1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include "llvm/Transforms/Utils/MisExpect.h"
85 #include <system_error>
90 using namespace sampleprof
;
91 using ProfileCount
= Function::ProfileCount
;
92 #define DEBUG_TYPE "sample-profile"
94 // Command line option to specify the file to read samples from. This is
95 // mainly used for debugging.
96 static cl::opt
<std::string
> SampleProfileFile(
97 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden
);
100 // The named file contains a set of transformations that may have been applied
101 // to the symbol names between the program from which the sample data was
102 // collected and the current program's symbols.
103 static cl::opt
<std::string
> SampleProfileRemappingFile(
104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden
);
107 static cl::opt
<unsigned> SampleProfileMaxPropagateIterations(
108 "sample-profile-max-propagate-iterations", cl::init(100),
109 cl::desc("Maximum number of iterations to go through when propagating "
110 "sample block/edge weights through the CFG."));
112 static cl::opt
<unsigned> SampleProfileRecordCoverage(
113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
114 cl::desc("Emit a warning if less than N% of records in the input profile "
115 "are matched to the IR."));
117 static cl::opt
<unsigned> SampleProfileSampleCoverage(
118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
119 cl::desc("Emit a warning if less than N% of samples in the input profile "
120 "are matched to the IR."));
122 static cl::opt
<bool> NoWarnSampleUnused(
123 "no-warn-sample-unused", cl::init(false), cl::Hidden
,
124 cl::desc("Use this option to turn off/on warnings about function with "
125 "samples but without debug information to use those samples. "));
127 static cl::opt
<bool> ProfileSampleAccurate(
128 "profile-sample-accurate", cl::Hidden
, cl::init(false),
129 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
130 "callsite and function as having 0 samples. Otherwise, treat "
131 "un-sampled callsites and functions conservatively as unknown. "));
133 static cl::opt
<bool> ProfileAccurateForSymsInList(
134 "profile-accurate-for-symsinlist", cl::Hidden
, cl::ZeroOrMore
,
136 cl::desc("For symbols in profile symbol list, regard their profiles to "
137 "be accurate. It may be overriden by profile-sample-accurate. "));
141 using BlockWeightMap
= DenseMap
<const BasicBlock
*, uint64_t>;
142 using EquivalenceClassMap
= DenseMap
<const BasicBlock
*, const BasicBlock
*>;
143 using Edge
= std::pair
<const BasicBlock
*, const BasicBlock
*>;
144 using EdgeWeightMap
= DenseMap
<Edge
, uint64_t>;
146 DenseMap
<const BasicBlock
*, SmallVector
<const BasicBlock
*, 8>>;
148 class SampleProfileLoader
;
150 class SampleCoverageTracker
{
152 SampleCoverageTracker(SampleProfileLoader
&SPL
) : SPLoader(SPL
){};
154 bool markSamplesUsed(const FunctionSamples
*FS
, uint32_t LineOffset
,
155 uint32_t Discriminator
, uint64_t Samples
);
156 unsigned computeCoverage(unsigned Used
, unsigned Total
) const;
157 unsigned countUsedRecords(const FunctionSamples
*FS
,
158 ProfileSummaryInfo
*PSI
) const;
159 unsigned countBodyRecords(const FunctionSamples
*FS
,
160 ProfileSummaryInfo
*PSI
) const;
161 uint64_t getTotalUsedSamples() const { return TotalUsedSamples
; }
162 uint64_t countBodySamples(const FunctionSamples
*FS
,
163 ProfileSummaryInfo
*PSI
) const;
166 SampleCoverage
.clear();
167 TotalUsedSamples
= 0;
171 using BodySampleCoverageMap
= std::map
<LineLocation
, unsigned>;
172 using FunctionSamplesCoverageMap
=
173 DenseMap
<const FunctionSamples
*, BodySampleCoverageMap
>;
175 /// Coverage map for sampling records.
177 /// This map keeps a record of sampling records that have been matched to
178 /// an IR instruction. This is used to detect some form of staleness in
179 /// profiles (see flag -sample-profile-check-coverage).
181 /// Each entry in the map corresponds to a FunctionSamples instance. This is
182 /// another map that counts how many times the sample record at the
183 /// given location has been used.
184 FunctionSamplesCoverageMap SampleCoverage
;
186 /// Number of samples used from the profile.
188 /// When a sampling record is used for the first time, the samples from
189 /// that record are added to this accumulator. Coverage is later computed
190 /// based on the total number of samples available in this function and
193 /// Note that this accumulator tracks samples used from a single function
194 /// and all the inlined callsites. Strictly, we should have a map of counters
195 /// keyed by FunctionSamples pointers, but these stats are cleared after
196 /// every function, so we just need to keep a single counter.
197 uint64_t TotalUsedSamples
= 0;
199 SampleProfileLoader
&SPLoader
;
202 class GUIDToFuncNameMapper
{
204 GUIDToFuncNameMapper(Module
&M
, SampleProfileReader
&Reader
,
205 DenseMap
<uint64_t, StringRef
> &GUIDToFuncNameMap
)
206 : CurrentReader(Reader
), CurrentModule(M
),
207 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap
) {
208 if (CurrentReader
.getFormat() != SPF_Compact_Binary
)
211 for (const auto &F
: CurrentModule
) {
212 StringRef OrigName
= F
.getName();
213 CurrentGUIDToFuncNameMap
.insert(
214 {Function::getGUID(OrigName
), OrigName
});
216 // Local to global var promotion used by optimization like thinlto
217 // will rename the var and add suffix like ".llvm.xxx" to the
218 // original local name. In sample profile, the suffixes of function
219 // names are all stripped. Since it is possible that the mapper is
220 // built in post-thin-link phase and var promotion has been done,
221 // we need to add the substring of function name without the suffix
222 // into the GUIDToFuncNameMap.
223 StringRef CanonName
= FunctionSamples::getCanonicalFnName(F
);
224 if (CanonName
!= OrigName
)
225 CurrentGUIDToFuncNameMap
.insert(
226 {Function::getGUID(CanonName
), CanonName
});
229 // Update GUIDToFuncNameMap for each function including inlinees.
230 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap
);
233 ~GUIDToFuncNameMapper() {
234 if (CurrentReader
.getFormat() != SPF_Compact_Binary
)
237 CurrentGUIDToFuncNameMap
.clear();
239 // Reset GUIDToFuncNameMap for of each function as they're no
240 // longer valid at this point.
241 SetGUIDToFuncNameMapForAll(nullptr);
245 void SetGUIDToFuncNameMapForAll(DenseMap
<uint64_t, StringRef
> *Map
) {
246 std::queue
<FunctionSamples
*> FSToUpdate
;
247 for (auto &IFS
: CurrentReader
.getProfiles()) {
248 FSToUpdate
.push(&IFS
.second
);
251 while (!FSToUpdate
.empty()) {
252 FunctionSamples
*FS
= FSToUpdate
.front();
254 FS
->GUIDToFuncNameMap
= Map
;
255 for (const auto &ICS
: FS
->getCallsiteSamples()) {
256 const FunctionSamplesMap
&FSMap
= ICS
.second
;
257 for (auto &IFS
: FSMap
) {
258 FunctionSamples
&FS
= const_cast<FunctionSamples
&>(IFS
.second
);
259 FSToUpdate
.push(&FS
);
265 SampleProfileReader
&CurrentReader
;
266 Module
&CurrentModule
;
267 DenseMap
<uint64_t, StringRef
> &CurrentGUIDToFuncNameMap
;
270 /// Sample profile pass.
272 /// This pass reads profile data from the file specified by
273 /// -sample-profile-file and annotates every affected function with the
274 /// profile information found in that file.
275 class SampleProfileLoader
{
278 StringRef Name
, StringRef RemapName
, bool IsThinLTOPreLink
,
279 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
,
280 std::function
<TargetTransformInfo
&(Function
&)> GetTargetTransformInfo
)
281 : GetAC(std::move(GetAssumptionCache
)),
282 GetTTI(std::move(GetTargetTransformInfo
)), CoverageTracker(*this),
283 Filename(Name
), RemappingFilename(RemapName
),
284 IsThinLTOPreLink(IsThinLTOPreLink
) {}
286 bool doInitialization(Module
&M
);
287 bool runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
288 ProfileSummaryInfo
*_PSI
);
290 void dump() { Reader
->dump(); }
293 friend class SampleCoverageTracker
;
295 bool runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
);
296 unsigned getFunctionLoc(Function
&F
);
297 bool emitAnnotations(Function
&F
);
298 ErrorOr
<uint64_t> getInstWeight(const Instruction
&I
);
299 ErrorOr
<uint64_t> getBlockWeight(const BasicBlock
*BB
);
300 const FunctionSamples
*findCalleeFunctionSamples(const Instruction
&I
) const;
301 std::vector
<const FunctionSamples
*>
302 findIndirectCallFunctionSamples(const Instruction
&I
, uint64_t &Sum
) const;
303 mutable DenseMap
<const DILocation
*, const FunctionSamples
*> DILocation2SampleMap
;
304 const FunctionSamples
*findFunctionSamples(const Instruction
&I
) const;
305 bool inlineCallInstruction(Instruction
*I
);
306 bool inlineHotFunctions(Function
&F
,
307 DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
);
308 void printEdgeWeight(raw_ostream
&OS
, Edge E
);
309 void printBlockWeight(raw_ostream
&OS
, const BasicBlock
*BB
) const;
310 void printBlockEquivalence(raw_ostream
&OS
, const BasicBlock
*BB
);
311 bool computeBlockWeights(Function
&F
);
312 void findEquivalenceClasses(Function
&F
);
313 template <bool IsPostDom
>
314 void findEquivalencesFor(BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
315 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
);
317 void propagateWeights(Function
&F
);
318 uint64_t visitEdge(Edge E
, unsigned *NumUnknownEdges
, Edge
*UnknownEdge
);
319 void buildEdges(Function
&F
);
320 bool propagateThroughEdges(Function
&F
, bool UpdateBlockCount
);
321 void computeDominanceAndLoopInfo(Function
&F
);
322 void clearFunctionData();
323 bool callsiteIsHot(const FunctionSamples
*CallsiteFS
,
324 ProfileSummaryInfo
*PSI
);
326 /// Map basic blocks to their computed weights.
328 /// The weight of a basic block is defined to be the maximum
329 /// of all the instruction weights in that block.
330 BlockWeightMap BlockWeights
;
332 /// Map edges to their computed weights.
334 /// Edge weights are computed by propagating basic block weights in
335 /// SampleProfile::propagateWeights.
336 EdgeWeightMap EdgeWeights
;
338 /// Set of visited blocks during propagation.
339 SmallPtrSet
<const BasicBlock
*, 32> VisitedBlocks
;
341 /// Set of visited edges during propagation.
342 SmallSet
<Edge
, 32> VisitedEdges
;
344 /// Equivalence classes for block weights.
346 /// Two blocks BB1 and BB2 are in the same equivalence class if they
347 /// dominate and post-dominate each other, and they are in the same loop
348 /// nest. When this happens, the two blocks are guaranteed to execute
349 /// the same number of times.
350 EquivalenceClassMap EquivalenceClass
;
352 /// Map from function name to Function *. Used to find the function from
353 /// the function name. If the function name contains suffix, additional
354 /// entry is added to map from the stripped name to the function if there
355 /// is one-to-one mapping.
356 StringMap
<Function
*> SymbolMap
;
358 /// Dominance, post-dominance and loop information.
359 std::unique_ptr
<DominatorTree
> DT
;
360 std::unique_ptr
<PostDominatorTree
> PDT
;
361 std::unique_ptr
<LoopInfo
> LI
;
363 std::function
<AssumptionCache
&(Function
&)> GetAC
;
364 std::function
<TargetTransformInfo
&(Function
&)> GetTTI
;
366 /// Predecessors for each basic block in the CFG.
367 BlockEdgeMap Predecessors
;
369 /// Successors for each basic block in the CFG.
370 BlockEdgeMap Successors
;
372 SampleCoverageTracker CoverageTracker
;
374 /// Profile reader object.
375 std::unique_ptr
<SampleProfileReader
> Reader
;
377 /// Samples collected for the body of this function.
378 FunctionSamples
*Samples
= nullptr;
380 /// Name of the profile file to load.
381 std::string Filename
;
383 /// Name of the profile remapping file to load.
384 std::string RemappingFilename
;
386 /// Flag indicating whether the profile input loaded successfully.
387 bool ProfileIsValid
= false;
389 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
391 /// In this phase, in annotation, we should not promote indirect calls.
392 /// Instead, we will mark GUIDs that needs to be annotated to the function.
393 bool IsThinLTOPreLink
;
395 /// Profile Summary Info computed from sample profile.
396 ProfileSummaryInfo
*PSI
= nullptr;
398 /// Profle Symbol list tells whether a function name appears in the binary
399 /// used to generate the current profile.
400 std::unique_ptr
<ProfileSymbolList
> PSL
;
402 /// Total number of samples collected in this profile.
404 /// This is the sum of all the samples collected in all the functions executed
406 uint64_t TotalCollectedSamples
= 0;
408 /// Optimization Remark Emitter used to emit diagnostic remarks.
409 OptimizationRemarkEmitter
*ORE
= nullptr;
411 // Information recorded when we declined to inline a call site
412 // because we have determined it is too cold is accumulated for
413 // each callee function. Initially this is just the entry count.
414 struct NotInlinedProfileInfo
{
417 DenseMap
<Function
*, NotInlinedProfileInfo
> notInlinedCallInfo
;
419 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
420 // all the function symbols defined or declared in current module.
421 DenseMap
<uint64_t, StringRef
> GUIDToFuncNameMap
;
423 // All the Names used in FunctionSamples including outline function
424 // names, inline instance names and call target names.
425 StringSet
<> NamesInProfile
;
427 // For symbol in profile symbol list, whether to regard their profiles
428 // to be accurate. It is mainly decided by existance of profile symbol
429 // list and -profile-accurate-for-symsinlist flag, but it can be
430 // overriden by -profile-sample-accurate or profile-sample-accurate
432 bool ProfAccForSymsInList
;
435 class SampleProfileLoaderLegacyPass
: public ModulePass
{
437 // Class identification, replacement for typeinfo
440 SampleProfileLoaderLegacyPass(StringRef Name
= SampleProfileFile
,
441 bool IsThinLTOPreLink
= false)
443 SampleLoader(Name
, SampleProfileRemappingFile
, IsThinLTOPreLink
,
444 [&](Function
&F
) -> AssumptionCache
& {
445 return ACT
->getAssumptionCache(F
);
447 [&](Function
&F
) -> TargetTransformInfo
& {
448 return TTIWP
->getTTI(F
);
450 initializeSampleProfileLoaderLegacyPassPass(
451 *PassRegistry::getPassRegistry());
454 void dump() { SampleLoader
.dump(); }
456 bool doInitialization(Module
&M
) override
{
457 return SampleLoader
.doInitialization(M
);
460 StringRef
getPassName() const override
{ return "Sample profile pass"; }
461 bool runOnModule(Module
&M
) override
;
463 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
464 AU
.addRequired
<AssumptionCacheTracker
>();
465 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
466 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
470 SampleProfileLoader SampleLoader
;
471 AssumptionCacheTracker
*ACT
= nullptr;
472 TargetTransformInfoWrapperPass
*TTIWP
= nullptr;
475 } // end anonymous namespace
477 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
479 /// Functions that were inlined in the original binary will be represented
480 /// in the inline stack in the sample profile. If the profile shows that
481 /// the original inline decision was "good" (i.e., the callsite is executed
482 /// frequently), then we will recreate the inline decision and apply the
483 /// profile from the inlined callsite.
485 /// To decide whether an inlined callsite is hot, we compare the callsite
486 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
487 /// regarded as hot if the count is above the cutoff value.
489 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
490 /// is present, functions in the profile symbol list but without profile will
491 /// be regarded as cold and much less inlining will happen in CGSCC inlining
492 /// pass, so we tend to lower the hot criteria here to allow more early
493 /// inlining to happen for warm callsites and it is helpful for performance.
494 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples
*CallsiteFS
,
495 ProfileSummaryInfo
*PSI
) {
497 return false; // The callsite was not inlined in the original binary.
499 assert(PSI
&& "PSI is expected to be non null");
500 uint64_t CallsiteTotalSamples
= CallsiteFS
->getTotalSamples();
501 if (ProfAccForSymsInList
)
502 return !PSI
->isColdCount(CallsiteTotalSamples
);
504 return PSI
->isHotCount(CallsiteTotalSamples
);
507 /// Mark as used the sample record for the given function samples at
508 /// (LineOffset, Discriminator).
510 /// \returns true if this is the first time we mark the given record.
511 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples
*FS
,
513 uint32_t Discriminator
,
515 LineLocation
Loc(LineOffset
, Discriminator
);
516 unsigned &Count
= SampleCoverage
[FS
][Loc
];
517 bool FirstTime
= (++Count
== 1);
519 TotalUsedSamples
+= Samples
;
523 /// Return the number of sample records that were applied from this profile.
525 /// This count does not include records from cold inlined callsites.
527 SampleCoverageTracker::countUsedRecords(const FunctionSamples
*FS
,
528 ProfileSummaryInfo
*PSI
) const {
529 auto I
= SampleCoverage
.find(FS
);
531 // The size of the coverage map for FS represents the number of records
532 // that were marked used at least once.
533 unsigned Count
= (I
!= SampleCoverage
.end()) ? I
->second
.size() : 0;
535 // If there are inlined callsites in this function, count the samples found
536 // in the respective bodies. However, do not bother counting callees with 0
537 // total samples, these are callees that were never invoked at runtime.
538 for (const auto &I
: FS
->getCallsiteSamples())
539 for (const auto &J
: I
.second
) {
540 const FunctionSamples
*CalleeSamples
= &J
.second
;
541 if (SPLoader
.callsiteIsHot(CalleeSamples
, PSI
))
542 Count
+= countUsedRecords(CalleeSamples
, PSI
);
548 /// Return the number of sample records in the body of this profile.
550 /// This count does not include records from cold inlined callsites.
552 SampleCoverageTracker::countBodyRecords(const FunctionSamples
*FS
,
553 ProfileSummaryInfo
*PSI
) const {
554 unsigned Count
= FS
->getBodySamples().size();
556 // Only count records in hot callsites.
557 for (const auto &I
: FS
->getCallsiteSamples())
558 for (const auto &J
: I
.second
) {
559 const FunctionSamples
*CalleeSamples
= &J
.second
;
560 if (SPLoader
.callsiteIsHot(CalleeSamples
, PSI
))
561 Count
+= countBodyRecords(CalleeSamples
, PSI
);
567 /// Return the number of samples collected in the body of this profile.
569 /// This count does not include samples from cold inlined callsites.
571 SampleCoverageTracker::countBodySamples(const FunctionSamples
*FS
,
572 ProfileSummaryInfo
*PSI
) const {
574 for (const auto &I
: FS
->getBodySamples())
575 Total
+= I
.second
.getSamples();
577 // Only count samples in hot callsites.
578 for (const auto &I
: FS
->getCallsiteSamples())
579 for (const auto &J
: I
.second
) {
580 const FunctionSamples
*CalleeSamples
= &J
.second
;
581 if (SPLoader
.callsiteIsHot(CalleeSamples
, PSI
))
582 Total
+= countBodySamples(CalleeSamples
, PSI
);
588 /// Return the fraction of sample records used in this profile.
590 /// The returned value is an unsigned integer in the range 0-100 indicating
591 /// the percentage of sample records that were used while applying this
592 /// profile to the associated function.
593 unsigned SampleCoverageTracker::computeCoverage(unsigned Used
,
594 unsigned Total
) const {
595 assert(Used
<= Total
&&
596 "number of used records cannot exceed the total number of records");
597 return Total
> 0 ? Used
* 100 / Total
: 100;
600 /// Clear all the per-function data used to load samples and propagate weights.
601 void SampleProfileLoader::clearFunctionData() {
602 BlockWeights
.clear();
604 VisitedBlocks
.clear();
605 VisitedEdges
.clear();
606 EquivalenceClass
.clear();
610 Predecessors
.clear();
612 CoverageTracker
.clear();
616 /// Print the weight of edge \p E on stream \p OS.
618 /// \param OS Stream to emit the output to.
619 /// \param E Edge to print.
620 void SampleProfileLoader::printEdgeWeight(raw_ostream
&OS
, Edge E
) {
621 OS
<< "weight[" << E
.first
->getName() << "->" << E
.second
->getName()
622 << "]: " << EdgeWeights
[E
] << "\n";
625 /// Print the equivalence class of block \p BB on stream \p OS.
627 /// \param OS Stream to emit the output to.
628 /// \param BB Block to print.
629 void SampleProfileLoader::printBlockEquivalence(raw_ostream
&OS
,
630 const BasicBlock
*BB
) {
631 const BasicBlock
*Equiv
= EquivalenceClass
[BB
];
632 OS
<< "equivalence[" << BB
->getName()
633 << "]: " << ((Equiv
) ? EquivalenceClass
[BB
]->getName() : "NONE") << "\n";
636 /// Print the weight of block \p BB on stream \p OS.
638 /// \param OS Stream to emit the output to.
639 /// \param BB Block to print.
640 void SampleProfileLoader::printBlockWeight(raw_ostream
&OS
,
641 const BasicBlock
*BB
) const {
642 const auto &I
= BlockWeights
.find(BB
);
643 uint64_t W
= (I
== BlockWeights
.end() ? 0 : I
->second
);
644 OS
<< "weight[" << BB
->getName() << "]: " << W
<< "\n";
648 /// Get the weight for an instruction.
650 /// The "weight" of an instruction \p Inst is the number of samples
651 /// collected on that instruction at runtime. To retrieve it, we
652 /// need to compute the line number of \p Inst relative to the start of its
653 /// function. We use HeaderLineno to compute the offset. We then
654 /// look up the samples collected for \p Inst using BodySamples.
656 /// \param Inst Instruction to query.
658 /// \returns the weight of \p Inst.
659 ErrorOr
<uint64_t> SampleProfileLoader::getInstWeight(const Instruction
&Inst
) {
660 const DebugLoc
&DLoc
= Inst
.getDebugLoc();
662 return std::error_code();
664 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
666 return std::error_code();
668 // Ignore all intrinsics, phinodes and branch instructions.
669 // Branch and phinodes instruction usually contains debug info from sources outside of
670 // the residing basic block, thus we ignore them during annotation.
671 if (isa
<BranchInst
>(Inst
) || isa
<IntrinsicInst
>(Inst
) || isa
<PHINode
>(Inst
))
672 return std::error_code();
674 // If a direct call/invoke instruction is inlined in profile
675 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
676 // it means that the inlined callsite has no sample, thus the call
677 // instruction should have 0 count.
678 if ((isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) &&
679 !ImmutableCallSite(&Inst
).isIndirectCall() &&
680 findCalleeFunctionSamples(Inst
))
683 const DILocation
*DIL
= DLoc
;
684 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
685 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
686 ErrorOr
<uint64_t> R
= FS
->findSamplesAt(LineOffset
, Discriminator
);
689 CoverageTracker
.markSamplesUsed(FS
, LineOffset
, Discriminator
, R
.get());
692 OptimizationRemarkAnalysis
Remark(DEBUG_TYPE
, "AppliedSamples", &Inst
);
693 Remark
<< "Applied " << ore::NV("NumSamples", *R
);
694 Remark
<< " samples from profile (offset: ";
695 Remark
<< ore::NV("LineOffset", LineOffset
);
698 Remark
<< ore::NV("Discriminator", Discriminator
);
704 LLVM_DEBUG(dbgs() << " " << DLoc
.getLine() << "."
705 << DIL
->getBaseDiscriminator() << ":" << Inst
706 << " (line offset: " << LineOffset
<< "."
707 << DIL
->getBaseDiscriminator() << " - weight: " << R
.get()
713 /// Compute the weight of a basic block.
715 /// The weight of basic block \p BB is the maximum weight of all the
716 /// instructions in BB.
718 /// \param BB The basic block to query.
720 /// \returns the weight for \p BB.
721 ErrorOr
<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock
*BB
) {
723 bool HasWeight
= false;
724 for (auto &I
: BB
->getInstList()) {
725 const ErrorOr
<uint64_t> &R
= getInstWeight(I
);
727 Max
= std::max(Max
, R
.get());
731 return HasWeight
? ErrorOr
<uint64_t>(Max
) : std::error_code();
734 /// Compute and store the weights of every basic block.
736 /// This populates the BlockWeights map by computing
737 /// the weights of every basic block in the CFG.
739 /// \param F The function to query.
740 bool SampleProfileLoader::computeBlockWeights(Function
&F
) {
741 bool Changed
= false;
742 LLVM_DEBUG(dbgs() << "Block weights\n");
743 for (const auto &BB
: F
) {
744 ErrorOr
<uint64_t> Weight
= getBlockWeight(&BB
);
746 BlockWeights
[&BB
] = Weight
.get();
747 VisitedBlocks
.insert(&BB
);
750 LLVM_DEBUG(printBlockWeight(dbgs(), &BB
));
756 /// Get the FunctionSamples for a call instruction.
758 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
759 /// instance in which that call instruction is calling to. It contains
760 /// all samples that resides in the inlined instance. We first find the
761 /// inlined instance in which the call instruction is from, then we
762 /// traverse its children to find the callsite with the matching
765 /// \param Inst Call/Invoke instruction to query.
767 /// \returns The FunctionSamples pointer to the inlined instance.
768 const FunctionSamples
*
769 SampleProfileLoader::findCalleeFunctionSamples(const Instruction
&Inst
) const {
770 const DILocation
*DIL
= Inst
.getDebugLoc();
775 StringRef CalleeName
;
776 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
777 if (Function
*Callee
= CI
->getCalledFunction())
778 CalleeName
= Callee
->getName();
780 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
784 return FS
->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL
),
785 DIL
->getBaseDiscriminator()),
789 /// Returns a vector of FunctionSamples that are the indirect call targets
790 /// of \p Inst. The vector is sorted by the total number of samples. Stores
791 /// the total call count of the indirect call in \p Sum.
792 std::vector
<const FunctionSamples
*>
793 SampleProfileLoader::findIndirectCallFunctionSamples(
794 const Instruction
&Inst
, uint64_t &Sum
) const {
795 const DILocation
*DIL
= Inst
.getDebugLoc();
796 std::vector
<const FunctionSamples
*> R
;
802 const FunctionSamples
*FS
= findFunctionSamples(Inst
);
806 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
807 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
809 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
812 for (const auto &T_C
: T
.get())
814 if (const FunctionSamplesMap
*M
= FS
->findFunctionSamplesMapAt(LineLocation(
815 FunctionSamples::getOffset(DIL
), DIL
->getBaseDiscriminator()))) {
818 for (const auto &NameFS
: *M
) {
819 Sum
+= NameFS
.second
.getEntrySamples();
820 R
.push_back(&NameFS
.second
);
822 llvm::sort(R
, [](const FunctionSamples
*L
, const FunctionSamples
*R
) {
823 if (L
->getEntrySamples() != R
->getEntrySamples())
824 return L
->getEntrySamples() > R
->getEntrySamples();
825 return FunctionSamples::getGUID(L
->getName()) <
826 FunctionSamples::getGUID(R
->getName());
832 /// Get the FunctionSamples for an instruction.
834 /// The FunctionSamples of an instruction \p Inst is the inlined instance
835 /// in which that instruction is coming from. We traverse the inline stack
836 /// of that instruction, and match it with the tree nodes in the profile.
838 /// \param Inst Instruction to query.
840 /// \returns the FunctionSamples pointer to the inlined instance.
841 const FunctionSamples
*
842 SampleProfileLoader::findFunctionSamples(const Instruction
&Inst
) const {
843 const DILocation
*DIL
= Inst
.getDebugLoc();
847 auto it
= DILocation2SampleMap
.try_emplace(DIL
,nullptr);
849 it
.first
->second
= Samples
->findFunctionSamples(DIL
);
850 return it
.first
->second
;
853 bool SampleProfileLoader::inlineCallInstruction(Instruction
*I
) {
854 assert(isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
));
856 Function
*CalledFunction
= CS
.getCalledFunction();
857 assert(CalledFunction
);
858 DebugLoc DLoc
= I
->getDebugLoc();
859 BasicBlock
*BB
= I
->getParent();
860 InlineParams Params
= getInlineParams();
861 Params
.ComputeFullInlineCost
= true;
862 // Checks if there is anything in the reachable portion of the callee at
863 // this callsite that makes this inlining potentially illegal. Need to
864 // set ComputeFullInlineCost, otherwise getInlineCost may return early
865 // when cost exceeds threshold without checking all IRs in the callee.
866 // The acutal cost does not matter because we only checks isNever() to
867 // see if it is legal to inline the callsite.
869 getInlineCost(cast
<CallBase
>(*I
), Params
, GetTTI(*CalledFunction
), GetAC
,
870 None
, nullptr, nullptr);
871 if (Cost
.isNever()) {
872 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "Not inline", DLoc
, BB
)
873 << "incompatible inlining");
876 InlineFunctionInfo
IFI(nullptr, &GetAC
);
877 if (InlineFunction(CS
, IFI
)) {
878 // The call to InlineFunction erases I, so we can't pass it here.
879 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "HotInline", DLoc
, BB
)
880 << "inlined hot callee '" << ore::NV("Callee", CalledFunction
)
881 << "' into '" << ore::NV("Caller", BB
->getParent()) << "'");
887 /// Iteratively inline hot callsites of a function.
889 /// Iteratively traverse all callsites of the function \p F, and find if
890 /// the corresponding inlined instance exists and is hot in profile. If
891 /// it is hot enough, inline the callsites and adds new callsites of the
892 /// callee into the caller. If the call is an indirect call, first promote
893 /// it to direct call. Each indirect call is limited with a single target.
895 /// \param F function to perform iterative inlining.
896 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
897 /// inlined in the profiled binary.
899 /// \returns True if there is any inline happened.
900 bool SampleProfileLoader::inlineHotFunctions(
901 Function
&F
, DenseSet
<GlobalValue::GUID
> &InlinedGUIDs
) {
902 DenseSet
<Instruction
*> PromotedInsns
;
904 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
905 // Profile symbol list is ignored when profile-sample-accurate is on.
906 assert((!ProfAccForSymsInList
||
907 (!ProfileSampleAccurate
&&
908 !F
.hasFnAttribute("profile-sample-accurate"))) &&
909 "ProfAccForSymsInList should be false when profile-sample-accurate "
912 DenseMap
<Instruction
*, const FunctionSamples
*> localNotInlinedCallSites
;
913 bool Changed
= false;
915 bool LocalChanged
= false;
916 SmallVector
<Instruction
*, 10> CIS
;
919 SmallVector
<Instruction
*, 10> Candidates
;
920 for (auto &I
: BB
.getInstList()) {
921 const FunctionSamples
*FS
= nullptr;
922 if ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) &&
923 !isa
<IntrinsicInst
>(I
) && (FS
= findCalleeFunctionSamples(I
))) {
924 Candidates
.push_back(&I
);
925 if (FS
->getEntrySamples() > 0)
926 localNotInlinedCallSites
.try_emplace(&I
, FS
);
927 if (callsiteIsHot(FS
, PSI
))
932 CIS
.insert(CIS
.begin(), Candidates
.begin(), Candidates
.end());
936 Function
*CalledFunction
= CallSite(I
).getCalledFunction();
937 // Do not inline recursive calls.
938 if (CalledFunction
== &F
)
940 if (CallSite(I
).isIndirectCall()) {
941 if (PromotedInsns
.count(I
))
944 for (const auto *FS
: findIndirectCallFunctionSamples(*I
, Sum
)) {
945 if (IsThinLTOPreLink
) {
946 FS
->findInlinedFunctions(InlinedGUIDs
, F
.getParent(),
947 PSI
->getOrCompHotCountThreshold());
950 auto CalleeFunctionName
= FS
->getFuncNameInModule(F
.getParent());
951 // If it is a recursive call, we do not inline it as it could bloat
952 // the code exponentially. There is way to better handle this, e.g.
953 // clone the caller first, and inline the cloned caller if it is
954 // recursive. As llvm does not inline recursive calls, we will
955 // simply ignore it instead of handling it explicitly.
956 if (CalleeFunctionName
== F
.getName())
959 if (!callsiteIsHot(FS
, PSI
))
962 const char *Reason
= "Callee function not available";
963 auto R
= SymbolMap
.find(CalleeFunctionName
);
964 if (R
!= SymbolMap
.end() && R
->getValue() &&
965 !R
->getValue()->isDeclaration() &&
966 R
->getValue()->getSubprogram() &&
967 isLegalToPromote(CallSite(I
), R
->getValue(), &Reason
)) {
968 uint64_t C
= FS
->getEntrySamples();
970 pgo::promoteIndirectCall(I
, R
->getValue(), C
, Sum
, false, ORE
);
972 PromotedInsns
.insert(I
);
973 // If profile mismatches, we should not attempt to inline DI.
974 if ((isa
<CallInst
>(DI
) || isa
<InvokeInst
>(DI
)) &&
975 inlineCallInstruction(DI
)) {
976 localNotInlinedCallSites
.erase(I
);
981 << "\nFailed to promote indirect call to "
982 << CalleeFunctionName
<< " because " << Reason
<< "\n");
985 } else if (CalledFunction
&& CalledFunction
->getSubprogram() &&
986 !CalledFunction
->isDeclaration()) {
987 if (inlineCallInstruction(I
)) {
988 localNotInlinedCallSites
.erase(I
);
991 } else if (IsThinLTOPreLink
) {
992 findCalleeFunctionSamples(*I
)->findInlinedFunctions(
993 InlinedGUIDs
, F
.getParent(), PSI
->getOrCompHotCountThreshold());
1003 // Accumulate not inlined callsite information into notInlinedSamples
1004 for (const auto &Pair
: localNotInlinedCallSites
) {
1005 Instruction
*I
= Pair
.getFirst();
1006 Function
*Callee
= CallSite(I
).getCalledFunction();
1007 if (!Callee
|| Callee
->isDeclaration())
1009 const FunctionSamples
*FS
= Pair
.getSecond();
1011 notInlinedCallInfo
.try_emplace(Callee
, NotInlinedProfileInfo
{0});
1012 pair
.first
->second
.entryCount
+= FS
->getEntrySamples();
1017 /// Find equivalence classes for the given block.
1019 /// This finds all the blocks that are guaranteed to execute the same
1020 /// number of times as \p BB1. To do this, it traverses all the
1021 /// descendants of \p BB1 in the dominator or post-dominator tree.
1023 /// A block BB2 will be in the same equivalence class as \p BB1 if
1024 /// the following holds:
1026 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1027 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
1028 /// dominate BB1 in the post-dominator tree.
1030 /// 2- Both BB2 and \p BB1 must be in the same loop.
1032 /// For every block BB2 that meets those two requirements, we set BB2's
1033 /// equivalence class to \p BB1.
1035 /// \param BB1 Block to check.
1036 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
1037 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
1038 /// with blocks from \p BB1's dominator tree, then
1039 /// this is the post-dominator tree, and vice versa.
1040 template <bool IsPostDom
>
1041 void SampleProfileLoader::findEquivalencesFor(
1042 BasicBlock
*BB1
, ArrayRef
<BasicBlock
*> Descendants
,
1043 DominatorTreeBase
<BasicBlock
, IsPostDom
> *DomTree
) {
1044 const BasicBlock
*EC
= EquivalenceClass
[BB1
];
1045 uint64_t Weight
= BlockWeights
[EC
];
1046 for (const auto *BB2
: Descendants
) {
1047 bool IsDomParent
= DomTree
->dominates(BB2
, BB1
);
1048 bool IsInSameLoop
= LI
->getLoopFor(BB1
) == LI
->getLoopFor(BB2
);
1049 if (BB1
!= BB2
&& IsDomParent
&& IsInSameLoop
) {
1050 EquivalenceClass
[BB2
] = EC
;
1051 // If BB2 is visited, then the entire EC should be marked as visited.
1052 if (VisitedBlocks
.count(BB2
)) {
1053 VisitedBlocks
.insert(EC
);
1056 // If BB2 is heavier than BB1, make BB2 have the same weight
1059 // Note that we don't worry about the opposite situation here
1060 // (when BB2 is lighter than BB1). We will deal with this
1061 // during the propagation phase. Right now, we just want to
1062 // make sure that BB1 has the largest weight of all the
1063 // members of its equivalence set.
1064 Weight
= std::max(Weight
, BlockWeights
[BB2
]);
1067 if (EC
== &EC
->getParent()->getEntryBlock()) {
1068 BlockWeights
[EC
] = Samples
->getHeadSamples() + 1;
1070 BlockWeights
[EC
] = Weight
;
1074 /// Find equivalence classes.
1076 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1077 /// the weights of all the blocks in the same equivalence class to the same
1078 /// weight. To compute the concept of equivalence, we use dominance and loop
1079 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1080 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1082 /// \param F The function to query.
1083 void SampleProfileLoader::findEquivalenceClasses(Function
&F
) {
1084 SmallVector
<BasicBlock
*, 8> DominatedBBs
;
1085 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1086 // Find equivalence sets based on dominance and post-dominance information.
1087 for (auto &BB
: F
) {
1088 BasicBlock
*BB1
= &BB
;
1090 // Compute BB1's equivalence class once.
1091 if (EquivalenceClass
.count(BB1
)) {
1092 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
1096 // By default, blocks are in their own equivalence class.
1097 EquivalenceClass
[BB1
] = BB1
;
1099 // Traverse all the blocks dominated by BB1. We are looking for
1100 // every basic block BB2 such that:
1102 // 1- BB1 dominates BB2.
1103 // 2- BB2 post-dominates BB1.
1104 // 3- BB1 and BB2 are in the same loop nest.
1106 // If all those conditions hold, it means that BB2 is executed
1107 // as many times as BB1, so they are placed in the same equivalence
1108 // class by making BB2's equivalence class be BB1.
1109 DominatedBBs
.clear();
1110 DT
->getDescendants(BB1
, DominatedBBs
);
1111 findEquivalencesFor(BB1
, DominatedBBs
, PDT
.get());
1113 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1
));
1116 // Assign weights to equivalence classes.
1118 // All the basic blocks in the same equivalence class will execute
1119 // the same number of times. Since we know that the head block in
1120 // each equivalence class has the largest weight, assign that weight
1121 // to all the blocks in that equivalence class.
1123 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1124 for (auto &BI
: F
) {
1125 const BasicBlock
*BB
= &BI
;
1126 const BasicBlock
*EquivBB
= EquivalenceClass
[BB
];
1128 BlockWeights
[BB
] = BlockWeights
[EquivBB
];
1129 LLVM_DEBUG(printBlockWeight(dbgs(), BB
));
1133 /// Visit the given edge to decide if it has a valid weight.
1135 /// If \p E has not been visited before, we copy to \p UnknownEdge
1136 /// and increment the count of unknown edges.
1138 /// \param E Edge to visit.
1139 /// \param NumUnknownEdges Current number of unknown edges.
1140 /// \param UnknownEdge Set if E has not been visited before.
1142 /// \returns E's weight, if known. Otherwise, return 0.
1143 uint64_t SampleProfileLoader::visitEdge(Edge E
, unsigned *NumUnknownEdges
,
1144 Edge
*UnknownEdge
) {
1145 if (!VisitedEdges
.count(E
)) {
1146 (*NumUnknownEdges
)++;
1151 return EdgeWeights
[E
];
1154 /// Propagate weights through incoming/outgoing edges.
1156 /// If the weight of a basic block is known, and there is only one edge
1157 /// with an unknown weight, we can calculate the weight of that edge.
1159 /// Similarly, if all the edges have a known count, we can calculate the
1160 /// count of the basic block, if needed.
1162 /// \param F Function to process.
1163 /// \param UpdateBlockCount Whether we should update basic block counts that
1164 /// has already been annotated.
1166 /// \returns True if new weights were assigned to edges or blocks.
1167 bool SampleProfileLoader::propagateThroughEdges(Function
&F
,
1168 bool UpdateBlockCount
) {
1169 bool Changed
= false;
1170 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1171 for (const auto &BI
: F
) {
1172 const BasicBlock
*BB
= &BI
;
1173 const BasicBlock
*EC
= EquivalenceClass
[BB
];
1175 // Visit all the predecessor and successor edges to determine
1176 // which ones have a weight assigned already. Note that it doesn't
1177 // matter that we only keep track of a single unknown edge. The
1178 // only case we are interested in handling is when only a single
1179 // edge is unknown (see setEdgeOrBlockWeight).
1180 for (unsigned i
= 0; i
< 2; i
++) {
1181 uint64_t TotalWeight
= 0;
1182 unsigned NumUnknownEdges
= 0, NumTotalEdges
= 0;
1183 Edge UnknownEdge
, SelfReferentialEdge
, SingleEdge
;
1186 // First, visit all predecessor edges.
1187 NumTotalEdges
= Predecessors
[BB
].size();
1188 for (auto *Pred
: Predecessors
[BB
]) {
1189 Edge E
= std::make_pair(Pred
, BB
);
1190 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1191 if (E
.first
== E
.second
)
1192 SelfReferentialEdge
= E
;
1194 if (NumTotalEdges
== 1) {
1195 SingleEdge
= std::make_pair(Predecessors
[BB
][0], BB
);
1198 // On the second round, visit all successor edges.
1199 NumTotalEdges
= Successors
[BB
].size();
1200 for (auto *Succ
: Successors
[BB
]) {
1201 Edge E
= std::make_pair(BB
, Succ
);
1202 TotalWeight
+= visitEdge(E
, &NumUnknownEdges
, &UnknownEdge
);
1204 if (NumTotalEdges
== 1) {
1205 SingleEdge
= std::make_pair(BB
, Successors
[BB
][0]);
1209 // After visiting all the edges, there are three cases that we
1210 // can handle immediately:
1212 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1213 // In this case, we simply check that the sum of all the edges
1214 // is the same as BB's weight. If not, we change BB's weight
1215 // to match. Additionally, if BB had not been visited before,
1216 // we mark it visited.
1218 // - Only one edge is unknown and BB has already been visited.
1219 // In this case, we can compute the weight of the edge by
1220 // subtracting the total block weight from all the known
1221 // edge weights. If the edges weight more than BB, then the
1222 // edge of the last remaining edge is set to zero.
1224 // - There exists a self-referential edge and the weight of BB is
1225 // known. In this case, this edge can be based on BB's weight.
1226 // We add up all the other known edges and set the weight on
1227 // the self-referential edge as we did in the previous case.
1229 // In any other case, we must continue iterating. Eventually,
1230 // all edges will get a weight, or iteration will stop when
1231 // it reaches SampleProfileMaxPropagateIterations.
1232 if (NumUnknownEdges
<= 1) {
1233 uint64_t &BBWeight
= BlockWeights
[EC
];
1234 if (NumUnknownEdges
== 0) {
1235 if (!VisitedBlocks
.count(EC
)) {
1236 // If we already know the weight of all edges, the weight of the
1237 // basic block can be computed. It should be no larger than the sum
1238 // of all edge weights.
1239 if (TotalWeight
> BBWeight
) {
1240 BBWeight
= TotalWeight
;
1242 LLVM_DEBUG(dbgs() << "All edge weights for " << BB
->getName()
1243 << " known. Set weight for block: ";
1244 printBlockWeight(dbgs(), BB
););
1246 } else if (NumTotalEdges
== 1 &&
1247 EdgeWeights
[SingleEdge
] < BlockWeights
[EC
]) {
1248 // If there is only one edge for the visited basic block, use the
1249 // block weight to adjust edge weight if edge weight is smaller.
1250 EdgeWeights
[SingleEdge
] = BlockWeights
[EC
];
1253 } else if (NumUnknownEdges
== 1 && VisitedBlocks
.count(EC
)) {
1254 // If there is a single unknown edge and the block has been
1255 // visited, then we can compute E's weight.
1256 if (BBWeight
>= TotalWeight
)
1257 EdgeWeights
[UnknownEdge
] = BBWeight
- TotalWeight
;
1259 EdgeWeights
[UnknownEdge
] = 0;
1260 const BasicBlock
*OtherEC
;
1262 OtherEC
= EquivalenceClass
[UnknownEdge
.first
];
1264 OtherEC
= EquivalenceClass
[UnknownEdge
.second
];
1265 // Edge weights should never exceed the BB weights it connects.
1266 if (VisitedBlocks
.count(OtherEC
) &&
1267 EdgeWeights
[UnknownEdge
] > BlockWeights
[OtherEC
])
1268 EdgeWeights
[UnknownEdge
] = BlockWeights
[OtherEC
];
1269 VisitedEdges
.insert(UnknownEdge
);
1271 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1272 printEdgeWeight(dbgs(), UnknownEdge
));
1274 } else if (VisitedBlocks
.count(EC
) && BlockWeights
[EC
] == 0) {
1275 // If a block Weights 0, all its in/out edges should weight 0.
1277 for (auto *Pred
: Predecessors
[BB
]) {
1278 Edge E
= std::make_pair(Pred
, BB
);
1280 VisitedEdges
.insert(E
);
1283 for (auto *Succ
: Successors
[BB
]) {
1284 Edge E
= std::make_pair(BB
, Succ
);
1286 VisitedEdges
.insert(E
);
1289 } else if (SelfReferentialEdge
.first
&& VisitedBlocks
.count(EC
)) {
1290 uint64_t &BBWeight
= BlockWeights
[BB
];
1291 // We have a self-referential edge and the weight of BB is known.
1292 if (BBWeight
>= TotalWeight
)
1293 EdgeWeights
[SelfReferentialEdge
] = BBWeight
- TotalWeight
;
1295 EdgeWeights
[SelfReferentialEdge
] = 0;
1296 VisitedEdges
.insert(SelfReferentialEdge
);
1298 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1299 printEdgeWeight(dbgs(), SelfReferentialEdge
));
1301 if (UpdateBlockCount
&& !VisitedBlocks
.count(EC
) && TotalWeight
> 0) {
1302 BlockWeights
[EC
] = TotalWeight
;
1303 VisitedBlocks
.insert(EC
);
1312 /// Build in/out edge lists for each basic block in the CFG.
1314 /// We are interested in unique edges. If a block B1 has multiple
1315 /// edges to another block B2, we only add a single B1->B2 edge.
1316 void SampleProfileLoader::buildEdges(Function
&F
) {
1317 for (auto &BI
: F
) {
1318 BasicBlock
*B1
= &BI
;
1320 // Add predecessors for B1.
1321 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1322 if (!Predecessors
[B1
].empty())
1323 llvm_unreachable("Found a stale predecessors list in a basic block.");
1324 for (pred_iterator PI
= pred_begin(B1
), PE
= pred_end(B1
); PI
!= PE
; ++PI
) {
1325 BasicBlock
*B2
= *PI
;
1326 if (Visited
.insert(B2
).second
)
1327 Predecessors
[B1
].push_back(B2
);
1330 // Add successors for B1.
1332 if (!Successors
[B1
].empty())
1333 llvm_unreachable("Found a stale successors list in a basic block.");
1334 for (succ_iterator SI
= succ_begin(B1
), SE
= succ_end(B1
); SI
!= SE
; ++SI
) {
1335 BasicBlock
*B2
= *SI
;
1336 if (Visited
.insert(B2
).second
)
1337 Successors
[B1
].push_back(B2
);
1342 /// Returns the sorted CallTargetMap \p M by count in descending order.
1343 static SmallVector
<InstrProfValueData
, 2> GetSortedValueDataFromCallTargets(
1344 const SampleRecord::CallTargetMap
& M
) {
1345 SmallVector
<InstrProfValueData
, 2> R
;
1346 for (const auto &I
: SampleRecord::SortCallTargets(M
)) {
1347 R
.emplace_back(InstrProfValueData
{FunctionSamples::getGUID(I
.first
), I
.second
});
1352 /// Propagate weights into edges
1354 /// The following rules are applied to every block BB in the CFG:
1356 /// - If BB has a single predecessor/successor, then the weight
1357 /// of that edge is the weight of the block.
1359 /// - If all incoming or outgoing edges are known except one, and the
1360 /// weight of the block is already known, the weight of the unknown
1361 /// edge will be the weight of the block minus the sum of all the known
1362 /// edges. If the sum of all the known edges is larger than BB's weight,
1363 /// we set the unknown edge weight to zero.
1365 /// - If there is a self-referential edge, and the weight of the block is
1366 /// known, the weight for that edge is set to the weight of the block
1367 /// minus the weight of the other incoming edges to that block (if
1369 void SampleProfileLoader::propagateWeights(Function
&F
) {
1370 bool Changed
= true;
1373 // If BB weight is larger than its corresponding loop's header BB weight,
1374 // use the BB weight to replace the loop header BB weight.
1375 for (auto &BI
: F
) {
1376 BasicBlock
*BB
= &BI
;
1377 Loop
*L
= LI
->getLoopFor(BB
);
1381 BasicBlock
*Header
= L
->getHeader();
1382 if (Header
&& BlockWeights
[BB
] > BlockWeights
[Header
]) {
1383 BlockWeights
[Header
] = BlockWeights
[BB
];
1387 // Before propagation starts, build, for each block, a list of
1388 // unique predecessors and successors. This is necessary to handle
1389 // identical edges in multiway branches. Since we visit all blocks and all
1390 // edges of the CFG, it is cleaner to build these lists once at the start
1394 // Propagate until we converge or we go past the iteration limit.
1395 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1396 Changed
= propagateThroughEdges(F
, false);
1399 // The first propagation propagates BB counts from annotated BBs to unknown
1400 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1401 // to propagate edge weights.
1402 VisitedEdges
.clear();
1404 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1405 Changed
= propagateThroughEdges(F
, false);
1408 // The 3rd propagation pass allows adjust annotated BB weights that are
1411 while (Changed
&& I
++ < SampleProfileMaxPropagateIterations
) {
1412 Changed
= propagateThroughEdges(F
, true);
1415 // Generate MD_prof metadata for every branch instruction using the
1416 // edge weights computed during propagation.
1417 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1418 LLVMContext
&Ctx
= F
.getContext();
1420 for (auto &BI
: F
) {
1421 BasicBlock
*BB
= &BI
;
1423 if (BlockWeights
[BB
]) {
1424 for (auto &I
: BB
->getInstList()) {
1425 if (!isa
<CallInst
>(I
) && !isa
<InvokeInst
>(I
))
1428 if (!CS
.getCalledFunction()) {
1429 const DebugLoc
&DLoc
= I
.getDebugLoc();
1432 const DILocation
*DIL
= DLoc
;
1433 uint32_t LineOffset
= FunctionSamples::getOffset(DIL
);
1434 uint32_t Discriminator
= DIL
->getBaseDiscriminator();
1436 const FunctionSamples
*FS
= findFunctionSamples(I
);
1439 auto T
= FS
->findCallTargetMapAt(LineOffset
, Discriminator
);
1440 if (!T
|| T
.get().empty())
1442 SmallVector
<InstrProfValueData
, 2> SortedCallTargets
=
1443 GetSortedValueDataFromCallTargets(T
.get());
1445 findIndirectCallFunctionSamples(I
, Sum
);
1446 annotateValueSite(*I
.getParent()->getParent()->getParent(), I
,
1447 SortedCallTargets
, Sum
, IPVK_IndirectCallTarget
,
1448 SortedCallTargets
.size());
1449 } else if (!isa
<IntrinsicInst
>(&I
)) {
1450 I
.setMetadata(LLVMContext::MD_prof
,
1451 MDB
.createBranchWeights(
1452 {static_cast<uint32_t>(BlockWeights
[BB
])}));
1456 Instruction
*TI
= BB
->getTerminator();
1457 if (TI
->getNumSuccessors() == 1)
1459 if (!isa
<BranchInst
>(TI
) && !isa
<SwitchInst
>(TI
))
1462 DebugLoc BranchLoc
= TI
->getDebugLoc();
1463 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1464 << ((BranchLoc
) ? Twine(BranchLoc
.getLine())
1465 : Twine("<UNKNOWN LOCATION>"))
1467 SmallVector
<uint32_t, 4> Weights
;
1468 uint32_t MaxWeight
= 0;
1469 Instruction
*MaxDestInst
;
1470 for (unsigned I
= 0; I
< TI
->getNumSuccessors(); ++I
) {
1471 BasicBlock
*Succ
= TI
->getSuccessor(I
);
1472 Edge E
= std::make_pair(BB
, Succ
);
1473 uint64_t Weight
= EdgeWeights
[E
];
1474 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E
));
1475 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1476 // if needed. Sample counts in profiles are 64-bit unsigned values,
1477 // but internally branch weights are expressed as 32-bit values.
1478 if (Weight
> std::numeric_limits
<uint32_t>::max()) {
1479 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1480 Weight
= std::numeric_limits
<uint32_t>::max();
1482 // Weight is added by one to avoid propagation errors introduced by
1484 Weights
.push_back(static_cast<uint32_t>(Weight
+ 1));
1486 if (Weight
> MaxWeight
) {
1488 MaxDestInst
= Succ
->getFirstNonPHIOrDbgOrLifetime();
1493 misexpect::verifyMisExpect(TI
, Weights
, TI
->getContext());
1495 uint64_t TempWeight
;
1496 // Only set weights if there is at least one non-zero weight.
1497 // In any other case, let the analyzer set weights.
1498 // Do not set weights if the weights are present. In ThinLTO, the profile
1499 // annotation is done twice. If the first annotation already set the
1500 // weights, the second pass does not need to set it.
1501 if (MaxWeight
> 0 && !TI
->extractProfTotalWeight(TempWeight
)) {
1502 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1503 TI
->setMetadata(LLVMContext::MD_prof
,
1504 MDB
.createBranchWeights(Weights
));
1506 return OptimizationRemark(DEBUG_TYPE
, "PopularDest", MaxDestInst
)
1507 << "most popular destination for conditional branches at "
1508 << ore::NV("CondBranchesLoc", BranchLoc
);
1511 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1516 /// Get the line number for the function header.
1518 /// This looks up function \p F in the current compilation unit and
1519 /// retrieves the line number where the function is defined. This is
1520 /// line 0 for all the samples read from the profile file. Every line
1521 /// number is relative to this line.
1523 /// \param F Function object to query.
1525 /// \returns the line number where \p F is defined. If it returns 0,
1526 /// it means that there is no debug information available for \p F.
1527 unsigned SampleProfileLoader::getFunctionLoc(Function
&F
) {
1528 if (DISubprogram
*S
= F
.getSubprogram())
1529 return S
->getLine();
1531 if (NoWarnSampleUnused
)
1534 // If the start of \p F is missing, emit a diagnostic to inform the user
1535 // about the missed opportunity.
1536 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1537 "No debug information found in function " + F
.getName() +
1538 ": Function profile not used",
1543 void SampleProfileLoader::computeDominanceAndLoopInfo(Function
&F
) {
1544 DT
.reset(new DominatorTree
);
1547 PDT
.reset(new PostDominatorTree(F
));
1549 LI
.reset(new LoopInfo
);
1553 /// Generate branch weight metadata for all branches in \p F.
1555 /// Branch weights are computed out of instruction samples using a
1556 /// propagation heuristic. Propagation proceeds in 3 phases:
1558 /// 1- Assignment of block weights. All the basic blocks in the function
1559 /// are initial assigned the same weight as their most frequently
1560 /// executed instruction.
1562 /// 2- Creation of equivalence classes. Since samples may be missing from
1563 /// blocks, we can fill in the gaps by setting the weights of all the
1564 /// blocks in the same equivalence class to the same weight. To compute
1565 /// the concept of equivalence, we use dominance and loop information.
1566 /// Two blocks B1 and B2 are in the same equivalence class if B1
1567 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1569 /// 3- Propagation of block weights into edges. This uses a simple
1570 /// propagation heuristic. The following rules are applied to every
1571 /// block BB in the CFG:
1573 /// - If BB has a single predecessor/successor, then the weight
1574 /// of that edge is the weight of the block.
1576 /// - If all the edges are known except one, and the weight of the
1577 /// block is already known, the weight of the unknown edge will
1578 /// be the weight of the block minus the sum of all the known
1579 /// edges. If the sum of all the known edges is larger than BB's weight,
1580 /// we set the unknown edge weight to zero.
1582 /// - If there is a self-referential edge, and the weight of the block is
1583 /// known, the weight for that edge is set to the weight of the block
1584 /// minus the weight of the other incoming edges to that block (if
1587 /// Since this propagation is not guaranteed to finalize for every CFG, we
1588 /// only allow it to proceed for a limited number of iterations (controlled
1589 /// by -sample-profile-max-propagate-iterations).
1591 /// FIXME: Try to replace this propagation heuristic with a scheme
1592 /// that is guaranteed to finalize. A work-list approach similar to
1593 /// the standard value propagation algorithm used by SSA-CCP might
1596 /// Once all the branch weights are computed, we emit the MD_prof
1597 /// metadata on BB using the computed values for each of its branches.
1599 /// \param F The function to query.
1601 /// \returns true if \p F was modified. Returns false, otherwise.
1602 bool SampleProfileLoader::emitAnnotations(Function
&F
) {
1603 bool Changed
= false;
1605 if (getFunctionLoc(F
) == 0)
1608 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1609 << F
.getName() << ": " << getFunctionLoc(F
) << "\n");
1611 DenseSet
<GlobalValue::GUID
> InlinedGUIDs
;
1612 Changed
|= inlineHotFunctions(F
, InlinedGUIDs
);
1614 // Compute basic block weights.
1615 Changed
|= computeBlockWeights(F
);
1618 // Add an entry count to the function using the samples gathered at the
1620 // Sets the GUIDs that are inlined in the profiled binary. This is used
1621 // for ThinLink to make correct liveness analysis, and also make the IR
1622 // match the profiled binary before annotation.
1624 ProfileCount(Samples
->getHeadSamples() + 1, Function::PCT_Real
),
1627 // Compute dominance and loop info needed for propagation.
1628 computeDominanceAndLoopInfo(F
);
1630 // Find equivalence classes.
1631 findEquivalenceClasses(F
);
1633 // Propagate weights to all edges.
1634 propagateWeights(F
);
1637 // If coverage checking was requested, compute it now.
1638 if (SampleProfileRecordCoverage
) {
1639 unsigned Used
= CoverageTracker
.countUsedRecords(Samples
, PSI
);
1640 unsigned Total
= CoverageTracker
.countBodyRecords(Samples
, PSI
);
1641 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1642 if (Coverage
< SampleProfileRecordCoverage
) {
1643 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1644 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1645 Twine(Used
) + " of " + Twine(Total
) + " available profile records (" +
1646 Twine(Coverage
) + "%) were applied",
1651 if (SampleProfileSampleCoverage
) {
1652 uint64_t Used
= CoverageTracker
.getTotalUsedSamples();
1653 uint64_t Total
= CoverageTracker
.countBodySamples(Samples
, PSI
);
1654 unsigned Coverage
= CoverageTracker
.computeCoverage(Used
, Total
);
1655 if (Coverage
< SampleProfileSampleCoverage
) {
1656 F
.getContext().diagnose(DiagnosticInfoSampleProfile(
1657 F
.getSubprogram()->getFilename(), getFunctionLoc(F
),
1658 Twine(Used
) + " of " + Twine(Total
) + " available profile samples (" +
1659 Twine(Coverage
) + "%) were applied",
1666 char SampleProfileLoaderLegacyPass::ID
= 0;
1668 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass
, "sample-profile",
1669 "Sample Profile loader", false, false)
1670 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1671 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1672 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
1673 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass
, "sample-profile",
1674 "Sample Profile loader", false, false)
1676 bool SampleProfileLoader::doInitialization(Module
&M
) {
1677 auto &Ctx
= M
.getContext();
1679 std::unique_ptr
<SampleProfileReaderItaniumRemapper
> RemapReader
;
1681 SampleProfileReader::create(Filename
, Ctx
, RemappingFilename
);
1682 if (std::error_code EC
= ReaderOrErr
.getError()) {
1683 std::string Msg
= "Could not open profile: " + EC
.message();
1684 Ctx
.diagnose(DiagnosticInfoSampleProfile(Filename
, Msg
));
1687 Reader
= std::move(ReaderOrErr
.get());
1688 Reader
->collectFuncsFrom(M
);
1689 ProfileIsValid
= (Reader
->read() == sampleprof_error::success
);
1690 PSL
= Reader
->getProfileSymbolList();
1692 // While profile-sample-accurate is on, ignore symbol list.
1693 ProfAccForSymsInList
=
1694 ProfileAccurateForSymsInList
&& PSL
&& !ProfileSampleAccurate
;
1695 if (ProfAccForSymsInList
) {
1696 NamesInProfile
.clear();
1697 if (auto NameTable
= Reader
->getNameTable())
1698 NamesInProfile
.insert(NameTable
->begin(), NameTable
->end());
1704 ModulePass
*llvm::createSampleProfileLoaderPass() {
1705 return new SampleProfileLoaderLegacyPass();
1708 ModulePass
*llvm::createSampleProfileLoaderPass(StringRef Name
) {
1709 return new SampleProfileLoaderLegacyPass(Name
);
1712 bool SampleProfileLoader::runOnModule(Module
&M
, ModuleAnalysisManager
*AM
,
1713 ProfileSummaryInfo
*_PSI
) {
1714 GUIDToFuncNameMapper
Mapper(M
, *Reader
, GUIDToFuncNameMap
);
1715 if (!ProfileIsValid
)
1719 if (M
.getProfileSummary(/* IsCS */ false) == nullptr)
1720 M
.setProfileSummary(Reader
->getSummary().getMD(M
.getContext()),
1721 ProfileSummary::PSK_Sample
);
1723 // Compute the total number of samples collected in this profile.
1724 for (const auto &I
: Reader
->getProfiles())
1725 TotalCollectedSamples
+= I
.second
.getTotalSamples();
1727 // Populate the symbol map.
1728 for (const auto &N_F
: M
.getValueSymbolTable()) {
1729 StringRef OrigName
= N_F
.getKey();
1730 Function
*F
= dyn_cast
<Function
>(N_F
.getValue());
1733 SymbolMap
[OrigName
] = F
;
1734 auto pos
= OrigName
.find('.');
1735 if (pos
!= StringRef::npos
) {
1736 StringRef NewName
= OrigName
.substr(0, pos
);
1737 auto r
= SymbolMap
.insert(std::make_pair(NewName
, F
));
1738 // Failiing to insert means there is already an entry in SymbolMap,
1739 // thus there are multiple functions that are mapped to the same
1740 // stripped name. In this case of name conflicting, set the value
1741 // to nullptr to avoid confusion.
1743 r
.first
->second
= nullptr;
1747 bool retval
= false;
1749 if (!F
.isDeclaration()) {
1750 clearFunctionData();
1751 retval
|= runOnFunction(F
, AM
);
1754 // Account for cold calls not inlined....
1755 for (const std::pair
<Function
*, NotInlinedProfileInfo
> &pair
:
1757 updateProfileCallee(pair
.first
, pair
.second
.entryCount
);
1762 bool SampleProfileLoaderLegacyPass::runOnModule(Module
&M
) {
1763 ACT
= &getAnalysis
<AssumptionCacheTracker
>();
1764 TTIWP
= &getAnalysis
<TargetTransformInfoWrapperPass
>();
1765 ProfileSummaryInfo
*PSI
=
1766 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
1767 return SampleLoader
.runOnModule(M
, nullptr, PSI
);
1770 bool SampleProfileLoader::runOnFunction(Function
&F
, ModuleAnalysisManager
*AM
) {
1772 DILocation2SampleMap
.clear();
1773 // By default the entry count is initialized to -1, which will be treated
1774 // conservatively by getEntryCount as the same as unknown (None). This is
1775 // to avoid newly added code to be treated as cold. If we have samples
1776 // this will be overwritten in emitAnnotations.
1777 uint64_t initialEntryCount
= -1;
1779 ProfAccForSymsInList
= ProfileAccurateForSymsInList
&& PSL
;
1780 if (ProfileSampleAccurate
|| F
.hasFnAttribute("profile-sample-accurate")) {
1781 // initialize all the function entry counts to 0. It means all the
1782 // functions without profile will be regarded as cold.
1783 initialEntryCount
= 0;
1784 // profile-sample-accurate is a user assertion which has a higher precedence
1785 // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1786 ProfAccForSymsInList
= false;
1789 // PSL -- profile symbol list include all the symbols in sampled binary.
1790 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1791 // old functions without samples being cold, without having to worry
1792 // about new and hot functions being mistakenly treated as cold.
1793 if (ProfAccForSymsInList
) {
1794 // Initialize the entry count to 0 for functions in the list.
1795 if (PSL
->contains(F
.getName()))
1796 initialEntryCount
= 0;
1798 // Function in the symbol list but without sample will be regarded as
1799 // cold. To minimize the potential negative performance impact it could
1800 // have, we want to be a little conservative here saying if a function
1801 // shows up in the profile, no matter as outline function, inline instance
1802 // or call targets, treat the function as not being cold. This will handle
1803 // the cases such as most callsites of a function are inlined in sampled
1804 // binary but not inlined in current build (because of source code drift,
1805 // imprecise debug information, or the callsites are all cold individually
1806 // but not cold accumulatively...), so the outline function showing up as
1807 // cold in sampled binary will actually not be cold after current build.
1808 StringRef CanonName
= FunctionSamples::getCanonicalFnName(F
);
1809 if (NamesInProfile
.count(CanonName
))
1810 initialEntryCount
= -1;
1813 F
.setEntryCount(ProfileCount(initialEntryCount
, Function::PCT_Real
));
1814 std::unique_ptr
<OptimizationRemarkEmitter
> OwnedORE
;
1817 AM
->getResult
<FunctionAnalysisManagerModuleProxy
>(*F
.getParent())
1819 ORE
= &FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1821 OwnedORE
= std::make_unique
<OptimizationRemarkEmitter
>(&F
);
1822 ORE
= OwnedORE
.get();
1824 Samples
= Reader
->getSamplesFor(F
);
1825 if (Samples
&& !Samples
->empty())
1826 return emitAnnotations(F
);
1830 PreservedAnalyses
SampleProfileLoaderPass::run(Module
&M
,
1831 ModuleAnalysisManager
&AM
) {
1832 FunctionAnalysisManager
&FAM
=
1833 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1835 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
1836 return FAM
.getResult
<AssumptionAnalysis
>(F
);
1838 auto GetTTI
= [&](Function
&F
) -> TargetTransformInfo
& {
1839 return FAM
.getResult
<TargetIRAnalysis
>(F
);
1842 SampleProfileLoader
SampleLoader(
1843 ProfileFileName
.empty() ? SampleProfileFile
: ProfileFileName
,
1844 ProfileRemappingFileName
.empty() ? SampleProfileRemappingFile
1845 : ProfileRemappingFileName
,
1846 IsThinLTOPreLink
, GetAssumptionCache
, GetTTI
);
1848 SampleLoader
.doInitialization(M
);
1850 ProfileSummaryInfo
*PSI
= &AM
.getResult
<ProfileSummaryAnalysis
>(M
);
1851 if (!SampleLoader
.runOnModule(M
, &AM
, PSI
))
1852 return PreservedAnalyses::all();
1854 return PreservedAnalyses::none();