1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
42 using namespace PatternMatch
;
44 #define DEBUG_TYPE "instcombine"
46 /// The specific integer value is used in a context where it is known to be
47 /// non-zero. If this allows us to simplify the computation, do so and return
48 /// the new operand, otherwise return null.
49 static Value
*simplifyValueKnownNonZero(Value
*V
, InstCombiner
&IC
,
51 // If V has multiple uses, then we would have to do more analysis to determine
52 // if this is safe. For example, the use could be in dynamically unreached
54 if (!V
->hasOneUse()) return nullptr;
56 bool MadeChange
= false;
58 // ((1 << A) >>u B) --> (1 << (A-B))
59 // Because V cannot be zero, we know that B is less than A.
60 Value
*A
= nullptr, *B
= nullptr, *One
= nullptr;
61 if (match(V
, m_LShr(m_OneUse(m_Shl(m_Value(One
), m_Value(A
))), m_Value(B
))) &&
62 match(One
, m_One())) {
63 A
= IC
.Builder
.CreateSub(A
, B
);
64 return IC
.Builder
.CreateShl(One
, A
);
67 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68 // inexact. Similarly for <<.
69 BinaryOperator
*I
= dyn_cast
<BinaryOperator
>(V
);
70 if (I
&& I
->isLogicalShift() &&
71 IC
.isKnownToBeAPowerOfTwo(I
->getOperand(0), false, 0, &CxtI
)) {
72 // We know that this is an exact/nuw shift and that the input is a
73 // non-zero context as well.
74 if (Value
*V2
= simplifyValueKnownNonZero(I
->getOperand(0), IC
, CxtI
)) {
79 if (I
->getOpcode() == Instruction::LShr
&& !I
->isExact()) {
84 if (I
->getOpcode() == Instruction::Shl
&& !I
->hasNoUnsignedWrap()) {
85 I
->setHasNoUnsignedWrap();
90 // TODO: Lots more we could do here:
91 // If V is a phi node, we can call this on each of its operands.
92 // "select cond, X, 0" can simplify to "X".
94 return MadeChange
? V
: nullptr;
97 /// A helper routine of InstCombiner::visitMul().
99 /// If C is a scalar/vector of known powers of 2, then this function returns
100 /// a new scalar/vector obtained from logBase2 of C.
101 /// Return a null pointer otherwise.
102 static Constant
*getLogBase2(Type
*Ty
, Constant
*C
) {
104 if (match(C
, m_APInt(IVal
)) && IVal
->isPowerOf2())
105 return ConstantInt::get(Ty
, IVal
->logBase2());
107 if (!Ty
->isVectorTy())
110 SmallVector
<Constant
*, 4> Elts
;
111 for (unsigned I
= 0, E
= Ty
->getVectorNumElements(); I
!= E
; ++I
) {
112 Constant
*Elt
= C
->getAggregateElement(I
);
115 if (isa
<UndefValue
>(Elt
)) {
116 Elts
.push_back(UndefValue::get(Ty
->getScalarType()));
119 if (!match(Elt
, m_APInt(IVal
)) || !IVal
->isPowerOf2())
121 Elts
.push_back(ConstantInt::get(Ty
->getScalarType(), IVal
->logBase2()));
124 return ConstantVector::get(Elts
);
127 // TODO: This is a specific form of a much more general pattern.
128 // We could detect a select with any binop identity constant, or we
129 // could use SimplifyBinOp to see if either arm of the select reduces.
130 // But that needs to be done carefully and/or while removing potential
131 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
132 static Value
*foldMulSelectToNegate(BinaryOperator
&I
,
133 InstCombiner::BuilderTy
&Builder
) {
134 Value
*Cond
, *OtherOp
;
136 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
137 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
138 if (match(&I
, m_c_Mul(m_OneUse(m_Select(m_Value(Cond
), m_One(), m_AllOnes())),
140 return Builder
.CreateSelect(Cond
, OtherOp
, Builder
.CreateNeg(OtherOp
));
142 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
143 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
144 if (match(&I
, m_c_Mul(m_OneUse(m_Select(m_Value(Cond
), m_AllOnes(), m_One())),
146 return Builder
.CreateSelect(Cond
, Builder
.CreateNeg(OtherOp
), OtherOp
);
148 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
149 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
150 if (match(&I
, m_c_FMul(m_OneUse(m_Select(m_Value(Cond
), m_SpecificFP(1.0),
151 m_SpecificFP(-1.0))),
152 m_Value(OtherOp
)))) {
153 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
154 Builder
.setFastMathFlags(I
.getFastMathFlags());
155 return Builder
.CreateSelect(Cond
, OtherOp
, Builder
.CreateFNeg(OtherOp
));
158 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
159 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
160 if (match(&I
, m_c_FMul(m_OneUse(m_Select(m_Value(Cond
), m_SpecificFP(-1.0),
162 m_Value(OtherOp
)))) {
163 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
164 Builder
.setFastMathFlags(I
.getFastMathFlags());
165 return Builder
.CreateSelect(Cond
, Builder
.CreateFNeg(OtherOp
), OtherOp
);
171 Instruction
*InstCombiner::visitMul(BinaryOperator
&I
) {
172 if (Value
*V
= SimplifyMulInst(I
.getOperand(0), I
.getOperand(1),
173 SQ
.getWithInstruction(&I
)))
174 return replaceInstUsesWith(I
, V
);
176 if (SimplifyAssociativeOrCommutative(I
))
179 if (Instruction
*X
= foldVectorBinop(I
))
182 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
183 return replaceInstUsesWith(I
, V
);
186 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
187 if (match(Op1
, m_AllOnes())) {
188 BinaryOperator
*BO
= BinaryOperator::CreateNeg(Op0
, I
.getName());
189 if (I
.hasNoSignedWrap())
190 BO
->setHasNoSignedWrap();
194 // Also allow combining multiply instructions on vectors.
199 if (match(&I
, m_Mul(m_Shl(m_Value(NewOp
), m_Constant(C2
)),
201 match(C1
, m_APInt(IVal
))) {
202 // ((X << C2)*C1) == (X * (C1 << C2))
203 Constant
*Shl
= ConstantExpr::getShl(C1
, C2
);
204 BinaryOperator
*Mul
= cast
<BinaryOperator
>(I
.getOperand(0));
205 BinaryOperator
*BO
= BinaryOperator::CreateMul(NewOp
, Shl
);
206 if (I
.hasNoUnsignedWrap() && Mul
->hasNoUnsignedWrap())
207 BO
->setHasNoUnsignedWrap();
208 if (I
.hasNoSignedWrap() && Mul
->hasNoSignedWrap() &&
209 Shl
->isNotMinSignedValue())
210 BO
->setHasNoSignedWrap();
214 if (match(&I
, m_Mul(m_Value(NewOp
), m_Constant(C1
)))) {
215 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
216 if (Constant
*NewCst
= getLogBase2(NewOp
->getType(), C1
)) {
217 BinaryOperator
*Shl
= BinaryOperator::CreateShl(NewOp
, NewCst
);
219 if (I
.hasNoUnsignedWrap())
220 Shl
->setHasNoUnsignedWrap();
221 if (I
.hasNoSignedWrap()) {
223 if (match(NewCst
, m_APInt(V
)) && *V
!= V
->getBitWidth() - 1)
224 Shl
->setHasNoSignedWrap();
232 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
233 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
234 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
235 // The "* (2**n)" thus becomes a potential shifting opportunity.
237 const APInt
& Val
= CI
->getValue();
238 const APInt
&PosVal
= Val
.abs();
239 if (Val
.isNegative() && PosVal
.isPowerOf2()) {
240 Value
*X
= nullptr, *Y
= nullptr;
241 if (Op0
->hasOneUse()) {
243 Value
*Sub
= nullptr;
244 if (match(Op0
, m_Sub(m_Value(Y
), m_Value(X
))))
245 Sub
= Builder
.CreateSub(X
, Y
, "suba");
246 else if (match(Op0
, m_Add(m_Value(Y
), m_ConstantInt(C1
))))
247 Sub
= Builder
.CreateSub(Builder
.CreateNeg(C1
), Y
, "subc");
250 BinaryOperator::CreateMul(Sub
,
251 ConstantInt::get(Y
->getType(), PosVal
));
257 if (Instruction
*FoldedMul
= foldBinOpIntoSelectOrPhi(I
))
260 if (Value
*FoldedMul
= foldMulSelectToNegate(I
, Builder
))
261 return replaceInstUsesWith(I
, FoldedMul
);
263 // Simplify mul instructions with a constant RHS.
264 if (isa
<Constant
>(Op1
)) {
265 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
268 if (match(Op0
, m_OneUse(m_Add(m_Value(X
), m_Constant(C1
))))) {
269 Value
*Mul
= Builder
.CreateMul(C1
, Op1
);
270 // Only go forward with the transform if C1*CI simplifies to a tidier
272 if (!match(Mul
, m_Mul(m_Value(), m_Value())))
273 return BinaryOperator::CreateAdd(Builder
.CreateMul(X
, Op1
), Mul
);
280 if (match(Op0
, m_Neg(m_Value(X
))) && match(Op1
, m_Constant(Op1C
)))
281 return BinaryOperator::CreateMul(X
, ConstantExpr::getNeg(Op1C
));
284 if (match(Op0
, m_Neg(m_Value(X
))) && match(Op1
, m_Neg(m_Value(Y
)))) {
285 auto *NewMul
= BinaryOperator::CreateMul(X
, Y
);
286 if (I
.hasNoSignedWrap() &&
287 cast
<OverflowingBinaryOperator
>(Op0
)->hasNoSignedWrap() &&
288 cast
<OverflowingBinaryOperator
>(Op1
)->hasNoSignedWrap())
289 NewMul
->setHasNoSignedWrap();
293 // -X * Y --> -(X * Y)
294 // X * -Y --> -(X * Y)
295 if (match(&I
, m_c_Mul(m_OneUse(m_Neg(m_Value(X
))), m_Value(Y
))))
296 return BinaryOperator::CreateNeg(Builder
.CreateMul(X
, Y
));
298 // (X / Y) * Y = X - (X % Y)
299 // (X / Y) * -Y = (X % Y) - X
302 BinaryOperator
*Div
= dyn_cast
<BinaryOperator
>(Op0
);
303 if (!Div
|| (Div
->getOpcode() != Instruction::UDiv
&&
304 Div
->getOpcode() != Instruction::SDiv
)) {
306 Div
= dyn_cast
<BinaryOperator
>(Op1
);
308 Value
*Neg
= dyn_castNegVal(Y
);
309 if (Div
&& Div
->hasOneUse() &&
310 (Div
->getOperand(1) == Y
|| Div
->getOperand(1) == Neg
) &&
311 (Div
->getOpcode() == Instruction::UDiv
||
312 Div
->getOpcode() == Instruction::SDiv
)) {
313 Value
*X
= Div
->getOperand(0), *DivOp1
= Div
->getOperand(1);
315 // If the division is exact, X % Y is zero, so we end up with X or -X.
316 if (Div
->isExact()) {
318 return replaceInstUsesWith(I
, X
);
319 return BinaryOperator::CreateNeg(X
);
322 auto RemOpc
= Div
->getOpcode() == Instruction::UDiv
? Instruction::URem
324 Value
*Rem
= Builder
.CreateBinOp(RemOpc
, X
, DivOp1
);
326 return BinaryOperator::CreateSub(X
, Rem
);
327 return BinaryOperator::CreateSub(Rem
, X
);
331 /// i1 mul -> i1 and.
332 if (I
.getType()->isIntOrIntVectorTy(1))
333 return BinaryOperator::CreateAnd(Op0
, Op1
);
335 // X*(1 << Y) --> X << Y
336 // (1 << Y)*X --> X << Y
339 BinaryOperator
*BO
= nullptr;
341 if (match(Op0
, m_Shl(m_One(), m_Value(Y
)))) {
342 BO
= BinaryOperator::CreateShl(Op1
, Y
);
343 ShlNSW
= cast
<ShlOperator
>(Op0
)->hasNoSignedWrap();
344 } else if (match(Op1
, m_Shl(m_One(), m_Value(Y
)))) {
345 BO
= BinaryOperator::CreateShl(Op0
, Y
);
346 ShlNSW
= cast
<ShlOperator
>(Op1
)->hasNoSignedWrap();
349 if (I
.hasNoUnsignedWrap())
350 BO
->setHasNoUnsignedWrap();
351 if (I
.hasNoSignedWrap() && ShlNSW
)
352 BO
->setHasNoSignedWrap();
357 // (bool X) * Y --> X ? Y : 0
358 // Y * (bool X) --> X ? Y : 0
359 if (match(Op0
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
360 return SelectInst::Create(X
, Op1
, ConstantInt::get(I
.getType(), 0));
361 if (match(Op1
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
362 return SelectInst::Create(X
, Op0
, ConstantInt::get(I
.getType(), 0));
364 // (lshr X, 31) * Y --> (ashr X, 31) & Y
365 // Y * (lshr X, 31) --> (ashr X, 31) & Y
366 // TODO: We are not checking one-use because the elimination of the multiply
367 // is better for analysis?
368 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
369 // more similar to what we're doing above.
371 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(C
))) && *C
== C
->getBitWidth() - 1)
372 return BinaryOperator::CreateAnd(Builder
.CreateAShr(X
, *C
), Op1
);
373 if (match(Op1
, m_LShr(m_Value(X
), m_APInt(C
))) && *C
== C
->getBitWidth() - 1)
374 return BinaryOperator::CreateAnd(Builder
.CreateAShr(X
, *C
), Op0
);
376 if (Instruction
*Ext
= narrowMathIfNoOverflow(I
))
379 bool Changed
= false;
380 if (!I
.hasNoSignedWrap() && willNotOverflowSignedMul(Op0
, Op1
, I
)) {
382 I
.setHasNoSignedWrap(true);
385 if (!I
.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0
, Op1
, I
)) {
387 I
.setHasNoUnsignedWrap(true);
390 return Changed
? &I
: nullptr;
393 Instruction
*InstCombiner::visitFMul(BinaryOperator
&I
) {
394 if (Value
*V
= SimplifyFMulInst(I
.getOperand(0), I
.getOperand(1),
395 I
.getFastMathFlags(),
396 SQ
.getWithInstruction(&I
)))
397 return replaceInstUsesWith(I
, V
);
399 if (SimplifyAssociativeOrCommutative(I
))
402 if (Instruction
*X
= foldVectorBinop(I
))
405 if (Instruction
*FoldedMul
= foldBinOpIntoSelectOrPhi(I
))
408 if (Value
*FoldedMul
= foldMulSelectToNegate(I
, Builder
))
409 return replaceInstUsesWith(I
, FoldedMul
);
412 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
413 if (match(Op1
, m_SpecificFP(-1.0)))
414 return BinaryOperator::CreateFNegFMF(Op0
, &I
);
418 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
419 return BinaryOperator::CreateFMulFMF(X
, Y
, &I
);
423 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_Constant(C
)))
424 return BinaryOperator::CreateFMulFMF(X
, ConstantExpr::getFNeg(C
), &I
);
426 // fabs(X) * fabs(X) -> X * X
427 if (Op0
== Op1
&& match(Op0
, m_Intrinsic
<Intrinsic::fabs
>(m_Value(X
))))
428 return BinaryOperator::CreateFMulFMF(X
, X
, &I
);
430 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
431 if (Value
*V
= SimplifySelectsFeedingBinaryOp(I
, Op0
, Op1
))
432 return replaceInstUsesWith(I
, V
);
434 if (I
.hasAllowReassoc()) {
435 // Reassociate constant RHS with another constant to form constant
437 if (match(Op1
, m_Constant(C
)) && C
->isFiniteNonZeroFP()) {
439 if (match(Op0
, m_OneUse(m_FDiv(m_Constant(C1
), m_Value(X
))))) {
440 // (C1 / X) * C --> (C * C1) / X
441 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
442 if (CC1
->isNormalFP())
443 return BinaryOperator::CreateFDivFMF(CC1
, X
, &I
);
445 if (match(Op0
, m_FDiv(m_Value(X
), m_Constant(C1
)))) {
446 // (X / C1) * C --> X * (C / C1)
447 Constant
*CDivC1
= ConstantExpr::getFDiv(C
, C1
);
448 if (CDivC1
->isNormalFP())
449 return BinaryOperator::CreateFMulFMF(X
, CDivC1
, &I
);
451 // If the constant was a denormal, try reassociating differently.
452 // (X / C1) * C --> X / (C1 / C)
453 Constant
*C1DivC
= ConstantExpr::getFDiv(C1
, C
);
454 if (Op0
->hasOneUse() && C1DivC
->isNormalFP())
455 return BinaryOperator::CreateFDivFMF(X
, C1DivC
, &I
);
458 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
459 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
460 // further folds and (X * C) + C2 is 'fma'.
461 if (match(Op0
, m_OneUse(m_FAdd(m_Value(X
), m_Constant(C1
))))) {
462 // (X + C1) * C --> (X * C) + (C * C1)
463 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
464 Value
*XC
= Builder
.CreateFMulFMF(X
, C
, &I
);
465 return BinaryOperator::CreateFAddFMF(XC
, CC1
, &I
);
467 if (match(Op0
, m_OneUse(m_FSub(m_Constant(C1
), m_Value(X
))))) {
468 // (C1 - X) * C --> (C * C1) - (X * C)
469 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
470 Value
*XC
= Builder
.CreateFMulFMF(X
, C
, &I
);
471 return BinaryOperator::CreateFSubFMF(CC1
, XC
, &I
);
476 if (match(&I
, m_c_FMul(m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
))),
478 // Sink division: (X / Y) * Z --> (X * Z) / Y
479 Value
*NewFMul
= Builder
.CreateFMulFMF(X
, Z
, &I
);
480 return BinaryOperator::CreateFDivFMF(NewFMul
, Y
, &I
);
483 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
484 // nnan disallows the possibility of returning a number if both operands are
485 // negative (in that case, we should return NaN).
487 match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
)))) &&
488 match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
))))) {
489 Value
*XY
= Builder
.CreateFMulFMF(X
, Y
, &I
);
490 Value
*Sqrt
= Builder
.CreateUnaryIntrinsic(Intrinsic::sqrt
, XY
, &I
);
491 return replaceInstUsesWith(I
, Sqrt
);
494 // Like the similar transform in instsimplify, this requires 'nsz' because
495 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
496 if (I
.hasNoNaNs() && I
.hasNoSignedZeros() && Op0
== Op1
&&
498 // Peek through fdiv to find squaring of square root:
499 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
500 if (match(Op0
, m_FDiv(m_Value(X
),
501 m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
))))) {
502 Value
*XX
= Builder
.CreateFMulFMF(X
, X
, &I
);
503 return BinaryOperator::CreateFDivFMF(XX
, Y
, &I
);
505 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
506 if (match(Op0
, m_FDiv(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
)),
508 Value
*XX
= Builder
.CreateFMulFMF(X
, X
, &I
);
509 return BinaryOperator::CreateFDivFMF(Y
, XX
, &I
);
513 // exp(X) * exp(Y) -> exp(X + Y)
514 // Match as long as at least one of exp has only one use.
515 if (match(Op0
, m_Intrinsic
<Intrinsic::exp
>(m_Value(X
))) &&
516 match(Op1
, m_Intrinsic
<Intrinsic::exp
>(m_Value(Y
))) &&
517 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
518 Value
*XY
= Builder
.CreateFAddFMF(X
, Y
, &I
);
519 Value
*Exp
= Builder
.CreateUnaryIntrinsic(Intrinsic::exp
, XY
, &I
);
520 return replaceInstUsesWith(I
, Exp
);
523 // exp2(X) * exp2(Y) -> exp2(X + Y)
524 // Match as long as at least one of exp2 has only one use.
525 if (match(Op0
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(X
))) &&
526 match(Op1
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(Y
))) &&
527 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
528 Value
*XY
= Builder
.CreateFAddFMF(X
, Y
, &I
);
529 Value
*Exp2
= Builder
.CreateUnaryIntrinsic(Intrinsic::exp2
, XY
, &I
);
530 return replaceInstUsesWith(I
, Exp2
);
533 // (X*Y) * X => (X*X) * Y where Y != X
534 // The purpose is two-fold:
535 // 1) to form a power expression (of X).
536 // 2) potentially shorten the critical path: After transformation, the
537 // latency of the instruction Y is amortized by the expression of X*X,
538 // and therefore Y is in a "less critical" position compared to what it
539 // was before the transformation.
540 if (match(Op0
, m_OneUse(m_c_FMul(m_Specific(Op1
), m_Value(Y
)))) &&
542 Value
*XX
= Builder
.CreateFMulFMF(Op1
, Op1
, &I
);
543 return BinaryOperator::CreateFMulFMF(XX
, Y
, &I
);
545 if (match(Op1
, m_OneUse(m_c_FMul(m_Specific(Op0
), m_Value(Y
)))) &&
547 Value
*XX
= Builder
.CreateFMulFMF(Op0
, Op0
, &I
);
548 return BinaryOperator::CreateFMulFMF(XX
, Y
, &I
);
552 // log2(X * 0.5) * Y = log2(X) * Y - Y
554 IntrinsicInst
*Log2
= nullptr;
555 if (match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::log2
>(
556 m_OneUse(m_FMul(m_Value(X
), m_SpecificFP(0.5))))))) {
557 Log2
= cast
<IntrinsicInst
>(Op0
);
560 if (match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::log2
>(
561 m_OneUse(m_FMul(m_Value(X
), m_SpecificFP(0.5))))))) {
562 Log2
= cast
<IntrinsicInst
>(Op1
);
566 Log2
->setArgOperand(0, X
);
567 Log2
->copyFastMathFlags(&I
);
568 Value
*LogXTimesY
= Builder
.CreateFMulFMF(Log2
, Y
, &I
);
569 return BinaryOperator::CreateFSubFMF(LogXTimesY
, Y
, &I
);
576 /// Fold a divide or remainder with a select instruction divisor when one of the
577 /// select operands is zero. In that case, we can use the other select operand
578 /// because div/rem by zero is undefined.
579 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator
&I
) {
580 SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.getOperand(1));
585 if (match(SI
->getTrueValue(), m_Zero()))
586 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
588 else if (match(SI
->getFalseValue(), m_Zero()))
589 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
594 // Change the div/rem to use 'Y' instead of the select.
595 I
.setOperand(1, SI
->getOperand(NonNullOperand
));
597 // Okay, we know we replace the operand of the div/rem with 'Y' with no
598 // problem. However, the select, or the condition of the select may have
599 // multiple uses. Based on our knowledge that the operand must be non-zero,
600 // propagate the known value for the select into other uses of it, and
601 // propagate a known value of the condition into its other users.
603 // If the select and condition only have a single use, don't bother with this,
605 Value
*SelectCond
= SI
->getCondition();
606 if (SI
->use_empty() && SelectCond
->hasOneUse())
609 // Scan the current block backward, looking for other uses of SI.
610 BasicBlock::iterator BBI
= I
.getIterator(), BBFront
= I
.getParent()->begin();
611 Type
*CondTy
= SelectCond
->getType();
612 while (BBI
!= BBFront
) {
614 // If we found an instruction that we can't assume will return, so
615 // information from below it cannot be propagated above it.
616 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI
))
619 // Replace uses of the select or its condition with the known values.
620 for (Instruction::op_iterator I
= BBI
->op_begin(), E
= BBI
->op_end();
623 *I
= SI
->getOperand(NonNullOperand
);
625 } else if (*I
== SelectCond
) {
626 *I
= NonNullOperand
== 1 ? ConstantInt::getTrue(CondTy
)
627 : ConstantInt::getFalse(CondTy
);
632 // If we past the instruction, quit looking for it.
635 if (&*BBI
== SelectCond
)
636 SelectCond
= nullptr;
638 // If we ran out of things to eliminate, break out of the loop.
639 if (!SelectCond
&& !SI
)
646 /// True if the multiply can not be expressed in an int this size.
647 static bool multiplyOverflows(const APInt
&C1
, const APInt
&C2
, APInt
&Product
,
650 Product
= IsSigned
? C1
.smul_ov(C2
, Overflow
) : C1
.umul_ov(C2
, Overflow
);
654 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
655 static bool isMultiple(const APInt
&C1
, const APInt
&C2
, APInt
&Quotient
,
657 assert(C1
.getBitWidth() == C2
.getBitWidth() && "Constant widths not equal");
659 // Bail if we will divide by zero.
660 if (C2
.isNullValue())
663 // Bail if we would divide INT_MIN by -1.
664 if (IsSigned
&& C1
.isMinSignedValue() && C2
.isAllOnesValue())
667 APInt
Remainder(C1
.getBitWidth(), /*val=*/0ULL, IsSigned
);
669 APInt::sdivrem(C1
, C2
, Quotient
, Remainder
);
671 APInt::udivrem(C1
, C2
, Quotient
, Remainder
);
673 return Remainder
.isMinValue();
676 /// This function implements the transforms common to both integer division
677 /// instructions (udiv and sdiv). It is called by the visitors to those integer
678 /// division instructions.
679 /// Common integer divide transforms
680 Instruction
*InstCombiner::commonIDivTransforms(BinaryOperator
&I
) {
681 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
682 bool IsSigned
= I
.getOpcode() == Instruction::SDiv
;
683 Type
*Ty
= I
.getType();
685 // The RHS is known non-zero.
686 if (Value
*V
= simplifyValueKnownNonZero(I
.getOperand(1), *this, I
)) {
691 // Handle cases involving: [su]div X, (select Cond, Y, Z)
692 // This does not apply for fdiv.
693 if (simplifyDivRemOfSelectWithZeroOp(I
))
697 if (match(Op1
, m_APInt(C2
))) {
701 // (X / C1) / C2 -> X / (C1*C2)
702 if ((IsSigned
&& match(Op0
, m_SDiv(m_Value(X
), m_APInt(C1
)))) ||
703 (!IsSigned
&& match(Op0
, m_UDiv(m_Value(X
), m_APInt(C1
))))) {
704 APInt
Product(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
705 if (!multiplyOverflows(*C1
, *C2
, Product
, IsSigned
))
706 return BinaryOperator::Create(I
.getOpcode(), X
,
707 ConstantInt::get(Ty
, Product
));
710 if ((IsSigned
&& match(Op0
, m_NSWMul(m_Value(X
), m_APInt(C1
)))) ||
711 (!IsSigned
&& match(Op0
, m_NUWMul(m_Value(X
), m_APInt(C1
))))) {
712 APInt
Quotient(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
714 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
715 if (isMultiple(*C2
, *C1
, Quotient
, IsSigned
)) {
716 auto *NewDiv
= BinaryOperator::Create(I
.getOpcode(), X
,
717 ConstantInt::get(Ty
, Quotient
));
718 NewDiv
->setIsExact(I
.isExact());
722 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
723 if (isMultiple(*C1
, *C2
, Quotient
, IsSigned
)) {
724 auto *Mul
= BinaryOperator::Create(Instruction::Mul
, X
,
725 ConstantInt::get(Ty
, Quotient
));
726 auto *OBO
= cast
<OverflowingBinaryOperator
>(Op0
);
727 Mul
->setHasNoUnsignedWrap(!IsSigned
&& OBO
->hasNoUnsignedWrap());
728 Mul
->setHasNoSignedWrap(OBO
->hasNoSignedWrap());
733 if ((IsSigned
&& match(Op0
, m_NSWShl(m_Value(X
), m_APInt(C1
))) &&
734 *C1
!= C1
->getBitWidth() - 1) ||
735 (!IsSigned
&& match(Op0
, m_NUWShl(m_Value(X
), m_APInt(C1
))))) {
736 APInt
Quotient(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
737 APInt C1Shifted
= APInt::getOneBitSet(
738 C1
->getBitWidth(), static_cast<unsigned>(C1
->getLimitedValue()));
740 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
741 if (isMultiple(*C2
, C1Shifted
, Quotient
, IsSigned
)) {
742 auto *BO
= BinaryOperator::Create(I
.getOpcode(), X
,
743 ConstantInt::get(Ty
, Quotient
));
744 BO
->setIsExact(I
.isExact());
748 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
749 if (isMultiple(C1Shifted
, *C2
, Quotient
, IsSigned
)) {
750 auto *Mul
= BinaryOperator::Create(Instruction::Mul
, X
,
751 ConstantInt::get(Ty
, Quotient
));
752 auto *OBO
= cast
<OverflowingBinaryOperator
>(Op0
);
753 Mul
->setHasNoUnsignedWrap(!IsSigned
&& OBO
->hasNoUnsignedWrap());
754 Mul
->setHasNoSignedWrap(OBO
->hasNoSignedWrap());
759 if (!C2
->isNullValue()) // avoid X udiv 0
760 if (Instruction
*FoldedDiv
= foldBinOpIntoSelectOrPhi(I
))
764 if (match(Op0
, m_One())) {
765 assert(!Ty
->isIntOrIntVectorTy(1) && "i1 divide not removed?");
767 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
768 // result is one, if Op1 is -1 then the result is minus one, otherwise
770 Value
*Inc
= Builder
.CreateAdd(Op1
, Op0
);
771 Value
*Cmp
= Builder
.CreateICmpULT(Inc
, ConstantInt::get(Ty
, 3));
772 return SelectInst::Create(Cmp
, Op1
, ConstantInt::get(Ty
, 0));
774 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
775 // result is one, otherwise it's zero.
776 return new ZExtInst(Builder
.CreateICmpEQ(Op1
, Op0
), Ty
);
780 // See if we can fold away this div instruction.
781 if (SimplifyDemandedInstructionBits(I
))
784 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
786 if (match(Op0
, m_Sub(m_Value(X
), m_Value(Z
)))) // (X - Z) / Y; Y = Op1
787 if ((IsSigned
&& match(Z
, m_SRem(m_Specific(X
), m_Specific(Op1
)))) ||
788 (!IsSigned
&& match(Z
, m_URem(m_Specific(X
), m_Specific(Op1
)))))
789 return BinaryOperator::Create(I
.getOpcode(), X
, Op1
);
791 // (X << Y) / X -> 1 << Y
793 if (IsSigned
&& match(Op0
, m_NSWShl(m_Specific(Op1
), m_Value(Y
))))
794 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty
, 1), Y
);
795 if (!IsSigned
&& match(Op0
, m_NUWShl(m_Specific(Op1
), m_Value(Y
))))
796 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty
, 1), Y
);
798 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
799 if (match(Op1
, m_c_Mul(m_Specific(Op0
), m_Value(Y
)))) {
800 bool HasNSW
= cast
<OverflowingBinaryOperator
>(Op1
)->hasNoSignedWrap();
801 bool HasNUW
= cast
<OverflowingBinaryOperator
>(Op1
)->hasNoUnsignedWrap();
802 if ((IsSigned
&& HasNSW
) || (!IsSigned
&& HasNUW
)) {
803 I
.setOperand(0, ConstantInt::get(Ty
, 1));
812 static const unsigned MaxDepth
= 6;
816 using FoldUDivOperandCb
= Instruction
*(*)(Value
*Op0
, Value
*Op1
,
817 const BinaryOperator
&I
,
820 /// Used to maintain state for visitUDivOperand().
821 struct UDivFoldAction
{
822 /// Informs visitUDiv() how to fold this operand. This can be zero if this
823 /// action joins two actions together.
824 FoldUDivOperandCb FoldAction
;
826 /// Which operand to fold.
827 Value
*OperandToFold
;
830 /// The instruction returned when FoldAction is invoked.
831 Instruction
*FoldResult
;
833 /// Stores the LHS action index if this action joins two actions together.
837 UDivFoldAction(FoldUDivOperandCb FA
, Value
*InputOperand
)
838 : FoldAction(FA
), OperandToFold(InputOperand
), FoldResult(nullptr) {}
839 UDivFoldAction(FoldUDivOperandCb FA
, Value
*InputOperand
, size_t SLHS
)
840 : FoldAction(FA
), OperandToFold(InputOperand
), SelectLHSIdx(SLHS
) {}
843 } // end anonymous namespace
845 // X udiv 2^C -> X >> C
846 static Instruction
*foldUDivPow2Cst(Value
*Op0
, Value
*Op1
,
847 const BinaryOperator
&I
, InstCombiner
&IC
) {
848 Constant
*C1
= getLogBase2(Op0
->getType(), cast
<Constant
>(Op1
));
850 llvm_unreachable("Failed to constant fold udiv -> logbase2");
851 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(Op0
, C1
);
857 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
858 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
859 static Instruction
*foldUDivShl(Value
*Op0
, Value
*Op1
, const BinaryOperator
&I
,
862 if (!match(Op1
, m_ZExt(m_Value(ShiftLeft
))))
867 if (!match(ShiftLeft
, m_Shl(m_Constant(CI
), m_Value(N
))))
868 llvm_unreachable("match should never fail here!");
869 Constant
*Log2Base
= getLogBase2(N
->getType(), CI
);
871 llvm_unreachable("getLogBase2 should never fail here!");
872 N
= IC
.Builder
.CreateAdd(N
, Log2Base
);
873 if (Op1
!= ShiftLeft
)
874 N
= IC
.Builder
.CreateZExt(N
, Op1
->getType());
875 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(Op0
, N
);
881 // Recursively visits the possible right hand operands of a udiv
882 // instruction, seeing through select instructions, to determine if we can
883 // replace the udiv with something simpler. If we find that an operand is not
884 // able to simplify the udiv, we abort the entire transformation.
885 static size_t visitUDivOperand(Value
*Op0
, Value
*Op1
, const BinaryOperator
&I
,
886 SmallVectorImpl
<UDivFoldAction
> &Actions
,
887 unsigned Depth
= 0) {
888 // Check to see if this is an unsigned division with an exact power of 2,
889 // if so, convert to a right shift.
890 if (match(Op1
, m_Power2())) {
891 Actions
.push_back(UDivFoldAction(foldUDivPow2Cst
, Op1
));
892 return Actions
.size();
895 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
896 if (match(Op1
, m_Shl(m_Power2(), m_Value())) ||
897 match(Op1
, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
898 Actions
.push_back(UDivFoldAction(foldUDivShl
, Op1
));
899 return Actions
.size();
902 // The remaining tests are all recursive, so bail out if we hit the limit.
903 if (Depth
++ == MaxDepth
)
906 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
908 visitUDivOperand(Op0
, SI
->getOperand(1), I
, Actions
, Depth
))
909 if (visitUDivOperand(Op0
, SI
->getOperand(2), I
, Actions
, Depth
)) {
910 Actions
.push_back(UDivFoldAction(nullptr, Op1
, LHSIdx
- 1));
911 return Actions
.size();
917 /// If we have zero-extended operands of an unsigned div or rem, we may be able
918 /// to narrow the operation (sink the zext below the math).
919 static Instruction
*narrowUDivURem(BinaryOperator
&I
,
920 InstCombiner::BuilderTy
&Builder
) {
921 Instruction::BinaryOps Opcode
= I
.getOpcode();
922 Value
*N
= I
.getOperand(0);
923 Value
*D
= I
.getOperand(1);
924 Type
*Ty
= I
.getType();
926 if (match(N
, m_ZExt(m_Value(X
))) && match(D
, m_ZExt(m_Value(Y
))) &&
927 X
->getType() == Y
->getType() && (N
->hasOneUse() || D
->hasOneUse())) {
928 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
929 // urem (zext X), (zext Y) --> zext (urem X, Y)
930 Value
*NarrowOp
= Builder
.CreateBinOp(Opcode
, X
, Y
);
931 return new ZExtInst(NarrowOp
, Ty
);
935 if ((match(N
, m_OneUse(m_ZExt(m_Value(X
)))) && match(D
, m_Constant(C
))) ||
936 (match(D
, m_OneUse(m_ZExt(m_Value(X
)))) && match(N
, m_Constant(C
)))) {
937 // If the constant is the same in the smaller type, use the narrow version.
938 Constant
*TruncC
= ConstantExpr::getTrunc(C
, X
->getType());
939 if (ConstantExpr::getZExt(TruncC
, Ty
) != C
)
942 // udiv (zext X), C --> zext (udiv X, C')
943 // urem (zext X), C --> zext (urem X, C')
944 // udiv C, (zext X) --> zext (udiv C', X)
945 // urem C, (zext X) --> zext (urem C', X)
946 Value
*NarrowOp
= isa
<Constant
>(D
) ? Builder
.CreateBinOp(Opcode
, X
, TruncC
)
947 : Builder
.CreateBinOp(Opcode
, TruncC
, X
);
948 return new ZExtInst(NarrowOp
, Ty
);
954 Instruction
*InstCombiner::visitUDiv(BinaryOperator
&I
) {
955 if (Value
*V
= SimplifyUDivInst(I
.getOperand(0), I
.getOperand(1),
956 SQ
.getWithInstruction(&I
)))
957 return replaceInstUsesWith(I
, V
);
959 if (Instruction
*X
= foldVectorBinop(I
))
962 // Handle the integer div common cases
963 if (Instruction
*Common
= commonIDivTransforms(I
))
966 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
968 const APInt
*C1
, *C2
;
969 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(C1
))) && match(Op1
, m_APInt(C2
))) {
970 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
972 APInt C2ShlC1
= C2
->ushl_ov(*C1
, Overflow
);
974 bool IsExact
= I
.isExact() && match(Op0
, m_Exact(m_Value()));
975 BinaryOperator
*BO
= BinaryOperator::CreateUDiv(
976 X
, ConstantInt::get(X
->getType(), C2ShlC1
));
983 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
984 // TODO: Could use isKnownNegative() to handle non-constant values.
985 Type
*Ty
= I
.getType();
986 if (match(Op1
, m_Negative())) {
987 Value
*Cmp
= Builder
.CreateICmpUGE(Op0
, Op1
);
988 return CastInst::CreateZExtOrBitCast(Cmp
, Ty
);
990 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
991 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)) {
992 Value
*Cmp
= Builder
.CreateICmpEQ(Op0
, ConstantInt::getAllOnesValue(Ty
));
993 return CastInst::CreateZExtOrBitCast(Cmp
, Ty
);
996 if (Instruction
*NarrowDiv
= narrowUDivURem(I
, Builder
))
999 // If the udiv operands are non-overflowing multiplies with a common operand,
1000 // then eliminate the common factor:
1001 // (A * B) / (A * X) --> B / X (and commuted variants)
1002 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1003 // TODO: If -reassociation handled this generally, we could remove this.
1005 if (match(Op0
, m_NUWMul(m_Value(A
), m_Value(B
)))) {
1006 if (match(Op1
, m_NUWMul(m_Specific(A
), m_Value(X
))) ||
1007 match(Op1
, m_NUWMul(m_Value(X
), m_Specific(A
))))
1008 return BinaryOperator::CreateUDiv(B
, X
);
1009 if (match(Op1
, m_NUWMul(m_Specific(B
), m_Value(X
))) ||
1010 match(Op1
, m_NUWMul(m_Value(X
), m_Specific(B
))))
1011 return BinaryOperator::CreateUDiv(A
, X
);
1014 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1015 SmallVector
<UDivFoldAction
, 6> UDivActions
;
1016 if (visitUDivOperand(Op0
, Op1
, I
, UDivActions
))
1017 for (unsigned i
= 0, e
= UDivActions
.size(); i
!= e
; ++i
) {
1018 FoldUDivOperandCb Action
= UDivActions
[i
].FoldAction
;
1019 Value
*ActionOp1
= UDivActions
[i
].OperandToFold
;
1022 Inst
= Action(Op0
, ActionOp1
, I
, *this);
1024 // This action joins two actions together. The RHS of this action is
1025 // simply the last action we processed, we saved the LHS action index in
1026 // the joining action.
1027 size_t SelectRHSIdx
= i
- 1;
1028 Value
*SelectRHS
= UDivActions
[SelectRHSIdx
].FoldResult
;
1029 size_t SelectLHSIdx
= UDivActions
[i
].SelectLHSIdx
;
1030 Value
*SelectLHS
= UDivActions
[SelectLHSIdx
].FoldResult
;
1031 Inst
= SelectInst::Create(cast
<SelectInst
>(ActionOp1
)->getCondition(),
1032 SelectLHS
, SelectRHS
);
1035 // If this is the last action to process, return it to the InstCombiner.
1036 // Otherwise, we insert it before the UDiv and record it so that we may
1037 // use it as part of a joining action (i.e., a SelectInst).
1039 Inst
->insertBefore(&I
);
1040 UDivActions
[i
].FoldResult
= Inst
;
1048 Instruction
*InstCombiner::visitSDiv(BinaryOperator
&I
) {
1049 if (Value
*V
= SimplifySDivInst(I
.getOperand(0), I
.getOperand(1),
1050 SQ
.getWithInstruction(&I
)))
1051 return replaceInstUsesWith(I
, V
);
1053 if (Instruction
*X
= foldVectorBinop(I
))
1056 // Handle the integer div common cases
1057 if (Instruction
*Common
= commonIDivTransforms(I
))
1060 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1062 // sdiv Op0, -1 --> -Op0
1063 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1064 if (match(Op1
, m_AllOnes()) ||
1065 (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
1066 return BinaryOperator::CreateNeg(Op0
);
1068 // X / INT_MIN --> X == INT_MIN
1069 if (match(Op1
, m_SignMask()))
1070 return new ZExtInst(Builder
.CreateICmpEQ(Op0
, Op1
), I
.getType());
1073 if (match(Op1
, m_APInt(Op1C
))) {
1074 // sdiv exact X, C --> ashr exact X, log2(C)
1075 if (I
.isExact() && Op1C
->isNonNegative() && Op1C
->isPowerOf2()) {
1076 Value
*ShAmt
= ConstantInt::get(Op1
->getType(), Op1C
->exactLogBase2());
1077 return BinaryOperator::CreateExactAShr(Op0
, ShAmt
, I
.getName());
1080 // If the dividend is sign-extended and the constant divisor is small enough
1081 // to fit in the source type, shrink the division to the narrower type:
1082 // (sext X) sdiv C --> sext (X sdiv C)
1084 if (match(Op0
, m_OneUse(m_SExt(m_Value(Op0Src
)))) &&
1085 Op0Src
->getType()->getScalarSizeInBits() >= Op1C
->getMinSignedBits()) {
1087 // In the general case, we need to make sure that the dividend is not the
1088 // minimum signed value because dividing that by -1 is UB. But here, we
1089 // know that the -1 divisor case is already handled above.
1091 Constant
*NarrowDivisor
=
1092 ConstantExpr::getTrunc(cast
<Constant
>(Op1
), Op0Src
->getType());
1093 Value
*NarrowOp
= Builder
.CreateSDiv(Op0Src
, NarrowDivisor
);
1094 return new SExtInst(NarrowOp
, Op0
->getType());
1097 // -X / C --> X / -C (if the negation doesn't overflow).
1098 // TODO: This could be enhanced to handle arbitrary vector constants by
1099 // checking if all elements are not the min-signed-val.
1100 if (!Op1C
->isMinSignedValue() &&
1101 match(Op0
, m_NSWSub(m_Zero(), m_Value(X
)))) {
1102 Constant
*NegC
= ConstantInt::get(I
.getType(), -(*Op1C
));
1103 Instruction
*BO
= BinaryOperator::CreateSDiv(X
, NegC
);
1104 BO
->setIsExact(I
.isExact());
1109 // -X / Y --> -(X / Y)
1111 if (match(&I
, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X
))), m_Value(Y
))))
1112 return BinaryOperator::CreateNSWNeg(
1113 Builder
.CreateSDiv(X
, Y
, I
.getName(), I
.isExact()));
1115 // If the sign bits of both operands are zero (i.e. we can prove they are
1116 // unsigned inputs), turn this into a udiv.
1117 APInt
Mask(APInt::getSignMask(I
.getType()->getScalarSizeInBits()));
1118 if (MaskedValueIsZero(Op0
, Mask
, 0, &I
)) {
1119 if (MaskedValueIsZero(Op1
, Mask
, 0, &I
)) {
1120 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1121 auto *BO
= BinaryOperator::CreateUDiv(Op0
, Op1
, I
.getName());
1122 BO
->setIsExact(I
.isExact());
1126 if (isKnownToBeAPowerOfTwo(Op1
, /*OrZero*/ true, 0, &I
)) {
1127 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1128 // Safe because the only negative value (1 << Y) can take on is
1129 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1130 // the sign bit set.
1131 auto *BO
= BinaryOperator::CreateUDiv(Op0
, Op1
, I
.getName());
1132 BO
->setIsExact(I
.isExact());
1140 /// Remove negation and try to convert division into multiplication.
1141 static Instruction
*foldFDivConstantDivisor(BinaryOperator
&I
) {
1143 if (!match(I
.getOperand(1), m_Constant(C
)))
1146 // -X / C --> X / -C
1148 if (match(I
.getOperand(0), m_FNeg(m_Value(X
))))
1149 return BinaryOperator::CreateFDivFMF(X
, ConstantExpr::getFNeg(C
), &I
);
1151 // If the constant divisor has an exact inverse, this is always safe. If not,
1152 // then we can still create a reciprocal if fast-math-flags allow it and the
1153 // constant is a regular number (not zero, infinite, or denormal).
1154 if (!(C
->hasExactInverseFP() || (I
.hasAllowReciprocal() && C
->isNormalFP())))
1157 // Disallow denormal constants because we don't know what would happen
1159 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1160 // denorms are flushed?
1161 auto *RecipC
= ConstantExpr::getFDiv(ConstantFP::get(I
.getType(), 1.0), C
);
1162 if (!RecipC
->isNormalFP())
1165 // X / C --> X * (1 / C)
1166 return BinaryOperator::CreateFMulFMF(I
.getOperand(0), RecipC
, &I
);
1169 /// Remove negation and try to reassociate constant math.
1170 static Instruction
*foldFDivConstantDividend(BinaryOperator
&I
) {
1172 if (!match(I
.getOperand(0), m_Constant(C
)))
1175 // C / -X --> -C / X
1177 if (match(I
.getOperand(1), m_FNeg(m_Value(X
))))
1178 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C
), X
, &I
);
1180 if (!I
.hasAllowReassoc() || !I
.hasAllowReciprocal())
1183 // Try to reassociate C / X expressions where X includes another constant.
1184 Constant
*C2
, *NewC
= nullptr;
1185 if (match(I
.getOperand(1), m_FMul(m_Value(X
), m_Constant(C2
)))) {
1186 // C / (X * C2) --> (C / C2) / X
1187 NewC
= ConstantExpr::getFDiv(C
, C2
);
1188 } else if (match(I
.getOperand(1), m_FDiv(m_Value(X
), m_Constant(C2
)))) {
1189 // C / (X / C2) --> (C * C2) / X
1190 NewC
= ConstantExpr::getFMul(C
, C2
);
1192 // Disallow denormal constants because we don't know what would happen
1194 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1195 // denorms are flushed?
1196 if (!NewC
|| !NewC
->isNormalFP())
1199 return BinaryOperator::CreateFDivFMF(NewC
, X
, &I
);
1202 Instruction
*InstCombiner::visitFDiv(BinaryOperator
&I
) {
1203 if (Value
*V
= SimplifyFDivInst(I
.getOperand(0), I
.getOperand(1),
1204 I
.getFastMathFlags(),
1205 SQ
.getWithInstruction(&I
)))
1206 return replaceInstUsesWith(I
, V
);
1208 if (Instruction
*X
= foldVectorBinop(I
))
1211 if (Instruction
*R
= foldFDivConstantDivisor(I
))
1214 if (Instruction
*R
= foldFDivConstantDividend(I
))
1217 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1218 if (isa
<Constant
>(Op0
))
1219 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
1220 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1223 if (isa
<Constant
>(Op1
))
1224 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
1225 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1228 if (I
.hasAllowReassoc() && I
.hasAllowReciprocal()) {
1230 if (match(Op0
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
)))) &&
1231 (!isa
<Constant
>(Y
) || !isa
<Constant
>(Op1
))) {
1232 // (X / Y) / Z => X / (Y * Z)
1233 Value
*YZ
= Builder
.CreateFMulFMF(Y
, Op1
, &I
);
1234 return BinaryOperator::CreateFDivFMF(X
, YZ
, &I
);
1236 if (match(Op1
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
)))) &&
1237 (!isa
<Constant
>(Y
) || !isa
<Constant
>(Op0
))) {
1238 // Z / (X / Y) => (Y * Z) / X
1239 Value
*YZ
= Builder
.CreateFMulFMF(Y
, Op0
, &I
);
1240 return BinaryOperator::CreateFDivFMF(YZ
, X
, &I
);
1244 if (I
.hasAllowReassoc() && Op0
->hasOneUse() && Op1
->hasOneUse()) {
1245 // sin(X) / cos(X) -> tan(X)
1246 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1248 bool IsTan
= match(Op0
, m_Intrinsic
<Intrinsic::sin
>(m_Value(X
))) &&
1249 match(Op1
, m_Intrinsic
<Intrinsic::cos
>(m_Specific(X
)));
1251 !IsTan
&& match(Op0
, m_Intrinsic
<Intrinsic::cos
>(m_Value(X
))) &&
1252 match(Op1
, m_Intrinsic
<Intrinsic::sin
>(m_Specific(X
)));
1254 if ((IsTan
|| IsCot
) &&
1255 hasFloatFn(&TLI
, I
.getType(), LibFunc_tan
, LibFunc_tanf
, LibFunc_tanl
)) {
1257 IRBuilder
<>::FastMathFlagGuard
FMFGuard(B
);
1258 B
.setFastMathFlags(I
.getFastMathFlags());
1259 AttributeList Attrs
=
1260 cast
<CallBase
>(Op0
)->getCalledFunction()->getAttributes();
1261 Value
*Res
= emitUnaryFloatFnCall(X
, &TLI
, LibFunc_tan
, LibFunc_tanf
,
1262 LibFunc_tanl
, B
, Attrs
);
1264 Res
= B
.CreateFDiv(ConstantFP::get(I
.getType(), 1.0), Res
);
1265 return replaceInstUsesWith(I
, Res
);
1271 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
)))) {
1277 // X / (X * Y) --> 1.0 / Y
1278 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1279 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1280 if (I
.hasNoNaNs() && I
.hasAllowReassoc() &&
1281 match(Op1
, m_c_FMul(m_Specific(Op0
), m_Value(Y
)))) {
1282 I
.setOperand(0, ConstantFP::get(I
.getType(), 1.0));
1287 // X / fabs(X) -> copysign(1.0, X)
1288 // fabs(X) / X -> copysign(1.0, X)
1289 if (I
.hasNoNaNs() && I
.hasNoInfs() &&
1291 m_FDiv(m_Value(X
), m_Intrinsic
<Intrinsic::fabs
>(m_Deferred(X
)))) ||
1292 match(&I
, m_FDiv(m_Intrinsic
<Intrinsic::fabs
>(m_Value(X
)),
1294 Value
*V
= Builder
.CreateBinaryIntrinsic(
1295 Intrinsic::copysign
, ConstantFP::get(I
.getType(), 1.0), X
, &I
);
1296 return replaceInstUsesWith(I
, V
);
1301 /// This function implements the transforms common to both integer remainder
1302 /// instructions (urem and srem). It is called by the visitors to those integer
1303 /// remainder instructions.
1304 /// Common integer remainder transforms
1305 Instruction
*InstCombiner::commonIRemTransforms(BinaryOperator
&I
) {
1306 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1308 // The RHS is known non-zero.
1309 if (Value
*V
= simplifyValueKnownNonZero(I
.getOperand(1), *this, I
)) {
1314 // Handle cases involving: rem X, (select Cond, Y, Z)
1315 if (simplifyDivRemOfSelectWithZeroOp(I
))
1318 if (isa
<Constant
>(Op1
)) {
1319 if (Instruction
*Op0I
= dyn_cast
<Instruction
>(Op0
)) {
1320 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0I
)) {
1321 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1323 } else if (auto *PN
= dyn_cast
<PHINode
>(Op0I
)) {
1324 const APInt
*Op1Int
;
1325 if (match(Op1
, m_APInt(Op1Int
)) && !Op1Int
->isMinValue() &&
1326 (I
.getOpcode() == Instruction::URem
||
1327 !Op1Int
->isMinSignedValue())) {
1328 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1329 // predecessor blocks, so do this only if we know the srem or urem
1331 if (Instruction
*NV
= foldOpIntoPhi(I
, PN
))
1336 // See if we can fold away this rem instruction.
1337 if (SimplifyDemandedInstructionBits(I
))
1345 Instruction
*InstCombiner::visitURem(BinaryOperator
&I
) {
1346 if (Value
*V
= SimplifyURemInst(I
.getOperand(0), I
.getOperand(1),
1347 SQ
.getWithInstruction(&I
)))
1348 return replaceInstUsesWith(I
, V
);
1350 if (Instruction
*X
= foldVectorBinop(I
))
1353 if (Instruction
*common
= commonIRemTransforms(I
))
1356 if (Instruction
*NarrowRem
= narrowUDivURem(I
, Builder
))
1359 // X urem Y -> X and Y-1, where Y is a power of 2,
1360 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1361 Type
*Ty
= I
.getType();
1362 if (isKnownToBeAPowerOfTwo(Op1
, /*OrZero*/ true, 0, &I
)) {
1363 // This may increase instruction count, we don't enforce that Y is a
1365 Constant
*N1
= Constant::getAllOnesValue(Ty
);
1366 Value
*Add
= Builder
.CreateAdd(Op1
, N1
);
1367 return BinaryOperator::CreateAnd(Op0
, Add
);
1370 // 1 urem X -> zext(X != 1)
1371 if (match(Op0
, m_One()))
1372 return CastInst::CreateZExtOrBitCast(Builder
.CreateICmpNE(Op1
, Op0
), Ty
);
1374 // X urem C -> X < C ? X : X - C, where C >= signbit.
1375 if (match(Op1
, m_Negative())) {
1376 Value
*Cmp
= Builder
.CreateICmpULT(Op0
, Op1
);
1377 Value
*Sub
= Builder
.CreateSub(Op0
, Op1
);
1378 return SelectInst::Create(Cmp
, Op0
, Sub
);
1381 // If the divisor is a sext of a boolean, then the divisor must be max
1382 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1383 // max unsigned value. In that case, the remainder is 0:
1384 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1386 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)) {
1387 Value
*Cmp
= Builder
.CreateICmpEQ(Op0
, ConstantInt::getAllOnesValue(Ty
));
1388 return SelectInst::Create(Cmp
, ConstantInt::getNullValue(Ty
), Op0
);
1394 Instruction
*InstCombiner::visitSRem(BinaryOperator
&I
) {
1395 if (Value
*V
= SimplifySRemInst(I
.getOperand(0), I
.getOperand(1),
1396 SQ
.getWithInstruction(&I
)))
1397 return replaceInstUsesWith(I
, V
);
1399 if (Instruction
*X
= foldVectorBinop(I
))
1402 // Handle the integer rem common cases
1403 if (Instruction
*Common
= commonIRemTransforms(I
))
1406 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1410 if (match(Op1
, m_Negative(Y
)) && !Y
->isMinSignedValue()) {
1411 Worklist
.AddValue(I
.getOperand(1));
1412 I
.setOperand(1, ConstantInt::get(I
.getType(), -*Y
));
1417 // -X srem Y --> -(X srem Y)
1419 if (match(&I
, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X
))), m_Value(Y
))))
1420 return BinaryOperator::CreateNSWNeg(Builder
.CreateSRem(X
, Y
));
1422 // If the sign bits of both operands are zero (i.e. we can prove they are
1423 // unsigned inputs), turn this into a urem.
1424 APInt
Mask(APInt::getSignMask(I
.getType()->getScalarSizeInBits()));
1425 if (MaskedValueIsZero(Op1
, Mask
, 0, &I
) &&
1426 MaskedValueIsZero(Op0
, Mask
, 0, &I
)) {
1427 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1428 return BinaryOperator::CreateURem(Op0
, Op1
, I
.getName());
1431 // If it's a constant vector, flip any negative values positive.
1432 if (isa
<ConstantVector
>(Op1
) || isa
<ConstantDataVector
>(Op1
)) {
1433 Constant
*C
= cast
<Constant
>(Op1
);
1434 unsigned VWidth
= C
->getType()->getVectorNumElements();
1436 bool hasNegative
= false;
1437 bool hasMissing
= false;
1438 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1439 Constant
*Elt
= C
->getAggregateElement(i
);
1445 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Elt
))
1446 if (RHS
->isNegative())
1450 if (hasNegative
&& !hasMissing
) {
1451 SmallVector
<Constant
*, 16> Elts(VWidth
);
1452 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1453 Elts
[i
] = C
->getAggregateElement(i
); // Handle undef, etc.
1454 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Elts
[i
])) {
1455 if (RHS
->isNegative())
1456 Elts
[i
] = cast
<ConstantInt
>(ConstantExpr::getNeg(RHS
));
1460 Constant
*NewRHSV
= ConstantVector::get(Elts
);
1461 if (NewRHSV
!= C
) { // Don't loop on -MININT
1462 Worklist
.AddValue(I
.getOperand(1));
1463 I
.setOperand(1, NewRHSV
);
1472 Instruction
*InstCombiner::visitFRem(BinaryOperator
&I
) {
1473 if (Value
*V
= SimplifyFRemInst(I
.getOperand(0), I
.getOperand(1),
1474 I
.getFastMathFlags(),
1475 SQ
.getWithInstruction(&I
)))
1476 return replaceInstUsesWith(I
, V
);
1478 if (Instruction
*X
= foldVectorBinop(I
))