[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / InstCombine / InstCombinePHI.cpp
blobe0376b7582f315f01c939963f52df4eb18a756bf
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Transforms/Utils/Local.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
23 #define DEBUG_TYPE "instcombine"
25 static cl::opt<unsigned>
26 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
27 cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
29 /// The PHI arguments will be folded into a single operation with a PHI node
30 /// as input. The debug location of the single operation will be the merged
31 /// locations of the original PHI node arguments.
32 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
33 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
34 Inst->setDebugLoc(FirstInst->getDebugLoc());
35 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
36 // will be inefficient.
37 assert(!isa<CallInst>(Inst));
39 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
40 auto *I = cast<Instruction>(PN.getIncomingValue(i));
41 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
45 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
46 // If there is an existing pointer typed PHI that produces the same value as PN,
47 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
48 // PHI node:
50 // Case-1:
51 // bb1:
52 // int_init = PtrToInt(ptr_init)
53 // br label %bb2
54 // bb2:
55 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
56 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
57 // ptr_val2 = IntToPtr(int_val)
58 // ...
59 // use(ptr_val2)
60 // ptr_val_inc = ...
61 // inc_val_inc = PtrToInt(ptr_val_inc)
63 // ==>
64 // bb1:
65 // br label %bb2
66 // bb2:
67 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
68 // ...
69 // use(ptr_val)
70 // ptr_val_inc = ...
72 // Case-2:
73 // bb1:
74 // int_ptr = BitCast(ptr_ptr)
75 // int_init = Load(int_ptr)
76 // br label %bb2
77 // bb2:
78 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
79 // ptr_val2 = IntToPtr(int_val)
80 // ...
81 // use(ptr_val2)
82 // ptr_val_inc = ...
83 // inc_val_inc = PtrToInt(ptr_val_inc)
84 // ==>
85 // bb1:
86 // ptr_init = Load(ptr_ptr)
87 // br label %bb2
88 // bb2:
89 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
90 // ...
91 // use(ptr_val)
92 // ptr_val_inc = ...
93 // ...
95 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
96 if (!PN.getType()->isIntegerTy())
97 return nullptr;
98 if (!PN.hasOneUse())
99 return nullptr;
101 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
102 if (!IntToPtr)
103 return nullptr;
105 // Check if the pointer is actually used as pointer:
106 auto HasPointerUse = [](Instruction *IIP) {
107 for (User *U : IIP->users()) {
108 Value *Ptr = nullptr;
109 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
110 Ptr = LoadI->getPointerOperand();
111 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
112 Ptr = SI->getPointerOperand();
113 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
114 Ptr = GI->getPointerOperand();
117 if (Ptr && Ptr == IIP)
118 return true;
120 return false;
123 if (!HasPointerUse(IntToPtr))
124 return nullptr;
126 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
127 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
128 return nullptr;
130 SmallVector<Value *, 4> AvailablePtrVals;
131 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
132 Value *Arg = PN.getIncomingValue(i);
134 // First look backward:
135 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
136 AvailablePtrVals.emplace_back(PI->getOperand(0));
137 continue;
140 // Next look forward:
141 Value *ArgIntToPtr = nullptr;
142 for (User *U : Arg->users()) {
143 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
144 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
145 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
146 ArgIntToPtr = U;
147 break;
151 if (ArgIntToPtr) {
152 AvailablePtrVals.emplace_back(ArgIntToPtr);
153 continue;
156 // If Arg is defined by a PHI, allow it. This will also create
157 // more opportunities iteratively.
158 if (isa<PHINode>(Arg)) {
159 AvailablePtrVals.emplace_back(Arg);
160 continue;
163 // For a single use integer load:
164 auto *LoadI = dyn_cast<LoadInst>(Arg);
165 if (!LoadI)
166 return nullptr;
168 if (!LoadI->hasOneUse())
169 return nullptr;
171 // Push the integer typed Load instruction into the available
172 // value set, and fix it up later when the pointer typed PHI
173 // is synthesized.
174 AvailablePtrVals.emplace_back(LoadI);
177 // Now search for a matching PHI
178 auto *BB = PN.getParent();
179 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
180 "Not enough available ptr typed incoming values");
181 PHINode *MatchingPtrPHI = nullptr;
182 unsigned NumPhis = 0;
183 for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI());
184 II != EI; II++, NumPhis++) {
185 // FIXME: consider handling this in AggressiveInstCombine
186 if (NumPhis > MaxNumPhis)
187 return nullptr;
188 PHINode *PtrPHI = dyn_cast<PHINode>(II);
189 if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
190 continue;
191 MatchingPtrPHI = PtrPHI;
192 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
193 if (AvailablePtrVals[i] !=
194 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
195 MatchingPtrPHI = nullptr;
196 break;
200 if (MatchingPtrPHI)
201 break;
204 if (MatchingPtrPHI) {
205 assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
206 "Phi's Type does not match with IntToPtr");
207 // The PtrToCast + IntToPtr will be simplified later
208 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
209 IntToPtr->getOperand(0)->getType());
212 // If it requires a conversion for every PHI operand, do not do it.
213 if (all_of(AvailablePtrVals, [&](Value *V) {
214 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
216 return nullptr;
218 // If any of the operand that requires casting is a terminator
219 // instruction, do not do it.
220 if (any_of(AvailablePtrVals, [&](Value *V) {
221 if (V->getType() == IntToPtr->getType())
222 return false;
224 auto *Inst = dyn_cast<Instruction>(V);
225 return Inst && Inst->isTerminator();
227 return nullptr;
229 PHINode *NewPtrPHI = PHINode::Create(
230 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
232 InsertNewInstBefore(NewPtrPHI, PN);
233 SmallDenseMap<Value *, Instruction *> Casts;
234 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
235 auto *IncomingBB = PN.getIncomingBlock(i);
236 auto *IncomingVal = AvailablePtrVals[i];
238 if (IncomingVal->getType() == IntToPtr->getType()) {
239 NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
240 continue;
243 #ifndef NDEBUG
244 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
245 assert((isa<PHINode>(IncomingVal) ||
246 IncomingVal->getType()->isPointerTy() ||
247 (LoadI && LoadI->hasOneUse())) &&
248 "Can not replace LoadInst with multiple uses");
249 #endif
250 // Need to insert a BitCast.
251 // For an integer Load instruction with a single use, the load + IntToPtr
252 // cast will be simplified into a pointer load:
253 // %v = load i64, i64* %a.ip, align 8
254 // %v.cast = inttoptr i64 %v to float **
255 // ==>
256 // %v.ptrp = bitcast i64 * %a.ip to float **
257 // %v.cast = load float *, float ** %v.ptrp, align 8
258 Instruction *&CI = Casts[IncomingVal];
259 if (!CI) {
260 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
261 IncomingVal->getName() + ".ptr");
262 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
263 BasicBlock::iterator InsertPos(IncomingI);
264 InsertPos++;
265 if (isa<PHINode>(IncomingI))
266 InsertPos = IncomingI->getParent()->getFirstInsertionPt();
267 InsertNewInstBefore(CI, *InsertPos);
268 } else {
269 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
270 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
273 NewPtrPHI->addIncoming(CI, IncomingBB);
276 // The PtrToCast + IntToPtr will be simplified later
277 return CastInst::CreateBitOrPointerCast(NewPtrPHI,
278 IntToPtr->getOperand(0)->getType());
281 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
282 /// adds all have a single use, turn this into a phi and a single binop.
283 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
284 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
285 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
286 unsigned Opc = FirstInst->getOpcode();
287 Value *LHSVal = FirstInst->getOperand(0);
288 Value *RHSVal = FirstInst->getOperand(1);
290 Type *LHSType = LHSVal->getType();
291 Type *RHSType = RHSVal->getType();
293 // Scan to see if all operands are the same opcode, and all have one use.
294 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
295 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
296 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
297 // Verify type of the LHS matches so we don't fold cmp's of different
298 // types.
299 I->getOperand(0)->getType() != LHSType ||
300 I->getOperand(1)->getType() != RHSType)
301 return nullptr;
303 // If they are CmpInst instructions, check their predicates
304 if (CmpInst *CI = dyn_cast<CmpInst>(I))
305 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
306 return nullptr;
308 // Keep track of which operand needs a phi node.
309 if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
310 if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
313 // If both LHS and RHS would need a PHI, don't do this transformation,
314 // because it would increase the number of PHIs entering the block,
315 // which leads to higher register pressure. This is especially
316 // bad when the PHIs are in the header of a loop.
317 if (!LHSVal && !RHSVal)
318 return nullptr;
320 // Otherwise, this is safe to transform!
322 Value *InLHS = FirstInst->getOperand(0);
323 Value *InRHS = FirstInst->getOperand(1);
324 PHINode *NewLHS = nullptr, *NewRHS = nullptr;
325 if (!LHSVal) {
326 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
327 FirstInst->getOperand(0)->getName() + ".pn");
328 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
329 InsertNewInstBefore(NewLHS, PN);
330 LHSVal = NewLHS;
333 if (!RHSVal) {
334 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
335 FirstInst->getOperand(1)->getName() + ".pn");
336 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
337 InsertNewInstBefore(NewRHS, PN);
338 RHSVal = NewRHS;
341 // Add all operands to the new PHIs.
342 if (NewLHS || NewRHS) {
343 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
344 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
345 if (NewLHS) {
346 Value *NewInLHS = InInst->getOperand(0);
347 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
349 if (NewRHS) {
350 Value *NewInRHS = InInst->getOperand(1);
351 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
356 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
357 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
358 LHSVal, RHSVal);
359 PHIArgMergedDebugLoc(NewCI, PN);
360 return NewCI;
363 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
364 BinaryOperator *NewBinOp =
365 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
367 NewBinOp->copyIRFlags(PN.getIncomingValue(0));
369 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
370 NewBinOp->andIRFlags(PN.getIncomingValue(i));
372 PHIArgMergedDebugLoc(NewBinOp, PN);
373 return NewBinOp;
376 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
377 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
379 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
380 FirstInst->op_end());
381 // This is true if all GEP bases are allocas and if all indices into them are
382 // constants.
383 bool AllBasePointersAreAllocas = true;
385 // We don't want to replace this phi if the replacement would require
386 // more than one phi, which leads to higher register pressure. This is
387 // especially bad when the PHIs are in the header of a loop.
388 bool NeededPhi = false;
390 bool AllInBounds = true;
392 // Scan to see if all operands are the same opcode, and all have one use.
393 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
394 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
395 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
396 GEP->getNumOperands() != FirstInst->getNumOperands())
397 return nullptr;
399 AllInBounds &= GEP->isInBounds();
401 // Keep track of whether or not all GEPs are of alloca pointers.
402 if (AllBasePointersAreAllocas &&
403 (!isa<AllocaInst>(GEP->getOperand(0)) ||
404 !GEP->hasAllConstantIndices()))
405 AllBasePointersAreAllocas = false;
407 // Compare the operand lists.
408 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
409 if (FirstInst->getOperand(op) == GEP->getOperand(op))
410 continue;
412 // Don't merge two GEPs when two operands differ (introducing phi nodes)
413 // if one of the PHIs has a constant for the index. The index may be
414 // substantially cheaper to compute for the constants, so making it a
415 // variable index could pessimize the path. This also handles the case
416 // for struct indices, which must always be constant.
417 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
418 isa<ConstantInt>(GEP->getOperand(op)))
419 return nullptr;
421 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
422 return nullptr;
424 // If we already needed a PHI for an earlier operand, and another operand
425 // also requires a PHI, we'd be introducing more PHIs than we're
426 // eliminating, which increases register pressure on entry to the PHI's
427 // block.
428 if (NeededPhi)
429 return nullptr;
431 FixedOperands[op] = nullptr; // Needs a PHI.
432 NeededPhi = true;
436 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
437 // bother doing this transformation. At best, this will just save a bit of
438 // offset calculation, but all the predecessors will have to materialize the
439 // stack address into a register anyway. We'd actually rather *clone* the
440 // load up into the predecessors so that we have a load of a gep of an alloca,
441 // which can usually all be folded into the load.
442 if (AllBasePointersAreAllocas)
443 return nullptr;
445 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
446 // that is variable.
447 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
449 bool HasAnyPHIs = false;
450 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
451 if (FixedOperands[i]) continue; // operand doesn't need a phi.
452 Value *FirstOp = FirstInst->getOperand(i);
453 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
454 FirstOp->getName()+".pn");
455 InsertNewInstBefore(NewPN, PN);
457 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
458 OperandPhis[i] = NewPN;
459 FixedOperands[i] = NewPN;
460 HasAnyPHIs = true;
464 // Add all operands to the new PHIs.
465 if (HasAnyPHIs) {
466 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
467 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
468 BasicBlock *InBB = PN.getIncomingBlock(i);
470 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
471 if (PHINode *OpPhi = OperandPhis[op])
472 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
476 Value *Base = FixedOperands[0];
477 GetElementPtrInst *NewGEP =
478 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
479 makeArrayRef(FixedOperands).slice(1));
480 if (AllInBounds) NewGEP->setIsInBounds();
481 PHIArgMergedDebugLoc(NewGEP, PN);
482 return NewGEP;
486 /// Return true if we know that it is safe to sink the load out of the block
487 /// that defines it. This means that it must be obvious the value of the load is
488 /// not changed from the point of the load to the end of the block it is in.
490 /// Finally, it is safe, but not profitable, to sink a load targeting a
491 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
492 /// to a register.
493 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
494 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
496 for (++BBI; BBI != E; ++BBI)
497 if (BBI->mayWriteToMemory())
498 return false;
500 // Check for non-address taken alloca. If not address-taken already, it isn't
501 // profitable to do this xform.
502 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
503 bool isAddressTaken = false;
504 for (User *U : AI->users()) {
505 if (isa<LoadInst>(U)) continue;
506 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
507 // If storing TO the alloca, then the address isn't taken.
508 if (SI->getOperand(1) == AI) continue;
510 isAddressTaken = true;
511 break;
514 if (!isAddressTaken && AI->isStaticAlloca())
515 return false;
518 // If this load is a load from a GEP with a constant offset from an alloca,
519 // then we don't want to sink it. In its present form, it will be
520 // load [constant stack offset]. Sinking it will cause us to have to
521 // materialize the stack addresses in each predecessor in a register only to
522 // do a shared load from register in the successor.
523 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
524 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
525 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
526 return false;
528 return true;
531 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
532 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
534 // FIXME: This is overconservative; this transform is allowed in some cases
535 // for atomic operations.
536 if (FirstLI->isAtomic())
537 return nullptr;
539 // When processing loads, we need to propagate two bits of information to the
540 // sunk load: whether it is volatile, and what its alignment is. We currently
541 // don't sink loads when some have their alignment specified and some don't.
542 // visitLoadInst will propagate an alignment onto the load when TD is around,
543 // and if TD isn't around, we can't handle the mixed case.
544 bool isVolatile = FirstLI->isVolatile();
545 MaybeAlign LoadAlignment(FirstLI->getAlignment());
546 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
548 // We can't sink the load if the loaded value could be modified between the
549 // load and the PHI.
550 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
551 !isSafeAndProfitableToSinkLoad(FirstLI))
552 return nullptr;
554 // If the PHI is of volatile loads and the load block has multiple
555 // successors, sinking it would remove a load of the volatile value from
556 // the path through the other successor.
557 if (isVolatile &&
558 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
559 return nullptr;
561 // Check to see if all arguments are the same operation.
562 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
563 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
564 if (!LI || !LI->hasOneUse())
565 return nullptr;
567 // We can't sink the load if the loaded value could be modified between
568 // the load and the PHI.
569 if (LI->isVolatile() != isVolatile ||
570 LI->getParent() != PN.getIncomingBlock(i) ||
571 LI->getPointerAddressSpace() != LoadAddrSpace ||
572 !isSafeAndProfitableToSinkLoad(LI))
573 return nullptr;
575 // If some of the loads have an alignment specified but not all of them,
576 // we can't do the transformation.
577 if ((LoadAlignment.hasValue()) != (LI->getAlignment() != 0))
578 return nullptr;
580 LoadAlignment = std::min(LoadAlignment, MaybeAlign(LI->getAlignment()));
582 // If the PHI is of volatile loads and the load block has multiple
583 // successors, sinking it would remove a load of the volatile value from
584 // the path through the other successor.
585 if (isVolatile &&
586 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
587 return nullptr;
590 // Okay, they are all the same operation. Create a new PHI node of the
591 // correct type, and PHI together all of the LHS's of the instructions.
592 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
593 PN.getNumIncomingValues(),
594 PN.getName()+".in");
596 Value *InVal = FirstLI->getOperand(0);
597 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
598 LoadInst *NewLI =
599 new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment);
601 unsigned KnownIDs[] = {
602 LLVMContext::MD_tbaa,
603 LLVMContext::MD_range,
604 LLVMContext::MD_invariant_load,
605 LLVMContext::MD_alias_scope,
606 LLVMContext::MD_noalias,
607 LLVMContext::MD_nonnull,
608 LLVMContext::MD_align,
609 LLVMContext::MD_dereferenceable,
610 LLVMContext::MD_dereferenceable_or_null,
611 LLVMContext::MD_access_group,
614 for (unsigned ID : KnownIDs)
615 NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
617 // Add all operands to the new PHI and combine TBAA metadata.
618 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
619 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
620 combineMetadata(NewLI, LI, KnownIDs, true);
621 Value *NewInVal = LI->getOperand(0);
622 if (NewInVal != InVal)
623 InVal = nullptr;
624 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
627 if (InVal) {
628 // The new PHI unions all of the same values together. This is really
629 // common, so we handle it intelligently here for compile-time speed.
630 NewLI->setOperand(0, InVal);
631 delete NewPN;
632 } else {
633 InsertNewInstBefore(NewPN, PN);
636 // If this was a volatile load that we are merging, make sure to loop through
637 // and mark all the input loads as non-volatile. If we don't do this, we will
638 // insert a new volatile load and the old ones will not be deletable.
639 if (isVolatile)
640 for (Value *IncValue : PN.incoming_values())
641 cast<LoadInst>(IncValue)->setVolatile(false);
643 PHIArgMergedDebugLoc(NewLI, PN);
644 return NewLI;
647 /// TODO: This function could handle other cast types, but then it might
648 /// require special-casing a cast from the 'i1' type. See the comment in
649 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
650 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
651 // We cannot create a new instruction after the PHI if the terminator is an
652 // EHPad because there is no valid insertion point.
653 if (Instruction *TI = Phi.getParent()->getTerminator())
654 if (TI->isEHPad())
655 return nullptr;
657 // Early exit for the common case of a phi with two operands. These are
658 // handled elsewhere. See the comment below where we check the count of zexts
659 // and constants for more details.
660 unsigned NumIncomingValues = Phi.getNumIncomingValues();
661 if (NumIncomingValues < 3)
662 return nullptr;
664 // Find the narrower type specified by the first zext.
665 Type *NarrowType = nullptr;
666 for (Value *V : Phi.incoming_values()) {
667 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
668 NarrowType = Zext->getSrcTy();
669 break;
672 if (!NarrowType)
673 return nullptr;
675 // Walk the phi operands checking that we only have zexts or constants that
676 // we can shrink for free. Store the new operands for the new phi.
677 SmallVector<Value *, 4> NewIncoming;
678 unsigned NumZexts = 0;
679 unsigned NumConsts = 0;
680 for (Value *V : Phi.incoming_values()) {
681 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
682 // All zexts must be identical and have one use.
683 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
684 return nullptr;
685 NewIncoming.push_back(Zext->getOperand(0));
686 NumZexts++;
687 } else if (auto *C = dyn_cast<Constant>(V)) {
688 // Make sure that constants can fit in the new type.
689 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
690 if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
691 return nullptr;
692 NewIncoming.push_back(Trunc);
693 NumConsts++;
694 } else {
695 // If it's not a cast or a constant, bail out.
696 return nullptr;
700 // The more common cases of a phi with no constant operands or just one
701 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
702 // respectively. foldOpIntoPhi() wants to do the opposite transform that is
703 // performed here. It tries to replicate a cast in the phi operand's basic
704 // block to expose other folding opportunities. Thus, InstCombine will
705 // infinite loop without this check.
706 if (NumConsts == 0 || NumZexts < 2)
707 return nullptr;
709 // All incoming values are zexts or constants that are safe to truncate.
710 // Create a new phi node of the narrow type, phi together all of the new
711 // operands, and zext the result back to the original type.
712 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
713 Phi.getName() + ".shrunk");
714 for (unsigned i = 0; i != NumIncomingValues; ++i)
715 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
717 InsertNewInstBefore(NewPhi, Phi);
718 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
721 /// If all operands to a PHI node are the same "unary" operator and they all are
722 /// only used by the PHI, PHI together their inputs, and do the operation once,
723 /// to the result of the PHI.
724 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
725 // We cannot create a new instruction after the PHI if the terminator is an
726 // EHPad because there is no valid insertion point.
727 if (Instruction *TI = PN.getParent()->getTerminator())
728 if (TI->isEHPad())
729 return nullptr;
731 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
733 if (isa<GetElementPtrInst>(FirstInst))
734 return FoldPHIArgGEPIntoPHI(PN);
735 if (isa<LoadInst>(FirstInst))
736 return FoldPHIArgLoadIntoPHI(PN);
738 // Scan the instruction, looking for input operations that can be folded away.
739 // If all input operands to the phi are the same instruction (e.g. a cast from
740 // the same type or "+42") we can pull the operation through the PHI, reducing
741 // code size and simplifying code.
742 Constant *ConstantOp = nullptr;
743 Type *CastSrcTy = nullptr;
745 if (isa<CastInst>(FirstInst)) {
746 CastSrcTy = FirstInst->getOperand(0)->getType();
748 // Be careful about transforming integer PHIs. We don't want to pessimize
749 // the code by turning an i32 into an i1293.
750 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
751 if (!shouldChangeType(PN.getType(), CastSrcTy))
752 return nullptr;
754 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
755 // Can fold binop, compare or shift here if the RHS is a constant,
756 // otherwise call FoldPHIArgBinOpIntoPHI.
757 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
758 if (!ConstantOp)
759 return FoldPHIArgBinOpIntoPHI(PN);
760 } else {
761 return nullptr; // Cannot fold this operation.
764 // Check to see if all arguments are the same operation.
765 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
766 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
767 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
768 return nullptr;
769 if (CastSrcTy) {
770 if (I->getOperand(0)->getType() != CastSrcTy)
771 return nullptr; // Cast operation must match.
772 } else if (I->getOperand(1) != ConstantOp) {
773 return nullptr;
777 // Okay, they are all the same operation. Create a new PHI node of the
778 // correct type, and PHI together all of the LHS's of the instructions.
779 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
780 PN.getNumIncomingValues(),
781 PN.getName()+".in");
783 Value *InVal = FirstInst->getOperand(0);
784 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
786 // Add all operands to the new PHI.
787 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
788 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
789 if (NewInVal != InVal)
790 InVal = nullptr;
791 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
794 Value *PhiVal;
795 if (InVal) {
796 // The new PHI unions all of the same values together. This is really
797 // common, so we handle it intelligently here for compile-time speed.
798 PhiVal = InVal;
799 delete NewPN;
800 } else {
801 InsertNewInstBefore(NewPN, PN);
802 PhiVal = NewPN;
805 // Insert and return the new operation.
806 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
807 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
808 PN.getType());
809 PHIArgMergedDebugLoc(NewCI, PN);
810 return NewCI;
813 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
814 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
815 BinOp->copyIRFlags(PN.getIncomingValue(0));
817 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
818 BinOp->andIRFlags(PN.getIncomingValue(i));
820 PHIArgMergedDebugLoc(BinOp, PN);
821 return BinOp;
824 CmpInst *CIOp = cast<CmpInst>(FirstInst);
825 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
826 PhiVal, ConstantOp);
827 PHIArgMergedDebugLoc(NewCI, PN);
828 return NewCI;
831 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
832 static bool DeadPHICycle(PHINode *PN,
833 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
834 if (PN->use_empty()) return true;
835 if (!PN->hasOneUse()) return false;
837 // Remember this node, and if we find the cycle, return.
838 if (!PotentiallyDeadPHIs.insert(PN).second)
839 return true;
841 // Don't scan crazily complex things.
842 if (PotentiallyDeadPHIs.size() == 16)
843 return false;
845 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
846 return DeadPHICycle(PU, PotentiallyDeadPHIs);
848 return false;
851 /// Return true if this phi node is always equal to NonPhiInVal.
852 /// This happens with mutually cyclic phi nodes like:
853 /// z = some value; x = phi (y, z); y = phi (x, z)
854 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
855 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
856 // See if we already saw this PHI node.
857 if (!ValueEqualPHIs.insert(PN).second)
858 return true;
860 // Don't scan crazily complex things.
861 if (ValueEqualPHIs.size() == 16)
862 return false;
864 // Scan the operands to see if they are either phi nodes or are equal to
865 // the value.
866 for (Value *Op : PN->incoming_values()) {
867 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
868 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
869 return false;
870 } else if (Op != NonPhiInVal)
871 return false;
874 return true;
877 /// Return an existing non-zero constant if this phi node has one, otherwise
878 /// return constant 1.
879 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
880 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
881 for (Value *V : PN.operands())
882 if (auto *ConstVA = dyn_cast<ConstantInt>(V))
883 if (!ConstVA->isZero())
884 return ConstVA;
885 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
888 namespace {
889 struct PHIUsageRecord {
890 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
891 unsigned Shift; // The amount shifted.
892 Instruction *Inst; // The trunc instruction.
894 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
895 : PHIId(pn), Shift(Sh), Inst(User) {}
897 bool operator<(const PHIUsageRecord &RHS) const {
898 if (PHIId < RHS.PHIId) return true;
899 if (PHIId > RHS.PHIId) return false;
900 if (Shift < RHS.Shift) return true;
901 if (Shift > RHS.Shift) return false;
902 return Inst->getType()->getPrimitiveSizeInBits() <
903 RHS.Inst->getType()->getPrimitiveSizeInBits();
907 struct LoweredPHIRecord {
908 PHINode *PN; // The PHI that was lowered.
909 unsigned Shift; // The amount shifted.
910 unsigned Width; // The width extracted.
912 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
913 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
915 // Ctor form used by DenseMap.
916 LoweredPHIRecord(PHINode *pn, unsigned Sh)
917 : PN(pn), Shift(Sh), Width(0) {}
921 namespace llvm {
922 template<>
923 struct DenseMapInfo<LoweredPHIRecord> {
924 static inline LoweredPHIRecord getEmptyKey() {
925 return LoweredPHIRecord(nullptr, 0);
927 static inline LoweredPHIRecord getTombstoneKey() {
928 return LoweredPHIRecord(nullptr, 1);
930 static unsigned getHashValue(const LoweredPHIRecord &Val) {
931 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
932 (Val.Width>>3);
934 static bool isEqual(const LoweredPHIRecord &LHS,
935 const LoweredPHIRecord &RHS) {
936 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
937 LHS.Width == RHS.Width;
943 /// This is an integer PHI and we know that it has an illegal type: see if it is
944 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
945 /// the various pieces being extracted. This sort of thing is introduced when
946 /// SROA promotes an aggregate to large integer values.
948 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
949 /// inttoptr. We should produce new PHIs in the right type.
951 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
952 // PHIUsers - Keep track of all of the truncated values extracted from a set
953 // of PHIs, along with their offset. These are the things we want to rewrite.
954 SmallVector<PHIUsageRecord, 16> PHIUsers;
956 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
957 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
958 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
959 // check the uses of (to ensure they are all extracts).
960 SmallVector<PHINode*, 8> PHIsToSlice;
961 SmallPtrSet<PHINode*, 8> PHIsInspected;
963 PHIsToSlice.push_back(&FirstPhi);
964 PHIsInspected.insert(&FirstPhi);
966 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
967 PHINode *PN = PHIsToSlice[PHIId];
969 // Scan the input list of the PHI. If any input is an invoke, and if the
970 // input is defined in the predecessor, then we won't be split the critical
971 // edge which is required to insert a truncate. Because of this, we have to
972 // bail out.
973 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
974 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
975 if (!II) continue;
976 if (II->getParent() != PN->getIncomingBlock(i))
977 continue;
979 // If we have a phi, and if it's directly in the predecessor, then we have
980 // a critical edge where we need to put the truncate. Since we can't
981 // split the edge in instcombine, we have to bail out.
982 return nullptr;
985 for (User *U : PN->users()) {
986 Instruction *UserI = cast<Instruction>(U);
988 // If the user is a PHI, inspect its uses recursively.
989 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
990 if (PHIsInspected.insert(UserPN).second)
991 PHIsToSlice.push_back(UserPN);
992 continue;
995 // Truncates are always ok.
996 if (isa<TruncInst>(UserI)) {
997 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
998 continue;
1001 // Otherwise it must be a lshr which can only be used by one trunc.
1002 if (UserI->getOpcode() != Instruction::LShr ||
1003 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1004 !isa<ConstantInt>(UserI->getOperand(1)))
1005 return nullptr;
1007 // Bail on out of range shifts.
1008 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1009 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1010 return nullptr;
1012 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1013 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1017 // If we have no users, they must be all self uses, just nuke the PHI.
1018 if (PHIUsers.empty())
1019 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
1021 // If this phi node is transformable, create new PHIs for all the pieces
1022 // extracted out of it. First, sort the users by their offset and size.
1023 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1025 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1026 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1027 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1029 // PredValues - This is a temporary used when rewriting PHI nodes. It is
1030 // hoisted out here to avoid construction/destruction thrashing.
1031 DenseMap<BasicBlock*, Value*> PredValues;
1033 // ExtractedVals - Each new PHI we introduce is saved here so we don't
1034 // introduce redundant PHIs.
1035 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1037 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1038 unsigned PHIId = PHIUsers[UserI].PHIId;
1039 PHINode *PN = PHIsToSlice[PHIId];
1040 unsigned Offset = PHIUsers[UserI].Shift;
1041 Type *Ty = PHIUsers[UserI].Inst->getType();
1043 PHINode *EltPHI;
1045 // If we've already lowered a user like this, reuse the previously lowered
1046 // value.
1047 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1049 // Otherwise, Create the new PHI node for this user.
1050 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1051 PN->getName()+".off"+Twine(Offset), PN);
1052 assert(EltPHI->getType() != PN->getType() &&
1053 "Truncate didn't shrink phi?");
1055 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1056 BasicBlock *Pred = PN->getIncomingBlock(i);
1057 Value *&PredVal = PredValues[Pred];
1059 // If we already have a value for this predecessor, reuse it.
1060 if (PredVal) {
1061 EltPHI->addIncoming(PredVal, Pred);
1062 continue;
1065 // Handle the PHI self-reuse case.
1066 Value *InVal = PN->getIncomingValue(i);
1067 if (InVal == PN) {
1068 PredVal = EltPHI;
1069 EltPHI->addIncoming(PredVal, Pred);
1070 continue;
1073 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1074 // If the incoming value was a PHI, and if it was one of the PHIs we
1075 // already rewrote it, just use the lowered value.
1076 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1077 PredVal = Res;
1078 EltPHI->addIncoming(PredVal, Pred);
1079 continue;
1083 // Otherwise, do an extract in the predecessor.
1084 Builder.SetInsertPoint(Pred->getTerminator());
1085 Value *Res = InVal;
1086 if (Offset)
1087 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1088 Offset), "extract");
1089 Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1090 PredVal = Res;
1091 EltPHI->addIncoming(Res, Pred);
1093 // If the incoming value was a PHI, and if it was one of the PHIs we are
1094 // rewriting, we will ultimately delete the code we inserted. This
1095 // means we need to revisit that PHI to make sure we extract out the
1096 // needed piece.
1097 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1098 if (PHIsInspected.count(OldInVal)) {
1099 unsigned RefPHIId =
1100 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1101 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1102 cast<Instruction>(Res)));
1103 ++UserE;
1106 PredValues.clear();
1108 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1109 << *EltPHI << '\n');
1110 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1113 // Replace the use of this piece with the PHI node.
1114 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1117 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1118 // with undefs.
1119 Value *Undef = UndefValue::get(FirstPhi.getType());
1120 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1121 replaceInstUsesWith(*PHIsToSlice[i], Undef);
1122 return replaceInstUsesWith(FirstPhi, Undef);
1125 // PHINode simplification
1127 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
1128 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1129 return replaceInstUsesWith(PN, V);
1131 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
1132 return Result;
1134 // If all PHI operands are the same operation, pull them through the PHI,
1135 // reducing code size.
1136 if (isa<Instruction>(PN.getIncomingValue(0)) &&
1137 isa<Instruction>(PN.getIncomingValue(1)) &&
1138 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1139 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1140 // FIXME: The hasOneUse check will fail for PHIs that use the value more
1141 // than themselves more than once.
1142 PN.getIncomingValue(0)->hasOneUse())
1143 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
1144 return Result;
1146 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
1147 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1148 // PHI)... break the cycle.
1149 if (PN.hasOneUse()) {
1150 if (Instruction *Result = FoldIntegerTypedPHI(PN))
1151 return Result;
1153 Instruction *PHIUser = cast<Instruction>(PN.user_back());
1154 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1155 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1156 PotentiallyDeadPHIs.insert(&PN);
1157 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1158 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1161 // If this phi has a single use, and if that use just computes a value for
1162 // the next iteration of a loop, delete the phi. This occurs with unused
1163 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1164 // common case here is good because the only other things that catch this
1165 // are induction variable analysis (sometimes) and ADCE, which is only run
1166 // late.
1167 if (PHIUser->hasOneUse() &&
1168 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1169 PHIUser->user_back() == &PN) {
1170 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1172 // When a PHI is used only to be compared with zero, it is safe to replace
1173 // an incoming value proved as known nonzero with any non-zero constant.
1174 // For example, in the code below, the incoming value %v can be replaced
1175 // with any non-zero constant based on the fact that the PHI is only used to
1176 // be compared with zero and %v is a known non-zero value:
1177 // %v = select %cond, 1, 2
1178 // %p = phi [%v, BB] ...
1179 // icmp eq, %p, 0
1180 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1181 // FIXME: To be simple, handle only integer type for now.
1182 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1183 match(CmpInst->getOperand(1), m_Zero())) {
1184 ConstantInt *NonZeroConst = nullptr;
1185 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1186 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1187 Value *VA = PN.getIncomingValue(i);
1188 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1189 if (!NonZeroConst)
1190 NonZeroConst = GetAnyNonZeroConstInt(PN);
1191 PN.setIncomingValue(i, NonZeroConst);
1197 // We sometimes end up with phi cycles that non-obviously end up being the
1198 // same value, for example:
1199 // z = some value; x = phi (y, z); y = phi (x, z)
1200 // where the phi nodes don't necessarily need to be in the same block. Do a
1201 // quick check to see if the PHI node only contains a single non-phi value, if
1202 // so, scan to see if the phi cycle is actually equal to that value.
1204 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1205 // Scan for the first non-phi operand.
1206 while (InValNo != NumIncomingVals &&
1207 isa<PHINode>(PN.getIncomingValue(InValNo)))
1208 ++InValNo;
1210 if (InValNo != NumIncomingVals) {
1211 Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1213 // Scan the rest of the operands to see if there are any conflicts, if so
1214 // there is no need to recursively scan other phis.
1215 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1216 Value *OpVal = PN.getIncomingValue(InValNo);
1217 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1218 break;
1221 // If we scanned over all operands, then we have one unique value plus
1222 // phi values. Scan PHI nodes to see if they all merge in each other or
1223 // the value.
1224 if (InValNo == NumIncomingVals) {
1225 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1226 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1227 return replaceInstUsesWith(PN, NonPhiInVal);
1232 // If there are multiple PHIs, sort their operands so that they all list
1233 // the blocks in the same order. This will help identical PHIs be eliminated
1234 // by other passes. Other passes shouldn't depend on this for correctness
1235 // however.
1236 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1237 if (&PN != FirstPN)
1238 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1239 BasicBlock *BBA = PN.getIncomingBlock(i);
1240 BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1241 if (BBA != BBB) {
1242 Value *VA = PN.getIncomingValue(i);
1243 unsigned j = PN.getBasicBlockIndex(BBB);
1244 Value *VB = PN.getIncomingValue(j);
1245 PN.setIncomingBlock(i, BBB);
1246 PN.setIncomingValue(i, VB);
1247 PN.setIncomingBlock(j, BBA);
1248 PN.setIncomingValue(j, VA);
1249 // NOTE: Instcombine normally would want us to "return &PN" if we
1250 // modified any of the operands of an instruction. However, since we
1251 // aren't adding or removing uses (just rearranging them) we don't do
1252 // this in this case.
1256 // If this is an integer PHI and we know that it has an illegal type, see if
1257 // it is only used by trunc or trunc(lshr) operations. If so, we split the
1258 // PHI into the various pieces being extracted. This sort of thing is
1259 // introduced when SROA promotes an aggregate to a single large integer type.
1260 if (PN.getType()->isIntegerTy() &&
1261 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1262 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1263 return Res;
1265 return nullptr;