1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Transforms/Utils/Local.h"
17 #include "llvm/IR/ConstantRange.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/PatternMatch.h"
21 using namespace PatternMatch
;
23 #define DEBUG_TYPE "instcombine"
25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
27 static unsigned getFCmpCode(FCmpInst::Predicate CC
) {
28 assert(FCmpInst::FCMP_FALSE
<= CC
&& CC
<= FCmpInst::FCMP_TRUE
&&
29 "Unexpected FCmp predicate!");
30 // Take advantage of the bit pattern of FCmpInst::Predicate here.
32 static_assert(FCmpInst::FCMP_FALSE
== 0, ""); // 0 0 0 0
33 static_assert(FCmpInst::FCMP_OEQ
== 1, ""); // 0 0 0 1
34 static_assert(FCmpInst::FCMP_OGT
== 2, ""); // 0 0 1 0
35 static_assert(FCmpInst::FCMP_OGE
== 3, ""); // 0 0 1 1
36 static_assert(FCmpInst::FCMP_OLT
== 4, ""); // 0 1 0 0
37 static_assert(FCmpInst::FCMP_OLE
== 5, ""); // 0 1 0 1
38 static_assert(FCmpInst::FCMP_ONE
== 6, ""); // 0 1 1 0
39 static_assert(FCmpInst::FCMP_ORD
== 7, ""); // 0 1 1 1
40 static_assert(FCmpInst::FCMP_UNO
== 8, ""); // 1 0 0 0
41 static_assert(FCmpInst::FCMP_UEQ
== 9, ""); // 1 0 0 1
42 static_assert(FCmpInst::FCMP_UGT
== 10, ""); // 1 0 1 0
43 static_assert(FCmpInst::FCMP_UGE
== 11, ""); // 1 0 1 1
44 static_assert(FCmpInst::FCMP_ULT
== 12, ""); // 1 1 0 0
45 static_assert(FCmpInst::FCMP_ULE
== 13, ""); // 1 1 0 1
46 static_assert(FCmpInst::FCMP_UNE
== 14, ""); // 1 1 1 0
47 static_assert(FCmpInst::FCMP_TRUE
== 15, ""); // 1 1 1 1
51 /// This is the complement of getICmpCode, which turns an opcode and two
52 /// operands into either a constant true or false, or a brand new ICmp
53 /// instruction. The sign is passed in to determine which kind of predicate to
54 /// use in the new icmp instruction.
55 static Value
*getNewICmpValue(unsigned Code
, bool Sign
, Value
*LHS
, Value
*RHS
,
56 InstCombiner::BuilderTy
&Builder
) {
57 ICmpInst::Predicate NewPred
;
58 if (Constant
*TorF
= getPredForICmpCode(Code
, Sign
, LHS
->getType(), NewPred
))
60 return Builder
.CreateICmp(NewPred
, LHS
, RHS
);
63 /// This is the complement of getFCmpCode, which turns an opcode and two
64 /// operands into either a FCmp instruction, or a true/false constant.
65 static Value
*getFCmpValue(unsigned Code
, Value
*LHS
, Value
*RHS
,
66 InstCombiner::BuilderTy
&Builder
) {
67 const auto Pred
= static_cast<FCmpInst::Predicate
>(Code
);
68 assert(FCmpInst::FCMP_FALSE
<= Pred
&& Pred
<= FCmpInst::FCMP_TRUE
&&
69 "Unexpected FCmp predicate!");
70 if (Pred
== FCmpInst::FCMP_FALSE
)
71 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
72 if (Pred
== FCmpInst::FCMP_TRUE
)
73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 1);
74 return Builder
.CreateFCmp(Pred
, LHS
, RHS
);
77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
79 /// \param I Binary operator to transform.
80 /// \return Pointer to node that must replace the original binary operator, or
81 /// null pointer if no transformation was made.
82 static Value
*SimplifyBSwap(BinaryOperator
&I
,
83 InstCombiner::BuilderTy
&Builder
) {
84 assert(I
.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
86 Value
*OldLHS
= I
.getOperand(0);
87 Value
*OldRHS
= I
.getOperand(1);
90 if (!match(OldLHS
, m_BSwap(m_Value(NewLHS
))))
96 if (match(OldRHS
, m_BSwap(m_Value(NewRHS
)))) {
97 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
98 if (!OldLHS
->hasOneUse() && !OldRHS
->hasOneUse())
100 // NewRHS initialized by the matcher.
101 } else if (match(OldRHS
, m_APInt(C
))) {
102 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
103 if (!OldLHS
->hasOneUse())
105 NewRHS
= ConstantInt::get(I
.getType(), C
->byteSwap());
109 Value
*BinOp
= Builder
.CreateBinOp(I
.getOpcode(), NewLHS
, NewRHS
);
110 Function
*F
= Intrinsic::getDeclaration(I
.getModule(), Intrinsic::bswap
,
112 return Builder
.CreateCall(F
, BinOp
);
115 /// This handles expressions of the form ((val OP C1) & C2). Where
116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
117 Instruction
*InstCombiner::OptAndOp(BinaryOperator
*Op
,
120 BinaryOperator
&TheAnd
) {
121 Value
*X
= Op
->getOperand(0);
123 switch (Op
->getOpcode()) {
125 case Instruction::Add
:
126 if (Op
->hasOneUse()) {
127 // Adding a one to a single bit bit-field should be turned into an XOR
128 // of the bit. First thing to check is to see if this AND is with a
129 // single bit constant.
130 const APInt
&AndRHSV
= AndRHS
->getValue();
132 // If there is only one bit set.
133 if (AndRHSV
.isPowerOf2()) {
134 // Ok, at this point, we know that we are masking the result of the
135 // ADD down to exactly one bit. If the constant we are adding has
136 // no bits set below this bit, then we can eliminate the ADD.
137 const APInt
& AddRHS
= OpRHS
->getValue();
139 // Check to see if any bits below the one bit set in AndRHSV are set.
140 if ((AddRHS
& (AndRHSV
- 1)).isNullValue()) {
141 // If not, the only thing that can effect the output of the AND is
142 // the bit specified by AndRHSV. If that bit is set, the effect of
143 // the XOR is to toggle the bit. If it is clear, then the ADD has
145 if ((AddRHS
& AndRHSV
).isNullValue()) { // Bit is not set, noop
146 TheAnd
.setOperand(0, X
);
149 // Pull the XOR out of the AND.
150 Value
*NewAnd
= Builder
.CreateAnd(X
, AndRHS
);
151 NewAnd
->takeName(Op
);
152 return BinaryOperator::CreateXor(NewAnd
, AndRHS
);
162 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
163 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
164 /// whether to treat V, Lo, and Hi as signed or not.
165 Value
*InstCombiner::insertRangeTest(Value
*V
, const APInt
&Lo
, const APInt
&Hi
,
166 bool isSigned
, bool Inside
) {
167 assert((isSigned
? Lo
.slt(Hi
) : Lo
.ult(Hi
)) &&
168 "Lo is not < Hi in range emission code!");
170 Type
*Ty
= V
->getType();
172 // V >= Min && V < Hi --> V < Hi
173 // V < Min || V >= Hi --> V >= Hi
174 ICmpInst::Predicate Pred
= Inside
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
175 if (isSigned
? Lo
.isMinSignedValue() : Lo
.isMinValue()) {
176 Pred
= isSigned
? ICmpInst::getSignedPredicate(Pred
) : Pred
;
177 return Builder
.CreateICmp(Pred
, V
, ConstantInt::get(Ty
, Hi
));
180 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
181 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
183 Builder
.CreateSub(V
, ConstantInt::get(Ty
, Lo
), V
->getName() + ".off");
184 Constant
*HiMinusLo
= ConstantInt::get(Ty
, Hi
- Lo
);
185 return Builder
.CreateICmp(Pred
, VMinusLo
, HiMinusLo
);
188 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
189 /// that can be simplified.
190 /// One of A and B is considered the mask. The other is the value. This is
191 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
192 /// only "Mask", then both A and B can be considered masks. If A is the mask,
193 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
194 /// If both A and C are constants, this proof is also easy.
195 /// For the following explanations, we assume that A is the mask.
197 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
198 /// bits of A are set in B.
199 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
201 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
202 /// bits of A are cleared in B.
203 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
205 /// "Mixed" declares that (A & B) == C and C might or might not contain any
206 /// number of one bits and zero bits.
207 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
209 /// "Not" means that in above descriptions "==" should be replaced by "!=".
210 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
212 /// If the mask A contains a single bit, then the following is equivalent:
213 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
214 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
215 enum MaskedICmpType
{
217 AMask_NotAllOnes
= 2,
219 BMask_NotAllOnes
= 8,
221 Mask_NotAllZeros
= 32,
223 AMask_NotMixed
= 128,
228 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
230 static unsigned getMaskedICmpType(Value
*A
, Value
*B
, Value
*C
,
231 ICmpInst::Predicate Pred
) {
232 ConstantInt
*ACst
= dyn_cast
<ConstantInt
>(A
);
233 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
234 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
235 bool IsEq
= (Pred
== ICmpInst::ICMP_EQ
);
236 bool IsAPow2
= (ACst
&& !ACst
->isZero() && ACst
->getValue().isPowerOf2());
237 bool IsBPow2
= (BCst
&& !BCst
->isZero() && BCst
->getValue().isPowerOf2());
238 unsigned MaskVal
= 0;
239 if (CCst
&& CCst
->isZero()) {
240 // if C is zero, then both A and B qualify as mask
241 MaskVal
|= (IsEq
? (Mask_AllZeros
| AMask_Mixed
| BMask_Mixed
)
242 : (Mask_NotAllZeros
| AMask_NotMixed
| BMask_NotMixed
));
244 MaskVal
|= (IsEq
? (AMask_NotAllOnes
| AMask_NotMixed
)
245 : (AMask_AllOnes
| AMask_Mixed
));
247 MaskVal
|= (IsEq
? (BMask_NotAllOnes
| BMask_NotMixed
)
248 : (BMask_AllOnes
| BMask_Mixed
));
253 MaskVal
|= (IsEq
? (AMask_AllOnes
| AMask_Mixed
)
254 : (AMask_NotAllOnes
| AMask_NotMixed
));
256 MaskVal
|= (IsEq
? (Mask_NotAllZeros
| AMask_NotMixed
)
257 : (Mask_AllZeros
| AMask_Mixed
));
258 } else if (ACst
&& CCst
&& ConstantExpr::getAnd(ACst
, CCst
) == CCst
) {
259 MaskVal
|= (IsEq
? AMask_Mixed
: AMask_NotMixed
);
263 MaskVal
|= (IsEq
? (BMask_AllOnes
| BMask_Mixed
)
264 : (BMask_NotAllOnes
| BMask_NotMixed
));
266 MaskVal
|= (IsEq
? (Mask_NotAllZeros
| BMask_NotMixed
)
267 : (Mask_AllZeros
| BMask_Mixed
));
268 } else if (BCst
&& CCst
&& ConstantExpr::getAnd(BCst
, CCst
) == CCst
) {
269 MaskVal
|= (IsEq
? BMask_Mixed
: BMask_NotMixed
);
275 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
276 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
277 /// is adjacent to the corresponding normal flag (recording ==), this just
278 /// involves swapping those bits over.
279 static unsigned conjugateICmpMask(unsigned Mask
) {
281 NewMask
= (Mask
& (AMask_AllOnes
| BMask_AllOnes
| Mask_AllZeros
|
282 AMask_Mixed
| BMask_Mixed
))
285 NewMask
|= (Mask
& (AMask_NotAllOnes
| BMask_NotAllOnes
| Mask_NotAllZeros
|
286 AMask_NotMixed
| BMask_NotMixed
))
292 // Adapts the external decomposeBitTestICmp for local use.
293 static bool decomposeBitTestICmp(Value
*LHS
, Value
*RHS
, CmpInst::Predicate
&Pred
,
294 Value
*&X
, Value
*&Y
, Value
*&Z
) {
296 if (!llvm::decomposeBitTestICmp(LHS
, RHS
, Pred
, X
, Mask
))
299 Y
= ConstantInt::get(X
->getType(), Mask
);
300 Z
= ConstantInt::get(X
->getType(), 0);
304 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
305 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
306 /// the right hand side as a pair.
307 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
308 /// and PredR are their predicates, respectively.
310 Optional
<std::pair
<unsigned, unsigned>>
311 getMaskedTypeForICmpPair(Value
*&A
, Value
*&B
, Value
*&C
,
312 Value
*&D
, Value
*&E
, ICmpInst
*LHS
,
314 ICmpInst::Predicate
&PredL
,
315 ICmpInst::Predicate
&PredR
) {
316 // vectors are not (yet?) supported. Don't support pointers either.
317 if (!LHS
->getOperand(0)->getType()->isIntegerTy() ||
318 !RHS
->getOperand(0)->getType()->isIntegerTy())
321 // Here comes the tricky part:
322 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
323 // and L11 & L12 == L21 & L22. The same goes for RHS.
324 // Now we must find those components L** and R**, that are equal, so
325 // that we can extract the parameters A, B, C, D, and E for the canonical
327 Value
*L1
= LHS
->getOperand(0);
328 Value
*L2
= LHS
->getOperand(1);
329 Value
*L11
, *L12
, *L21
, *L22
;
330 // Check whether the icmp can be decomposed into a bit test.
331 if (decomposeBitTestICmp(L1
, L2
, PredL
, L11
, L12
, L2
)) {
332 L21
= L22
= L1
= nullptr;
334 // Look for ANDs in the LHS icmp.
335 if (!match(L1
, m_And(m_Value(L11
), m_Value(L12
)))) {
336 // Any icmp can be viewed as being trivially masked; if it allows us to
337 // remove one, it's worth it.
339 L12
= Constant::getAllOnesValue(L1
->getType());
342 if (!match(L2
, m_And(m_Value(L21
), m_Value(L22
)))) {
344 L22
= Constant::getAllOnesValue(L2
->getType());
348 // Bail if LHS was a icmp that can't be decomposed into an equality.
349 if (!ICmpInst::isEquality(PredL
))
352 Value
*R1
= RHS
->getOperand(0);
353 Value
*R2
= RHS
->getOperand(1);
356 if (decomposeBitTestICmp(R1
, R2
, PredR
, R11
, R12
, R2
)) {
357 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
360 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
370 if (!match(R1
, m_And(m_Value(R11
), m_Value(R12
)))) {
371 // As before, model no mask as a trivial mask if it'll let us do an
374 R12
= Constant::getAllOnesValue(R1
->getType());
377 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
382 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
390 // Bail if RHS was a icmp that can't be decomposed into an equality.
391 if (!ICmpInst::isEquality(PredR
))
394 // Look for ANDs on the right side of the RHS icmp.
396 if (!match(R2
, m_And(m_Value(R11
), m_Value(R12
)))) {
398 R12
= Constant::getAllOnesValue(R2
->getType());
401 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
406 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
421 } else if (L12
== A
) {
424 } else if (L21
== A
) {
427 } else if (L22
== A
) {
432 unsigned LeftType
= getMaskedICmpType(A
, B
, C
, PredL
);
433 unsigned RightType
= getMaskedICmpType(A
, D
, E
, PredR
);
434 return Optional
<std::pair
<unsigned, unsigned>>(std::make_pair(LeftType
, RightType
));
437 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
438 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
439 /// and the right hand side is of type BMask_Mixed. For example,
440 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
441 static Value
* foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
442 ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
443 Value
*A
, Value
*B
, Value
*C
, Value
*D
, Value
*E
,
444 ICmpInst::Predicate PredL
, ICmpInst::Predicate PredR
,
445 llvm::InstCombiner::BuilderTy
&Builder
) {
446 // We are given the canonical form:
447 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
450 // If IsAnd is false, we get it in negated form:
451 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
452 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
454 // We currently handle the case of B, C, D, E are constant.
456 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
459 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
462 ConstantInt
*DCst
= dyn_cast
<ConstantInt
>(D
);
465 ConstantInt
*ECst
= dyn_cast
<ConstantInt
>(E
);
469 ICmpInst::Predicate NewCC
= IsAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
471 // Update E to the canonical form when D is a power of two and RHS is
473 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
474 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
476 ECst
= cast
<ConstantInt
>(ConstantExpr::getXor(DCst
, ECst
));
478 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
479 // other folding rules and this pattern won't apply any more.
480 if (BCst
->getValue() == 0 || DCst
->getValue() == 0)
483 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
484 // deduce anything from it.
486 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
487 if ((BCst
->getValue() & DCst
->getValue()) == 0)
490 // If the following two conditions are met:
492 // 1. mask B covers only a single bit that's not covered by mask D, that is,
493 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
494 // B and D has only one bit set) and,
496 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
497 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
499 // then that single bit in B must be one and thus the whole expression can be
501 // (A & (B | D)) == (B & (B ^ D)) | E.
504 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
505 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
506 if ((((BCst
->getValue() & DCst
->getValue()) & ECst
->getValue()) == 0) &&
507 (BCst
->getValue() & (BCst
->getValue() ^ DCst
->getValue())).isPowerOf2()) {
508 APInt BorD
= BCst
->getValue() | DCst
->getValue();
509 APInt BandBxorDorE
= (BCst
->getValue() & (BCst
->getValue() ^ DCst
->getValue())) |
511 Value
*NewMask
= ConstantInt::get(BCst
->getType(), BorD
);
512 Value
*NewMaskedValue
= ConstantInt::get(BCst
->getType(), BandBxorDorE
);
513 Value
*NewAnd
= Builder
.CreateAnd(A
, NewMask
);
514 return Builder
.CreateICmp(NewCC
, NewAnd
, NewMaskedValue
);
517 auto IsSubSetOrEqual
= [](ConstantInt
*C1
, ConstantInt
*C2
) {
518 return (C1
->getValue() & C2
->getValue()) == C1
->getValue();
520 auto IsSuperSetOrEqual
= [](ConstantInt
*C1
, ConstantInt
*C2
) {
521 return (C1
->getValue() & C2
->getValue()) == C2
->getValue();
524 // In the following, we consider only the cases where B is a superset of D, B
525 // is a subset of D, or B == D because otherwise there's at least one bit
526 // covered by B but not D, in which case we can't deduce much from it, so
527 // no folding (aside from the single must-be-one bit case right above.)
529 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
530 if (!IsSubSetOrEqual(BCst
, DCst
) && !IsSuperSetOrEqual(BCst
, DCst
))
533 // At this point, either B is a superset of D, B is a subset of D or B == D.
535 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
536 // and the whole expression becomes false (or true if negated), otherwise, no
539 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
540 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
541 if (ECst
->isZero()) {
542 if (IsSubSetOrEqual(BCst
, DCst
))
543 return ConstantInt::get(LHS
->getType(), !IsAnd
);
547 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
548 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
549 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
551 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
552 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
553 if (IsSuperSetOrEqual(BCst
, DCst
))
555 // Otherwise, B is a subset of D. If B and E have a common bit set,
556 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
557 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
558 assert(IsSubSetOrEqual(BCst
, DCst
) && "Precondition due to above code");
559 if ((BCst
->getValue() & ECst
->getValue()) != 0)
561 // Otherwise, LHS and RHS contradict and the whole expression becomes false
562 // (or true if negated.) For example,
563 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
564 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
565 return ConstantInt::get(LHS
->getType(), !IsAnd
);
568 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
569 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
570 /// aren't of the common mask pattern type.
571 static Value
*foldLogOpOfMaskedICmpsAsymmetric(
572 ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
573 Value
*A
, Value
*B
, Value
*C
, Value
*D
, Value
*E
,
574 ICmpInst::Predicate PredL
, ICmpInst::Predicate PredR
,
575 unsigned LHSMask
, unsigned RHSMask
,
576 llvm::InstCombiner::BuilderTy
&Builder
) {
577 assert(ICmpInst::isEquality(PredL
) && ICmpInst::isEquality(PredR
) &&
578 "Expected equality predicates for masked type of icmps.");
579 // Handle Mask_NotAllZeros-BMask_Mixed cases.
580 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
581 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
582 // which gets swapped to
583 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
585 LHSMask
= conjugateICmpMask(LHSMask
);
586 RHSMask
= conjugateICmpMask(RHSMask
);
588 if ((LHSMask
& Mask_NotAllZeros
) && (RHSMask
& BMask_Mixed
)) {
589 if (Value
*V
= foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
590 LHS
, RHS
, IsAnd
, A
, B
, C
, D
, E
,
591 PredL
, PredR
, Builder
)) {
594 } else if ((LHSMask
& BMask_Mixed
) && (RHSMask
& Mask_NotAllZeros
)) {
595 if (Value
*V
= foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
596 RHS
, LHS
, IsAnd
, A
, D
, E
, B
, C
,
597 PredR
, PredL
, Builder
)) {
604 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
605 /// into a single (icmp(A & X) ==/!= Y).
606 static Value
*foldLogOpOfMaskedICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
607 llvm::InstCombiner::BuilderTy
&Builder
) {
608 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr, *E
= nullptr;
609 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
610 Optional
<std::pair
<unsigned, unsigned>> MaskPair
=
611 getMaskedTypeForICmpPair(A
, B
, C
, D
, E
, LHS
, RHS
, PredL
, PredR
);
614 assert(ICmpInst::isEquality(PredL
) && ICmpInst::isEquality(PredR
) &&
615 "Expected equality predicates for masked type of icmps.");
616 unsigned LHSMask
= MaskPair
->first
;
617 unsigned RHSMask
= MaskPair
->second
;
618 unsigned Mask
= LHSMask
& RHSMask
;
620 // Even if the two sides don't share a common pattern, check if folding can
622 if (Value
*V
= foldLogOpOfMaskedICmpsAsymmetric(
623 LHS
, RHS
, IsAnd
, A
, B
, C
, D
, E
, PredL
, PredR
, LHSMask
, RHSMask
,
629 // In full generality:
630 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
631 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
633 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
634 // equivalent to (icmp (A & X) !Op Y).
636 // Therefore, we can pretend for the rest of this function that we're dealing
637 // with the conjunction, provided we flip the sense of any comparisons (both
638 // input and output).
640 // In most cases we're going to produce an EQ for the "&&" case.
641 ICmpInst::Predicate NewCC
= IsAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
643 // Convert the masking analysis into its equivalent with negated
645 Mask
= conjugateICmpMask(Mask
);
648 if (Mask
& Mask_AllZeros
) {
649 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
650 // -> (icmp eq (A & (B|D)), 0)
651 Value
*NewOr
= Builder
.CreateOr(B
, D
);
652 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
);
653 // We can't use C as zero because we might actually handle
654 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
655 // with B and D, having a single bit set.
656 Value
*Zero
= Constant::getNullValue(A
->getType());
657 return Builder
.CreateICmp(NewCC
, NewAnd
, Zero
);
659 if (Mask
& BMask_AllOnes
) {
660 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
661 // -> (icmp eq (A & (B|D)), (B|D))
662 Value
*NewOr
= Builder
.CreateOr(B
, D
);
663 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
);
664 return Builder
.CreateICmp(NewCC
, NewAnd
, NewOr
);
666 if (Mask
& AMask_AllOnes
) {
667 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
668 // -> (icmp eq (A & (B&D)), A)
669 Value
*NewAnd1
= Builder
.CreateAnd(B
, D
);
670 Value
*NewAnd2
= Builder
.CreateAnd(A
, NewAnd1
);
671 return Builder
.CreateICmp(NewCC
, NewAnd2
, A
);
674 // Remaining cases assume at least that B and D are constant, and depend on
675 // their actual values. This isn't strictly necessary, just a "handle the
676 // easy cases for now" decision.
677 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
680 ConstantInt
*DCst
= dyn_cast
<ConstantInt
>(D
);
684 if (Mask
& (Mask_NotAllZeros
| BMask_NotAllOnes
)) {
685 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
686 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
687 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
688 // Only valid if one of the masks is a superset of the other (check "B&D" is
689 // the same as either B or D).
690 APInt NewMask
= BCst
->getValue() & DCst
->getValue();
692 if (NewMask
== BCst
->getValue())
694 else if (NewMask
== DCst
->getValue())
698 if (Mask
& AMask_NotAllOnes
) {
699 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
700 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
701 // Only valid if one of the masks is a superset of the other (check "B|D" is
702 // the same as either B or D).
703 APInt NewMask
= BCst
->getValue() | DCst
->getValue();
705 if (NewMask
== BCst
->getValue())
707 else if (NewMask
== DCst
->getValue())
711 if (Mask
& BMask_Mixed
) {
712 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
713 // We already know that B & C == C && D & E == E.
714 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
715 // C and E, which are shared by both the mask B and the mask D, don't
716 // contradict, then we can transform to
717 // -> (icmp eq (A & (B|D)), (C|E))
718 // Currently, we only handle the case of B, C, D, and E being constant.
719 // We can't simply use C and E because we might actually handle
720 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
721 // with B and D, having a single bit set.
722 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
725 ConstantInt
*ECst
= dyn_cast
<ConstantInt
>(E
);
729 CCst
= cast
<ConstantInt
>(ConstantExpr::getXor(BCst
, CCst
));
731 ECst
= cast
<ConstantInt
>(ConstantExpr::getXor(DCst
, ECst
));
733 // If there is a conflict, we should actually return a false for the
735 if (((BCst
->getValue() & DCst
->getValue()) &
736 (CCst
->getValue() ^ ECst
->getValue())).getBoolValue())
737 return ConstantInt::get(LHS
->getType(), !IsAnd
);
739 Value
*NewOr1
= Builder
.CreateOr(B
, D
);
740 Value
*NewOr2
= ConstantExpr::getOr(CCst
, ECst
);
741 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr1
);
742 return Builder
.CreateICmp(NewCC
, NewAnd
, NewOr2
);
748 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
749 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
750 /// If \p Inverted is true then the check is for the inverted range, e.g.
751 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
752 Value
*InstCombiner::simplifyRangeCheck(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
754 // Check the lower range comparison, e.g. x >= 0
755 // InstCombine already ensured that if there is a constant it's on the RHS.
756 ConstantInt
*RangeStart
= dyn_cast
<ConstantInt
>(Cmp0
->getOperand(1));
760 ICmpInst::Predicate Pred0
= (Inverted
? Cmp0
->getInversePredicate() :
761 Cmp0
->getPredicate());
763 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
764 if (!((Pred0
== ICmpInst::ICMP_SGT
&& RangeStart
->isMinusOne()) ||
765 (Pred0
== ICmpInst::ICMP_SGE
&& RangeStart
->isZero())))
768 ICmpInst::Predicate Pred1
= (Inverted
? Cmp1
->getInversePredicate() :
769 Cmp1
->getPredicate());
771 Value
*Input
= Cmp0
->getOperand(0);
773 if (Cmp1
->getOperand(0) == Input
) {
774 // For the upper range compare we have: icmp x, n
775 RangeEnd
= Cmp1
->getOperand(1);
776 } else if (Cmp1
->getOperand(1) == Input
) {
777 // For the upper range compare we have: icmp n, x
778 RangeEnd
= Cmp1
->getOperand(0);
779 Pred1
= ICmpInst::getSwappedPredicate(Pred1
);
784 // Check the upper range comparison, e.g. x < n
785 ICmpInst::Predicate NewPred
;
787 case ICmpInst::ICMP_SLT
: NewPred
= ICmpInst::ICMP_ULT
; break;
788 case ICmpInst::ICMP_SLE
: NewPred
= ICmpInst::ICMP_ULE
; break;
789 default: return nullptr;
792 // This simplification is only valid if the upper range is not negative.
793 KnownBits Known
= computeKnownBits(RangeEnd
, /*Depth=*/0, Cmp1
);
794 if (!Known
.isNonNegative())
798 NewPred
= ICmpInst::getInversePredicate(NewPred
);
800 return Builder
.CreateICmp(NewPred
, Input
, RangeEnd
);
804 foldAndOrOfEqualityCmpsWithConstants(ICmpInst
*LHS
, ICmpInst
*RHS
,
806 InstCombiner::BuilderTy
&Builder
) {
807 Value
*X
= LHS
->getOperand(0);
808 if (X
!= RHS
->getOperand(0))
811 const APInt
*C1
, *C2
;
812 if (!match(LHS
->getOperand(1), m_APInt(C1
)) ||
813 !match(RHS
->getOperand(1), m_APInt(C2
)))
816 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
817 ICmpInst::Predicate Pred
= LHS
->getPredicate();
818 if (Pred
!= RHS
->getPredicate())
820 if (JoinedByAnd
&& Pred
!= ICmpInst::ICMP_NE
)
822 if (!JoinedByAnd
&& Pred
!= ICmpInst::ICMP_EQ
)
825 // The larger unsigned constant goes on the right.
829 APInt Xor
= *C1
^ *C2
;
830 if (Xor
.isPowerOf2()) {
831 // If LHSC and RHSC differ by only one bit, then set that bit in X and
832 // compare against the larger constant:
833 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
834 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
835 // We choose an 'or' with a Pow2 constant rather than the inverse mask with
836 // 'and' because that may lead to smaller codegen from a smaller constant.
837 Value
*Or
= Builder
.CreateOr(X
, ConstantInt::get(X
->getType(), Xor
));
838 return Builder
.CreateICmp(Pred
, Or
, ConstantInt::get(X
->getType(), *C2
));
841 // Special case: get the ordering right when the values wrap around zero.
842 // Ie, we assumed the constants were unsigned when swapping earlier.
843 if (C1
->isNullValue() && C2
->isAllOnesValue())
846 if (*C1
== *C2
- 1) {
847 // (X == 13 || X == 14) --> X - 13 <=u 1
848 // (X != 13 && X != 14) --> X - 13 >u 1
849 // An 'add' is the canonical IR form, so favor that over a 'sub'.
850 Value
*Add
= Builder
.CreateAdd(X
, ConstantInt::get(X
->getType(), -(*C1
)));
851 auto NewPred
= JoinedByAnd
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_ULE
;
852 return Builder
.CreateICmp(NewPred
, Add
, ConstantInt::get(X
->getType(), 1));
858 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
859 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
860 Value
*InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst
*LHS
, ICmpInst
*RHS
,
863 ICmpInst::Predicate Pred
= LHS
->getPredicate();
864 if (Pred
!= RHS
->getPredicate())
866 if (JoinedByAnd
&& Pred
!= ICmpInst::ICMP_NE
)
868 if (!JoinedByAnd
&& Pred
!= ICmpInst::ICMP_EQ
)
871 // TODO support vector splats
872 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
873 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
874 if (!LHSC
|| !RHSC
|| !LHSC
->isZero() || !RHSC
->isZero())
877 Value
*A
, *B
, *C
, *D
;
878 if (match(LHS
->getOperand(0), m_And(m_Value(A
), m_Value(B
))) &&
879 match(RHS
->getOperand(0), m_And(m_Value(C
), m_Value(D
)))) {
880 if (A
== D
|| B
== D
)
886 isKnownToBeAPowerOfTwo(B
, false, 0, &CxtI
) &&
887 isKnownToBeAPowerOfTwo(D
, false, 0, &CxtI
)) {
888 Value
*Mask
= Builder
.CreateOr(B
, D
);
889 Value
*Masked
= Builder
.CreateAnd(A
, Mask
);
890 auto NewPred
= JoinedByAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
891 return Builder
.CreateICmp(NewPred
, Masked
, Mask
);
901 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
902 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
903 /// Pattern can be one of:
904 /// %t = add i32 %arg, 128
905 /// %r = icmp ult i32 %t, 256
907 /// %t0 = shl i32 %arg, 24
908 /// %t1 = ashr i32 %t0, 24
909 /// %r = icmp eq i32 %t1, %arg
911 /// %t0 = trunc i32 %arg to i8
912 /// %t1 = sext i8 %t0 to i32
913 /// %r = icmp eq i32 %t1, %arg
914 /// This pattern is a signed truncation check.
916 /// And X is checking that some bit in that same mask is zero.
917 /// I.e. can be one of:
918 /// %r = icmp sgt i32 %arg, -1
920 /// %t = and i32 %arg, 2147483648
921 /// %r = icmp eq i32 %t, 0
923 /// Since we are checking that all the bits in that mask are the same,
924 /// and a particular bit is zero, what we are really checking is that all the
925 /// masked bits are zero.
926 /// So this should be transformed to:
927 /// %r = icmp ult i32 %arg, 128
928 static Value
*foldSignedTruncationCheck(ICmpInst
*ICmp0
, ICmpInst
*ICmp1
,
930 InstCombiner::BuilderTy
&Builder
) {
931 assert(CxtI
.getOpcode() == Instruction::And
);
933 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
934 auto tryToMatchSignedTruncationCheck
= [](ICmpInst
*ICmp
, Value
*&X
,
935 APInt
&SignBitMask
) -> bool {
936 CmpInst::Predicate Pred
;
937 const APInt
*I01
, *I1
; // powers of two; I1 == I01 << 1
939 m_ICmp(Pred
, m_Add(m_Value(X
), m_Power2(I01
)), m_Power2(I1
))) &&
940 Pred
== ICmpInst::ICMP_ULT
&& I1
->ugt(*I01
) && I01
->shl(1) == *I1
))
942 // Which bit is the new sign bit as per the 'signed truncation' pattern?
947 // One icmp needs to be 'signed truncation check'.
948 // We need to match this first, else we will mismatch commutative cases.
952 if (tryToMatchSignedTruncationCheck(ICmp1
, X1
, HighestBit
))
954 else if (tryToMatchSignedTruncationCheck(ICmp0
, X1
, HighestBit
))
959 assert(HighestBit
.isPowerOf2() && "expected to be power of two (non-zero)");
961 // Try to match/decompose into: icmp eq (X & Mask), 0
962 auto tryToDecompose
= [](ICmpInst
*ICmp
, Value
*&X
,
963 APInt
&UnsetBitsMask
) -> bool {
964 CmpInst::Predicate Pred
= ICmp
->getPredicate();
965 // Can it be decomposed into icmp eq (X & Mask), 0 ?
966 if (llvm::decomposeBitTestICmp(ICmp
->getOperand(0), ICmp
->getOperand(1),
967 Pred
, X
, UnsetBitsMask
,
968 /*LookThroughTrunc=*/false) &&
969 Pred
== ICmpInst::ICMP_EQ
)
971 // Is it icmp eq (X & Mask), 0 already?
973 if (match(ICmp
, m_ICmp(Pred
, m_And(m_Value(X
), m_APInt(Mask
)), m_Zero())) &&
974 Pred
== ICmpInst::ICMP_EQ
) {
975 UnsetBitsMask
= *Mask
;
981 // And the other icmp needs to be decomposable into a bit test.
984 if (!tryToDecompose(OtherICmp
, X0
, UnsetBitsMask
))
987 assert(!UnsetBitsMask
.isNullValue() && "empty mask makes no sense.");
989 // Are they working on the same value?
994 } else if (match(X0
, m_Trunc(m_Specific(X1
)))) {
995 UnsetBitsMask
= UnsetBitsMask
.zext(X1
->getType()->getScalarSizeInBits());
1000 // So which bits should be uniform as per the 'signed truncation check'?
1001 // (all the bits starting with (i.e. including) HighestBit)
1002 APInt SignBitsMask
= ~(HighestBit
- 1U);
1004 // UnsetBitsMask must have some common bits with SignBitsMask,
1005 if (!UnsetBitsMask
.intersects(SignBitsMask
))
1008 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
1009 if (!UnsetBitsMask
.isSubsetOf(SignBitsMask
)) {
1010 APInt OtherHighestBit
= (~UnsetBitsMask
) + 1U;
1011 if (!OtherHighestBit
.isPowerOf2())
1013 HighestBit
= APIntOps::umin(HighestBit
, OtherHighestBit
);
1015 // Else, if it does not, then all is ok as-is.
1017 // %r = icmp ult %X, SignBit
1018 return Builder
.CreateICmpULT(X
, ConstantInt::get(X
->getType(), HighestBit
),
1019 CxtI
.getName() + ".simplified");
1022 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
1023 static Value
*foldIsPowerOf2(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
, bool JoinedByAnd
,
1024 InstCombiner::BuilderTy
&Builder
) {
1025 // Handle 'and' / 'or' commutation: make the equality check the first operand.
1026 if (JoinedByAnd
&& Cmp1
->getPredicate() == ICmpInst::ICMP_NE
)
1027 std::swap(Cmp0
, Cmp1
);
1028 else if (!JoinedByAnd
&& Cmp1
->getPredicate() == ICmpInst::ICMP_EQ
)
1029 std::swap(Cmp0
, Cmp1
);
1031 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
1032 CmpInst::Predicate Pred0
, Pred1
;
1034 if (JoinedByAnd
&& match(Cmp0
, m_ICmp(Pred0
, m_Value(X
), m_ZeroInt())) &&
1035 match(Cmp1
, m_ICmp(Pred1
, m_Intrinsic
<Intrinsic::ctpop
>(m_Specific(X
)),
1036 m_SpecificInt(2))) &&
1037 Pred0
== ICmpInst::ICMP_NE
&& Pred1
== ICmpInst::ICMP_ULT
) {
1038 Value
*CtPop
= Cmp1
->getOperand(0);
1039 return Builder
.CreateICmpEQ(CtPop
, ConstantInt::get(CtPop
->getType(), 1));
1041 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
1042 if (!JoinedByAnd
&& match(Cmp0
, m_ICmp(Pred0
, m_Value(X
), m_ZeroInt())) &&
1043 match(Cmp1
, m_ICmp(Pred1
, m_Intrinsic
<Intrinsic::ctpop
>(m_Specific(X
)),
1044 m_SpecificInt(1))) &&
1045 Pred0
== ICmpInst::ICMP_EQ
&& Pred1
== ICmpInst::ICMP_UGT
) {
1046 Value
*CtPop
= Cmp1
->getOperand(0);
1047 return Builder
.CreateICmpNE(CtPop
, ConstantInt::get(CtPop
->getType(), 1));
1052 /// Commuted variants are assumed to be handled by calling this function again
1053 /// with the parameters swapped.
1054 static Value
*foldUnsignedUnderflowCheck(ICmpInst
*ZeroICmp
,
1055 ICmpInst
*UnsignedICmp
, bool IsAnd
,
1056 const SimplifyQuery
&Q
,
1057 InstCombiner::BuilderTy
&Builder
) {
1059 ICmpInst::Predicate EqPred
;
1060 if (!match(ZeroICmp
, m_ICmp(EqPred
, m_Value(ZeroCmpOp
), m_Zero())) ||
1061 !ICmpInst::isEquality(EqPred
))
1064 auto IsKnownNonZero
= [&](Value
*V
) {
1065 return isKnownNonZero(V
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1068 ICmpInst::Predicate UnsignedPred
;
1071 if (match(UnsignedICmp
,
1072 m_c_ICmp(UnsignedPred
, m_Specific(ZeroCmpOp
), m_Value(A
))) &&
1073 match(ZeroCmpOp
, m_c_Add(m_Specific(A
), m_Value(B
))) &&
1074 (ZeroICmp
->hasOneUse() || UnsignedICmp
->hasOneUse())) {
1075 if (UnsignedICmp
->getOperand(0) != ZeroCmpOp
)
1076 UnsignedPred
= ICmpInst::getSwappedPredicate(UnsignedPred
);
1078 auto GetKnownNonZeroAndOther
= [&](Value
*&NonZero
, Value
*&Other
) {
1079 if (!IsKnownNonZero(NonZero
))
1080 std::swap(NonZero
, Other
);
1081 return IsKnownNonZero(NonZero
);
1084 // Given ZeroCmpOp = (A + B)
1085 // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A
1086 // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A
1088 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1089 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1090 // with X being the value (A/B) that is known to be non-zero,
1091 // and Y being remaining value.
1092 if (UnsignedPred
== ICmpInst::ICMP_ULE
&& EqPred
== ICmpInst::ICMP_NE
&&
1094 return Builder
.CreateICmpULT(Builder
.CreateNeg(B
), A
);
1095 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_NE
&&
1096 IsAnd
&& GetKnownNonZeroAndOther(B
, A
))
1097 return Builder
.CreateICmpULT(Builder
.CreateNeg(B
), A
);
1098 if (UnsignedPred
== ICmpInst::ICMP_UGT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1100 return Builder
.CreateICmpUGE(Builder
.CreateNeg(B
), A
);
1101 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& EqPred
== ICmpInst::ICMP_EQ
&&
1102 !IsAnd
&& GetKnownNonZeroAndOther(B
, A
))
1103 return Builder
.CreateICmpUGE(Builder
.CreateNeg(B
), A
);
1106 Value
*Base
, *Offset
;
1107 if (!match(ZeroCmpOp
, m_Sub(m_Value(Base
), m_Value(Offset
))))
1110 if (!match(UnsignedICmp
,
1111 m_c_ICmp(UnsignedPred
, m_Specific(Base
), m_Specific(Offset
))) ||
1112 !ICmpInst::isUnsigned(UnsignedPred
))
1114 if (UnsignedICmp
->getOperand(0) != Base
)
1115 UnsignedPred
= ICmpInst::getSwappedPredicate(UnsignedPred
);
1117 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
1118 // (no overflow and not null)
1119 if ((UnsignedPred
== ICmpInst::ICMP_UGE
||
1120 UnsignedPred
== ICmpInst::ICMP_UGT
) &&
1121 EqPred
== ICmpInst::ICMP_NE
&& IsAnd
)
1122 return Builder
.CreateICmpUGT(Base
, Offset
);
1124 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
1125 // (overflow or null)
1126 if ((UnsignedPred
== ICmpInst::ICMP_ULE
||
1127 UnsignedPred
== ICmpInst::ICMP_ULT
) &&
1128 EqPred
== ICmpInst::ICMP_EQ
&& !IsAnd
)
1129 return Builder
.CreateICmpULE(Base
, Offset
);
1131 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
1132 if (UnsignedPred
== ICmpInst::ICMP_ULE
&& EqPred
== ICmpInst::ICMP_NE
&&
1134 return Builder
.CreateICmpULT(Base
, Offset
);
1136 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
1137 if (UnsignedPred
== ICmpInst::ICMP_UGT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1139 return Builder
.CreateICmpUGE(Base
, Offset
);
1144 /// Fold (icmp)&(icmp) if possible.
1145 Value
*InstCombiner::foldAndOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
1146 Instruction
&CxtI
) {
1147 const SimplifyQuery Q
= SQ
.getWithInstruction(&CxtI
);
1149 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
1150 // if K1 and K2 are a one-bit mask.
1151 if (Value
*V
= foldAndOrOfICmpsOfAndWithPow2(LHS
, RHS
, true, CxtI
))
1154 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1156 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1157 if (predicatesFoldable(PredL
, PredR
)) {
1158 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
1159 LHS
->getOperand(1) == RHS
->getOperand(0))
1160 LHS
->swapOperands();
1161 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
1162 LHS
->getOperand(1) == RHS
->getOperand(1)) {
1163 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
1164 unsigned Code
= getICmpCode(LHS
) & getICmpCode(RHS
);
1165 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
1166 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
1170 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
1171 if (Value
*V
= foldLogOpOfMaskedICmps(LHS
, RHS
, true, Builder
))
1174 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1175 if (Value
*V
= simplifyRangeCheck(LHS
, RHS
, /*Inverted=*/false))
1178 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1179 if (Value
*V
= simplifyRangeCheck(RHS
, LHS
, /*Inverted=*/false))
1182 if (Value
*V
= foldAndOrOfEqualityCmpsWithConstants(LHS
, RHS
, true, Builder
))
1185 if (Value
*V
= foldSignedTruncationCheck(LHS
, RHS
, CxtI
, Builder
))
1188 if (Value
*V
= foldIsPowerOf2(LHS
, RHS
, true /* JoinedByAnd */, Builder
))
1192 foldUnsignedUnderflowCheck(LHS
, RHS
, /*IsAnd=*/true, Q
, Builder
))
1195 foldUnsignedUnderflowCheck(RHS
, LHS
, /*IsAnd=*/true, Q
, Builder
))
1198 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1199 Value
*LHS0
= LHS
->getOperand(0), *RHS0
= RHS
->getOperand(0);
1200 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
1201 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
1205 if (LHSC
== RHSC
&& PredL
== PredR
) {
1206 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1207 // where C is a power of 2 or
1208 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1209 if ((PredL
== ICmpInst::ICMP_ULT
&& LHSC
->getValue().isPowerOf2()) ||
1210 (PredL
== ICmpInst::ICMP_EQ
&& LHSC
->isZero())) {
1211 Value
*NewOr
= Builder
.CreateOr(LHS0
, RHS0
);
1212 return Builder
.CreateICmp(PredL
, NewOr
, LHSC
);
1216 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1217 // where CMAX is the all ones value for the truncated type,
1218 // iff the lower bits of C2 and CA are zero.
1219 if (PredL
== ICmpInst::ICMP_EQ
&& PredL
== PredR
&& LHS
->hasOneUse() &&
1222 ConstantInt
*AndC
, *SmallC
= nullptr, *BigC
= nullptr;
1224 // (trunc x) == C1 & (and x, CA) == C2
1225 // (and x, CA) == C2 & (trunc x) == C1
1226 if (match(RHS0
, m_Trunc(m_Value(V
))) &&
1227 match(LHS0
, m_And(m_Specific(V
), m_ConstantInt(AndC
)))) {
1230 } else if (match(LHS0
, m_Trunc(m_Value(V
))) &&
1231 match(RHS0
, m_And(m_Specific(V
), m_ConstantInt(AndC
)))) {
1236 if (SmallC
&& BigC
) {
1237 unsigned BigBitSize
= BigC
->getType()->getBitWidth();
1238 unsigned SmallBitSize
= SmallC
->getType()->getBitWidth();
1240 // Check that the low bits are zero.
1241 APInt Low
= APInt::getLowBitsSet(BigBitSize
, SmallBitSize
);
1242 if ((Low
& AndC
->getValue()).isNullValue() &&
1243 (Low
& BigC
->getValue()).isNullValue()) {
1244 Value
*NewAnd
= Builder
.CreateAnd(V
, Low
| AndC
->getValue());
1245 APInt N
= SmallC
->getValue().zext(BigBitSize
) | BigC
->getValue();
1246 Value
*NewVal
= ConstantInt::get(AndC
->getType()->getContext(), N
);
1247 return Builder
.CreateICmp(PredL
, NewAnd
, NewVal
);
1252 // From here on, we only handle:
1253 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1257 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1258 if (PredL
== ICmpInst::ICMP_UGE
|| PredL
== ICmpInst::ICMP_ULE
||
1259 PredR
== ICmpInst::ICMP_UGE
|| PredR
== ICmpInst::ICMP_ULE
||
1260 PredL
== ICmpInst::ICMP_SGE
|| PredL
== ICmpInst::ICMP_SLE
||
1261 PredR
== ICmpInst::ICMP_SGE
|| PredR
== ICmpInst::ICMP_SLE
)
1264 // We can't fold (ugt x, C) & (sgt x, C2).
1265 if (!predicatesFoldable(PredL
, PredR
))
1268 // Ensure that the larger constant is on the RHS.
1270 if (CmpInst::isSigned(PredL
) ||
1271 (ICmpInst::isEquality(PredL
) && CmpInst::isSigned(PredR
)))
1272 ShouldSwap
= LHSC
->getValue().sgt(RHSC
->getValue());
1274 ShouldSwap
= LHSC
->getValue().ugt(RHSC
->getValue());
1277 std::swap(LHS
, RHS
);
1278 std::swap(LHSC
, RHSC
);
1279 std::swap(PredL
, PredR
);
1282 // At this point, we know we have two icmp instructions
1283 // comparing a value against two constants and and'ing the result
1284 // together. Because of the above check, we know that we only have
1285 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1286 // (from the icmp folding check above), that the two constants
1287 // are not equal and that the larger constant is on the RHS
1288 assert(LHSC
!= RHSC
&& "Compares not folded above?");
1292 llvm_unreachable("Unknown integer condition code!");
1293 case ICmpInst::ICMP_NE
:
1296 llvm_unreachable("Unknown integer condition code!");
1297 case ICmpInst::ICMP_ULT
:
1298 // (X != 13 & X u< 14) -> X < 13
1299 if (LHSC
->getValue() == (RHSC
->getValue() - 1))
1300 return Builder
.CreateICmpULT(LHS0
, LHSC
);
1301 if (LHSC
->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
1302 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1304 break; // (X != 13 & X u< 15) -> no change
1305 case ICmpInst::ICMP_SLT
:
1306 // (X != 13 & X s< 14) -> X < 13
1307 if (LHSC
->getValue() == (RHSC
->getValue() - 1))
1308 return Builder
.CreateICmpSLT(LHS0
, LHSC
);
1309 // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
1310 if (LHSC
->isMinValue(true))
1311 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1313 break; // (X != 13 & X s< 15) -> no change
1314 case ICmpInst::ICMP_NE
:
1315 // Potential folds for this case should already be handled.
1319 case ICmpInst::ICMP_UGT
:
1322 llvm_unreachable("Unknown integer condition code!");
1323 case ICmpInst::ICMP_NE
:
1324 // (X u> 13 & X != 14) -> X u> 14
1325 if (RHSC
->getValue() == (LHSC
->getValue() + 1))
1326 return Builder
.CreateICmp(PredL
, LHS0
, RHSC
);
1327 // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
1328 if (RHSC
->isMaxValue(false))
1329 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1331 break; // (X u> 13 & X != 15) -> no change
1332 case ICmpInst::ICMP_ULT
: // (X u> 13 & X u< 15) -> (X-14) u< 1
1333 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1337 case ICmpInst::ICMP_SGT
:
1340 llvm_unreachable("Unknown integer condition code!");
1341 case ICmpInst::ICMP_NE
:
1342 // (X s> 13 & X != 14) -> X s> 14
1343 if (RHSC
->getValue() == (LHSC
->getValue() + 1))
1344 return Builder
.CreateICmp(PredL
, LHS0
, RHSC
);
1345 // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
1346 if (RHSC
->isMaxValue(true))
1347 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1349 break; // (X s> 13 & X != 15) -> no change
1350 case ICmpInst::ICMP_SLT
: // (X s> 13 & X s< 15) -> (X-14) u< 1
1351 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(), true,
1360 Value
*InstCombiner::foldLogicOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
) {
1361 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
1362 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
1363 FCmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1365 if (LHS0
== RHS1
&& RHS0
== LHS1
) {
1366 // Swap RHS operands to match LHS.
1367 PredR
= FCmpInst::getSwappedPredicate(PredR
);
1368 std::swap(RHS0
, RHS1
);
1371 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1372 // Suppose the relation between x and y is R, where R is one of
1373 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1374 // testing the desired relations.
1376 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1377 // bool(R & CC0) && bool(R & CC1)
1378 // = bool((R & CC0) & (R & CC1))
1379 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1381 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1382 // bool(R & CC0) || bool(R & CC1)
1383 // = bool((R & CC0) | (R & CC1))
1384 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1385 if (LHS0
== RHS0
&& LHS1
== RHS1
) {
1386 unsigned FCmpCodeL
= getFCmpCode(PredL
);
1387 unsigned FCmpCodeR
= getFCmpCode(PredR
);
1388 unsigned NewPred
= IsAnd
? FCmpCodeL
& FCmpCodeR
: FCmpCodeL
| FCmpCodeR
;
1389 return getFCmpValue(NewPred
, LHS0
, LHS1
, Builder
);
1392 if ((PredL
== FCmpInst::FCMP_ORD
&& PredR
== FCmpInst::FCMP_ORD
&& IsAnd
) ||
1393 (PredL
== FCmpInst::FCMP_UNO
&& PredR
== FCmpInst::FCMP_UNO
&& !IsAnd
)) {
1394 if (LHS0
->getType() != RHS0
->getType())
1397 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1398 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1399 if (match(LHS1
, m_PosZeroFP()) && match(RHS1
, m_PosZeroFP()))
1400 // Ignore the constants because they are obviously not NANs:
1401 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1402 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1403 return Builder
.CreateFCmp(PredL
, LHS0
, RHS0
);
1409 /// This a limited reassociation for a special case (see above) where we are
1410 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1411 /// This could be handled more generally in '-reassociation', but it seems like
1412 /// an unlikely pattern for a large number of logic ops and fcmps.
1413 static Instruction
*reassociateFCmps(BinaryOperator
&BO
,
1414 InstCombiner::BuilderTy
&Builder
) {
1415 Instruction::BinaryOps Opcode
= BO
.getOpcode();
1416 assert((Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) &&
1417 "Expecting and/or op for fcmp transform");
1419 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1420 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1421 Value
*Op0
= BO
.getOperand(0), *Op1
= BO
.getOperand(1), *X
;
1422 FCmpInst::Predicate Pred
;
1423 if (match(Op1
, m_FCmp(Pred
, m_Value(), m_AnyZeroFP())))
1424 std::swap(Op0
, Op1
);
1426 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1427 BinaryOperator
*BO1
;
1428 FCmpInst::Predicate NanPred
= Opcode
== Instruction::And
? FCmpInst::FCMP_ORD
1429 : FCmpInst::FCMP_UNO
;
1430 if (!match(Op0
, m_FCmp(Pred
, m_Value(X
), m_AnyZeroFP())) || Pred
!= NanPred
||
1431 !match(Op1
, m_BinOp(BO1
)) || BO1
->getOpcode() != Opcode
)
1434 // The inner logic op must have a matching fcmp operand.
1435 Value
*BO10
= BO1
->getOperand(0), *BO11
= BO1
->getOperand(1), *Y
;
1436 if (!match(BO10
, m_FCmp(Pred
, m_Value(Y
), m_AnyZeroFP())) ||
1437 Pred
!= NanPred
|| X
->getType() != Y
->getType())
1438 std::swap(BO10
, BO11
);
1440 if (!match(BO10
, m_FCmp(Pred
, m_Value(Y
), m_AnyZeroFP())) ||
1441 Pred
!= NanPred
|| X
->getType() != Y
->getType())
1444 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1445 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1446 Value
*NewFCmp
= Builder
.CreateFCmp(Pred
, X
, Y
);
1447 if (auto *NewFCmpInst
= dyn_cast
<FCmpInst
>(NewFCmp
)) {
1448 // Intersect FMF from the 2 source fcmps.
1449 NewFCmpInst
->copyIRFlags(Op0
);
1450 NewFCmpInst
->andIRFlags(BO10
);
1452 return BinaryOperator::Create(Opcode
, NewFCmp
, BO11
);
1455 /// Match De Morgan's Laws:
1456 /// (~A & ~B) == (~(A | B))
1457 /// (~A | ~B) == (~(A & B))
1458 static Instruction
*matchDeMorgansLaws(BinaryOperator
&I
,
1459 InstCombiner::BuilderTy
&Builder
) {
1460 auto Opcode
= I
.getOpcode();
1461 assert((Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) &&
1462 "Trying to match De Morgan's Laws with something other than and/or");
1464 // Flip the logic operation.
1465 Opcode
= (Opcode
== Instruction::And
) ? Instruction::Or
: Instruction::And
;
1468 if (match(I
.getOperand(0), m_OneUse(m_Not(m_Value(A
)))) &&
1469 match(I
.getOperand(1), m_OneUse(m_Not(m_Value(B
)))) &&
1470 !isFreeToInvert(A
, A
->hasOneUse()) &&
1471 !isFreeToInvert(B
, B
->hasOneUse())) {
1472 Value
*AndOr
= Builder
.CreateBinOp(Opcode
, A
, B
, I
.getName() + ".demorgan");
1473 return BinaryOperator::CreateNot(AndOr
);
1479 bool InstCombiner::shouldOptimizeCast(CastInst
*CI
) {
1480 Value
*CastSrc
= CI
->getOperand(0);
1482 // Noop casts and casts of constants should be eliminated trivially.
1483 if (CI
->getSrcTy() == CI
->getDestTy() || isa
<Constant
>(CastSrc
))
1486 // If this cast is paired with another cast that can be eliminated, we prefer
1487 // to have it eliminated.
1488 if (const auto *PrecedingCI
= dyn_cast
<CastInst
>(CastSrc
))
1489 if (isEliminableCastPair(PrecedingCI
, CI
))
1495 /// Fold {and,or,xor} (cast X), C.
1496 static Instruction
*foldLogicCastConstant(BinaryOperator
&Logic
, CastInst
*Cast
,
1497 InstCombiner::BuilderTy
&Builder
) {
1498 Constant
*C
= dyn_cast
<Constant
>(Logic
.getOperand(1));
1502 auto LogicOpc
= Logic
.getOpcode();
1503 Type
*DestTy
= Logic
.getType();
1504 Type
*SrcTy
= Cast
->getSrcTy();
1506 // Move the logic operation ahead of a zext or sext if the constant is
1507 // unchanged in the smaller source type. Performing the logic in a smaller
1508 // type may provide more information to later folds, and the smaller logic
1509 // instruction may be cheaper (particularly in the case of vectors).
1511 if (match(Cast
, m_OneUse(m_ZExt(m_Value(X
))))) {
1512 Constant
*TruncC
= ConstantExpr::getTrunc(C
, SrcTy
);
1513 Constant
*ZextTruncC
= ConstantExpr::getZExt(TruncC
, DestTy
);
1514 if (ZextTruncC
== C
) {
1515 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1516 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, X
, TruncC
);
1517 return new ZExtInst(NewOp
, DestTy
);
1521 if (match(Cast
, m_OneUse(m_SExt(m_Value(X
))))) {
1522 Constant
*TruncC
= ConstantExpr::getTrunc(C
, SrcTy
);
1523 Constant
*SextTruncC
= ConstantExpr::getSExt(TruncC
, DestTy
);
1524 if (SextTruncC
== C
) {
1525 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1526 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, X
, TruncC
);
1527 return new SExtInst(NewOp
, DestTy
);
1534 /// Fold {and,or,xor} (cast X), Y.
1535 Instruction
*InstCombiner::foldCastedBitwiseLogic(BinaryOperator
&I
) {
1536 auto LogicOpc
= I
.getOpcode();
1537 assert(I
.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1539 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1540 CastInst
*Cast0
= dyn_cast
<CastInst
>(Op0
);
1544 // This must be a cast from an integer or integer vector source type to allow
1545 // transformation of the logic operation to the source type.
1546 Type
*DestTy
= I
.getType();
1547 Type
*SrcTy
= Cast0
->getSrcTy();
1548 if (!SrcTy
->isIntOrIntVectorTy())
1551 if (Instruction
*Ret
= foldLogicCastConstant(I
, Cast0
, Builder
))
1554 CastInst
*Cast1
= dyn_cast
<CastInst
>(Op1
);
1558 // Both operands of the logic operation are casts. The casts must be of the
1559 // same type for reduction.
1560 auto CastOpcode
= Cast0
->getOpcode();
1561 if (CastOpcode
!= Cast1
->getOpcode() || SrcTy
!= Cast1
->getSrcTy())
1564 Value
*Cast0Src
= Cast0
->getOperand(0);
1565 Value
*Cast1Src
= Cast1
->getOperand(0);
1567 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1568 if (shouldOptimizeCast(Cast0
) && shouldOptimizeCast(Cast1
)) {
1569 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, Cast0Src
, Cast1Src
,
1571 return CastInst::Create(CastOpcode
, NewOp
, DestTy
);
1574 // For now, only 'and'/'or' have optimizations after this.
1575 if (LogicOpc
== Instruction::Xor
)
1578 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1579 // cast is otherwise not optimizable. This happens for vector sexts.
1580 ICmpInst
*ICmp0
= dyn_cast
<ICmpInst
>(Cast0Src
);
1581 ICmpInst
*ICmp1
= dyn_cast
<ICmpInst
>(Cast1Src
);
1582 if (ICmp0
&& ICmp1
) {
1583 Value
*Res
= LogicOpc
== Instruction::And
? foldAndOfICmps(ICmp0
, ICmp1
, I
)
1584 : foldOrOfICmps(ICmp0
, ICmp1
, I
);
1586 return CastInst::Create(CastOpcode
, Res
, DestTy
);
1590 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1591 // cast is otherwise not optimizable. This happens for vector sexts.
1592 FCmpInst
*FCmp0
= dyn_cast
<FCmpInst
>(Cast0Src
);
1593 FCmpInst
*FCmp1
= dyn_cast
<FCmpInst
>(Cast1Src
);
1595 if (Value
*R
= foldLogicOfFCmps(FCmp0
, FCmp1
, LogicOpc
== Instruction::And
))
1596 return CastInst::Create(CastOpcode
, R
, DestTy
);
1601 static Instruction
*foldAndToXor(BinaryOperator
&I
,
1602 InstCombiner::BuilderTy
&Builder
) {
1603 assert(I
.getOpcode() == Instruction::And
);
1604 Value
*Op0
= I
.getOperand(0);
1605 Value
*Op1
= I
.getOperand(1);
1608 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1609 // (A | B) & ~(A & B) --> A ^ B
1610 // (A | B) & ~(B & A) --> A ^ B
1611 if (match(&I
, m_BinOp(m_Or(m_Value(A
), m_Value(B
)),
1612 m_Not(m_c_And(m_Deferred(A
), m_Deferred(B
))))))
1613 return BinaryOperator::CreateXor(A
, B
);
1615 // (A | ~B) & (~A | B) --> ~(A ^ B)
1616 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1617 // (~B | A) & (~A | B) --> ~(A ^ B)
1618 // (~B | A) & (B | ~A) --> ~(A ^ B)
1619 if (Op0
->hasOneUse() || Op1
->hasOneUse())
1620 if (match(&I
, m_BinOp(m_c_Or(m_Value(A
), m_Not(m_Value(B
))),
1621 m_c_Or(m_Not(m_Deferred(A
)), m_Deferred(B
)))))
1622 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
1627 static Instruction
*foldOrToXor(BinaryOperator
&I
,
1628 InstCombiner::BuilderTy
&Builder
) {
1629 assert(I
.getOpcode() == Instruction::Or
);
1630 Value
*Op0
= I
.getOperand(0);
1631 Value
*Op1
= I
.getOperand(1);
1634 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1635 // (A & B) | ~(A | B) --> ~(A ^ B)
1636 // (A & B) | ~(B | A) --> ~(A ^ B)
1637 if (Op0
->hasOneUse() || Op1
->hasOneUse())
1638 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1639 match(Op1
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
)))))
1640 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
1642 // (A & ~B) | (~A & B) --> A ^ B
1643 // (A & ~B) | (B & ~A) --> A ^ B
1644 // (~B & A) | (~A & B) --> A ^ B
1645 // (~B & A) | (B & ~A) --> A ^ B
1646 if (match(Op0
, m_c_And(m_Value(A
), m_Not(m_Value(B
)))) &&
1647 match(Op1
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
))))
1648 return BinaryOperator::CreateXor(A
, B
);
1653 /// Return true if a constant shift amount is always less than the specified
1654 /// bit-width. If not, the shift could create poison in the narrower type.
1655 static bool canNarrowShiftAmt(Constant
*C
, unsigned BitWidth
) {
1656 if (auto *ScalarC
= dyn_cast
<ConstantInt
>(C
))
1657 return ScalarC
->getZExtValue() < BitWidth
;
1659 if (C
->getType()->isVectorTy()) {
1660 // Check each element of a constant vector.
1661 unsigned NumElts
= C
->getType()->getVectorNumElements();
1662 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1663 Constant
*Elt
= C
->getAggregateElement(i
);
1666 if (isa
<UndefValue
>(Elt
))
1668 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
1669 if (!CI
|| CI
->getZExtValue() >= BitWidth
)
1675 // The constant is a constant expression or unknown.
1679 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1680 /// a common zext operand: and (binop (zext X), C), (zext X).
1681 Instruction
*InstCombiner::narrowMaskedBinOp(BinaryOperator
&And
) {
1682 // This transform could also apply to {or, and, xor}, but there are better
1683 // folds for those cases, so we don't expect those patterns here. AShr is not
1684 // handled because it should always be transformed to LShr in this sequence.
1685 // The subtract transform is different because it has a constant on the left.
1686 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1687 Value
*Op0
= And
.getOperand(0), *Op1
= And
.getOperand(1);
1689 if (!match(Op0
, m_OneUse(m_Add(m_Specific(Op1
), m_Constant(C
)))) &&
1690 !match(Op0
, m_OneUse(m_Mul(m_Specific(Op1
), m_Constant(C
)))) &&
1691 !match(Op0
, m_OneUse(m_LShr(m_Specific(Op1
), m_Constant(C
)))) &&
1692 !match(Op0
, m_OneUse(m_Shl(m_Specific(Op1
), m_Constant(C
)))) &&
1693 !match(Op0
, m_OneUse(m_Sub(m_Constant(C
), m_Specific(Op1
)))))
1697 if (!match(Op1
, m_ZExt(m_Value(X
))) || Op1
->hasNUsesOrMore(3))
1700 Type
*Ty
= And
.getType();
1701 if (!isa
<VectorType
>(Ty
) && !shouldChangeType(Ty
, X
->getType()))
1704 // If we're narrowing a shift, the shift amount must be safe (less than the
1705 // width) in the narrower type. If the shift amount is greater, instsimplify
1706 // usually handles that case, but we can't guarantee/assert it.
1707 Instruction::BinaryOps Opc
= cast
<BinaryOperator
>(Op0
)->getOpcode();
1708 if (Opc
== Instruction::LShr
|| Opc
== Instruction::Shl
)
1709 if (!canNarrowShiftAmt(C
, X
->getType()->getScalarSizeInBits()))
1712 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1713 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1714 Value
*NewC
= ConstantExpr::getTrunc(C
, X
->getType());
1715 Value
*NewBO
= Opc
== Instruction::Sub
? Builder
.CreateBinOp(Opc
, NewC
, X
)
1716 : Builder
.CreateBinOp(Opc
, X
, NewC
);
1717 return new ZExtInst(Builder
.CreateAnd(NewBO
, X
), Ty
);
1720 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1721 // here. We should standardize that construct where it is needed or choose some
1722 // other way to ensure that commutated variants of patterns are not missed.
1723 Instruction
*InstCombiner::visitAnd(BinaryOperator
&I
) {
1724 if (Value
*V
= SimplifyAndInst(I
.getOperand(0), I
.getOperand(1),
1725 SQ
.getWithInstruction(&I
)))
1726 return replaceInstUsesWith(I
, V
);
1728 if (SimplifyAssociativeOrCommutative(I
))
1731 if (Instruction
*X
= foldVectorBinop(I
))
1734 // See if we can simplify any instructions used by the instruction whose sole
1735 // purpose is to compute bits we don't care about.
1736 if (SimplifyDemandedInstructionBits(I
))
1739 // Do this before using distributive laws to catch simple and/or/not patterns.
1740 if (Instruction
*Xor
= foldAndToXor(I
, Builder
))
1743 // (A|B)&(A|C) -> A|(B&C) etc
1744 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
1745 return replaceInstUsesWith(I
, V
);
1747 if (Value
*V
= SimplifyBSwap(I
, Builder
))
1748 return replaceInstUsesWith(I
, V
);
1750 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1752 if (match(Op1
, m_APInt(C
))) {
1754 if (match(Op0
, m_OneUse(m_LogicalShift(m_One(), m_Value(X
)))) &&
1756 // (1 << X) & 1 --> zext(X == 0)
1757 // (1 >> X) & 1 --> zext(X == 0)
1758 Value
*IsZero
= Builder
.CreateICmpEQ(X
, ConstantInt::get(I
.getType(), 0));
1759 return new ZExtInst(IsZero
, I
.getType());
1763 if (match(Op0
, m_OneUse(m_Xor(m_Value(X
), m_APInt(XorC
))))) {
1764 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1765 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
& *XorC
);
1766 Value
*And
= Builder
.CreateAnd(X
, Op1
);
1768 return BinaryOperator::CreateXor(And
, NewC
);
1772 if (match(Op0
, m_OneUse(m_Or(m_Value(X
), m_APInt(OrC
))))) {
1773 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1774 // NOTE: This reduces the number of bits set in the & mask, which
1775 // can expose opportunities for store narrowing for scalars.
1776 // NOTE: SimplifyDemandedBits should have already removed bits from C1
1777 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1778 // above, but this feels safer.
1779 APInt Together
= *C
& *OrC
;
1780 Value
*And
= Builder
.CreateAnd(X
, ConstantInt::get(I
.getType(),
1783 return BinaryOperator::CreateOr(And
, ConstantInt::get(I
.getType(),
1787 // If the mask is only needed on one incoming arm, push the 'and' op up.
1788 if (match(Op0
, m_OneUse(m_Xor(m_Value(X
), m_Value(Y
)))) ||
1789 match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
1790 APInt
NotAndMask(~(*C
));
1791 BinaryOperator::BinaryOps BinOp
= cast
<BinaryOperator
>(Op0
)->getOpcode();
1792 if (MaskedValueIsZero(X
, NotAndMask
, 0, &I
)) {
1793 // Not masking anything out for the LHS, move mask to RHS.
1794 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1795 Value
*NewRHS
= Builder
.CreateAnd(Y
, Op1
, Y
->getName() + ".masked");
1796 return BinaryOperator::Create(BinOp
, X
, NewRHS
);
1798 if (!isa
<Constant
>(Y
) && MaskedValueIsZero(Y
, NotAndMask
, 0, &I
)) {
1799 // Not masking anything out for the RHS, move mask to LHS.
1800 // and ({x}or X, Y), C --> {x}or (and X, C), Y
1801 Value
*NewLHS
= Builder
.CreateAnd(X
, Op1
, X
->getName() + ".masked");
1802 return BinaryOperator::Create(BinOp
, NewLHS
, Y
);
1808 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(Op1
)) {
1809 const APInt
&AndRHSMask
= AndRHS
->getValue();
1811 // Optimize a variety of ((val OP C1) & C2) combinations...
1812 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
1813 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1814 // of X and OP behaves well when given trunc(C1) and X.
1815 // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
1816 switch (Op0I
->getOpcode()) {
1819 case Instruction::Xor
:
1820 case Instruction::Or
:
1821 case Instruction::Mul
:
1822 case Instruction::Add
:
1823 case Instruction::Sub
:
1826 // TODO: The one use restrictions could be relaxed a little if the AND
1827 // is going to be removed.
1828 if (match(Op0I
, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X
))),
1829 m_ConstantInt(C1
))))) {
1830 if (AndRHSMask
.isIntN(X
->getType()->getScalarSizeInBits())) {
1831 auto *TruncC1
= ConstantExpr::getTrunc(C1
, X
->getType());
1833 Value
*Op0LHS
= Op0I
->getOperand(0);
1834 if (isa
<ZExtInst
>(Op0LHS
))
1835 BinOp
= Builder
.CreateBinOp(Op0I
->getOpcode(), X
, TruncC1
);
1837 BinOp
= Builder
.CreateBinOp(Op0I
->getOpcode(), TruncC1
, X
);
1838 auto *TruncC2
= ConstantExpr::getTrunc(AndRHS
, X
->getType());
1839 auto *And
= Builder
.CreateAnd(BinOp
, TruncC2
);
1840 return new ZExtInst(And
, I
.getType());
1845 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
1846 if (Instruction
*Res
= OptAndOp(Op0I
, Op0CI
, AndRHS
, I
))
1850 // If this is an integer truncation, and if the source is an 'and' with
1851 // immediate, transform it. This frequently occurs for bitfield accesses.
1853 Value
*X
= nullptr; ConstantInt
*YC
= nullptr;
1854 if (match(Op0
, m_Trunc(m_And(m_Value(X
), m_ConstantInt(YC
))))) {
1855 // Change: and (trunc (and X, YC) to T), C2
1856 // into : and (trunc X to T), trunc(YC) & C2
1857 // This will fold the two constants together, which may allow
1858 // other simplifications.
1859 Value
*NewCast
= Builder
.CreateTrunc(X
, I
.getType(), "and.shrunk");
1860 Constant
*C3
= ConstantExpr::getTrunc(YC
, I
.getType());
1861 C3
= ConstantExpr::getAnd(C3
, AndRHS
);
1862 return BinaryOperator::CreateAnd(NewCast
, C3
);
1867 if (Instruction
*Z
= narrowMaskedBinOp(I
))
1870 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
1873 if (Instruction
*DeMorgan
= matchDeMorgansLaws(I
, Builder
))
1878 // A & (A ^ B) --> A & ~B
1879 if (match(Op1
, m_OneUse(m_c_Xor(m_Specific(Op0
), m_Value(B
)))))
1880 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(B
));
1881 // (A ^ B) & A --> A & ~B
1882 if (match(Op0
, m_OneUse(m_c_Xor(m_Specific(Op1
), m_Value(B
)))))
1883 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(B
));
1885 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1886 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))))
1887 if (match(Op1
, m_Xor(m_Xor(m_Specific(B
), m_Value(C
)), m_Specific(A
))))
1888 if (Op1
->hasOneUse() || isFreeToInvert(C
, C
->hasOneUse()))
1889 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(C
));
1891 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1892 if (match(Op0
, m_Xor(m_Xor(m_Value(A
), m_Value(C
)), m_Value(B
))))
1893 if (match(Op1
, m_Xor(m_Specific(B
), m_Specific(A
))))
1894 if (Op0
->hasOneUse() || isFreeToInvert(C
, C
->hasOneUse()))
1895 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(C
));
1897 // (A | B) & ((~A) ^ B) -> (A & B)
1898 // (A | B) & (B ^ (~A)) -> (A & B)
1899 // (B | A) & ((~A) ^ B) -> (A & B)
1900 // (B | A) & (B ^ (~A)) -> (A & B)
1901 if (match(Op1
, m_c_Xor(m_Not(m_Value(A
)), m_Value(B
))) &&
1902 match(Op0
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1903 return BinaryOperator::CreateAnd(A
, B
);
1905 // ((~A) ^ B) & (A | B) -> (A & B)
1906 // ((~A) ^ B) & (B | A) -> (A & B)
1907 // (B ^ (~A)) & (A | B) -> (A & B)
1908 // (B ^ (~A)) & (B | A) -> (A & B)
1909 if (match(Op0
, m_c_Xor(m_Not(m_Value(A
)), m_Value(B
))) &&
1910 match(Op1
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1911 return BinaryOperator::CreateAnd(A
, B
);
1915 ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
);
1916 ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
);
1918 if (Value
*Res
= foldAndOfICmps(LHS
, RHS
, I
))
1919 return replaceInstUsesWith(I
, Res
);
1921 // TODO: Make this recursive; it's a little tricky because an arbitrary
1922 // number of 'and' instructions might have to be created.
1924 if (LHS
&& match(Op1
, m_OneUse(m_And(m_Value(X
), m_Value(Y
))))) {
1925 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
1926 if (Value
*Res
= foldAndOfICmps(LHS
, Cmp
, I
))
1927 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, Y
));
1928 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
1929 if (Value
*Res
= foldAndOfICmps(LHS
, Cmp
, I
))
1930 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, X
));
1932 if (RHS
&& match(Op0
, m_OneUse(m_And(m_Value(X
), m_Value(Y
))))) {
1933 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
1934 if (Value
*Res
= foldAndOfICmps(Cmp
, RHS
, I
))
1935 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, Y
));
1936 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
1937 if (Value
*Res
= foldAndOfICmps(Cmp
, RHS
, I
))
1938 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, X
));
1942 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
1943 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
1944 if (Value
*Res
= foldLogicOfFCmps(LHS
, RHS
, true))
1945 return replaceInstUsesWith(I
, Res
);
1947 if (Instruction
*FoldedFCmps
= reassociateFCmps(I
, Builder
))
1950 if (Instruction
*CastedAnd
= foldCastedBitwiseLogic(I
))
1953 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1955 if (match(Op0
, m_OneUse(m_SExt(m_Value(A
)))) &&
1956 A
->getType()->isIntOrIntVectorTy(1))
1957 return SelectInst::Create(A
, Op1
, Constant::getNullValue(I
.getType()));
1958 if (match(Op1
, m_OneUse(m_SExt(m_Value(A
)))) &&
1959 A
->getType()->isIntOrIntVectorTy(1))
1960 return SelectInst::Create(A
, Op0
, Constant::getNullValue(I
.getType()));
1962 // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
1966 Type
*Ty
= I
.getType();
1967 if (match(&I
, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y
), m_Value(X
)),
1970 *ShAmt
== Ty
->getScalarSizeInBits() - 1) {
1971 Value
*NewICmpInst
= Builder
.CreateICmpSGT(X
, Y
);
1972 return SelectInst::Create(NewICmpInst
, X
, ConstantInt::getNullValue(Ty
));
1979 Instruction
*InstCombiner::matchBSwap(BinaryOperator
&Or
) {
1980 assert(Or
.getOpcode() == Instruction::Or
&& "bswap requires an 'or'");
1981 Value
*Op0
= Or
.getOperand(0), *Op1
= Or
.getOperand(1);
1983 // Look through zero extends.
1984 if (Instruction
*Ext
= dyn_cast
<ZExtInst
>(Op0
))
1985 Op0
= Ext
->getOperand(0);
1987 if (Instruction
*Ext
= dyn_cast
<ZExtInst
>(Op1
))
1988 Op1
= Ext
->getOperand(0);
1990 // (A | B) | C and A | (B | C) -> bswap if possible.
1991 bool OrOfOrs
= match(Op0
, m_Or(m_Value(), m_Value())) ||
1992 match(Op1
, m_Or(m_Value(), m_Value()));
1994 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1995 bool OrOfShifts
= match(Op0
, m_LogicalShift(m_Value(), m_Value())) &&
1996 match(Op1
, m_LogicalShift(m_Value(), m_Value()));
1998 // (A & B) | (C & D) -> bswap if possible.
1999 bool OrOfAnds
= match(Op0
, m_And(m_Value(), m_Value())) &&
2000 match(Op1
, m_And(m_Value(), m_Value()));
2002 // (A << B) | (C & D) -> bswap if possible.
2003 // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
2004 // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
2006 // This pattern can occur when the operands of the 'or' are not canonicalized
2007 // for some reason (not having only one use, for example).
2008 bool OrOfAndAndSh
= (match(Op0
, m_LogicalShift(m_Value(), m_Value())) &&
2009 match(Op1
, m_And(m_Value(), m_Value()))) ||
2010 (match(Op0
, m_And(m_Value(), m_Value())) &&
2011 match(Op1
, m_LogicalShift(m_Value(), m_Value())));
2013 if (!OrOfOrs
&& !OrOfShifts
&& !OrOfAnds
&& !OrOfAndAndSh
)
2016 SmallVector
<Instruction
*, 4> Insts
;
2017 if (!recognizeBSwapOrBitReverseIdiom(&Or
, true, false, Insts
))
2019 Instruction
*LastInst
= Insts
.pop_back_val();
2020 LastInst
->removeFromParent();
2022 for (auto *Inst
: Insts
)
2027 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
2028 static Instruction
*matchRotate(Instruction
&Or
) {
2029 // TODO: Can we reduce the code duplication between this and the related
2030 // rotate matching code under visitSelect and visitTrunc?
2031 unsigned Width
= Or
.getType()->getScalarSizeInBits();
2032 if (!isPowerOf2_32(Width
))
2035 // First, find an or'd pair of opposite shifts with the same shifted operand:
2036 // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
2037 BinaryOperator
*Or0
, *Or1
;
2038 if (!match(Or
.getOperand(0), m_BinOp(Or0
)) ||
2039 !match(Or
.getOperand(1), m_BinOp(Or1
)))
2042 Value
*ShVal
, *ShAmt0
, *ShAmt1
;
2043 if (!match(Or0
, m_OneUse(m_LogicalShift(m_Value(ShVal
), m_Value(ShAmt0
)))) ||
2044 !match(Or1
, m_OneUse(m_LogicalShift(m_Specific(ShVal
), m_Value(ShAmt1
)))))
2047 BinaryOperator::BinaryOps ShiftOpcode0
= Or0
->getOpcode();
2048 BinaryOperator::BinaryOps ShiftOpcode1
= Or1
->getOpcode();
2049 if (ShiftOpcode0
== ShiftOpcode1
)
2052 // Match the shift amount operands for a rotate pattern. This always matches
2053 // a subtraction on the R operand.
2054 auto matchShiftAmount
= [](Value
*L
, Value
*R
, unsigned Width
) -> Value
* {
2055 // The shift amount may be masked with negation:
2056 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2058 unsigned Mask
= Width
- 1;
2059 if (match(L
, m_And(m_Value(X
), m_SpecificInt(Mask
))) &&
2060 match(R
, m_And(m_Neg(m_Specific(X
)), m_SpecificInt(Mask
))))
2063 // Similar to above, but the shift amount may be extended after masking,
2064 // so return the extended value as the parameter for the intrinsic.
2065 if (match(L
, m_ZExt(m_And(m_Value(X
), m_SpecificInt(Mask
)))) &&
2066 match(R
, m_And(m_Neg(m_ZExt(m_And(m_Specific(X
), m_SpecificInt(Mask
)))),
2067 m_SpecificInt(Mask
))))
2073 Value
*ShAmt
= matchShiftAmount(ShAmt0
, ShAmt1
, Width
);
2074 bool SubIsOnLHS
= false;
2076 ShAmt
= matchShiftAmount(ShAmt1
, ShAmt0
, Width
);
2082 bool IsFshl
= (!SubIsOnLHS
&& ShiftOpcode0
== BinaryOperator::Shl
) ||
2083 (SubIsOnLHS
&& ShiftOpcode1
== BinaryOperator::Shl
);
2084 Intrinsic::ID IID
= IsFshl
? Intrinsic::fshl
: Intrinsic::fshr
;
2085 Function
*F
= Intrinsic::getDeclaration(Or
.getModule(), IID
, Or
.getType());
2086 return IntrinsicInst::Create(F
, { ShVal
, ShVal
, ShAmt
});
2089 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2090 static bool areInverseVectorBitmasks(Constant
*C1
, Constant
*C2
) {
2091 unsigned NumElts
= C1
->getType()->getVectorNumElements();
2092 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2093 Constant
*EltC1
= C1
->getAggregateElement(i
);
2094 Constant
*EltC2
= C2
->getAggregateElement(i
);
2095 if (!EltC1
|| !EltC2
)
2098 // One element must be all ones, and the other must be all zeros.
2099 if (!((match(EltC1
, m_Zero()) && match(EltC2
, m_AllOnes())) ||
2100 (match(EltC2
, m_Zero()) && match(EltC1
, m_AllOnes()))))
2106 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2107 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2108 /// B, it can be used as the condition operand of a select instruction.
2109 Value
*InstCombiner::getSelectCondition(Value
*A
, Value
*B
) {
2110 // Step 1: We may have peeked through bitcasts in the caller.
2111 // Exit immediately if we don't have (vector) integer types.
2112 Type
*Ty
= A
->getType();
2113 if (!Ty
->isIntOrIntVectorTy() || !B
->getType()->isIntOrIntVectorTy())
2116 // Step 2: We need 0 or all-1's bitmasks.
2117 if (ComputeNumSignBits(A
) != Ty
->getScalarSizeInBits())
2120 // Step 3: If B is the 'not' value of A, we have our answer.
2121 if (match(A
, m_Not(m_Specific(B
)))) {
2122 // If these are scalars or vectors of i1, A can be used directly.
2123 if (Ty
->isIntOrIntVectorTy(1))
2125 return Builder
.CreateTrunc(A
, CmpInst::makeCmpResultType(Ty
));
2128 // If both operands are constants, see if the constants are inverse bitmasks.
2129 Constant
*AConst
, *BConst
;
2130 if (match(A
, m_Constant(AConst
)) && match(B
, m_Constant(BConst
)))
2131 if (AConst
== ConstantExpr::getNot(BConst
))
2132 return Builder
.CreateZExtOrTrunc(A
, CmpInst::makeCmpResultType(Ty
));
2134 // Look for more complex patterns. The 'not' op may be hidden behind various
2135 // casts. Look through sexts and bitcasts to find the booleans.
2138 if (match(A
, m_SExt(m_Value(Cond
))) &&
2139 Cond
->getType()->isIntOrIntVectorTy(1) &&
2140 match(B
, m_OneUse(m_Not(m_Value(NotB
))))) {
2141 NotB
= peekThroughBitcast(NotB
, true);
2142 if (match(NotB
, m_SExt(m_Specific(Cond
))))
2146 // All scalar (and most vector) possibilities should be handled now.
2147 // Try more matches that only apply to non-splat constant vectors.
2148 if (!Ty
->isVectorTy())
2151 // If both operands are xor'd with constants using the same sexted boolean
2152 // operand, see if the constants are inverse bitmasks.
2153 // TODO: Use ConstantExpr::getNot()?
2154 if (match(A
, (m_Xor(m_SExt(m_Value(Cond
)), m_Constant(AConst
)))) &&
2155 match(B
, (m_Xor(m_SExt(m_Specific(Cond
)), m_Constant(BConst
)))) &&
2156 Cond
->getType()->isIntOrIntVectorTy(1) &&
2157 areInverseVectorBitmasks(AConst
, BConst
)) {
2158 AConst
= ConstantExpr::getTrunc(AConst
, CmpInst::makeCmpResultType(Ty
));
2159 return Builder
.CreateXor(Cond
, AConst
);
2164 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2165 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2166 Value
*InstCombiner::matchSelectFromAndOr(Value
*A
, Value
*C
, Value
*B
,
2168 // The potential condition of the select may be bitcasted. In that case, look
2169 // through its bitcast and the corresponding bitcast of the 'not' condition.
2170 Type
*OrigType
= A
->getType();
2171 A
= peekThroughBitcast(A
, true);
2172 B
= peekThroughBitcast(B
, true);
2173 if (Value
*Cond
= getSelectCondition(A
, B
)) {
2174 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2175 // The bitcasts will either all exist or all not exist. The builder will
2176 // not create unnecessary casts if the types already match.
2177 Value
*BitcastC
= Builder
.CreateBitCast(C
, A
->getType());
2178 Value
*BitcastD
= Builder
.CreateBitCast(D
, A
->getType());
2179 Value
*Select
= Builder
.CreateSelect(Cond
, BitcastC
, BitcastD
);
2180 return Builder
.CreateBitCast(Select
, OrigType
);
2186 /// Fold (icmp)|(icmp) if possible.
2187 Value
*InstCombiner::foldOrOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
2188 Instruction
&CxtI
) {
2189 const SimplifyQuery Q
= SQ
.getWithInstruction(&CxtI
);
2191 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
2192 // if K1 and K2 are a one-bit mask.
2193 if (Value
*V
= foldAndOrOfICmpsOfAndWithPow2(LHS
, RHS
, false, CxtI
))
2196 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
2198 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
2199 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
2201 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2202 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2203 // The original condition actually refers to the following two ranges:
2204 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2205 // We can fold these two ranges if:
2206 // 1) C1 and C2 is unsigned greater than C3.
2207 // 2) The two ranges are separated.
2208 // 3) C1 ^ C2 is one-bit mask.
2209 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2210 // This implies all values in the two ranges differ by exactly one bit.
2212 if ((PredL
== ICmpInst::ICMP_ULT
|| PredL
== ICmpInst::ICMP_ULE
) &&
2213 PredL
== PredR
&& LHSC
&& RHSC
&& LHS
->hasOneUse() && RHS
->hasOneUse() &&
2214 LHSC
->getType() == RHSC
->getType() &&
2215 LHSC
->getValue() == (RHSC
->getValue())) {
2217 Value
*LAdd
= LHS
->getOperand(0);
2218 Value
*RAdd
= RHS
->getOperand(0);
2220 Value
*LAddOpnd
, *RAddOpnd
;
2221 ConstantInt
*LAddC
, *RAddC
;
2222 if (match(LAdd
, m_Add(m_Value(LAddOpnd
), m_ConstantInt(LAddC
))) &&
2223 match(RAdd
, m_Add(m_Value(RAddOpnd
), m_ConstantInt(RAddC
))) &&
2224 LAddC
->getValue().ugt(LHSC
->getValue()) &&
2225 RAddC
->getValue().ugt(LHSC
->getValue())) {
2227 APInt DiffC
= LAddC
->getValue() ^ RAddC
->getValue();
2228 if (LAddOpnd
== RAddOpnd
&& DiffC
.isPowerOf2()) {
2229 ConstantInt
*MaxAddC
= nullptr;
2230 if (LAddC
->getValue().ult(RAddC
->getValue()))
2235 APInt RRangeLow
= -RAddC
->getValue();
2236 APInt RRangeHigh
= RRangeLow
+ LHSC
->getValue();
2237 APInt LRangeLow
= -LAddC
->getValue();
2238 APInt LRangeHigh
= LRangeLow
+ LHSC
->getValue();
2239 APInt LowRangeDiff
= RRangeLow
^ LRangeLow
;
2240 APInt HighRangeDiff
= RRangeHigh
^ LRangeHigh
;
2241 APInt RangeDiff
= LRangeLow
.sgt(RRangeLow
) ? LRangeLow
- RRangeLow
2242 : RRangeLow
- LRangeLow
;
2244 if (LowRangeDiff
.isPowerOf2() && LowRangeDiff
== HighRangeDiff
&&
2245 RangeDiff
.ugt(LHSC
->getValue())) {
2246 Value
*MaskC
= ConstantInt::get(LAddC
->getType(), ~DiffC
);
2248 Value
*NewAnd
= Builder
.CreateAnd(LAddOpnd
, MaskC
);
2249 Value
*NewAdd
= Builder
.CreateAdd(NewAnd
, MaxAddC
);
2250 return Builder
.CreateICmp(LHS
->getPredicate(), NewAdd
, LHSC
);
2256 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2257 if (predicatesFoldable(PredL
, PredR
)) {
2258 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
2259 LHS
->getOperand(1) == RHS
->getOperand(0))
2260 LHS
->swapOperands();
2261 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
2262 LHS
->getOperand(1) == RHS
->getOperand(1)) {
2263 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
2264 unsigned Code
= getICmpCode(LHS
) | getICmpCode(RHS
);
2265 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
2266 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
2270 // handle (roughly):
2271 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2272 if (Value
*V
= foldLogOpOfMaskedICmps(LHS
, RHS
, false, Builder
))
2275 Value
*LHS0
= LHS
->getOperand(0), *RHS0
= RHS
->getOperand(0);
2276 if (LHS
->hasOneUse() || RHS
->hasOneUse()) {
2277 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2278 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2279 Value
*A
= nullptr, *B
= nullptr;
2280 if (PredL
== ICmpInst::ICMP_EQ
&& LHSC
&& LHSC
->isZero()) {
2282 if (PredR
== ICmpInst::ICMP_ULT
&& LHS0
== RHS
->getOperand(1))
2284 else if (PredR
== ICmpInst::ICMP_UGT
&& LHS0
== RHS0
)
2285 A
= RHS
->getOperand(1);
2287 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2288 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2289 else if (PredR
== ICmpInst::ICMP_EQ
&& RHSC
&& RHSC
->isZero()) {
2291 if (PredL
== ICmpInst::ICMP_ULT
&& RHS0
== LHS
->getOperand(1))
2293 else if (PredL
== ICmpInst::ICMP_UGT
&& LHS0
== RHS0
)
2294 A
= LHS
->getOperand(1);
2297 return Builder
.CreateICmp(
2299 Builder
.CreateAdd(B
, ConstantInt::getSigned(B
->getType(), -1)), A
);
2302 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2303 if (Value
*V
= simplifyRangeCheck(LHS
, RHS
, /*Inverted=*/true))
2306 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2307 if (Value
*V
= simplifyRangeCheck(RHS
, LHS
, /*Inverted=*/true))
2310 if (Value
*V
= foldAndOrOfEqualityCmpsWithConstants(LHS
, RHS
, false, Builder
))
2313 if (Value
*V
= foldIsPowerOf2(LHS
, RHS
, false /* JoinedByAnd */, Builder
))
2317 foldUnsignedUnderflowCheck(LHS
, RHS
, /*IsAnd=*/false, Q
, Builder
))
2320 foldUnsignedUnderflowCheck(RHS
, LHS
, /*IsAnd=*/false, Q
, Builder
))
2323 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2327 if (LHSC
== RHSC
&& PredL
== PredR
) {
2328 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2329 if (PredL
== ICmpInst::ICMP_NE
&& LHSC
->isZero()) {
2330 Value
*NewOr
= Builder
.CreateOr(LHS0
, RHS0
);
2331 return Builder
.CreateICmp(PredL
, NewOr
, LHSC
);
2335 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2336 // iff C2 + CA == C1.
2337 if (PredL
== ICmpInst::ICMP_ULT
&& PredR
== ICmpInst::ICMP_EQ
) {
2339 if (match(LHS0
, m_Add(m_Specific(RHS0
), m_ConstantInt(AddC
))))
2340 if (RHSC
->getValue() + AddC
->getValue() == LHSC
->getValue())
2341 return Builder
.CreateICmpULE(LHS0
, LHSC
);
2344 // From here on, we only handle:
2345 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2349 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2350 if (PredL
== ICmpInst::ICMP_UGE
|| PredL
== ICmpInst::ICMP_ULE
||
2351 PredR
== ICmpInst::ICMP_UGE
|| PredR
== ICmpInst::ICMP_ULE
||
2352 PredL
== ICmpInst::ICMP_SGE
|| PredL
== ICmpInst::ICMP_SLE
||
2353 PredR
== ICmpInst::ICMP_SGE
|| PredR
== ICmpInst::ICMP_SLE
)
2356 // We can't fold (ugt x, C) | (sgt x, C2).
2357 if (!predicatesFoldable(PredL
, PredR
))
2360 // Ensure that the larger constant is on the RHS.
2362 if (CmpInst::isSigned(PredL
) ||
2363 (ICmpInst::isEquality(PredL
) && CmpInst::isSigned(PredR
)))
2364 ShouldSwap
= LHSC
->getValue().sgt(RHSC
->getValue());
2366 ShouldSwap
= LHSC
->getValue().ugt(RHSC
->getValue());
2369 std::swap(LHS
, RHS
);
2370 std::swap(LHSC
, RHSC
);
2371 std::swap(PredL
, PredR
);
2374 // At this point, we know we have two icmp instructions
2375 // comparing a value against two constants and or'ing the result
2376 // together. Because of the above check, we know that we only have
2377 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2378 // icmp folding check above), that the two constants are not
2380 assert(LHSC
!= RHSC
&& "Compares not folded above?");
2384 llvm_unreachable("Unknown integer condition code!");
2385 case ICmpInst::ICMP_EQ
:
2388 llvm_unreachable("Unknown integer condition code!");
2389 case ICmpInst::ICMP_EQ
:
2390 // Potential folds for this case should already be handled.
2392 case ICmpInst::ICMP_UGT
:
2393 // (X == 0 || X u> C) -> (X-1) u>= C
2394 if (LHSC
->isMinValue(false))
2395 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue() + 1,
2397 // (X == 13 | X u> 14) -> no change
2399 case ICmpInst::ICMP_SGT
:
2400 // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
2401 if (LHSC
->isMinValue(true))
2402 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue() + 1,
2404 // (X == 13 | X s> 14) -> no change
2408 case ICmpInst::ICMP_ULT
:
2411 llvm_unreachable("Unknown integer condition code!");
2412 case ICmpInst::ICMP_EQ
: // (X u< 13 | X == 14) -> no change
2413 // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
2414 if (RHSC
->isMaxValue(false))
2415 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue(),
2418 case ICmpInst::ICMP_UGT
: // (X u< 13 | X u> 15) -> (X-13) u> 2
2419 assert(!RHSC
->isMaxValue(false) && "Missed icmp simplification");
2420 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue() + 1,
2424 case ICmpInst::ICMP_SLT
:
2427 llvm_unreachable("Unknown integer condition code!");
2428 case ICmpInst::ICMP_EQ
:
2429 // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
2430 if (RHSC
->isMaxValue(true))
2431 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue(),
2433 // (X s< 13 | X == 14) -> no change
2435 case ICmpInst::ICMP_SGT
: // (X s< 13 | X s> 15) -> (X-13) u> 2
2436 assert(!RHSC
->isMaxValue(true) && "Missed icmp simplification");
2437 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue() + 1, true,
2445 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2446 // here. We should standardize that construct where it is needed or choose some
2447 // other way to ensure that commutated variants of patterns are not missed.
2448 Instruction
*InstCombiner::visitOr(BinaryOperator
&I
) {
2449 if (Value
*V
= SimplifyOrInst(I
.getOperand(0), I
.getOperand(1),
2450 SQ
.getWithInstruction(&I
)))
2451 return replaceInstUsesWith(I
, V
);
2453 if (SimplifyAssociativeOrCommutative(I
))
2456 if (Instruction
*X
= foldVectorBinop(I
))
2459 // See if we can simplify any instructions used by the instruction whose sole
2460 // purpose is to compute bits we don't care about.
2461 if (SimplifyDemandedInstructionBits(I
))
2464 // Do this before using distributive laws to catch simple and/or/not patterns.
2465 if (Instruction
*Xor
= foldOrToXor(I
, Builder
))
2468 // (A&B)|(A&C) -> A&(B|C) etc
2469 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
2470 return replaceInstUsesWith(I
, V
);
2472 if (Value
*V
= SimplifyBSwap(I
, Builder
))
2473 return replaceInstUsesWith(I
, V
);
2475 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
2478 if (Instruction
*BSwap
= matchBSwap(I
))
2481 if (Instruction
*Rotate
= matchRotate(I
))
2486 if (match(&I
, m_c_Or(m_OneUse(m_Xor(m_Value(X
), m_APInt(CV
))), m_Value(Y
))) &&
2487 !CV
->isAllOnesValue() && MaskedValueIsZero(Y
, *CV
, 0, &I
)) {
2488 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2489 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2490 Value
*Or
= Builder
.CreateOr(X
, Y
);
2491 return BinaryOperator::CreateXor(Or
, ConstantInt::get(I
.getType(), *CV
));
2495 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2496 Value
*A
, *B
, *C
, *D
;
2497 if (match(Op0
, m_And(m_Value(A
), m_Value(C
))) &&
2498 match(Op1
, m_And(m_Value(B
), m_Value(D
)))) {
2499 ConstantInt
*C1
= dyn_cast
<ConstantInt
>(C
);
2500 ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
);
2501 if (C1
&& C2
) { // (A & C1)|(B & C2)
2502 Value
*V1
= nullptr, *V2
= nullptr;
2503 if ((C1
->getValue() & C2
->getValue()).isNullValue()) {
2504 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2505 // iff (C1&C2) == 0 and (N&~C1) == 0
2506 if (match(A
, m_Or(m_Value(V1
), m_Value(V2
))) &&
2508 MaskedValueIsZero(V2
, ~C1
->getValue(), 0, &I
)) || // (V|N)
2510 MaskedValueIsZero(V1
, ~C1
->getValue(), 0, &I
)))) // (N|V)
2511 return BinaryOperator::CreateAnd(A
,
2512 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2513 // Or commutes, try both ways.
2514 if (match(B
, m_Or(m_Value(V1
), m_Value(V2
))) &&
2516 MaskedValueIsZero(V2
, ~C2
->getValue(), 0, &I
)) || // (V|N)
2518 MaskedValueIsZero(V1
, ~C2
->getValue(), 0, &I
)))) // (N|V)
2519 return BinaryOperator::CreateAnd(B
,
2520 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2522 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2523 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2524 ConstantInt
*C3
= nullptr, *C4
= nullptr;
2525 if (match(A
, m_Or(m_Value(V1
), m_ConstantInt(C3
))) &&
2526 (C3
->getValue() & ~C1
->getValue()).isNullValue() &&
2527 match(B
, m_Or(m_Specific(V1
), m_ConstantInt(C4
))) &&
2528 (C4
->getValue() & ~C2
->getValue()).isNullValue()) {
2529 V2
= Builder
.CreateOr(V1
, ConstantExpr::getOr(C3
, C4
), "bitfield");
2530 return BinaryOperator::CreateAnd(V2
,
2531 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2535 if (C1
->getValue() == ~C2
->getValue()) {
2538 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2539 if (match(A
, m_c_Or(m_Value(X
), m_Specific(B
))))
2540 return BinaryOperator::CreateOr(Builder
.CreateAnd(X
, C1
), B
);
2541 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2542 if (match(B
, m_c_Or(m_Specific(A
), m_Value(X
))))
2543 return BinaryOperator::CreateOr(Builder
.CreateAnd(X
, C2
), A
);
2545 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2546 if (match(A
, m_c_Xor(m_Value(X
), m_Specific(B
))))
2547 return BinaryOperator::CreateXor(Builder
.CreateAnd(X
, C1
), B
);
2548 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2549 if (match(B
, m_c_Xor(m_Specific(A
), m_Value(X
))))
2550 return BinaryOperator::CreateXor(Builder
.CreateAnd(X
, C2
), A
);
2554 // Don't try to form a select if it's unlikely that we'll get rid of at
2555 // least one of the operands. A select is generally more expensive than the
2556 // 'or' that it is replacing.
2557 if (Op0
->hasOneUse() || Op1
->hasOneUse()) {
2558 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2559 if (Value
*V
= matchSelectFromAndOr(A
, C
, B
, D
))
2560 return replaceInstUsesWith(I
, V
);
2561 if (Value
*V
= matchSelectFromAndOr(A
, C
, D
, B
))
2562 return replaceInstUsesWith(I
, V
);
2563 if (Value
*V
= matchSelectFromAndOr(C
, A
, B
, D
))
2564 return replaceInstUsesWith(I
, V
);
2565 if (Value
*V
= matchSelectFromAndOr(C
, A
, D
, B
))
2566 return replaceInstUsesWith(I
, V
);
2567 if (Value
*V
= matchSelectFromAndOr(B
, D
, A
, C
))
2568 return replaceInstUsesWith(I
, V
);
2569 if (Value
*V
= matchSelectFromAndOr(B
, D
, C
, A
))
2570 return replaceInstUsesWith(I
, V
);
2571 if (Value
*V
= matchSelectFromAndOr(D
, B
, A
, C
))
2572 return replaceInstUsesWith(I
, V
);
2573 if (Value
*V
= matchSelectFromAndOr(D
, B
, C
, A
))
2574 return replaceInstUsesWith(I
, V
);
2578 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2579 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))))
2580 if (match(Op1
, m_Xor(m_Xor(m_Specific(B
), m_Value(C
)), m_Specific(A
))))
2581 return BinaryOperator::CreateOr(Op0
, C
);
2583 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2584 if (match(Op0
, m_Xor(m_Xor(m_Value(A
), m_Value(C
)), m_Value(B
))))
2585 if (match(Op1
, m_Xor(m_Specific(B
), m_Specific(A
))))
2586 return BinaryOperator::CreateOr(Op1
, C
);
2588 // ((B | C) & A) | B -> B | (A & C)
2589 if (match(Op0
, m_And(m_Or(m_Specific(Op1
), m_Value(C
)), m_Value(A
))))
2590 return BinaryOperator::CreateOr(Op1
, Builder
.CreateAnd(A
, C
));
2592 if (Instruction
*DeMorgan
= matchDeMorgansLaws(I
, Builder
))
2595 // Canonicalize xor to the RHS.
2596 bool SwappedForXor
= false;
2597 if (match(Op0
, m_Xor(m_Value(), m_Value()))) {
2598 std::swap(Op0
, Op1
);
2599 SwappedForXor
= true;
2602 // A | ( A ^ B) -> A | B
2603 // A | (~A ^ B) -> A | ~B
2604 // (A & B) | (A ^ B)
2605 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
)))) {
2606 if (Op0
== A
|| Op0
== B
)
2607 return BinaryOperator::CreateOr(A
, B
);
2609 if (match(Op0
, m_And(m_Specific(A
), m_Specific(B
))) ||
2610 match(Op0
, m_And(m_Specific(B
), m_Specific(A
))))
2611 return BinaryOperator::CreateOr(A
, B
);
2613 if (Op1
->hasOneUse() && match(A
, m_Not(m_Specific(Op0
)))) {
2614 Value
*Not
= Builder
.CreateNot(B
, B
->getName() + ".not");
2615 return BinaryOperator::CreateOr(Not
, Op0
);
2617 if (Op1
->hasOneUse() && match(B
, m_Not(m_Specific(Op0
)))) {
2618 Value
*Not
= Builder
.CreateNot(A
, A
->getName() + ".not");
2619 return BinaryOperator::CreateOr(Not
, Op0
);
2623 // A | ~(A | B) -> A | ~B
2624 // A | ~(A ^ B) -> A | ~B
2625 if (match(Op1
, m_Not(m_Value(A
))))
2626 if (BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(A
))
2627 if ((Op0
== B
->getOperand(0) || Op0
== B
->getOperand(1)) &&
2628 Op1
->hasOneUse() && (B
->getOpcode() == Instruction::Or
||
2629 B
->getOpcode() == Instruction::Xor
)) {
2630 Value
*NotOp
= Op0
== B
->getOperand(0) ? B
->getOperand(1) :
2632 Value
*Not
= Builder
.CreateNot(NotOp
, NotOp
->getName() + ".not");
2633 return BinaryOperator::CreateOr(Not
, Op0
);
2637 std::swap(Op0
, Op1
);
2640 ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
);
2641 ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
);
2643 if (Value
*Res
= foldOrOfICmps(LHS
, RHS
, I
))
2644 return replaceInstUsesWith(I
, Res
);
2646 // TODO: Make this recursive; it's a little tricky because an arbitrary
2647 // number of 'or' instructions might have to be created.
2649 if (LHS
&& match(Op1
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
2650 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
2651 if (Value
*Res
= foldOrOfICmps(LHS
, Cmp
, I
))
2652 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, Y
));
2653 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
2654 if (Value
*Res
= foldOrOfICmps(LHS
, Cmp
, I
))
2655 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, X
));
2657 if (RHS
&& match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
2658 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
2659 if (Value
*Res
= foldOrOfICmps(Cmp
, RHS
, I
))
2660 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, Y
));
2661 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
2662 if (Value
*Res
= foldOrOfICmps(Cmp
, RHS
, I
))
2663 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, X
));
2667 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
2668 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
2669 if (Value
*Res
= foldLogicOfFCmps(LHS
, RHS
, false))
2670 return replaceInstUsesWith(I
, Res
);
2672 if (Instruction
*FoldedFCmps
= reassociateFCmps(I
, Builder
))
2675 if (Instruction
*CastedOr
= foldCastedBitwiseLogic(I
))
2678 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2679 if (match(Op0
, m_OneUse(m_SExt(m_Value(A
)))) &&
2680 A
->getType()->isIntOrIntVectorTy(1))
2681 return SelectInst::Create(A
, ConstantInt::getSigned(I
.getType(), -1), Op1
);
2682 if (match(Op1
, m_OneUse(m_SExt(m_Value(A
)))) &&
2683 A
->getType()->isIntOrIntVectorTy(1))
2684 return SelectInst::Create(A
, ConstantInt::getSigned(I
.getType(), -1), Op0
);
2686 // Note: If we've gotten to the point of visiting the outer OR, then the
2687 // inner one couldn't be simplified. If it was a constant, then it won't
2688 // be simplified by a later pass either, so we try swapping the inner/outer
2689 // ORs in the hopes that we'll be able to simplify it this way.
2690 // (X|C) | V --> (X|V) | C
2692 if (Op0
->hasOneUse() && !isa
<ConstantInt
>(Op1
) &&
2693 match(Op0
, m_Or(m_Value(A
), m_ConstantInt(CI
)))) {
2694 Value
*Inner
= Builder
.CreateOr(A
, Op1
);
2695 Inner
->takeName(Op0
);
2696 return BinaryOperator::CreateOr(Inner
, CI
);
2699 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2700 // Since this OR statement hasn't been optimized further yet, we hope
2701 // that this transformation will allow the new ORs to be optimized.
2703 Value
*X
= nullptr, *Y
= nullptr;
2704 if (Op0
->hasOneUse() && Op1
->hasOneUse() &&
2705 match(Op0
, m_Select(m_Value(X
), m_Value(A
), m_Value(B
))) &&
2706 match(Op1
, m_Select(m_Value(Y
), m_Value(C
), m_Value(D
))) && X
== Y
) {
2707 Value
*orTrue
= Builder
.CreateOr(A
, C
);
2708 Value
*orFalse
= Builder
.CreateOr(B
, D
);
2709 return SelectInst::Create(X
, orTrue
, orFalse
);
2713 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? -1 : X.
2717 Type
*Ty
= I
.getType();
2718 if (match(&I
, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y
), m_Value(X
)),
2721 *ShAmt
== Ty
->getScalarSizeInBits() - 1) {
2722 Value
*NewICmpInst
= Builder
.CreateICmpSGT(X
, Y
);
2723 return SelectInst::Create(NewICmpInst
, ConstantInt::getAllOnesValue(Ty
),
2728 if (Instruction
*V
=
2729 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I
))
2735 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2736 /// can fold these early and efficiently by morphing an existing instruction.
2737 static Instruction
*foldXorToXor(BinaryOperator
&I
,
2738 InstCombiner::BuilderTy
&Builder
) {
2739 assert(I
.getOpcode() == Instruction::Xor
);
2740 Value
*Op0
= I
.getOperand(0);
2741 Value
*Op1
= I
.getOperand(1);
2744 // There are 4 commuted variants for each of the basic patterns.
2746 // (A & B) ^ (A | B) -> A ^ B
2747 // (A & B) ^ (B | A) -> A ^ B
2748 // (A | B) ^ (A & B) -> A ^ B
2749 // (A | B) ^ (B & A) -> A ^ B
2750 if (match(&I
, m_c_Xor(m_And(m_Value(A
), m_Value(B
)),
2751 m_c_Or(m_Deferred(A
), m_Deferred(B
))))) {
2757 // (A | ~B) ^ (~A | B) -> A ^ B
2758 // (~B | A) ^ (~A | B) -> A ^ B
2759 // (~A | B) ^ (A | ~B) -> A ^ B
2760 // (B | ~A) ^ (A | ~B) -> A ^ B
2761 if (match(&I
, m_Xor(m_c_Or(m_Value(A
), m_Not(m_Value(B
))),
2762 m_c_Or(m_Not(m_Deferred(A
)), m_Deferred(B
))))) {
2768 // (A & ~B) ^ (~A & B) -> A ^ B
2769 // (~B & A) ^ (~A & B) -> A ^ B
2770 // (~A & B) ^ (A & ~B) -> A ^ B
2771 // (B & ~A) ^ (A & ~B) -> A ^ B
2772 if (match(&I
, m_Xor(m_c_And(m_Value(A
), m_Not(m_Value(B
))),
2773 m_c_And(m_Not(m_Deferred(A
)), m_Deferred(B
))))) {
2779 // For the remaining cases we need to get rid of one of the operands.
2780 if (!Op0
->hasOneUse() && !Op1
->hasOneUse())
2783 // (A | B) ^ ~(A & B) -> ~(A ^ B)
2784 // (A | B) ^ ~(B & A) -> ~(A ^ B)
2785 // (A & B) ^ ~(A | B) -> ~(A ^ B)
2786 // (A & B) ^ ~(B | A) -> ~(A ^ B)
2787 // Complexity sorting ensures the not will be on the right side.
2788 if ((match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
2789 match(Op1
, m_Not(m_c_And(m_Specific(A
), m_Specific(B
))))) ||
2790 (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
2791 match(Op1
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
))))))
2792 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
2797 Value
*InstCombiner::foldXorOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
2798 BinaryOperator
&I
) {
2799 assert(I
.getOpcode() == Instruction::Xor
&& I
.getOperand(0) == LHS
&&
2800 I
.getOperand(1) == RHS
&& "Should be 'xor' with these operands");
2802 if (predicatesFoldable(LHS
->getPredicate(), RHS
->getPredicate())) {
2803 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
2804 LHS
->getOperand(1) == RHS
->getOperand(0))
2805 LHS
->swapOperands();
2806 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
2807 LHS
->getOperand(1) == RHS
->getOperand(1)) {
2808 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2809 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
2810 unsigned Code
= getICmpCode(LHS
) ^ getICmpCode(RHS
);
2811 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
2812 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
2816 // TODO: This can be generalized to compares of non-signbits using
2817 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2818 // foldLogOpOfMaskedICmps().
2819 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
2820 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
2821 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
2822 if ((LHS
->hasOneUse() || RHS
->hasOneUse()) &&
2823 LHS0
->getType() == RHS0
->getType() &&
2824 LHS0
->getType()->isIntOrIntVectorTy()) {
2825 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2826 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
2827 if ((PredL
== CmpInst::ICMP_SGT
&& match(LHS1
, m_AllOnes()) &&
2828 PredR
== CmpInst::ICMP_SGT
&& match(RHS1
, m_AllOnes())) ||
2829 (PredL
== CmpInst::ICMP_SLT
&& match(LHS1
, m_Zero()) &&
2830 PredR
== CmpInst::ICMP_SLT
&& match(RHS1
, m_Zero()))) {
2831 Value
*Zero
= ConstantInt::getNullValue(LHS0
->getType());
2832 return Builder
.CreateICmpSLT(Builder
.CreateXor(LHS0
, RHS0
), Zero
);
2834 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
2835 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
2836 if ((PredL
== CmpInst::ICMP_SGT
&& match(LHS1
, m_AllOnes()) &&
2837 PredR
== CmpInst::ICMP_SLT
&& match(RHS1
, m_Zero())) ||
2838 (PredL
== CmpInst::ICMP_SLT
&& match(LHS1
, m_Zero()) &&
2839 PredR
== CmpInst::ICMP_SGT
&& match(RHS1
, m_AllOnes()))) {
2840 Value
*MinusOne
= ConstantInt::getAllOnesValue(LHS0
->getType());
2841 return Builder
.CreateICmpSGT(Builder
.CreateXor(LHS0
, RHS0
), MinusOne
);
2845 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2846 // into those logic ops. That is, try to turn this into an and-of-icmps
2847 // because we have many folds for that pattern.
2849 // This is based on a truth table definition of xor:
2850 // X ^ Y --> (X | Y) & !(X & Y)
2851 if (Value
*OrICmp
= SimplifyBinOp(Instruction::Or
, LHS
, RHS
, SQ
)) {
2852 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2853 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2854 if (Value
*AndICmp
= SimplifyBinOp(Instruction::And
, LHS
, RHS
, SQ
)) {
2855 // TODO: Independently handle cases where the 'and' side is a constant.
2856 ICmpInst
*X
= nullptr, *Y
= nullptr;
2857 if (OrICmp
== LHS
&& AndICmp
== RHS
) {
2858 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
2862 if (OrICmp
== RHS
&& AndICmp
== LHS
) {
2863 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
2867 if (X
&& Y
&& (Y
->hasOneUse() || canFreelyInvertAllUsersOf(Y
, &I
))) {
2868 // Invert the predicate of 'Y', thus inverting its output.
2869 Y
->setPredicate(Y
->getInversePredicate());
2870 // So, are there other uses of Y?
2871 if (!Y
->hasOneUse()) {
2872 // We need to adapt other uses of Y though. Get a value that matches
2873 // the original value of Y before inversion. While this increases
2874 // immediate instruction count, we have just ensured that all the
2875 // users are freely-invertible, so that 'not' *will* get folded away.
2876 BuilderTy::InsertPointGuard
Guard(Builder
);
2877 // Set insertion point to right after the Y.
2878 Builder
.SetInsertPoint(Y
->getParent(), ++(Y
->getIterator()));
2879 Value
*NotY
= Builder
.CreateNot(Y
, Y
->getName() + ".not");
2880 // Replace all uses of Y (excluding the one in NotY!) with NotY.
2881 Y
->replaceUsesWithIf(NotY
,
2882 [NotY
](Use
&U
) { return U
.getUser() != NotY
; });
2885 return Builder
.CreateAnd(LHS
, RHS
);
2893 /// If we have a masked merge, in the canonical form of:
2894 /// (assuming that A only has one use.)
2896 /// ((x ^ y) & M) ^ y
2898 /// * If M is inverted:
2900 /// ((x ^ y) & ~M) ^ y
2901 /// We can canonicalize by swapping the final xor operand
2902 /// to eliminate the 'not' of the mask.
2903 /// ((x ^ y) & M) ^ x
2904 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2905 /// because that shortens the dependency chain and improves analysis:
2906 /// (x & M) | (y & ~M)
2907 static Instruction
*visitMaskedMerge(BinaryOperator
&I
,
2908 InstCombiner::BuilderTy
&Builder
) {
2911 if (!match(&I
, m_c_Xor(m_Value(B
),
2913 m_CombineAnd(m_c_Xor(m_Deferred(B
), m_Value(X
)),
2919 if (match(M
, m_Not(m_Value(NotM
)))) {
2920 // De-invert the mask and swap the value in B part.
2921 Value
*NewA
= Builder
.CreateAnd(D
, NotM
);
2922 return BinaryOperator::CreateXor(NewA
, X
);
2926 if (D
->hasOneUse() && match(M
, m_Constant(C
))) {
2928 Value
*LHS
= Builder
.CreateAnd(X
, C
);
2929 Value
*NotC
= Builder
.CreateNot(C
);
2930 Value
*RHS
= Builder
.CreateAnd(B
, NotC
);
2931 return BinaryOperator::CreateOr(LHS
, RHS
);
2943 static Instruction
*sinkNotIntoXor(BinaryOperator
&I
,
2944 InstCombiner::BuilderTy
&Builder
) {
2946 // FIXME: one-use check is not needed in general, but currently we are unable
2947 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
2948 if (!match(&I
, m_Not(m_OneUse(m_Xor(m_Value(X
), m_Value(Y
))))))
2951 // We only want to do the transform if it is free to do.
2952 if (isFreeToInvert(X
, X
->hasOneUse())) {
2954 } else if (isFreeToInvert(Y
, Y
->hasOneUse())) {
2959 Value
*NotX
= Builder
.CreateNot(X
, X
->getName() + ".not");
2960 return BinaryOperator::CreateXor(NotX
, Y
, I
.getName() + ".demorgan");
2963 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2964 // here. We should standardize that construct where it is needed or choose some
2965 // other way to ensure that commutated variants of patterns are not missed.
2966 Instruction
*InstCombiner::visitXor(BinaryOperator
&I
) {
2967 if (Value
*V
= SimplifyXorInst(I
.getOperand(0), I
.getOperand(1),
2968 SQ
.getWithInstruction(&I
)))
2969 return replaceInstUsesWith(I
, V
);
2971 if (SimplifyAssociativeOrCommutative(I
))
2974 if (Instruction
*X
= foldVectorBinop(I
))
2977 if (Instruction
*NewXor
= foldXorToXor(I
, Builder
))
2980 // (A&B)^(A&C) -> A&(B^C) etc
2981 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
2982 return replaceInstUsesWith(I
, V
);
2984 // See if we can simplify any instructions used by the instruction whose sole
2985 // purpose is to compute bits we don't care about.
2986 if (SimplifyDemandedInstructionBits(I
))
2989 if (Value
*V
= SimplifyBSwap(I
, Builder
))
2990 return replaceInstUsesWith(I
, V
);
2992 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2994 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
2995 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
2996 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
2997 // have already taken care of those cases.
2999 if (match(&I
, m_c_Xor(m_c_And(m_Not(m_Value(M
)), m_Value()),
3000 m_c_And(m_Deferred(M
), m_Value()))))
3001 return BinaryOperator::CreateOr(Op0
, Op1
);
3003 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3006 // We must eliminate the and/or (one-use) for these transforms to not increase
3007 // the instruction count.
3008 // ~(~X & Y) --> (X | ~Y)
3009 // ~(Y & ~X) --> (X | ~Y)
3010 if (match(&I
, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X
)), m_Value(Y
)))))) {
3011 Value
*NotY
= Builder
.CreateNot(Y
, Y
->getName() + ".not");
3012 return BinaryOperator::CreateOr(X
, NotY
);
3014 // ~(~X | Y) --> (X & ~Y)
3015 // ~(Y | ~X) --> (X & ~Y)
3016 if (match(&I
, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X
)), m_Value(Y
)))))) {
3017 Value
*NotY
= Builder
.CreateNot(Y
, Y
->getName() + ".not");
3018 return BinaryOperator::CreateAnd(X
, NotY
);
3021 if (Instruction
*Xor
= visitMaskedMerge(I
, Builder
))
3024 // Is this a 'not' (~) fed by a binary operator?
3025 BinaryOperator
*NotVal
;
3026 if (match(&I
, m_Not(m_BinOp(NotVal
)))) {
3027 if (NotVal
->getOpcode() == Instruction::And
||
3028 NotVal
->getOpcode() == Instruction::Or
) {
3029 // Apply DeMorgan's Law when inverts are free:
3030 // ~(X & Y) --> (~X | ~Y)
3031 // ~(X | Y) --> (~X & ~Y)
3032 if (isFreeToInvert(NotVal
->getOperand(0),
3033 NotVal
->getOperand(0)->hasOneUse()) &&
3034 isFreeToInvert(NotVal
->getOperand(1),
3035 NotVal
->getOperand(1)->hasOneUse())) {
3036 Value
*NotX
= Builder
.CreateNot(NotVal
->getOperand(0), "notlhs");
3037 Value
*NotY
= Builder
.CreateNot(NotVal
->getOperand(1), "notrhs");
3038 if (NotVal
->getOpcode() == Instruction::And
)
3039 return BinaryOperator::CreateOr(NotX
, NotY
);
3040 return BinaryOperator::CreateAnd(NotX
, NotY
);
3044 // ~(X - Y) --> ~X + Y
3045 if (match(NotVal
, m_Sub(m_Value(X
), m_Value(Y
))))
3046 if (isa
<Constant
>(X
) || NotVal
->hasOneUse())
3047 return BinaryOperator::CreateAdd(Builder
.CreateNot(X
), Y
);
3049 // ~(~X >>s Y) --> (X >>s Y)
3050 if (match(NotVal
, m_AShr(m_Not(m_Value(X
)), m_Value(Y
))))
3051 return BinaryOperator::CreateAShr(X
, Y
);
3053 // If we are inverting a right-shifted constant, we may be able to eliminate
3054 // the 'not' by inverting the constant and using the opposite shift type.
3055 // Canonicalization rules ensure that only a negative constant uses 'ashr',
3056 // but we must check that in case that transform has not fired yet.
3058 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3060 if (match(NotVal
, m_AShr(m_Constant(C
), m_Value(Y
))) &&
3061 match(C
, m_Negative()))
3062 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C
), Y
);
3064 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3065 if (match(NotVal
, m_LShr(m_Constant(C
), m_Value(Y
))) &&
3066 match(C
, m_NonNegative()))
3067 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C
), Y
);
3069 // ~(X + C) --> -(C + 1) - X
3070 if (match(Op0
, m_Add(m_Value(X
), m_Constant(C
))))
3071 return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C
)), X
);
3074 // Use DeMorgan and reassociation to eliminate a 'not' op.
3076 if (match(Op1
, m_Constant(C1
))) {
3078 if (match(Op0
, m_OneUse(m_Or(m_Not(m_Value(X
)), m_Constant(C2
))))) {
3079 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3080 Value
*And
= Builder
.CreateAnd(X
, ConstantExpr::getNot(C2
));
3081 return BinaryOperator::CreateXor(And
, ConstantExpr::getNot(C1
));
3083 if (match(Op0
, m_OneUse(m_And(m_Not(m_Value(X
)), m_Constant(C2
))))) {
3084 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3085 Value
*Or
= Builder
.CreateOr(X
, ConstantExpr::getNot(C2
));
3086 return BinaryOperator::CreateXor(Or
, ConstantExpr::getNot(C1
));
3090 // not (cmp A, B) = !cmp A, B
3091 CmpInst::Predicate Pred
;
3092 if (match(&I
, m_Not(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value()))))) {
3093 cast
<CmpInst
>(Op0
)->setPredicate(CmpInst::getInversePredicate(Pred
));
3094 return replaceInstUsesWith(I
, Op0
);
3099 if (match(Op1
, m_APInt(RHSC
))) {
3102 if (RHSC
->isSignMask() && match(Op0
, m_Sub(m_APInt(C
), m_Value(X
)))) {
3103 // (C - X) ^ signmask -> (C + signmask - X)
3104 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
+ *RHSC
);
3105 return BinaryOperator::CreateSub(NewC
, X
);
3107 if (RHSC
->isSignMask() && match(Op0
, m_Add(m_Value(X
), m_APInt(C
)))) {
3108 // (X + C) ^ signmask -> (X + C + signmask)
3109 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
+ *RHSC
);
3110 return BinaryOperator::CreateAdd(X
, NewC
);
3113 // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
3114 if (match(Op0
, m_Or(m_Value(X
), m_APInt(C
))) &&
3115 MaskedValueIsZero(X
, *C
, 0, &I
)) {
3116 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
^ *RHSC
);
3117 Worklist
.Add(cast
<Instruction
>(Op0
));
3119 I
.setOperand(1, NewC
);
3125 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(Op1
)) {
3126 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
3127 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
3128 if (Op0I
->getOpcode() == Instruction::LShr
) {
3129 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3133 if (Op0I
->hasOneUse() &&
3134 (E1
= dyn_cast
<BinaryOperator
>(Op0I
->getOperand(0))) &&
3135 E1
->getOpcode() == Instruction::Xor
&&
3136 (C1
= dyn_cast
<ConstantInt
>(E1
->getOperand(1)))) {
3137 // fold (C1 >> C2) ^ C3
3138 ConstantInt
*C2
= Op0CI
, *C3
= RHSC
;
3139 APInt FoldConst
= C1
->getValue().lshr(C2
->getValue());
3140 FoldConst
^= C3
->getValue();
3141 // Prepare the two operands.
3142 Value
*Opnd0
= Builder
.CreateLShr(E1
->getOperand(0), C2
);
3143 Opnd0
->takeName(Op0I
);
3144 cast
<Instruction
>(Opnd0
)->setDebugLoc(I
.getDebugLoc());
3145 Value
*FoldVal
= ConstantInt::get(Opnd0
->getType(), FoldConst
);
3147 return BinaryOperator::CreateXor(Opnd0
, FoldVal
);
3154 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
3157 // Y ^ (X | Y) --> X & ~Y
3158 // Y ^ (Y | X) --> X & ~Y
3159 if (match(Op1
, m_OneUse(m_c_Or(m_Value(X
), m_Specific(Op0
)))))
3160 return BinaryOperator::CreateAnd(X
, Builder
.CreateNot(Op0
));
3161 // (X | Y) ^ Y --> X & ~Y
3162 // (Y | X) ^ Y --> X & ~Y
3163 if (match(Op0
, m_OneUse(m_c_Or(m_Value(X
), m_Specific(Op1
)))))
3164 return BinaryOperator::CreateAnd(X
, Builder
.CreateNot(Op1
));
3166 // Y ^ (X & Y) --> ~X & Y
3167 // Y ^ (Y & X) --> ~X & Y
3168 if (match(Op1
, m_OneUse(m_c_And(m_Value(X
), m_Specific(Op0
)))))
3169 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(X
));
3170 // (X & Y) ^ Y --> ~X & Y
3171 // (Y & X) ^ Y --> ~X & Y
3172 // Canonical form is (X & C) ^ C; don't touch that.
3173 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3174 // be fixed to prefer that (otherwise we get infinite looping).
3175 if (!match(Op1
, m_Constant()) &&
3176 match(Op0
, m_OneUse(m_c_And(m_Value(X
), m_Specific(Op1
)))))
3177 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(X
));
3180 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3181 if (match(&I
, m_c_Xor(m_OneUse(m_Xor(m_Value(A
), m_Value(B
))),
3182 m_OneUse(m_c_Or(m_Deferred(A
), m_Value(C
))))))
3183 return BinaryOperator::CreateXor(
3184 Builder
.CreateAnd(Builder
.CreateNot(A
), C
), B
);
3186 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3187 if (match(&I
, m_c_Xor(m_OneUse(m_Xor(m_Value(A
), m_Value(B
))),
3188 m_OneUse(m_c_Or(m_Deferred(B
), m_Value(C
))))))
3189 return BinaryOperator::CreateXor(
3190 Builder
.CreateAnd(Builder
.CreateNot(B
), C
), A
);
3192 // (A & B) ^ (A ^ B) -> (A | B)
3193 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
3194 match(Op1
, m_c_Xor(m_Specific(A
), m_Specific(B
))))
3195 return BinaryOperator::CreateOr(A
, B
);
3196 // (A ^ B) ^ (A & B) -> (A | B)
3197 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))) &&
3198 match(Op1
, m_c_And(m_Specific(A
), m_Specific(B
))))
3199 return BinaryOperator::CreateOr(A
, B
);
3201 // (A & ~B) ^ ~A -> ~(A & B)
3202 // (~B & A) ^ ~A -> ~(A & B)
3203 if (match(Op0
, m_c_And(m_Value(A
), m_Not(m_Value(B
)))) &&
3204 match(Op1
, m_Not(m_Specific(A
))))
3205 return BinaryOperator::CreateNot(Builder
.CreateAnd(A
, B
));
3207 if (auto *LHS
= dyn_cast
<ICmpInst
>(I
.getOperand(0)))
3208 if (auto *RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
3209 if (Value
*V
= foldXorOfICmps(LHS
, RHS
, I
))
3210 return replaceInstUsesWith(I
, V
);
3212 if (Instruction
*CastedXor
= foldCastedBitwiseLogic(I
))
3215 // Canonicalize a shifty way to code absolute value to the common pattern.
3216 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3217 // We're relying on the fact that we only do this transform when the shift has
3218 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3220 if (Op0
->hasNUses(2))
3221 std::swap(Op0
, Op1
);
3224 Type
*Ty
= I
.getType();
3225 if (match(Op1
, m_AShr(m_Value(A
), m_APInt(ShAmt
))) &&
3226 Op1
->hasNUses(2) && *ShAmt
== Ty
->getScalarSizeInBits() - 1 &&
3227 match(Op0
, m_OneUse(m_c_Add(m_Specific(A
), m_Specific(Op1
))))) {
3228 // B = ashr i32 A, 31 ; smear the sign bit
3229 // xor (add A, B), B ; add -1 and flip bits if negative
3230 // --> (A < 0) ? -A : A
3231 Value
*Cmp
= Builder
.CreateICmpSLT(A
, ConstantInt::getNullValue(Ty
));
3232 // Copy the nuw/nsw flags from the add to the negate.
3233 auto *Add
= cast
<BinaryOperator
>(Op0
);
3234 Value
*Neg
= Builder
.CreateNeg(A
, "", Add
->hasNoUnsignedWrap(),
3235 Add
->hasNoSignedWrap());
3236 return SelectInst::Create(Cmp
, Neg
, A
);
3239 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3241 // %notx = xor i32 %x, -1
3242 // %cmp1 = icmp sgt i32 %notx, %y
3243 // %smax = select i1 %cmp1, i32 %notx, i32 %y
3244 // %res = xor i32 %smax, -1
3246 // %noty = xor i32 %y, -1
3247 // %cmp2 = icmp slt %x, %noty
3248 // %res = select i1 %cmp2, i32 %x, i32 %noty
3250 // Same is applicable for smin/umax/umin.
3251 if (match(Op1
, m_AllOnes()) && Op0
->hasOneUse()) {
3253 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, LHS
, RHS
).Flavor
;
3254 if (SelectPatternResult::isMinOrMax(SPF
)) {
3255 // It's possible we get here before the not has been simplified, so make
3256 // sure the input to the not isn't freely invertible.
3257 if (match(LHS
, m_Not(m_Value(X
))) && !isFreeToInvert(X
, X
->hasOneUse())) {
3258 Value
*NotY
= Builder
.CreateNot(RHS
);
3259 return SelectInst::Create(
3260 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), X
, NotY
), X
, NotY
);
3263 // It's possible we get here before the not has been simplified, so make
3264 // sure the input to the not isn't freely invertible.
3265 if (match(RHS
, m_Not(m_Value(Y
))) && !isFreeToInvert(Y
, Y
->hasOneUse())) {
3266 Value
*NotX
= Builder
.CreateNot(LHS
);
3267 return SelectInst::Create(
3268 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), NotX
, Y
), NotX
, Y
);
3271 // If both sides are freely invertible, then we can get rid of the xor
3273 if (isFreeToInvert(LHS
, !LHS
->hasNUsesOrMore(3)) &&
3274 isFreeToInvert(RHS
, !RHS
->hasNUsesOrMore(3))) {
3275 Value
*NotLHS
= Builder
.CreateNot(LHS
);
3276 Value
*NotRHS
= Builder
.CreateNot(RHS
);
3277 return SelectInst::Create(
3278 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), NotLHS
, NotRHS
),
3284 if (Instruction
*NewXor
= sinkNotIntoXor(I
, Builder
))