) << " inlined into "
515 << ore::NV("Caller", &Caller
) << " with " << IC
;
519 static void setInlineRemark(CallSite
&CS
, StringRef message
) {
520 if (!InlineRemarkAttribute
)
523 Attribute attr
= Attribute::get(CS
->getContext(), "inline-remark", message
);
524 CS
.addAttribute(AttributeList::FunctionIndex
, attr
);
528 inlineCallsImpl(CallGraphSCC
&SCC
, CallGraph
&CG
,
529 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
,
530 ProfileSummaryInfo
*PSI
,
531 std::function
<TargetLibraryInfo
&(Function
&)> GetTLI
,
533 function_ref
<InlineCost(CallSite CS
)> GetInlineCost
,
534 function_ref
<AAResults
&(Function
&)> AARGetter
,
535 ImportedFunctionsInliningStatistics
&ImportedFunctionsStats
) {
536 SmallPtrSet
<Function
*, 8> SCCFunctions
;
537 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
538 for (CallGraphNode
*Node
: SCC
) {
539 Function
*F
= Node
->getFunction();
541 SCCFunctions
.insert(F
);
542 LLVM_DEBUG(dbgs() << " " << (F
? F
->getName() : "INDIRECTNODE"));
545 // Scan through and identify all call sites ahead of time so that we only
546 // inline call sites in the original functions, not call sites that result
547 // from inlining other functions.
548 SmallVector
<std::pair
<CallSite
, int>, 16> CallSites
;
550 // When inlining a callee produces new call sites, we want to keep track of
551 // the fact that they were inlined from the callee. This allows us to avoid
552 // infinite inlining in some obscure cases. To represent this, we use an
553 // index into the InlineHistory vector.
554 SmallVector
<std::pair
<Function
*, int>, 8> InlineHistory
;
556 for (CallGraphNode
*Node
: SCC
) {
557 Function
*F
= Node
->getFunction();
558 if (!F
|| F
->isDeclaration())
561 OptimizationRemarkEmitter
ORE(F
);
562 for (BasicBlock
&BB
: *F
)
563 for (Instruction
&I
: BB
) {
564 CallSite
CS(cast
<Value
>(&I
));
565 // If this isn't a call, or it is a call to an intrinsic, it can
567 if (!CS
|| isa
<IntrinsicInst
>(I
))
570 // If this is a direct call to an external function, we can never inline
571 // it. If it is an indirect call, inlining may resolve it to be a
572 // direct call, so we keep it.
573 if (Function
*Callee
= CS
.getCalledFunction())
574 if (Callee
->isDeclaration()) {
577 setInlineRemark(CS
, "unavailable definition");
579 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoDefinition", &I
)
580 << NV("Callee", Callee
) << " will not be inlined into "
581 << NV("Caller", CS
.getCaller())
582 << " because its definition is unavailable"
588 CallSites
.push_back(std::make_pair(CS
, -1));
592 LLVM_DEBUG(dbgs() << ": " << CallSites
.size() << " call sites.\n");
594 // If there are no calls in this function, exit early.
595 if (CallSites
.empty())
598 // Now that we have all of the call sites, move the ones to functions in the
599 // current SCC to the end of the list.
600 unsigned FirstCallInSCC
= CallSites
.size();
601 for (unsigned i
= 0; i
< FirstCallInSCC
; ++i
)
602 if (Function
*F
= CallSites
[i
].first
.getCalledFunction())
603 if (SCCFunctions
.count(F
))
604 std::swap(CallSites
[i
--], CallSites
[--FirstCallInSCC
]);
606 InlinedArrayAllocasTy InlinedArrayAllocas
;
607 InlineFunctionInfo
InlineInfo(&CG
, &GetAssumptionCache
, PSI
);
609 // Now that we have all of the call sites, loop over them and inline them if
610 // it looks profitable to do so.
611 bool Changed
= false;
615 // Iterate over the outer loop because inlining functions can cause indirect
616 // calls to become direct calls.
617 // CallSites may be modified inside so ranged for loop can not be used.
618 for (unsigned CSi
= 0; CSi
!= CallSites
.size(); ++CSi
) {
619 CallSite CS
= CallSites
[CSi
].first
;
621 Function
*Caller
= CS
.getCaller();
622 Function
*Callee
= CS
.getCalledFunction();
624 // We can only inline direct calls to non-declarations.
625 if (!Callee
|| Callee
->isDeclaration())
628 Instruction
*Instr
= CS
.getInstruction();
630 bool IsTriviallyDead
=
631 isInstructionTriviallyDead(Instr
, &GetTLI(*Caller
));
634 if (!IsTriviallyDead
) {
635 // If this call site was obtained by inlining another function, verify
636 // that the include path for the function did not include the callee
637 // itself. If so, we'd be recursively inlining the same function,
638 // which would provide the same callsites, which would cause us to
639 // infinitely inline.
640 InlineHistoryID
= CallSites
[CSi
].second
;
641 if (InlineHistoryID
!= -1 &&
642 InlineHistoryIncludes(Callee
, InlineHistoryID
, InlineHistory
)) {
643 setInlineRemark(CS
, "recursive");
648 // FIXME for new PM: because of the old PM we currently generate ORE and
649 // in turn BFI on demand. With the new PM, the ORE dependency should
650 // just become a regular analysis dependency.
651 OptimizationRemarkEmitter
ORE(Caller
);
653 Optional
<InlineCost
> OIC
= shouldInline(CS
, GetInlineCost
, ORE
);
654 // If the policy determines that we should inline this function,
655 // delete the call instead.
656 if (!OIC
.hasValue()) {
657 setInlineRemark(CS
, "deferred");
661 if (!OIC
.getValue()) {
662 // shouldInline() call returned a negative inline cost that explains
663 // why this callsite should not be inlined.
664 setInlineRemark(CS
, inlineCostStr(*OIC
));
668 // If this call site is dead and it is to a readonly function, we should
669 // just delete the call instead of trying to inline it, regardless of
670 // size. This happens because IPSCCP propagates the result out of the
671 // call and then we're left with the dead call.
672 if (IsTriviallyDead
) {
673 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr
<< "\n");
674 // Update the call graph by deleting the edge from Callee to Caller.
675 setInlineRemark(CS
, "trivially dead");
676 CG
[Caller
]->removeCallEdgeFor(*cast
<CallBase
>(CS
.getInstruction()));
677 Instr
->eraseFromParent();
680 // Get DebugLoc to report. CS will be invalid after Inliner.
681 DebugLoc DLoc
= CS
->getDebugLoc();
682 BasicBlock
*Block
= CS
.getParent();
684 // Attempt to inline the function.
687 InlineResult IR
= InlineCallIfPossible(
688 CS
, InlineInfo
, InlinedArrayAllocas
, InlineHistoryID
,
689 InsertLifetime
, AARGetter
, ImportedFunctionsStats
);
691 setInlineRemark(CS
, std::string(IR
) + "; " + inlineCostStr(*OIC
));
693 return OptimizationRemarkMissed(DEBUG_TYPE
, "NotInlined", DLoc
,
695 << NV("Callee", Callee
) << " will not be inlined into "
696 << NV("Caller", Caller
) << ": " << NV("Reason", IR
.message
);
702 emit_inlined_into(ORE
, DLoc
, Block
, *Callee
, *Caller
, *OIC
);
704 // If inlining this function gave us any new call sites, throw them
705 // onto our worklist to process. They are useful inline candidates.
706 if (!InlineInfo
.InlinedCalls
.empty()) {
707 // Create a new inline history entry for this, so that we remember
708 // that these new callsites came about due to inlining Callee.
709 int NewHistoryID
= InlineHistory
.size();
710 InlineHistory
.push_back(std::make_pair(Callee
, InlineHistoryID
));
712 for (Value
*Ptr
: InlineInfo
.InlinedCalls
)
713 CallSites
.push_back(std::make_pair(CallSite(Ptr
), NewHistoryID
));
717 // If we inlined or deleted the last possible call site to the function,
718 // delete the function body now.
719 if (Callee
&& Callee
->use_empty() && Callee
->hasLocalLinkage() &&
720 // TODO: Can remove if in SCC now.
721 !SCCFunctions
.count(Callee
) &&
722 // The function may be apparently dead, but if there are indirect
723 // callgraph references to the node, we cannot delete it yet, this
724 // could invalidate the CGSCC iterator.
725 CG
[Callee
]->getNumReferences() == 0) {
726 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
727 << Callee
->getName() << "\n");
728 CallGraphNode
*CalleeNode
= CG
[Callee
];
730 // Remove any call graph edges from the callee to its callees.
731 CalleeNode
->removeAllCalledFunctions();
733 // Removing the node for callee from the call graph and delete it.
734 delete CG
.removeFunctionFromModule(CalleeNode
);
738 // Remove this call site from the list. If possible, use
739 // swap/pop_back for efficiency, but do not use it if doing so would
740 // move a call site to a function in this SCC before the
741 // 'FirstCallInSCC' barrier.
742 if (SCC
.isSingular()) {
743 CallSites
[CSi
] = CallSites
.back();
744 CallSites
.pop_back();
746 CallSites
.erase(CallSites
.begin() + CSi
);
753 } while (LocalChange
);
758 bool LegacyInlinerBase::inlineCalls(CallGraphSCC
&SCC
) {
759 CallGraph
&CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
760 ACT
= &getAnalysis
<AssumptionCacheTracker
>();
761 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
762 auto GetTLI
= [&](Function
&F
) -> TargetLibraryInfo
& {
763 return getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
765 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
766 return ACT
->getAssumptionCache(F
);
768 return inlineCallsImpl(
769 SCC
, CG
, GetAssumptionCache
, PSI
, GetTLI
, InsertLifetime
,
770 [this](CallSite CS
) { return getInlineCost(CS
); }, LegacyAARGetter(*this),
771 ImportedFunctionsStats
);
774 /// Remove now-dead linkonce functions at the end of
775 /// processing to avoid breaking the SCC traversal.
776 bool LegacyInlinerBase::doFinalization(CallGraph
&CG
) {
777 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
778 ImportedFunctionsStats
.dump(InlinerFunctionImportStats
==
779 InlinerFunctionImportStatsOpts::Verbose
);
780 return removeDeadFunctions(CG
);
783 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
784 bool LegacyInlinerBase::removeDeadFunctions(CallGraph
&CG
,
785 bool AlwaysInlineOnly
) {
786 SmallVector
<CallGraphNode
*, 16> FunctionsToRemove
;
787 SmallVector
<Function
*, 16> DeadFunctionsInComdats
;
789 auto RemoveCGN
= [&](CallGraphNode
*CGN
) {
790 // Remove any call graph edges from the function to its callees.
791 CGN
->removeAllCalledFunctions();
793 // Remove any edges from the external node to the function's call graph
794 // node. These edges might have been made irrelegant due to
795 // optimization of the program.
796 CG
.getExternalCallingNode()->removeAnyCallEdgeTo(CGN
);
798 // Removing the node for callee from the call graph and delete it.
799 FunctionsToRemove
.push_back(CGN
);
802 // Scan for all of the functions, looking for ones that should now be removed
803 // from the program. Insert the dead ones in the FunctionsToRemove set.
804 for (const auto &I
: CG
) {
805 CallGraphNode
*CGN
= I
.second
.get();
806 Function
*F
= CGN
->getFunction();
807 if (!F
|| F
->isDeclaration())
810 // Handle the case when this function is called and we only want to care
811 // about always-inline functions. This is a bit of a hack to share code
812 // between here and the InlineAlways pass.
813 if (AlwaysInlineOnly
&& !F
->hasFnAttribute(Attribute::AlwaysInline
))
816 // If the only remaining users of the function are dead constants, remove
818 F
->removeDeadConstantUsers();
820 if (!F
->isDefTriviallyDead())
823 // It is unsafe to drop a function with discardable linkage from a COMDAT
824 // without also dropping the other members of the COMDAT.
825 // The inliner doesn't visit non-function entities which are in COMDAT
826 // groups so it is unsafe to do so *unless* the linkage is local.
827 if (!F
->hasLocalLinkage()) {
828 if (F
->hasComdat()) {
829 DeadFunctionsInComdats
.push_back(F
);
836 if (!DeadFunctionsInComdats
.empty()) {
837 // Filter out the functions whose comdats remain alive.
838 filterDeadComdatFunctions(CG
.getModule(), DeadFunctionsInComdats
);
840 for (Function
*F
: DeadFunctionsInComdats
)
844 if (FunctionsToRemove
.empty())
847 // Now that we know which functions to delete, do so. We didn't want to do
848 // this inline, because that would invalidate our CallGraph::iterator
851 // Note that it doesn't matter that we are iterating over a non-stable order
852 // here to do this, it doesn't matter which order the functions are deleted
854 array_pod_sort(FunctionsToRemove
.begin(), FunctionsToRemove
.end());
855 FunctionsToRemove
.erase(
856 std::unique(FunctionsToRemove
.begin(), FunctionsToRemove
.end()),
857 FunctionsToRemove
.end());
858 for (CallGraphNode
*CGN
: FunctionsToRemove
) {
859 delete CG
.removeFunctionFromModule(CGN
);
865 InlinerPass::~InlinerPass() {
866 if (ImportedFunctionsStats
) {
867 assert(InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
);
868 ImportedFunctionsStats
->dump(InlinerFunctionImportStats
==
869 InlinerFunctionImportStatsOpts::Verbose
);
873 PreservedAnalyses
InlinerPass::run(LazyCallGraph::SCC
&InitialC
,
874 CGSCCAnalysisManager
&AM
, LazyCallGraph
&CG
,
875 CGSCCUpdateResult
&UR
) {
876 const ModuleAnalysisManager
&MAM
=
877 AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(InitialC
, CG
).getManager();
878 bool Changed
= false;
880 assert(InitialC
.size() > 0 && "Cannot handle an empty SCC!");
881 Module
&M
= *InitialC
.begin()->getFunction().getParent();
882 ProfileSummaryInfo
*PSI
= MAM
.getCachedResult
<ProfileSummaryAnalysis
>(M
);
884 if (!ImportedFunctionsStats
&&
885 InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
) {
886 ImportedFunctionsStats
=
887 std::make_unique
<ImportedFunctionsInliningStatistics
>();
888 ImportedFunctionsStats
->setModuleInfo(M
);
891 // We use a single common worklist for calls across the entire SCC. We
892 // process these in-order and append new calls introduced during inlining to
895 // Note that this particular order of processing is actually critical to
896 // avoid very bad behaviors. Consider *highly connected* call graphs where
897 // each function contains a small amonut of code and a couple of calls to
898 // other functions. Because the LLVM inliner is fundamentally a bottom-up
899 // inliner, it can handle gracefully the fact that these all appear to be
900 // reasonable inlining candidates as it will flatten things until they become
901 // too big to inline, and then move on and flatten another batch.
903 // However, when processing call edges *within* an SCC we cannot rely on this
904 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
905 // functions we can end up incrementally inlining N calls into each of
906 // N functions because each incremental inlining decision looks good and we
907 // don't have a topological ordering to prevent explosions.
909 // To compensate for this, we don't process transitive edges made immediate
910 // by inlining until we've done one pass of inlining across the entire SCC.
911 // Large, highly connected SCCs still lead to some amount of code bloat in
912 // this model, but it is uniformly spread across all the functions in the SCC
913 // and eventually they all become too large to inline, rather than
914 // incrementally maknig a single function grow in a super linear fashion.
915 SmallVector
<std::pair
<CallSite
, int>, 16> Calls
;
917 FunctionAnalysisManager
&FAM
=
918 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(InitialC
, CG
)
921 // Populate the initial list of calls in this SCC.
922 for (auto &N
: InitialC
) {
924 FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(N
.getFunction());
925 // We want to generally process call sites top-down in order for
926 // simplifications stemming from replacing the call with the returned value
927 // after inlining to be visible to subsequent inlining decisions.
928 // FIXME: Using instructions sequence is a really bad way to do this.
929 // Instead we should do an actual RPO walk of the function body.
930 for (Instruction
&I
: instructions(N
.getFunction()))
931 if (auto CS
= CallSite(&I
))
932 if (Function
*Callee
= CS
.getCalledFunction()) {
933 if (!Callee
->isDeclaration())
934 Calls
.push_back({CS
, -1});
935 else if (!isa
<IntrinsicInst
>(I
)) {
937 setInlineRemark(CS
, "unavailable definition");
939 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoDefinition", &I
)
940 << NV("Callee", Callee
) << " will not be inlined into "
941 << NV("Caller", CS
.getCaller())
942 << " because its definition is unavailable"
949 return PreservedAnalyses::all();
951 // Capture updatable variables for the current SCC and RefSCC.
953 auto *RC
= &C
->getOuterRefSCC();
955 // When inlining a callee produces new call sites, we want to keep track of
956 // the fact that they were inlined from the callee. This allows us to avoid
957 // infinite inlining in some obscure cases. To represent this, we use an
958 // index into the InlineHistory vector.
959 SmallVector
<std::pair
<Function
*, int>, 16> InlineHistory
;
961 // Track a set vector of inlined callees so that we can augment the caller
962 // with all of their edges in the call graph before pruning out the ones that
963 // got simplified away.
964 SmallSetVector
<Function
*, 4> InlinedCallees
;
966 // Track the dead functions to delete once finished with inlining calls. We
967 // defer deleting these to make it easier to handle the call graph updates.
968 SmallVector
<Function
*, 4> DeadFunctions
;
970 // Loop forward over all of the calls. Note that we cannot cache the size as
971 // inlining can introduce new calls that need to be processed.
972 for (int i
= 0; i
< (int)Calls
.size(); ++i
) {
973 // We expect the calls to typically be batched with sequences of calls that
974 // have the same caller, so we first set up some shared infrastructure for
975 // this caller. We also do any pruning we can at this layer on the caller
977 Function
&F
= *Calls
[i
].first
.getCaller();
978 LazyCallGraph::Node
&N
= *CG
.lookup(F
);
979 if (CG
.lookupSCC(N
) != C
)
981 if (F
.hasOptNone()) {
982 setInlineRemark(Calls
[i
].first
, "optnone attribute");
986 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F
.getName() << "\n");
988 // Get a FunctionAnalysisManager via a proxy for this particular node. We
989 // do this each time we visit a node as the SCC may have changed and as
990 // we're going to mutate this particular function we want to make sure the
991 // proxy is in place to forward any invalidation events. We can use the
992 // manager we get here for looking up results for functions other than this
993 // node however because those functions aren't going to be mutated by this
995 FunctionAnalysisManager
&FAM
=
996 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
)
999 // Get the remarks emission analysis for the caller.
1000 auto &ORE
= FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1002 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
=
1003 [&](Function
&F
) -> AssumptionCache
& {
1004 return FAM
.getResult
<AssumptionAnalysis
>(F
);
1006 auto GetBFI
= [&](Function
&F
) -> BlockFrequencyInfo
& {
1007 return FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
1010 auto GetInlineCost
= [&](CallSite CS
) {
1011 Function
&Callee
= *CS
.getCalledFunction();
1012 auto &CalleeTTI
= FAM
.getResult
<TargetIRAnalysis
>(Callee
);
1013 bool RemarksEnabled
=
1014 Callee
.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
1016 return getInlineCost(cast
<CallBase
>(*CS
.getInstruction()), Params
,
1017 CalleeTTI
, GetAssumptionCache
, {GetBFI
}, PSI
,
1018 RemarksEnabled
? &ORE
: nullptr);
1021 // Now process as many calls as we have within this caller in the sequnece.
1022 // We bail out as soon as the caller has to change so we can update the
1023 // call graph and prepare the context of that new caller.
1024 bool DidInline
= false;
1025 for (; i
< (int)Calls
.size() && Calls
[i
].first
.getCaller() == &F
; ++i
) {
1026 int InlineHistoryID
;
1028 std::tie(CS
, InlineHistoryID
) = Calls
[i
];
1029 Function
&Callee
= *CS
.getCalledFunction();
1031 if (InlineHistoryID
!= -1 &&
1032 InlineHistoryIncludes(&Callee
, InlineHistoryID
, InlineHistory
)) {
1033 setInlineRemark(CS
, "recursive");
1037 // Check if this inlining may repeat breaking an SCC apart that has
1038 // already been split once before. In that case, inlining here may
1039 // trigger infinite inlining, much like is prevented within the inliner
1040 // itself by the InlineHistory above, but spread across CGSCC iterations
1041 // and thus hidden from the full inline history.
1042 if (CG
.lookupSCC(*CG
.lookup(Callee
)) == C
&&
1043 UR
.InlinedInternalEdges
.count({&N
, C
})) {
1044 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
1045 "previously split out of this SCC by inlining: "
1046 << F
.getName() << " -> " << Callee
.getName() << "\n");
1047 setInlineRemark(CS
, "recursive SCC split");
1051 Optional
<InlineCost
> OIC
= shouldInline(CS
, GetInlineCost
, ORE
);
1052 // Check whether we want to inline this callsite.
1053 if (!OIC
.hasValue()) {
1054 setInlineRemark(CS
, "deferred");
1058 if (!OIC
.getValue()) {
1059 // shouldInline() call returned a negative inline cost that explains
1060 // why this callsite should not be inlined.
1061 setInlineRemark(CS
, inlineCostStr(*OIC
));
1065 // Setup the data structure used to plumb customization into the
1066 // `InlineFunction` routine.
1067 InlineFunctionInfo
IFI(
1068 /*cg=*/nullptr, &GetAssumptionCache
, PSI
,
1069 &FAM
.getResult
<BlockFrequencyAnalysis
>(*(CS
.getCaller())),
1070 &FAM
.getResult
<BlockFrequencyAnalysis
>(Callee
));
1072 // Get DebugLoc to report. CS will be invalid after Inliner.
1073 DebugLoc DLoc
= CS
->getDebugLoc();
1074 BasicBlock
*Block
= CS
.getParent();
1076 using namespace ore
;
1078 InlineResult IR
= InlineFunction(CS
, IFI
);
1080 setInlineRemark(CS
, std::string(IR
) + "; " + inlineCostStr(*OIC
));
1082 return OptimizationRemarkMissed(DEBUG_TYPE
, "NotInlined", DLoc
, Block
)
1083 << NV("Callee", &Callee
) << " will not be inlined into "
1084 << NV("Caller", &F
) << ": " << NV("Reason", IR
.message
);
1089 InlinedCallees
.insert(&Callee
);
1093 emit_inlined_into(ORE
, DLoc
, Block
, Callee
, F
, *OIC
);
1095 // Add any new callsites to defined functions to the worklist.
1096 if (!IFI
.InlinedCallSites
.empty()) {
1097 int NewHistoryID
= InlineHistory
.size();
1098 InlineHistory
.push_back({&Callee
, InlineHistoryID
});
1099 for (CallSite
&CS
: reverse(IFI
.InlinedCallSites
))
1100 if (Function
*NewCallee
= CS
.getCalledFunction())
1101 if (!NewCallee
->isDeclaration())
1102 Calls
.push_back({CS
, NewHistoryID
});
1105 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
1106 ImportedFunctionsStats
->recordInline(F
, Callee
);
1108 // Merge the attributes based on the inlining.
1109 AttributeFuncs::mergeAttributesForInlining(F
, Callee
);
1111 // For local functions, check whether this makes the callee trivially
1112 // dead. In that case, we can drop the body of the function eagerly
1113 // which may reduce the number of callers of other functions to one,
1114 // changing inline cost thresholds.
1115 if (Callee
.hasLocalLinkage()) {
1116 // To check this we also need to nuke any dead constant uses (perhaps
1117 // made dead by this operation on other functions).
1118 Callee
.removeDeadConstantUsers();
1119 if (Callee
.use_empty() && !CG
.isLibFunction(Callee
)) {
1121 std::remove_if(Calls
.begin() + i
+ 1, Calls
.end(),
1122 [&Callee
](const std::pair
<CallSite
, int> &Call
) {
1123 return Call
.first
.getCaller() == &Callee
;
1126 // Clear the body and queue the function itself for deletion when we
1127 // finish inlining and call graph updates.
1128 // Note that after this point, it is an error to do anything other
1129 // than use the callee's address or delete it.
1130 Callee
.dropAllReferences();
1131 assert(find(DeadFunctions
, &Callee
) == DeadFunctions
.end() &&
1132 "Cannot put cause a function to become dead twice!");
1133 DeadFunctions
.push_back(&Callee
);
1138 // Back the call index up by one to put us in a good position to go around
1146 // Add all the inlined callees' edges as ref edges to the caller. These are
1147 // by definition trivial edges as we always have *some* transitive ref edge
1148 // chain. While in some cases these edges are direct calls inside the
1149 // callee, they have to be modeled in the inliner as reference edges as
1150 // there may be a reference edge anywhere along the chain from the current
1151 // caller to the callee that causes the whole thing to appear like
1152 // a (transitive) reference edge that will require promotion to a call edge
1154 for (Function
*InlinedCallee
: InlinedCallees
) {
1155 LazyCallGraph::Node
&CalleeN
= *CG
.lookup(*InlinedCallee
);
1156 for (LazyCallGraph::Edge
&E
: *CalleeN
)
1157 RC
->insertTrivialRefEdge(N
, E
.getNode());
1160 // At this point, since we have made changes we have at least removed
1161 // a call instruction. However, in the process we do some incremental
1162 // simplification of the surrounding code. This simplification can
1163 // essentially do all of the same things as a function pass and we can
1164 // re-use the exact same logic for updating the call graph to reflect the
1166 LazyCallGraph::SCC
*OldC
= C
;
1167 C
= &updateCGAndAnalysisManagerForFunctionPass(CG
, *C
, N
, AM
, UR
);
1168 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C
<< "\n");
1169 RC
= &C
->getOuterRefSCC();
1171 // If this causes an SCC to split apart into multiple smaller SCCs, there
1172 // is a subtle risk we need to prepare for. Other transformations may
1173 // expose an "infinite inlining" opportunity later, and because of the SCC
1174 // mutation, we will revisit this function and potentially re-inline. If we
1175 // do, and that re-inlining also has the potentially to mutate the SCC
1176 // structure, the infinite inlining problem can manifest through infinite
1177 // SCC splits and merges. To avoid this, we capture the originating caller
1178 // node and the SCC containing the call edge. This is a slight over
1179 // approximation of the possible inlining decisions that must be avoided,
1180 // but is relatively efficient to store. We use C != OldC to know when
1181 // a new SCC is generated and the original SCC may be generated via merge
1182 // in later iterations.
1184 // It is also possible that even if no new SCC is generated
1185 // (i.e., C == OldC), the original SCC could be split and then merged
1186 // into the same one as itself. and the original SCC will be added into
1187 // UR.CWorklist again, we want to catch such cases too.
1189 // FIXME: This seems like a very heavyweight way of retaining the inline
1190 // history, we should look for a more efficient way of tracking it.
1191 if ((C
!= OldC
|| UR
.CWorklist
.count(OldC
)) &&
1192 llvm::any_of(InlinedCallees
, [&](Function
*Callee
) {
1193 return CG
.lookupSCC(*CG
.lookup(*Callee
)) == OldC
;
1195 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1196 "retaining this to avoid infinite inlining.\n");
1197 UR
.InlinedInternalEdges
.insert({&N
, OldC
});
1199 InlinedCallees
.clear();
1202 // Now that we've finished inlining all of the calls across this SCC, delete
1203 // all of the trivially dead functions, updating the call graph and the CGSCC
1204 // pass manager in the process.
1206 // Note that this walks a pointer set which has non-deterministic order but
1207 // that is OK as all we do is delete things and add pointers to unordered
1209 for (Function
*DeadF
: DeadFunctions
) {
1210 // Get the necessary information out of the call graph and nuke the
1211 // function there. Also, cclear out any cached analyses.
1212 auto &DeadC
= *CG
.lookupSCC(*CG
.lookup(*DeadF
));
1213 FunctionAnalysisManager
&FAM
=
1214 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(DeadC
, CG
)
1216 FAM
.clear(*DeadF
, DeadF
->getName());
1217 AM
.clear(DeadC
, DeadC
.getName());
1218 auto &DeadRC
= DeadC
.getOuterRefSCC();
1219 CG
.removeDeadFunction(*DeadF
);
1221 // Mark the relevant parts of the call graph as invalid so we don't visit
1223 UR
.InvalidatedSCCs
.insert(&DeadC
);
1224 UR
.InvalidatedRefSCCs
.insert(&DeadRC
);
1226 // And delete the actual function from the module.
1227 M
.getFunctionList().erase(DeadF
);
1232 return PreservedAnalyses::all();
1234 // Even if we change the IR, we update the core CGSCC data structures and so
1235 // can preserve the proxy to the function analysis manager.
1236 PreservedAnalyses PA
;
1237 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();