[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / InstCombine / InstructionCombining.cpp
blobecb486c544e03a9941196d5b602ae2b98834fd40
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DIBuilder.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LegacyPassManager.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/Use.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/IR/ValueHandle.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/CBindingWrapping.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/DebugCounter.h"
96 #include "llvm/Support/ErrorHandling.h"
97 #include "llvm/Support/KnownBits.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Transforms/InstCombine/InstCombine.h"
100 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <algorithm>
103 #include <cassert>
104 #include <cstdint>
105 #include <memory>
106 #include <string>
107 #include <utility>
109 using namespace llvm;
110 using namespace llvm::PatternMatch;
112 #define DEBUG_TYPE "instcombine"
114 STATISTIC(NumCombined , "Number of insts combined");
115 STATISTIC(NumConstProp, "Number of constant folds");
116 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
117 STATISTIC(NumSunkInst , "Number of instructions sunk");
118 STATISTIC(NumExpand, "Number of expansions");
119 STATISTIC(NumFactor , "Number of factorizations");
120 STATISTIC(NumReassoc , "Number of reassociations");
121 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
122 "Controls which instructions are visited");
124 static cl::opt<bool>
125 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
126 cl::init(true));
128 static cl::opt<bool>
129 EnableExpensiveCombines("expensive-combines",
130 cl::desc("Enable expensive instruction combines"));
132 static cl::opt<unsigned>
133 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
134 cl::desc("Maximum array size considered when doing a combine"));
136 // FIXME: Remove this flag when it is no longer necessary to convert
137 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
138 // increases variable availability at the cost of accuracy. Variables that
139 // cannot be promoted by mem2reg or SROA will be described as living in memory
140 // for their entire lifetime. However, passes like DSE and instcombine can
141 // delete stores to the alloca, leading to misleading and inaccurate debug
142 // information. This flag can be removed when those passes are fixed.
143 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
144 cl::Hidden, cl::init(true));
146 Value *InstCombiner::EmitGEPOffset(User *GEP) {
147 return llvm::EmitGEPOffset(&Builder, DL, GEP);
150 /// Return true if it is desirable to convert an integer computation from a
151 /// given bit width to a new bit width.
152 /// We don't want to convert from a legal to an illegal type or from a smaller
153 /// to a larger illegal type. A width of '1' is always treated as a legal type
154 /// because i1 is a fundamental type in IR, and there are many specialized
155 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
156 /// legal to convert to, in order to open up more combining opportunities.
157 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
158 /// from frontend languages.
159 bool InstCombiner::shouldChangeType(unsigned FromWidth,
160 unsigned ToWidth) const {
161 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
162 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
164 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
165 // shrink types, to prevent infinite loops.
166 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
167 return true;
169 // If this is a legal integer from type, and the result would be an illegal
170 // type, don't do the transformation.
171 if (FromLegal && !ToLegal)
172 return false;
174 // Otherwise, if both are illegal, do not increase the size of the result. We
175 // do allow things like i160 -> i64, but not i64 -> i160.
176 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
177 return false;
179 return true;
182 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
183 /// We don't want to convert from a legal to an illegal type or from a smaller
184 /// to a larger illegal type. i1 is always treated as a legal type because it is
185 /// a fundamental type in IR, and there are many specialized optimizations for
186 /// i1 types.
187 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
188 // TODO: This could be extended to allow vectors. Datalayout changes might be
189 // needed to properly support that.
190 if (!From->isIntegerTy() || !To->isIntegerTy())
191 return false;
193 unsigned FromWidth = From->getPrimitiveSizeInBits();
194 unsigned ToWidth = To->getPrimitiveSizeInBits();
195 return shouldChangeType(FromWidth, ToWidth);
198 // Return true, if No Signed Wrap should be maintained for I.
199 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
200 // where both B and C should be ConstantInts, results in a constant that does
201 // not overflow. This function only handles the Add and Sub opcodes. For
202 // all other opcodes, the function conservatively returns false.
203 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
204 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
205 if (!OBO || !OBO->hasNoSignedWrap())
206 return false;
208 // We reason about Add and Sub Only.
209 Instruction::BinaryOps Opcode = I.getOpcode();
210 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
211 return false;
213 const APInt *BVal, *CVal;
214 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
215 return false;
217 bool Overflow = false;
218 if (Opcode == Instruction::Add)
219 (void)BVal->sadd_ov(*CVal, Overflow);
220 else
221 (void)BVal->ssub_ov(*CVal, Overflow);
223 return !Overflow;
226 static bool hasNoUnsignedWrap(BinaryOperator &I) {
227 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
228 return OBO && OBO->hasNoUnsignedWrap();
231 static bool hasNoSignedWrap(BinaryOperator &I) {
232 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
233 return OBO && OBO->hasNoSignedWrap();
236 /// Conservatively clears subclassOptionalData after a reassociation or
237 /// commutation. We preserve fast-math flags when applicable as they can be
238 /// preserved.
239 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
240 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
241 if (!FPMO) {
242 I.clearSubclassOptionalData();
243 return;
246 FastMathFlags FMF = I.getFastMathFlags();
247 I.clearSubclassOptionalData();
248 I.setFastMathFlags(FMF);
251 /// Combine constant operands of associative operations either before or after a
252 /// cast to eliminate one of the associative operations:
253 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
254 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
255 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
256 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
257 if (!Cast || !Cast->hasOneUse())
258 return false;
260 // TODO: Enhance logic for other casts and remove this check.
261 auto CastOpcode = Cast->getOpcode();
262 if (CastOpcode != Instruction::ZExt)
263 return false;
265 // TODO: Enhance logic for other BinOps and remove this check.
266 if (!BinOp1->isBitwiseLogicOp())
267 return false;
269 auto AssocOpcode = BinOp1->getOpcode();
270 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
271 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
272 return false;
274 Constant *C1, *C2;
275 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
276 !match(BinOp2->getOperand(1), m_Constant(C2)))
277 return false;
279 // TODO: This assumes a zext cast.
280 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
281 // to the destination type might lose bits.
283 // Fold the constants together in the destination type:
284 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
285 Type *DestTy = C1->getType();
286 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
287 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
288 Cast->setOperand(0, BinOp2->getOperand(0));
289 BinOp1->setOperand(1, FoldedC);
290 return true;
293 /// This performs a few simplifications for operators that are associative or
294 /// commutative:
296 /// Commutative operators:
298 /// 1. Order operands such that they are listed from right (least complex) to
299 /// left (most complex). This puts constants before unary operators before
300 /// binary operators.
302 /// Associative operators:
304 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
305 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
307 /// Associative and commutative operators:
309 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
310 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
311 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
312 /// if C1 and C2 are constants.
313 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
314 Instruction::BinaryOps Opcode = I.getOpcode();
315 bool Changed = false;
317 do {
318 // Order operands such that they are listed from right (least complex) to
319 // left (most complex). This puts constants before unary operators before
320 // binary operators.
321 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
322 getComplexity(I.getOperand(1)))
323 Changed = !I.swapOperands();
325 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
326 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
328 if (I.isAssociative()) {
329 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
330 if (Op0 && Op0->getOpcode() == Opcode) {
331 Value *A = Op0->getOperand(0);
332 Value *B = Op0->getOperand(1);
333 Value *C = I.getOperand(1);
335 // Does "B op C" simplify?
336 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
337 // It simplifies to V. Form "A op V".
338 I.setOperand(0, A);
339 I.setOperand(1, V);
340 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
341 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
343 // Conservatively clear all optional flags since they may not be
344 // preserved by the reassociation. Reset nsw/nuw based on the above
345 // analysis.
346 ClearSubclassDataAfterReassociation(I);
348 // Note: this is only valid because SimplifyBinOp doesn't look at
349 // the operands to Op0.
350 if (IsNUW)
351 I.setHasNoUnsignedWrap(true);
353 if (IsNSW)
354 I.setHasNoSignedWrap(true);
356 Changed = true;
357 ++NumReassoc;
358 continue;
362 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
363 if (Op1 && Op1->getOpcode() == Opcode) {
364 Value *A = I.getOperand(0);
365 Value *B = Op1->getOperand(0);
366 Value *C = Op1->getOperand(1);
368 // Does "A op B" simplify?
369 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
370 // It simplifies to V. Form "V op C".
371 I.setOperand(0, V);
372 I.setOperand(1, C);
373 // Conservatively clear the optional flags, since they may not be
374 // preserved by the reassociation.
375 ClearSubclassDataAfterReassociation(I);
376 Changed = true;
377 ++NumReassoc;
378 continue;
383 if (I.isAssociative() && I.isCommutative()) {
384 if (simplifyAssocCastAssoc(&I)) {
385 Changed = true;
386 ++NumReassoc;
387 continue;
390 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
391 if (Op0 && Op0->getOpcode() == Opcode) {
392 Value *A = Op0->getOperand(0);
393 Value *B = Op0->getOperand(1);
394 Value *C = I.getOperand(1);
396 // Does "C op A" simplify?
397 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
398 // It simplifies to V. Form "V op B".
399 I.setOperand(0, V);
400 I.setOperand(1, B);
401 // Conservatively clear the optional flags, since they may not be
402 // preserved by the reassociation.
403 ClearSubclassDataAfterReassociation(I);
404 Changed = true;
405 ++NumReassoc;
406 continue;
410 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
411 if (Op1 && Op1->getOpcode() == Opcode) {
412 Value *A = I.getOperand(0);
413 Value *B = Op1->getOperand(0);
414 Value *C = Op1->getOperand(1);
416 // Does "C op A" simplify?
417 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
418 // It simplifies to V. Form "B op V".
419 I.setOperand(0, B);
420 I.setOperand(1, V);
421 // Conservatively clear the optional flags, since they may not be
422 // preserved by the reassociation.
423 ClearSubclassDataAfterReassociation(I);
424 Changed = true;
425 ++NumReassoc;
426 continue;
430 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
431 // if C1 and C2 are constants.
432 Value *A, *B;
433 Constant *C1, *C2;
434 if (Op0 && Op1 &&
435 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
436 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
437 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
438 bool IsNUW = hasNoUnsignedWrap(I) &&
439 hasNoUnsignedWrap(*Op0) &&
440 hasNoUnsignedWrap(*Op1);
441 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
442 BinaryOperator::CreateNUW(Opcode, A, B) :
443 BinaryOperator::Create(Opcode, A, B);
445 if (isa<FPMathOperator>(NewBO)) {
446 FastMathFlags Flags = I.getFastMathFlags();
447 Flags &= Op0->getFastMathFlags();
448 Flags &= Op1->getFastMathFlags();
449 NewBO->setFastMathFlags(Flags);
451 InsertNewInstWith(NewBO, I);
452 NewBO->takeName(Op1);
453 I.setOperand(0, NewBO);
454 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
455 // Conservatively clear the optional flags, since they may not be
456 // preserved by the reassociation.
457 ClearSubclassDataAfterReassociation(I);
458 if (IsNUW)
459 I.setHasNoUnsignedWrap(true);
461 Changed = true;
462 continue;
466 // No further simplifications.
467 return Changed;
468 } while (true);
471 /// Return whether "X LOp (Y ROp Z)" is always equal to
472 /// "(X LOp Y) ROp (X LOp Z)".
473 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
474 Instruction::BinaryOps ROp) {
475 // X & (Y | Z) <--> (X & Y) | (X & Z)
476 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
477 if (LOp == Instruction::And)
478 return ROp == Instruction::Or || ROp == Instruction::Xor;
480 // X | (Y & Z) <--> (X | Y) & (X | Z)
481 if (LOp == Instruction::Or)
482 return ROp == Instruction::And;
484 // X * (Y + Z) <--> (X * Y) + (X * Z)
485 // X * (Y - Z) <--> (X * Y) - (X * Z)
486 if (LOp == Instruction::Mul)
487 return ROp == Instruction::Add || ROp == Instruction::Sub;
489 return false;
492 /// Return whether "(X LOp Y) ROp Z" is always equal to
493 /// "(X ROp Z) LOp (Y ROp Z)".
494 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
495 Instruction::BinaryOps ROp) {
496 if (Instruction::isCommutative(ROp))
497 return leftDistributesOverRight(ROp, LOp);
499 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
500 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
502 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
503 // but this requires knowing that the addition does not overflow and other
504 // such subtleties.
507 /// This function returns identity value for given opcode, which can be used to
508 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
509 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
510 if (isa<Constant>(V))
511 return nullptr;
513 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
516 /// This function predicates factorization using distributive laws. By default,
517 /// it just returns the 'Op' inputs. But for special-cases like
518 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
519 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
520 /// allow more factorization opportunities.
521 static Instruction::BinaryOps
522 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
523 Value *&LHS, Value *&RHS) {
524 assert(Op && "Expected a binary operator");
525 LHS = Op->getOperand(0);
526 RHS = Op->getOperand(1);
527 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
528 Constant *C;
529 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
530 // X << C --> X * (1 << C)
531 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
532 return Instruction::Mul;
534 // TODO: We can add other conversions e.g. shr => div etc.
536 return Op->getOpcode();
539 /// This tries to simplify binary operations by factorizing out common terms
540 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
541 Value *InstCombiner::tryFactorization(BinaryOperator &I,
542 Instruction::BinaryOps InnerOpcode,
543 Value *A, Value *B, Value *C, Value *D) {
544 assert(A && B && C && D && "All values must be provided");
546 Value *V = nullptr;
547 Value *SimplifiedInst = nullptr;
548 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
549 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
551 // Does "X op' Y" always equal "Y op' X"?
552 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
554 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
555 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
556 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
557 // commutative case, "(A op' B) op (C op' A)"?
558 if (A == C || (InnerCommutative && A == D)) {
559 if (A != C)
560 std::swap(C, D);
561 // Consider forming "A op' (B op D)".
562 // If "B op D" simplifies then it can be formed with no cost.
563 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
564 // If "B op D" doesn't simplify then only go on if both of the existing
565 // operations "A op' B" and "C op' D" will be zapped as no longer used.
566 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
567 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
568 if (V) {
569 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
573 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
574 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
575 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
576 // commutative case, "(A op' B) op (B op' D)"?
577 if (B == D || (InnerCommutative && B == C)) {
578 if (B != D)
579 std::swap(C, D);
580 // Consider forming "(A op C) op' B".
581 // If "A op C" simplifies then it can be formed with no cost.
582 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
584 // If "A op C" doesn't simplify then only go on if both of the existing
585 // operations "A op' B" and "C op' D" will be zapped as no longer used.
586 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
587 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
588 if (V) {
589 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
593 if (SimplifiedInst) {
594 ++NumFactor;
595 SimplifiedInst->takeName(&I);
597 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
599 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
600 bool HasNSW = false;
601 bool HasNUW = false;
602 if (isa<OverflowingBinaryOperator>(&I)) {
603 HasNSW = I.hasNoSignedWrap();
604 HasNUW = I.hasNoUnsignedWrap();
607 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
608 HasNSW &= LOBO->hasNoSignedWrap();
609 HasNUW &= LOBO->hasNoUnsignedWrap();
612 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
613 HasNSW &= ROBO->hasNoSignedWrap();
614 HasNUW &= ROBO->hasNoUnsignedWrap();
617 if (TopLevelOpcode == Instruction::Add &&
618 InnerOpcode == Instruction::Mul) {
619 // We can propagate 'nsw' if we know that
620 // %Y = mul nsw i16 %X, C
621 // %Z = add nsw i16 %Y, %X
622 // =>
623 // %Z = mul nsw i16 %X, C+1
625 // iff C+1 isn't INT_MIN
626 const APInt *CInt;
627 if (match(V, m_APInt(CInt))) {
628 if (!CInt->isMinSignedValue())
629 BO->setHasNoSignedWrap(HasNSW);
632 // nuw can be propagated with any constant or nuw value.
633 BO->setHasNoUnsignedWrap(HasNUW);
638 return SimplifiedInst;
641 /// This tries to simplify binary operations which some other binary operation
642 /// distributes over either by factorizing out common terms
643 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
644 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
645 /// Returns the simplified value, or null if it didn't simplify.
646 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
647 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
648 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
649 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
650 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
653 // Factorization.
654 Value *A, *B, *C, *D;
655 Instruction::BinaryOps LHSOpcode, RHSOpcode;
656 if (Op0)
657 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
658 if (Op1)
659 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
661 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
662 // a common term.
663 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
664 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
665 return V;
667 // The instruction has the form "(A op' B) op (C)". Try to factorize common
668 // term.
669 if (Op0)
670 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
671 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
672 return V;
674 // The instruction has the form "(B) op (C op' D)". Try to factorize common
675 // term.
676 if (Op1)
677 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
678 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
679 return V;
682 // Expansion.
683 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
684 // The instruction has the form "(A op' B) op C". See if expanding it out
685 // to "(A op C) op' (B op C)" results in simplifications.
686 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
687 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
689 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
690 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
692 // Do "A op C" and "B op C" both simplify?
693 if (L && R) {
694 // They do! Return "L op' R".
695 ++NumExpand;
696 C = Builder.CreateBinOp(InnerOpcode, L, R);
697 C->takeName(&I);
698 return C;
701 // Does "A op C" simplify to the identity value for the inner opcode?
702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
703 // They do! Return "B op C".
704 ++NumExpand;
705 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
706 C->takeName(&I);
707 return C;
710 // Does "B op C" simplify to the identity value for the inner opcode?
711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
712 // They do! Return "A op C".
713 ++NumExpand;
714 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
715 C->takeName(&I);
716 return C;
720 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
721 // The instruction has the form "A op (B op' C)". See if expanding it out
722 // to "(A op B) op' (A op C)" results in simplifications.
723 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
724 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
726 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
727 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
729 // Do "A op B" and "A op C" both simplify?
730 if (L && R) {
731 // They do! Return "L op' R".
732 ++NumExpand;
733 A = Builder.CreateBinOp(InnerOpcode, L, R);
734 A->takeName(&I);
735 return A;
738 // Does "A op B" simplify to the identity value for the inner opcode?
739 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
740 // They do! Return "A op C".
741 ++NumExpand;
742 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
743 A->takeName(&I);
744 return A;
747 // Does "A op C" simplify to the identity value for the inner opcode?
748 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
749 // They do! Return "A op B".
750 ++NumExpand;
751 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
752 A->takeName(&I);
753 return A;
757 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
760 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
761 Value *LHS, Value *RHS) {
762 Instruction::BinaryOps Opcode = I.getOpcode();
763 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
764 // c, e)))
765 Value *A, *B, *C, *D, *E;
766 Value *SI = nullptr;
767 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
768 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
769 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
771 FastMathFlags FMF;
772 BuilderTy::FastMathFlagGuard Guard(Builder);
773 if (isa<FPMathOperator>(&I)) {
774 FMF = I.getFastMathFlags();
775 Builder.setFastMathFlags(FMF);
778 Value *V1 = SimplifyBinOp(Opcode, C, E, FMF, SQ.getWithInstruction(&I));
779 Value *V2 = SimplifyBinOp(Opcode, B, D, FMF, SQ.getWithInstruction(&I));
780 if (V1 && V2)
781 SI = Builder.CreateSelect(A, V2, V1);
782 else if (V2 && SelectsHaveOneUse)
783 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
784 else if (V1 && SelectsHaveOneUse)
785 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
787 if (SI)
788 SI->takeName(&I);
791 return SI;
794 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
795 /// constant zero (which is the 'negate' form).
796 Value *InstCombiner::dyn_castNegVal(Value *V) const {
797 Value *NegV;
798 if (match(V, m_Neg(m_Value(NegV))))
799 return NegV;
801 // Constants can be considered to be negated values if they can be folded.
802 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
803 return ConstantExpr::getNeg(C);
805 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
806 if (C->getType()->getElementType()->isIntegerTy())
807 return ConstantExpr::getNeg(C);
809 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
810 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
811 Constant *Elt = CV->getAggregateElement(i);
812 if (!Elt)
813 return nullptr;
815 if (isa<UndefValue>(Elt))
816 continue;
818 if (!isa<ConstantInt>(Elt))
819 return nullptr;
821 return ConstantExpr::getNeg(CV);
824 return nullptr;
827 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
828 InstCombiner::BuilderTy &Builder) {
829 if (auto *Cast = dyn_cast<CastInst>(&I))
830 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
832 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
834 // Figure out if the constant is the left or the right argument.
835 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
836 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
838 if (auto *SOC = dyn_cast<Constant>(SO)) {
839 if (ConstIsRHS)
840 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
841 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
844 Value *Op0 = SO, *Op1 = ConstOperand;
845 if (!ConstIsRHS)
846 std::swap(Op0, Op1);
848 auto *BO = cast<BinaryOperator>(&I);
849 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
850 SO->getName() + ".op");
851 auto *FPInst = dyn_cast<Instruction>(RI);
852 if (FPInst && isa<FPMathOperator>(FPInst))
853 FPInst->copyFastMathFlags(BO);
854 return RI;
857 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
858 // Don't modify shared select instructions.
859 if (!SI->hasOneUse())
860 return nullptr;
862 Value *TV = SI->getTrueValue();
863 Value *FV = SI->getFalseValue();
864 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
865 return nullptr;
867 // Bool selects with constant operands can be folded to logical ops.
868 if (SI->getType()->isIntOrIntVectorTy(1))
869 return nullptr;
871 // If it's a bitcast involving vectors, make sure it has the same number of
872 // elements on both sides.
873 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
874 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
875 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
877 // Verify that either both or neither are vectors.
878 if ((SrcTy == nullptr) != (DestTy == nullptr))
879 return nullptr;
881 // If vectors, verify that they have the same number of elements.
882 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
883 return nullptr;
886 // Test if a CmpInst instruction is used exclusively by a select as
887 // part of a minimum or maximum operation. If so, refrain from doing
888 // any other folding. This helps out other analyses which understand
889 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
890 // and CodeGen. And in this case, at least one of the comparison
891 // operands has at least one user besides the compare (the select),
892 // which would often largely negate the benefit of folding anyway.
893 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
894 if (CI->hasOneUse()) {
895 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
896 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
897 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
898 return nullptr;
902 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
903 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
904 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
907 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
908 InstCombiner::BuilderTy &Builder) {
909 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
910 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
912 if (auto *InC = dyn_cast<Constant>(InV)) {
913 if (ConstIsRHS)
914 return ConstantExpr::get(I->getOpcode(), InC, C);
915 return ConstantExpr::get(I->getOpcode(), C, InC);
918 Value *Op0 = InV, *Op1 = C;
919 if (!ConstIsRHS)
920 std::swap(Op0, Op1);
922 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
923 auto *FPInst = dyn_cast<Instruction>(RI);
924 if (FPInst && isa<FPMathOperator>(FPInst))
925 FPInst->copyFastMathFlags(I);
926 return RI;
929 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
930 unsigned NumPHIValues = PN->getNumIncomingValues();
931 if (NumPHIValues == 0)
932 return nullptr;
934 // We normally only transform phis with a single use. However, if a PHI has
935 // multiple uses and they are all the same operation, we can fold *all* of the
936 // uses into the PHI.
937 if (!PN->hasOneUse()) {
938 // Walk the use list for the instruction, comparing them to I.
939 for (User *U : PN->users()) {
940 Instruction *UI = cast<Instruction>(U);
941 if (UI != &I && !I.isIdenticalTo(UI))
942 return nullptr;
944 // Otherwise, we can replace *all* users with the new PHI we form.
947 // Check to see if all of the operands of the PHI are simple constants
948 // (constantint/constantfp/undef). If there is one non-constant value,
949 // remember the BB it is in. If there is more than one or if *it* is a PHI,
950 // bail out. We don't do arbitrary constant expressions here because moving
951 // their computation can be expensive without a cost model.
952 BasicBlock *NonConstBB = nullptr;
953 for (unsigned i = 0; i != NumPHIValues; ++i) {
954 Value *InVal = PN->getIncomingValue(i);
955 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
956 continue;
958 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
959 if (NonConstBB) return nullptr; // More than one non-const value.
961 NonConstBB = PN->getIncomingBlock(i);
963 // If the InVal is an invoke at the end of the pred block, then we can't
964 // insert a computation after it without breaking the edge.
965 if (isa<InvokeInst>(InVal))
966 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
967 return nullptr;
969 // If the incoming non-constant value is in I's block, we will remove one
970 // instruction, but insert another equivalent one, leading to infinite
971 // instcombine.
972 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
973 return nullptr;
976 // If there is exactly one non-constant value, we can insert a copy of the
977 // operation in that block. However, if this is a critical edge, we would be
978 // inserting the computation on some other paths (e.g. inside a loop). Only
979 // do this if the pred block is unconditionally branching into the phi block.
980 if (NonConstBB != nullptr) {
981 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
982 if (!BI || !BI->isUnconditional()) return nullptr;
985 // Okay, we can do the transformation: create the new PHI node.
986 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
987 InsertNewInstBefore(NewPN, *PN);
988 NewPN->takeName(PN);
990 // If we are going to have to insert a new computation, do so right before the
991 // predecessor's terminator.
992 if (NonConstBB)
993 Builder.SetInsertPoint(NonConstBB->getTerminator());
995 // Next, add all of the operands to the PHI.
996 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
997 // We only currently try to fold the condition of a select when it is a phi,
998 // not the true/false values.
999 Value *TrueV = SI->getTrueValue();
1000 Value *FalseV = SI->getFalseValue();
1001 BasicBlock *PhiTransBB = PN->getParent();
1002 for (unsigned i = 0; i != NumPHIValues; ++i) {
1003 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1004 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1005 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1006 Value *InV = nullptr;
1007 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1008 // even if currently isNullValue gives false.
1009 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1010 // For vector constants, we cannot use isNullValue to fold into
1011 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1012 // elements in the vector, we will incorrectly fold InC to
1013 // `TrueVInPred`.
1014 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1015 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1016 else {
1017 // Generate the select in the same block as PN's current incoming block.
1018 // Note: ThisBB need not be the NonConstBB because vector constants
1019 // which are constants by definition are handled here.
1020 // FIXME: This can lead to an increase in IR generation because we might
1021 // generate selects for vector constant phi operand, that could not be
1022 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1023 // non-vector phis, this transformation was always profitable because
1024 // the select would be generated exactly once in the NonConstBB.
1025 Builder.SetInsertPoint(ThisBB->getTerminator());
1026 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1027 FalseVInPred, "phitmp");
1029 NewPN->addIncoming(InV, ThisBB);
1031 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1032 Constant *C = cast<Constant>(I.getOperand(1));
1033 for (unsigned i = 0; i != NumPHIValues; ++i) {
1034 Value *InV = nullptr;
1035 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1036 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1037 else if (isa<ICmpInst>(CI))
1038 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
1039 C, "phitmp");
1040 else
1041 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1042 C, "phitmp");
1043 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1045 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1046 for (unsigned i = 0; i != NumPHIValues; ++i) {
1047 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1048 Builder);
1049 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1051 } else {
1052 CastInst *CI = cast<CastInst>(&I);
1053 Type *RetTy = CI->getType();
1054 for (unsigned i = 0; i != NumPHIValues; ++i) {
1055 Value *InV;
1056 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1057 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1058 else
1059 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1060 I.getType(), "phitmp");
1061 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1065 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1066 Instruction *User = cast<Instruction>(*UI++);
1067 if (User == &I) continue;
1068 replaceInstUsesWith(*User, NewPN);
1069 eraseInstFromFunction(*User);
1071 return replaceInstUsesWith(I, NewPN);
1074 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1075 if (!isa<Constant>(I.getOperand(1)))
1076 return nullptr;
1078 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1079 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1080 return NewSel;
1081 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1082 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1083 return NewPhi;
1085 return nullptr;
1088 /// Given a pointer type and a constant offset, determine whether or not there
1089 /// is a sequence of GEP indices into the pointed type that will land us at the
1090 /// specified offset. If so, fill them into NewIndices and return the resultant
1091 /// element type, otherwise return null.
1092 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1093 SmallVectorImpl<Value *> &NewIndices) {
1094 Type *Ty = PtrTy->getElementType();
1095 if (!Ty->isSized())
1096 return nullptr;
1098 // Start with the index over the outer type. Note that the type size
1099 // might be zero (even if the offset isn't zero) if the indexed type
1100 // is something like [0 x {int, int}]
1101 Type *IndexTy = DL.getIndexType(PtrTy);
1102 int64_t FirstIdx = 0;
1103 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1104 FirstIdx = Offset/TySize;
1105 Offset -= FirstIdx*TySize;
1107 // Handle hosts where % returns negative instead of values [0..TySize).
1108 if (Offset < 0) {
1109 --FirstIdx;
1110 Offset += TySize;
1111 assert(Offset >= 0);
1113 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1116 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1118 // Index into the types. If we fail, set OrigBase to null.
1119 while (Offset) {
1120 // Indexing into tail padding between struct/array elements.
1121 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1122 return nullptr;
1124 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1125 const StructLayout *SL = DL.getStructLayout(STy);
1126 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1127 "Offset must stay within the indexed type");
1129 unsigned Elt = SL->getElementContainingOffset(Offset);
1130 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1131 Elt));
1133 Offset -= SL->getElementOffset(Elt);
1134 Ty = STy->getElementType(Elt);
1135 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1136 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1137 assert(EltSize && "Cannot index into a zero-sized array");
1138 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1139 Offset %= EltSize;
1140 Ty = AT->getElementType();
1141 } else {
1142 // Otherwise, we can't index into the middle of this atomic type, bail.
1143 return nullptr;
1147 return Ty;
1150 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1151 // If this GEP has only 0 indices, it is the same pointer as
1152 // Src. If Src is not a trivial GEP too, don't combine
1153 // the indices.
1154 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1155 !Src.hasOneUse())
1156 return false;
1157 return true;
1160 /// Return a value X such that Val = X * Scale, or null if none.
1161 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1162 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1163 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1164 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1165 Scale.getBitWidth() && "Scale not compatible with value!");
1167 // If Val is zero or Scale is one then Val = Val * Scale.
1168 if (match(Val, m_Zero()) || Scale == 1) {
1169 NoSignedWrap = true;
1170 return Val;
1173 // If Scale is zero then it does not divide Val.
1174 if (Scale.isMinValue())
1175 return nullptr;
1177 // Look through chains of multiplications, searching for a constant that is
1178 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1179 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1180 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1181 // down from Val:
1183 // Val = M1 * X || Analysis starts here and works down
1184 // M1 = M2 * Y || Doesn't descend into terms with more
1185 // M2 = Z * 4 \/ than one use
1187 // Then to modify a term at the bottom:
1189 // Val = M1 * X
1190 // M1 = Z * Y || Replaced M2 with Z
1192 // Then to work back up correcting nsw flags.
1194 // Op - the term we are currently analyzing. Starts at Val then drills down.
1195 // Replaced with its descaled value before exiting from the drill down loop.
1196 Value *Op = Val;
1198 // Parent - initially null, but after drilling down notes where Op came from.
1199 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1200 // 0'th operand of Val.
1201 std::pair<Instruction *, unsigned> Parent;
1203 // Set if the transform requires a descaling at deeper levels that doesn't
1204 // overflow.
1205 bool RequireNoSignedWrap = false;
1207 // Log base 2 of the scale. Negative if not a power of 2.
1208 int32_t logScale = Scale.exactLogBase2();
1210 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1212 // If Op is a constant divisible by Scale then descale to the quotient.
1213 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1214 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1215 if (!Remainder.isMinValue())
1216 // Not divisible by Scale.
1217 return nullptr;
1218 // Replace with the quotient in the parent.
1219 Op = ConstantInt::get(CI->getType(), Quotient);
1220 NoSignedWrap = true;
1221 break;
1224 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1225 if (BO->getOpcode() == Instruction::Mul) {
1226 // Multiplication.
1227 NoSignedWrap = BO->hasNoSignedWrap();
1228 if (RequireNoSignedWrap && !NoSignedWrap)
1229 return nullptr;
1231 // There are three cases for multiplication: multiplication by exactly
1232 // the scale, multiplication by a constant different to the scale, and
1233 // multiplication by something else.
1234 Value *LHS = BO->getOperand(0);
1235 Value *RHS = BO->getOperand(1);
1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1238 // Multiplication by a constant.
1239 if (CI->getValue() == Scale) {
1240 // Multiplication by exactly the scale, replace the multiplication
1241 // by its left-hand side in the parent.
1242 Op = LHS;
1243 break;
1246 // Otherwise drill down into the constant.
1247 if (!Op->hasOneUse())
1248 return nullptr;
1250 Parent = std::make_pair(BO, 1);
1251 continue;
1254 // Multiplication by something else. Drill down into the left-hand side
1255 // since that's where the reassociate pass puts the good stuff.
1256 if (!Op->hasOneUse())
1257 return nullptr;
1259 Parent = std::make_pair(BO, 0);
1260 continue;
1263 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1264 isa<ConstantInt>(BO->getOperand(1))) {
1265 // Multiplication by a power of 2.
1266 NoSignedWrap = BO->hasNoSignedWrap();
1267 if (RequireNoSignedWrap && !NoSignedWrap)
1268 return nullptr;
1270 Value *LHS = BO->getOperand(0);
1271 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1272 getLimitedValue(Scale.getBitWidth());
1273 // Op = LHS << Amt.
1275 if (Amt == logScale) {
1276 // Multiplication by exactly the scale, replace the multiplication
1277 // by its left-hand side in the parent.
1278 Op = LHS;
1279 break;
1281 if (Amt < logScale || !Op->hasOneUse())
1282 return nullptr;
1284 // Multiplication by more than the scale. Reduce the multiplying amount
1285 // by the scale in the parent.
1286 Parent = std::make_pair(BO, 1);
1287 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1288 break;
1292 if (!Op->hasOneUse())
1293 return nullptr;
1295 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1296 if (Cast->getOpcode() == Instruction::SExt) {
1297 // Op is sign-extended from a smaller type, descale in the smaller type.
1298 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1299 APInt SmallScale = Scale.trunc(SmallSize);
1300 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1301 // descale Op as (sext Y) * Scale. In order to have
1302 // sext (Y * SmallScale) = (sext Y) * Scale
1303 // some conditions need to hold however: SmallScale must sign-extend to
1304 // Scale and the multiplication Y * SmallScale should not overflow.
1305 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1306 // SmallScale does not sign-extend to Scale.
1307 return nullptr;
1308 assert(SmallScale.exactLogBase2() == logScale);
1309 // Require that Y * SmallScale must not overflow.
1310 RequireNoSignedWrap = true;
1312 // Drill down through the cast.
1313 Parent = std::make_pair(Cast, 0);
1314 Scale = SmallScale;
1315 continue;
1318 if (Cast->getOpcode() == Instruction::Trunc) {
1319 // Op is truncated from a larger type, descale in the larger type.
1320 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1321 // trunc (Y * sext Scale) = (trunc Y) * Scale
1322 // always holds. However (trunc Y) * Scale may overflow even if
1323 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1324 // from this point up in the expression (see later).
1325 if (RequireNoSignedWrap)
1326 return nullptr;
1328 // Drill down through the cast.
1329 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1330 Parent = std::make_pair(Cast, 0);
1331 Scale = Scale.sext(LargeSize);
1332 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1333 logScale = -1;
1334 assert(Scale.exactLogBase2() == logScale);
1335 continue;
1339 // Unsupported expression, bail out.
1340 return nullptr;
1343 // If Op is zero then Val = Op * Scale.
1344 if (match(Op, m_Zero())) {
1345 NoSignedWrap = true;
1346 return Op;
1349 // We know that we can successfully descale, so from here on we can safely
1350 // modify the IR. Op holds the descaled version of the deepest term in the
1351 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1352 // not to overflow.
1354 if (!Parent.first)
1355 // The expression only had one term.
1356 return Op;
1358 // Rewrite the parent using the descaled version of its operand.
1359 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1360 assert(Op != Parent.first->getOperand(Parent.second) &&
1361 "Descaling was a no-op?");
1362 Parent.first->setOperand(Parent.second, Op);
1363 Worklist.Add(Parent.first);
1365 // Now work back up the expression correcting nsw flags. The logic is based
1366 // on the following observation: if X * Y is known not to overflow as a signed
1367 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1368 // then X * Z will not overflow as a signed multiplication either. As we work
1369 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1370 // current level has strictly smaller absolute value than the original.
1371 Instruction *Ancestor = Parent.first;
1372 do {
1373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1374 // If the multiplication wasn't nsw then we can't say anything about the
1375 // value of the descaled multiplication, and we have to clear nsw flags
1376 // from this point on up.
1377 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1378 NoSignedWrap &= OpNoSignedWrap;
1379 if (NoSignedWrap != OpNoSignedWrap) {
1380 BO->setHasNoSignedWrap(NoSignedWrap);
1381 Worklist.Add(Ancestor);
1383 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1384 // The fact that the descaled input to the trunc has smaller absolute
1385 // value than the original input doesn't tell us anything useful about
1386 // the absolute values of the truncations.
1387 NoSignedWrap = false;
1389 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1390 "Failed to keep proper track of nsw flags while drilling down?");
1392 if (Ancestor == Val)
1393 // Got to the top, all done!
1394 return Val;
1396 // Move up one level in the expression.
1397 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1398 Ancestor = Ancestor->user_back();
1399 } while (true);
1402 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1403 if (!Inst.getType()->isVectorTy()) return nullptr;
1405 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1406 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1407 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1408 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1409 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1411 // If both operands of the binop are vector concatenations, then perform the
1412 // narrow binop on each pair of the source operands followed by concatenation
1413 // of the results.
1414 Value *L0, *L1, *R0, *R1;
1415 Constant *Mask;
1416 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1417 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1418 LHS->hasOneUse() && RHS->hasOneUse() &&
1419 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1420 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1421 // This transform does not have the speculative execution constraint as
1422 // below because the shuffle is a concatenation. The new binops are
1423 // operating on exactly the same elements as the existing binop.
1424 // TODO: We could ease the mask requirement to allow different undef lanes,
1425 // but that requires an analysis of the binop-with-undef output value.
1426 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1427 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1428 BO->copyIRFlags(&Inst);
1429 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1430 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1431 BO->copyIRFlags(&Inst);
1432 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1435 // It may not be safe to reorder shuffles and things like div, urem, etc.
1436 // because we may trap when executing those ops on unknown vector elements.
1437 // See PR20059.
1438 if (!isSafeToSpeculativelyExecute(&Inst))
1439 return nullptr;
1441 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1442 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1443 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1444 BO->copyIRFlags(&Inst);
1445 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1448 // If both arguments of the binary operation are shuffles that use the same
1449 // mask and shuffle within a single vector, move the shuffle after the binop.
1450 Value *V1, *V2;
1451 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1452 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1453 V1->getType() == V2->getType() &&
1454 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1455 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1456 return createBinOpShuffle(V1, V2, Mask);
1459 // If both arguments of a commutative binop are select-shuffles that use the
1460 // same mask with commuted operands, the shuffles are unnecessary.
1461 if (Inst.isCommutative() &&
1462 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
1463 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
1464 m_Specific(Mask)))) {
1465 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1466 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1467 // TODO: Allow shuffles that contain undefs in the mask?
1468 // That is legal, but it reduces undef knowledge.
1469 // TODO: Allow arbitrary shuffles by shuffling after binop?
1470 // That might be legal, but we have to deal with poison.
1471 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
1472 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
1473 // Example:
1474 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1475 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1476 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1477 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1478 NewBO->copyIRFlags(&Inst);
1479 return NewBO;
1483 // If one argument is a shuffle within one vector and the other is a constant,
1484 // try moving the shuffle after the binary operation. This canonicalization
1485 // intends to move shuffles closer to other shuffles and binops closer to
1486 // other binops, so they can be folded. It may also enable demanded elements
1487 // transforms.
1488 Constant *C;
1489 if (match(&Inst, m_c_BinOp(
1490 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1491 m_Constant(C))) &&
1492 V1->getType()->getVectorNumElements() <= NumElts) {
1493 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1494 "Shuffle should not change scalar type");
1496 // Find constant NewC that has property:
1497 // shuffle(NewC, ShMask) = C
1498 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1499 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1500 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1501 bool ConstOp1 = isa<Constant>(RHS);
1502 SmallVector<int, 16> ShMask;
1503 ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1504 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1505 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1506 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1507 bool MayChange = true;
1508 for (unsigned I = 0; I < NumElts; ++I) {
1509 Constant *CElt = C->getAggregateElement(I);
1510 if (ShMask[I] >= 0) {
1511 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1512 Constant *NewCElt = NewVecC[ShMask[I]];
1513 // Bail out if:
1514 // 1. The constant vector contains a constant expression.
1515 // 2. The shuffle needs an element of the constant vector that can't
1516 // be mapped to a new constant vector.
1517 // 3. This is a widening shuffle that copies elements of V1 into the
1518 // extended elements (extending with undef is allowed).
1519 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1520 I >= SrcVecNumElts) {
1521 MayChange = false;
1522 break;
1524 NewVecC[ShMask[I]] = CElt;
1526 // If this is a widening shuffle, we must be able to extend with undef
1527 // elements. If the original binop does not produce an undef in the high
1528 // lanes, then this transform is not safe.
1529 // TODO: We could shuffle those non-undef constant values into the
1530 // result by using a constant vector (rather than an undef vector)
1531 // as operand 1 of the new binop, but that might be too aggressive
1532 // for target-independent shuffle creation.
1533 if (I >= SrcVecNumElts) {
1534 Constant *MaybeUndef =
1535 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1536 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1537 if (!isa<UndefValue>(MaybeUndef)) {
1538 MayChange = false;
1539 break;
1543 if (MayChange) {
1544 Constant *NewC = ConstantVector::get(NewVecC);
1545 // It may not be safe to execute a binop on a vector with undef elements
1546 // because the entire instruction can be folded to undef or create poison
1547 // that did not exist in the original code.
1548 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1549 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1551 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1552 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1553 Value *NewLHS = ConstOp1 ? V1 : NewC;
1554 Value *NewRHS = ConstOp1 ? NewC : V1;
1555 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1559 return nullptr;
1562 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1563 /// of a value. This requires a potentially expensive known bits check to make
1564 /// sure the narrow op does not overflow.
1565 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1566 // We need at least one extended operand.
1567 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1569 // If this is a sub, we swap the operands since we always want an extension
1570 // on the RHS. The LHS can be an extension or a constant.
1571 if (BO.getOpcode() == Instruction::Sub)
1572 std::swap(Op0, Op1);
1574 Value *X;
1575 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1576 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1577 return nullptr;
1579 // If both operands are the same extension from the same source type and we
1580 // can eliminate at least one (hasOneUse), this might work.
1581 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1582 Value *Y;
1583 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1584 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1585 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1586 // If that did not match, see if we have a suitable constant operand.
1587 // Truncating and extending must produce the same constant.
1588 Constant *WideC;
1589 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1590 return nullptr;
1591 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1592 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1593 return nullptr;
1594 Y = NarrowC;
1597 // Swap back now that we found our operands.
1598 if (BO.getOpcode() == Instruction::Sub)
1599 std::swap(X, Y);
1601 // Both operands have narrow versions. Last step: the math must not overflow
1602 // in the narrow width.
1603 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1604 return nullptr;
1606 // bo (ext X), (ext Y) --> ext (bo X, Y)
1607 // bo (ext X), C --> ext (bo X, C')
1608 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1609 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1610 if (IsSext)
1611 NewBinOp->setHasNoSignedWrap();
1612 else
1613 NewBinOp->setHasNoUnsignedWrap();
1615 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1618 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1619 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1620 Type *GEPType = GEP.getType();
1621 Type *GEPEltType = GEP.getSourceElementType();
1622 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1623 return replaceInstUsesWith(GEP, V);
1625 // For vector geps, use the generic demanded vector support.
1626 if (GEP.getType()->isVectorTy()) {
1627 auto VWidth = GEP.getType()->getVectorNumElements();
1628 APInt UndefElts(VWidth, 0);
1629 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1630 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1631 UndefElts)) {
1632 if (V != &GEP)
1633 return replaceInstUsesWith(GEP, V);
1634 return &GEP;
1637 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1638 // possible (decide on canonical form for pointer broadcast), 3) exploit
1639 // undef elements to decrease demanded bits
1642 Value *PtrOp = GEP.getOperand(0);
1644 // Eliminate unneeded casts for indices, and replace indices which displace
1645 // by multiples of a zero size type with zero.
1646 bool MadeChange = false;
1648 // Index width may not be the same width as pointer width.
1649 // Data layout chooses the right type based on supported integer types.
1650 Type *NewScalarIndexTy =
1651 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1653 gep_type_iterator GTI = gep_type_begin(GEP);
1654 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1655 ++I, ++GTI) {
1656 // Skip indices into struct types.
1657 if (GTI.isStruct())
1658 continue;
1660 Type *IndexTy = (*I)->getType();
1661 Type *NewIndexType =
1662 IndexTy->isVectorTy()
1663 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1664 : NewScalarIndexTy;
1666 // If the element type has zero size then any index over it is equivalent
1667 // to an index of zero, so replace it with zero if it is not zero already.
1668 Type *EltTy = GTI.getIndexedType();
1669 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1670 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1671 *I = Constant::getNullValue(NewIndexType);
1672 MadeChange = true;
1675 if (IndexTy != NewIndexType) {
1676 // If we are using a wider index than needed for this platform, shrink
1677 // it to what we need. If narrower, sign-extend it to what we need.
1678 // This explicit cast can make subsequent optimizations more obvious.
1679 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1680 MadeChange = true;
1683 if (MadeChange)
1684 return &GEP;
1686 // Check to see if the inputs to the PHI node are getelementptr instructions.
1687 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1688 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1689 if (!Op1)
1690 return nullptr;
1692 // Don't fold a GEP into itself through a PHI node. This can only happen
1693 // through the back-edge of a loop. Folding a GEP into itself means that
1694 // the value of the previous iteration needs to be stored in the meantime,
1695 // thus requiring an additional register variable to be live, but not
1696 // actually achieving anything (the GEP still needs to be executed once per
1697 // loop iteration).
1698 if (Op1 == &GEP)
1699 return nullptr;
1701 int DI = -1;
1703 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1704 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1705 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1706 return nullptr;
1708 // As for Op1 above, don't try to fold a GEP into itself.
1709 if (Op2 == &GEP)
1710 return nullptr;
1712 // Keep track of the type as we walk the GEP.
1713 Type *CurTy = nullptr;
1715 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1716 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1717 return nullptr;
1719 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1720 if (DI == -1) {
1721 // We have not seen any differences yet in the GEPs feeding the
1722 // PHI yet, so we record this one if it is allowed to be a
1723 // variable.
1725 // The first two arguments can vary for any GEP, the rest have to be
1726 // static for struct slots
1727 if (J > 1 && CurTy->isStructTy())
1728 return nullptr;
1730 DI = J;
1731 } else {
1732 // The GEP is different by more than one input. While this could be
1733 // extended to support GEPs that vary by more than one variable it
1734 // doesn't make sense since it greatly increases the complexity and
1735 // would result in an R+R+R addressing mode which no backend
1736 // directly supports and would need to be broken into several
1737 // simpler instructions anyway.
1738 return nullptr;
1742 // Sink down a layer of the type for the next iteration.
1743 if (J > 0) {
1744 if (J == 1) {
1745 CurTy = Op1->getSourceElementType();
1746 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1747 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1748 } else {
1749 CurTy = nullptr;
1755 // If not all GEPs are identical we'll have to create a new PHI node.
1756 // Check that the old PHI node has only one use so that it will get
1757 // removed.
1758 if (DI != -1 && !PN->hasOneUse())
1759 return nullptr;
1761 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1762 if (DI == -1) {
1763 // All the GEPs feeding the PHI are identical. Clone one down into our
1764 // BB so that it can be merged with the current GEP.
1765 GEP.getParent()->getInstList().insert(
1766 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1767 } else {
1768 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1769 // into the current block so it can be merged, and create a new PHI to
1770 // set that index.
1771 PHINode *NewPN;
1773 IRBuilderBase::InsertPointGuard Guard(Builder);
1774 Builder.SetInsertPoint(PN);
1775 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1776 PN->getNumOperands());
1779 for (auto &I : PN->operands())
1780 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1781 PN->getIncomingBlock(I));
1783 NewGEP->setOperand(DI, NewPN);
1784 GEP.getParent()->getInstList().insert(
1785 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1786 NewGEP->setOperand(DI, NewPN);
1789 GEP.setOperand(0, NewGEP);
1790 PtrOp = NewGEP;
1793 // Combine Indices - If the source pointer to this getelementptr instruction
1794 // is a getelementptr instruction, combine the indices of the two
1795 // getelementptr instructions into a single instruction.
1796 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1797 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1798 return nullptr;
1800 // Try to reassociate loop invariant GEP chains to enable LICM.
1801 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1802 Src->hasOneUse()) {
1803 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1804 Value *GO1 = GEP.getOperand(1);
1805 Value *SO1 = Src->getOperand(1);
1806 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1807 // invariant: this breaks the dependence between GEPs and allows LICM
1808 // to hoist the invariant part out of the loop.
1809 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1810 // We have to be careful here.
1811 // We have something like:
1812 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1813 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1814 // If we just swap idx & idx2 then we could inadvertantly
1815 // change %src from a vector to a scalar, or vice versa.
1816 // Cases:
1817 // 1) %base a scalar & idx a scalar & idx2 a vector
1818 // => Swapping idx & idx2 turns %src into a vector type.
1819 // 2) %base a scalar & idx a vector & idx2 a scalar
1820 // => Swapping idx & idx2 turns %src in a scalar type
1821 // 3) %base, %idx, and %idx2 are scalars
1822 // => %src & %gep are scalars
1823 // => swapping idx & idx2 is safe
1824 // 4) %base a vector
1825 // => %src is a vector
1826 // => swapping idx & idx2 is safe.
1827 auto *SO0 = Src->getOperand(0);
1828 auto *SO0Ty = SO0->getType();
1829 if (!isa<VectorType>(GEPType) || // case 3
1830 isa<VectorType>(SO0Ty)) { // case 4
1831 Src->setOperand(1, GO1);
1832 GEP.setOperand(1, SO1);
1833 return &GEP;
1834 } else {
1835 // Case 1 or 2
1836 // -- have to recreate %src & %gep
1837 // put NewSrc at same location as %src
1838 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1839 auto *NewSrc = cast<GetElementPtrInst>(
1840 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1841 NewSrc->setIsInBounds(Src->isInBounds());
1842 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1843 NewGEP->setIsInBounds(GEP.isInBounds());
1844 return NewGEP;
1850 // Note that if our source is a gep chain itself then we wait for that
1851 // chain to be resolved before we perform this transformation. This
1852 // avoids us creating a TON of code in some cases.
1853 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1854 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1855 return nullptr; // Wait until our source is folded to completion.
1857 SmallVector<Value*, 8> Indices;
1859 // Find out whether the last index in the source GEP is a sequential idx.
1860 bool EndsWithSequential = false;
1861 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1862 I != E; ++I)
1863 EndsWithSequential = I.isSequential();
1865 // Can we combine the two pointer arithmetics offsets?
1866 if (EndsWithSequential) {
1867 // Replace: gep (gep %P, long B), long A, ...
1868 // With: T = long A+B; gep %P, T, ...
1869 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1870 Value *GO1 = GEP.getOperand(1);
1872 // If they aren't the same type, then the input hasn't been processed
1873 // by the loop above yet (which canonicalizes sequential index types to
1874 // intptr_t). Just avoid transforming this until the input has been
1875 // normalized.
1876 if (SO1->getType() != GO1->getType())
1877 return nullptr;
1879 Value *Sum =
1880 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1881 // Only do the combine when we are sure the cost after the
1882 // merge is never more than that before the merge.
1883 if (Sum == nullptr)
1884 return nullptr;
1886 // Update the GEP in place if possible.
1887 if (Src->getNumOperands() == 2) {
1888 GEP.setOperand(0, Src->getOperand(0));
1889 GEP.setOperand(1, Sum);
1890 return &GEP;
1892 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1893 Indices.push_back(Sum);
1894 Indices.append(GEP.op_begin()+2, GEP.op_end());
1895 } else if (isa<Constant>(*GEP.idx_begin()) &&
1896 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1897 Src->getNumOperands() != 1) {
1898 // Otherwise we can do the fold if the first index of the GEP is a zero
1899 Indices.append(Src->op_begin()+1, Src->op_end());
1900 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1903 if (!Indices.empty())
1904 return GEP.isInBounds() && Src->isInBounds()
1905 ? GetElementPtrInst::CreateInBounds(
1906 Src->getSourceElementType(), Src->getOperand(0), Indices,
1907 GEP.getName())
1908 : GetElementPtrInst::Create(Src->getSourceElementType(),
1909 Src->getOperand(0), Indices,
1910 GEP.getName());
1913 if (GEP.getNumIndices() == 1) {
1914 unsigned AS = GEP.getPointerAddressSpace();
1915 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1916 DL.getIndexSizeInBits(AS)) {
1917 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1919 bool Matched = false;
1920 uint64_t C;
1921 Value *V = nullptr;
1922 if (TyAllocSize == 1) {
1923 V = GEP.getOperand(1);
1924 Matched = true;
1925 } else if (match(GEP.getOperand(1),
1926 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1927 if (TyAllocSize == 1ULL << C)
1928 Matched = true;
1929 } else if (match(GEP.getOperand(1),
1930 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1931 if (TyAllocSize == C)
1932 Matched = true;
1935 if (Matched) {
1936 // Canonicalize (gep i8* X, -(ptrtoint Y))
1937 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1938 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1939 // pointer arithmetic.
1940 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1941 Operator *Index = cast<Operator>(V);
1942 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1943 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1944 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1946 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1947 // to (bitcast Y)
1948 Value *Y;
1949 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1950 m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1951 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
1956 // We do not handle pointer-vector geps here.
1957 if (GEPType->isVectorTy())
1958 return nullptr;
1960 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1961 Value *StrippedPtr = PtrOp->stripPointerCasts();
1962 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
1964 if (StrippedPtr != PtrOp) {
1965 bool HasZeroPointerIndex = false;
1966 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
1968 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1969 HasZeroPointerIndex = C->isZero();
1971 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1972 // into : GEP [10 x i8]* X, i32 0, ...
1974 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1975 // into : GEP i8* X, ...
1977 // This occurs when the program declares an array extern like "int X[];"
1978 if (HasZeroPointerIndex) {
1979 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
1980 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1981 if (CATy->getElementType() == StrippedPtrEltTy) {
1982 // -> GEP i8* X, ...
1983 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1984 GetElementPtrInst *Res = GetElementPtrInst::Create(
1985 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
1986 Res->setIsInBounds(GEP.isInBounds());
1987 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1988 return Res;
1989 // Insert Res, and create an addrspacecast.
1990 // e.g.,
1991 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1992 // ->
1993 // %0 = GEP i8 addrspace(1)* X, ...
1994 // addrspacecast i8 addrspace(1)* %0 to i8*
1995 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
1998 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
1999 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2000 if (CATy->getElementType() == XATy->getElementType()) {
2001 // -> GEP [10 x i8]* X, i32 0, ...
2002 // At this point, we know that the cast source type is a pointer
2003 // to an array of the same type as the destination pointer
2004 // array. Because the array type is never stepped over (there
2005 // is a leading zero) we can fold the cast into this GEP.
2006 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2007 GEP.setOperand(0, StrippedPtr);
2008 GEP.setSourceElementType(XATy);
2009 return &GEP;
2011 // Cannot replace the base pointer directly because StrippedPtr's
2012 // address space is different. Instead, create a new GEP followed by
2013 // an addrspacecast.
2014 // e.g.,
2015 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2016 // i32 0, ...
2017 // ->
2018 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2019 // addrspacecast i8 addrspace(1)* %0 to i8*
2020 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2021 Value *NewGEP =
2022 GEP.isInBounds()
2023 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2024 Idx, GEP.getName())
2025 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2026 GEP.getName());
2027 return new AddrSpaceCastInst(NewGEP, GEPType);
2031 } else if (GEP.getNumOperands() == 2) {
2032 // Transform things like:
2033 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
2034 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
2035 if (StrippedPtrEltTy->isArrayTy() &&
2036 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2037 DL.getTypeAllocSize(GEPEltType)) {
2038 Type *IdxType = DL.getIndexType(GEPType);
2039 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2040 Value *NewGEP =
2041 GEP.isInBounds()
2042 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2043 GEP.getName())
2044 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2045 GEP.getName());
2047 // V and GEP are both pointer types --> BitCast
2048 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2051 // Transform things like:
2052 // %V = mul i64 %N, 4
2053 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2054 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2055 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2056 // Check that changing the type amounts to dividing the index by a scale
2057 // factor.
2058 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2059 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
2060 if (ResSize && SrcSize % ResSize == 0) {
2061 Value *Idx = GEP.getOperand(1);
2062 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2063 uint64_t Scale = SrcSize / ResSize;
2065 // Earlier transforms ensure that the index has the right type
2066 // according to Data Layout, which considerably simplifies the
2067 // logic by eliminating implicit casts.
2068 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2069 "Index type does not match the Data Layout preferences");
2071 bool NSW;
2072 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2073 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2074 // If the multiplication NewIdx * Scale may overflow then the new
2075 // GEP may not be "inbounds".
2076 Value *NewGEP =
2077 GEP.isInBounds() && NSW
2078 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2079 NewIdx, GEP.getName())
2080 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2081 GEP.getName());
2083 // The NewGEP must be pointer typed, so must the old one -> BitCast
2084 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2085 GEPType);
2090 // Similarly, transform things like:
2091 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2092 // (where tmp = 8*tmp2) into:
2093 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2094 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2095 StrippedPtrEltTy->isArrayTy()) {
2096 // Check that changing to the array element type amounts to dividing the
2097 // index by a scale factor.
2098 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2099 uint64_t ArrayEltSize =
2100 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
2101 if (ResSize && ArrayEltSize % ResSize == 0) {
2102 Value *Idx = GEP.getOperand(1);
2103 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2104 uint64_t Scale = ArrayEltSize / ResSize;
2106 // Earlier transforms ensure that the index has the right type
2107 // according to the Data Layout, which considerably simplifies
2108 // the logic by eliminating implicit casts.
2109 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2110 "Index type does not match the Data Layout preferences");
2112 bool NSW;
2113 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2114 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2115 // If the multiplication NewIdx * Scale may overflow then the new
2116 // GEP may not be "inbounds".
2117 Type *IndTy = DL.getIndexType(GEPType);
2118 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2120 Value *NewGEP =
2121 GEP.isInBounds() && NSW
2122 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2123 Off, GEP.getName())
2124 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2125 GEP.getName());
2126 // The NewGEP must be pointer typed, so must the old one -> BitCast
2127 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2128 GEPType);
2135 // addrspacecast between types is canonicalized as a bitcast, then an
2136 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2137 // through the addrspacecast.
2138 Value *ASCStrippedPtrOp = PtrOp;
2139 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2140 // X = bitcast A addrspace(1)* to B addrspace(1)*
2141 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2142 // Z = gep Y, <...constant indices...>
2143 // Into an addrspacecasted GEP of the struct.
2144 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2145 ASCStrippedPtrOp = BC;
2148 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2149 Value *SrcOp = BCI->getOperand(0);
2150 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2151 Type *SrcEltType = SrcType->getElementType();
2153 // GEP directly using the source operand if this GEP is accessing an element
2154 // of a bitcasted pointer to vector or array of the same dimensions:
2155 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2156 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2157 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
2158 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2159 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
2161 if (GEP.getNumOperands() == 3 &&
2162 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2163 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
2164 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2165 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
2167 // Create a new GEP here, as using `setOperand()` followed by
2168 // `setSourceElementType()` won't actually update the type of the
2169 // existing GEP Value. Causing issues if this Value is accessed when
2170 // constructing an AddrSpaceCastInst
2171 Value *NGEP =
2172 GEP.isInBounds()
2173 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2174 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2175 NGEP->takeName(&GEP);
2177 // Preserve GEP address space to satisfy users
2178 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2179 return new AddrSpaceCastInst(NGEP, GEPType);
2181 return replaceInstUsesWith(GEP, NGEP);
2184 // See if we can simplify:
2185 // X = bitcast A* to B*
2186 // Y = gep X, <...constant indices...>
2187 // into a gep of the original struct. This is important for SROA and alias
2188 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2189 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2190 APInt Offset(OffsetBits, 0);
2191 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2192 // If this GEP instruction doesn't move the pointer, just replace the GEP
2193 // with a bitcast of the real input to the dest type.
2194 if (!Offset) {
2195 // If the bitcast is of an allocation, and the allocation will be
2196 // converted to match the type of the cast, don't touch this.
2197 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2198 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2199 if (Instruction *I = visitBitCast(*BCI)) {
2200 if (I != BCI) {
2201 I->takeName(BCI);
2202 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2203 replaceInstUsesWith(*BCI, I);
2205 return &GEP;
2209 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2210 return new AddrSpaceCastInst(SrcOp, GEPType);
2211 return new BitCastInst(SrcOp, GEPType);
2214 // Otherwise, if the offset is non-zero, we need to find out if there is a
2215 // field at Offset in 'A's type. If so, we can pull the cast through the
2216 // GEP.
2217 SmallVector<Value*, 8> NewIndices;
2218 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2219 Value *NGEP =
2220 GEP.isInBounds()
2221 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2222 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2224 if (NGEP->getType() == GEPType)
2225 return replaceInstUsesWith(GEP, NGEP);
2226 NGEP->takeName(&GEP);
2228 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2229 return new AddrSpaceCastInst(NGEP, GEPType);
2230 return new BitCastInst(NGEP, GEPType);
2235 if (!GEP.isInBounds()) {
2236 unsigned IdxWidth =
2237 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2238 APInt BasePtrOffset(IdxWidth, 0);
2239 Value *UnderlyingPtrOp =
2240 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2241 BasePtrOffset);
2242 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2243 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2244 BasePtrOffset.isNonNegative()) {
2245 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2246 if (BasePtrOffset.ule(AllocSize)) {
2247 return GetElementPtrInst::CreateInBounds(
2248 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2249 GEP.getName());
2255 return nullptr;
2258 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2259 Instruction *AI) {
2260 if (isa<ConstantPointerNull>(V))
2261 return true;
2262 if (auto *LI = dyn_cast<LoadInst>(V))
2263 return isa<GlobalVariable>(LI->getPointerOperand());
2264 // Two distinct allocations will never be equal.
2265 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2266 // through bitcasts of V can cause
2267 // the result statement below to be true, even when AI and V (ex:
2268 // i8* ->i32* ->i8* of AI) are the same allocations.
2269 return isAllocLikeFn(V, TLI) && V != AI;
2272 static bool isAllocSiteRemovable(Instruction *AI,
2273 SmallVectorImpl<WeakTrackingVH> &Users,
2274 const TargetLibraryInfo *TLI) {
2275 SmallVector<Instruction*, 4> Worklist;
2276 Worklist.push_back(AI);
2278 do {
2279 Instruction *PI = Worklist.pop_back_val();
2280 for (User *U : PI->users()) {
2281 Instruction *I = cast<Instruction>(U);
2282 switch (I->getOpcode()) {
2283 default:
2284 // Give up the moment we see something we can't handle.
2285 return false;
2287 case Instruction::AddrSpaceCast:
2288 case Instruction::BitCast:
2289 case Instruction::GetElementPtr:
2290 Users.emplace_back(I);
2291 Worklist.push_back(I);
2292 continue;
2294 case Instruction::ICmp: {
2295 ICmpInst *ICI = cast<ICmpInst>(I);
2296 // We can fold eq/ne comparisons with null to false/true, respectively.
2297 // We also fold comparisons in some conditions provided the alloc has
2298 // not escaped (see isNeverEqualToUnescapedAlloc).
2299 if (!ICI->isEquality())
2300 return false;
2301 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2302 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2303 return false;
2304 Users.emplace_back(I);
2305 continue;
2308 case Instruction::Call:
2309 // Ignore no-op and store intrinsics.
2310 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2311 switch (II->getIntrinsicID()) {
2312 default:
2313 return false;
2315 case Intrinsic::memmove:
2316 case Intrinsic::memcpy:
2317 case Intrinsic::memset: {
2318 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2319 if (MI->isVolatile() || MI->getRawDest() != PI)
2320 return false;
2321 LLVM_FALLTHROUGH;
2323 case Intrinsic::invariant_start:
2324 case Intrinsic::invariant_end:
2325 case Intrinsic::lifetime_start:
2326 case Intrinsic::lifetime_end:
2327 case Intrinsic::objectsize:
2328 Users.emplace_back(I);
2329 continue;
2333 if (isFreeCall(I, TLI)) {
2334 Users.emplace_back(I);
2335 continue;
2337 return false;
2339 case Instruction::Store: {
2340 StoreInst *SI = cast<StoreInst>(I);
2341 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2342 return false;
2343 Users.emplace_back(I);
2344 continue;
2347 llvm_unreachable("missing a return?");
2349 } while (!Worklist.empty());
2350 return true;
2353 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2354 // If we have a malloc call which is only used in any amount of comparisons to
2355 // null and free calls, delete the calls and replace the comparisons with true
2356 // or false as appropriate.
2358 // This is based on the principle that we can substitute our own allocation
2359 // function (which will never return null) rather than knowledge of the
2360 // specific function being called. In some sense this can change the permitted
2361 // outputs of a program (when we convert a malloc to an alloca, the fact that
2362 // the allocation is now on the stack is potentially visible, for example),
2363 // but we believe in a permissible manner.
2364 SmallVector<WeakTrackingVH, 64> Users;
2366 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2367 // before each store.
2368 TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2369 std::unique_ptr<DIBuilder> DIB;
2370 if (isa<AllocaInst>(MI)) {
2371 DIIs = FindDbgAddrUses(&MI);
2372 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2375 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2376 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2377 // Lowering all @llvm.objectsize calls first because they may
2378 // use a bitcast/GEP of the alloca we are removing.
2379 if (!Users[i])
2380 continue;
2382 Instruction *I = cast<Instruction>(&*Users[i]);
2384 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2385 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2386 Value *Result =
2387 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2388 replaceInstUsesWith(*I, Result);
2389 eraseInstFromFunction(*I);
2390 Users[i] = nullptr; // Skip examining in the next loop.
2394 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2395 if (!Users[i])
2396 continue;
2398 Instruction *I = cast<Instruction>(&*Users[i]);
2400 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2401 replaceInstUsesWith(*C,
2402 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2403 C->isFalseWhenEqual()));
2404 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
2405 isa<AddrSpaceCastInst>(I)) {
2406 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2407 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2408 for (auto *DII : DIIs)
2409 ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2411 eraseInstFromFunction(*I);
2414 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2415 // Replace invoke with a NOP intrinsic to maintain the original CFG
2416 Module *M = II->getModule();
2417 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2418 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2419 None, "", II->getParent());
2422 for (auto *DII : DIIs)
2423 eraseInstFromFunction(*DII);
2425 return eraseInstFromFunction(MI);
2427 return nullptr;
2430 /// Move the call to free before a NULL test.
2432 /// Check if this free is accessed after its argument has been test
2433 /// against NULL (property 0).
2434 /// If yes, it is legal to move this call in its predecessor block.
2436 /// The move is performed only if the block containing the call to free
2437 /// will be removed, i.e.:
2438 /// 1. it has only one predecessor P, and P has two successors
2439 /// 2. it contains the call, noops, and an unconditional branch
2440 /// 3. its successor is the same as its predecessor's successor
2442 /// The profitability is out-of concern here and this function should
2443 /// be called only if the caller knows this transformation would be
2444 /// profitable (e.g., for code size).
2445 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2446 const DataLayout &DL) {
2447 Value *Op = FI.getArgOperand(0);
2448 BasicBlock *FreeInstrBB = FI.getParent();
2449 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2451 // Validate part of constraint #1: Only one predecessor
2452 // FIXME: We can extend the number of predecessor, but in that case, we
2453 // would duplicate the call to free in each predecessor and it may
2454 // not be profitable even for code size.
2455 if (!PredBB)
2456 return nullptr;
2458 // Validate constraint #2: Does this block contains only the call to
2459 // free, noops, and an unconditional branch?
2460 BasicBlock *SuccBB;
2461 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2462 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2463 return nullptr;
2465 // If there are only 2 instructions in the block, at this point,
2466 // this is the call to free and unconditional.
2467 // If there are more than 2 instructions, check that they are noops
2468 // i.e., they won't hurt the performance of the generated code.
2469 if (FreeInstrBB->size() != 2) {
2470 for (const Instruction &Inst : *FreeInstrBB) {
2471 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2472 continue;
2473 auto *Cast = dyn_cast<CastInst>(&Inst);
2474 if (!Cast || !Cast->isNoopCast(DL))
2475 return nullptr;
2478 // Validate the rest of constraint #1 by matching on the pred branch.
2479 Instruction *TI = PredBB->getTerminator();
2480 BasicBlock *TrueBB, *FalseBB;
2481 ICmpInst::Predicate Pred;
2482 if (!match(TI, m_Br(m_ICmp(Pred,
2483 m_CombineOr(m_Specific(Op),
2484 m_Specific(Op->stripPointerCasts())),
2485 m_Zero()),
2486 TrueBB, FalseBB)))
2487 return nullptr;
2488 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2489 return nullptr;
2491 // Validate constraint #3: Ensure the null case just falls through.
2492 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2493 return nullptr;
2494 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2495 "Broken CFG: missing edge from predecessor to successor");
2497 // At this point, we know that everything in FreeInstrBB can be moved
2498 // before TI.
2499 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2500 It != End;) {
2501 Instruction &Instr = *It++;
2502 if (&Instr == FreeInstrBBTerminator)
2503 break;
2504 Instr.moveBefore(TI);
2506 assert(FreeInstrBB->size() == 1 &&
2507 "Only the branch instruction should remain");
2508 return &FI;
2511 Instruction *InstCombiner::visitFree(CallInst &FI) {
2512 Value *Op = FI.getArgOperand(0);
2514 // free undef -> unreachable.
2515 if (isa<UndefValue>(Op)) {
2516 // Leave a marker since we can't modify the CFG here.
2517 CreateNonTerminatorUnreachable(&FI);
2518 return eraseInstFromFunction(FI);
2521 // If we have 'free null' delete the instruction. This can happen in stl code
2522 // when lots of inlining happens.
2523 if (isa<ConstantPointerNull>(Op))
2524 return eraseInstFromFunction(FI);
2526 // If we optimize for code size, try to move the call to free before the null
2527 // test so that simplify cfg can remove the empty block and dead code
2528 // elimination the branch. I.e., helps to turn something like:
2529 // if (foo) free(foo);
2530 // into
2531 // free(foo);
2532 if (MinimizeSize)
2533 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2534 return I;
2536 return nullptr;
2539 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2540 if (RI.getNumOperands() == 0) // ret void
2541 return nullptr;
2543 Value *ResultOp = RI.getOperand(0);
2544 Type *VTy = ResultOp->getType();
2545 if (!VTy->isIntegerTy())
2546 return nullptr;
2548 // There might be assume intrinsics dominating this return that completely
2549 // determine the value. If so, constant fold it.
2550 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2551 if (Known.isConstant())
2552 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2554 return nullptr;
2557 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2558 // Change br (not X), label True, label False to: br X, label False, True
2559 Value *X = nullptr;
2560 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2561 !isa<Constant>(X)) {
2562 // Swap Destinations and condition...
2563 BI.setCondition(X);
2564 BI.swapSuccessors();
2565 return &BI;
2568 // If the condition is irrelevant, remove the use so that other
2569 // transforms on the condition become more effective.
2570 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2571 BI.getSuccessor(0) == BI.getSuccessor(1)) {
2572 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
2573 return &BI;
2576 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2577 CmpInst::Predicate Pred;
2578 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
2579 m_BasicBlock(), m_BasicBlock())) &&
2580 !isCanonicalPredicate(Pred)) {
2581 // Swap destinations and condition.
2582 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2583 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2584 BI.swapSuccessors();
2585 Worklist.Add(Cond);
2586 return &BI;
2589 return nullptr;
2592 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2593 Value *Cond = SI.getCondition();
2594 Value *Op0;
2595 ConstantInt *AddRHS;
2596 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2597 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2598 for (auto Case : SI.cases()) {
2599 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2600 assert(isa<ConstantInt>(NewCase) &&
2601 "Result of expression should be constant");
2602 Case.setValue(cast<ConstantInt>(NewCase));
2604 SI.setCondition(Op0);
2605 return &SI;
2608 KnownBits Known = computeKnownBits(Cond, 0, &SI);
2609 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2610 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2612 // Compute the number of leading bits we can ignore.
2613 // TODO: A better way to determine this would use ComputeNumSignBits().
2614 for (auto &C : SI.cases()) {
2615 LeadingKnownZeros = std::min(
2616 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2617 LeadingKnownOnes = std::min(
2618 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2621 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2623 // Shrink the condition operand if the new type is smaller than the old type.
2624 // But do not shrink to a non-standard type, because backend can't generate
2625 // good code for that yet.
2626 // TODO: We can make it aggressive again after fixing PR39569.
2627 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2628 shouldChangeType(Known.getBitWidth(), NewWidth)) {
2629 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2630 Builder.SetInsertPoint(&SI);
2631 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2632 SI.setCondition(NewCond);
2634 for (auto Case : SI.cases()) {
2635 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2636 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2638 return &SI;
2641 return nullptr;
2644 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2645 Value *Agg = EV.getAggregateOperand();
2647 if (!EV.hasIndices())
2648 return replaceInstUsesWith(EV, Agg);
2650 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2651 SQ.getWithInstruction(&EV)))
2652 return replaceInstUsesWith(EV, V);
2654 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2655 // We're extracting from an insertvalue instruction, compare the indices
2656 const unsigned *exti, *exte, *insi, *inse;
2657 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2658 exte = EV.idx_end(), inse = IV->idx_end();
2659 exti != exte && insi != inse;
2660 ++exti, ++insi) {
2661 if (*insi != *exti)
2662 // The insert and extract both reference distinctly different elements.
2663 // This means the extract is not influenced by the insert, and we can
2664 // replace the aggregate operand of the extract with the aggregate
2665 // operand of the insert. i.e., replace
2666 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2667 // %E = extractvalue { i32, { i32 } } %I, 0
2668 // with
2669 // %E = extractvalue { i32, { i32 } } %A, 0
2670 return ExtractValueInst::Create(IV->getAggregateOperand(),
2671 EV.getIndices());
2673 if (exti == exte && insi == inse)
2674 // Both iterators are at the end: Index lists are identical. Replace
2675 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2676 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2677 // with "i32 42"
2678 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2679 if (exti == exte) {
2680 // The extract list is a prefix of the insert list. i.e. replace
2681 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2682 // %E = extractvalue { i32, { i32 } } %I, 1
2683 // with
2684 // %X = extractvalue { i32, { i32 } } %A, 1
2685 // %E = insertvalue { i32 } %X, i32 42, 0
2686 // by switching the order of the insert and extract (though the
2687 // insertvalue should be left in, since it may have other uses).
2688 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2689 EV.getIndices());
2690 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2691 makeArrayRef(insi, inse));
2693 if (insi == inse)
2694 // The insert list is a prefix of the extract list
2695 // We can simply remove the common indices from the extract and make it
2696 // operate on the inserted value instead of the insertvalue result.
2697 // i.e., replace
2698 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2699 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2700 // with
2701 // %E extractvalue { i32 } { i32 42 }, 0
2702 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2703 makeArrayRef(exti, exte));
2705 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2706 // We're extracting from an overflow intrinsic, see if we're the only user,
2707 // which allows us to simplify multiple result intrinsics to simpler
2708 // things that just get one value.
2709 if (WO->hasOneUse()) {
2710 // Check if we're grabbing only the result of a 'with overflow' intrinsic
2711 // and replace it with a traditional binary instruction.
2712 if (*EV.idx_begin() == 0) {
2713 Instruction::BinaryOps BinOp = WO->getBinaryOp();
2714 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2715 replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2716 eraseInstFromFunction(*WO);
2717 return BinaryOperator::Create(BinOp, LHS, RHS);
2720 // If the normal result of the add is dead, and the RHS is a constant,
2721 // we can transform this into a range comparison.
2722 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2723 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2724 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2725 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2726 ConstantExpr::getNot(CI));
2729 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2730 // If the (non-volatile) load only has one use, we can rewrite this to a
2731 // load from a GEP. This reduces the size of the load. If a load is used
2732 // only by extractvalue instructions then this either must have been
2733 // optimized before, or it is a struct with padding, in which case we
2734 // don't want to do the transformation as it loses padding knowledge.
2735 if (L->isSimple() && L->hasOneUse()) {
2736 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2737 SmallVector<Value*, 4> Indices;
2738 // Prefix an i32 0 since we need the first element.
2739 Indices.push_back(Builder.getInt32(0));
2740 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2741 I != E; ++I)
2742 Indices.push_back(Builder.getInt32(*I));
2744 // We need to insert these at the location of the old load, not at that of
2745 // the extractvalue.
2746 Builder.SetInsertPoint(L);
2747 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2748 L->getPointerOperand(), Indices);
2749 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2750 // Whatever aliasing information we had for the orignal load must also
2751 // hold for the smaller load, so propagate the annotations.
2752 AAMDNodes Nodes;
2753 L->getAAMetadata(Nodes);
2754 NL->setAAMetadata(Nodes);
2755 // Returning the load directly will cause the main loop to insert it in
2756 // the wrong spot, so use replaceInstUsesWith().
2757 return replaceInstUsesWith(EV, NL);
2759 // We could simplify extracts from other values. Note that nested extracts may
2760 // already be simplified implicitly by the above: extract (extract (insert) )
2761 // will be translated into extract ( insert ( extract ) ) first and then just
2762 // the value inserted, if appropriate. Similarly for extracts from single-use
2763 // loads: extract (extract (load)) will be translated to extract (load (gep))
2764 // and if again single-use then via load (gep (gep)) to load (gep).
2765 // However, double extracts from e.g. function arguments or return values
2766 // aren't handled yet.
2767 return nullptr;
2770 /// Return 'true' if the given typeinfo will match anything.
2771 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2772 switch (Personality) {
2773 case EHPersonality::GNU_C:
2774 case EHPersonality::GNU_C_SjLj:
2775 case EHPersonality::Rust:
2776 // The GCC C EH and Rust personality only exists to support cleanups, so
2777 // it's not clear what the semantics of catch clauses are.
2778 return false;
2779 case EHPersonality::Unknown:
2780 return false;
2781 case EHPersonality::GNU_Ada:
2782 // While __gnat_all_others_value will match any Ada exception, it doesn't
2783 // match foreign exceptions (or didn't, before gcc-4.7).
2784 return false;
2785 case EHPersonality::GNU_CXX:
2786 case EHPersonality::GNU_CXX_SjLj:
2787 case EHPersonality::GNU_ObjC:
2788 case EHPersonality::MSVC_X86SEH:
2789 case EHPersonality::MSVC_Win64SEH:
2790 case EHPersonality::MSVC_CXX:
2791 case EHPersonality::CoreCLR:
2792 case EHPersonality::Wasm_CXX:
2793 return TypeInfo->isNullValue();
2795 llvm_unreachable("invalid enum");
2798 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2799 return
2800 cast<ArrayType>(LHS->getType())->getNumElements()
2802 cast<ArrayType>(RHS->getType())->getNumElements();
2805 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2806 // The logic here should be correct for any real-world personality function.
2807 // However if that turns out not to be true, the offending logic can always
2808 // be conditioned on the personality function, like the catch-all logic is.
2809 EHPersonality Personality =
2810 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2812 // Simplify the list of clauses, eg by removing repeated catch clauses
2813 // (these are often created by inlining).
2814 bool MakeNewInstruction = false; // If true, recreate using the following:
2815 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2816 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2818 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2819 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2820 bool isLastClause = i + 1 == e;
2821 if (LI.isCatch(i)) {
2822 // A catch clause.
2823 Constant *CatchClause = LI.getClause(i);
2824 Constant *TypeInfo = CatchClause->stripPointerCasts();
2826 // If we already saw this clause, there is no point in having a second
2827 // copy of it.
2828 if (AlreadyCaught.insert(TypeInfo).second) {
2829 // This catch clause was not already seen.
2830 NewClauses.push_back(CatchClause);
2831 } else {
2832 // Repeated catch clause - drop the redundant copy.
2833 MakeNewInstruction = true;
2836 // If this is a catch-all then there is no point in keeping any following
2837 // clauses or marking the landingpad as having a cleanup.
2838 if (isCatchAll(Personality, TypeInfo)) {
2839 if (!isLastClause)
2840 MakeNewInstruction = true;
2841 CleanupFlag = false;
2842 break;
2844 } else {
2845 // A filter clause. If any of the filter elements were already caught
2846 // then they can be dropped from the filter. It is tempting to try to
2847 // exploit the filter further by saying that any typeinfo that does not
2848 // occur in the filter can't be caught later (and thus can be dropped).
2849 // However this would be wrong, since typeinfos can match without being
2850 // equal (for example if one represents a C++ class, and the other some
2851 // class derived from it).
2852 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2853 Constant *FilterClause = LI.getClause(i);
2854 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2855 unsigned NumTypeInfos = FilterType->getNumElements();
2857 // An empty filter catches everything, so there is no point in keeping any
2858 // following clauses or marking the landingpad as having a cleanup. By
2859 // dealing with this case here the following code is made a bit simpler.
2860 if (!NumTypeInfos) {
2861 NewClauses.push_back(FilterClause);
2862 if (!isLastClause)
2863 MakeNewInstruction = true;
2864 CleanupFlag = false;
2865 break;
2868 bool MakeNewFilter = false; // If true, make a new filter.
2869 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2870 if (isa<ConstantAggregateZero>(FilterClause)) {
2871 // Not an empty filter - it contains at least one null typeinfo.
2872 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2873 Constant *TypeInfo =
2874 Constant::getNullValue(FilterType->getElementType());
2875 // If this typeinfo is a catch-all then the filter can never match.
2876 if (isCatchAll(Personality, TypeInfo)) {
2877 // Throw the filter away.
2878 MakeNewInstruction = true;
2879 continue;
2882 // There is no point in having multiple copies of this typeinfo, so
2883 // discard all but the first copy if there is more than one.
2884 NewFilterElts.push_back(TypeInfo);
2885 if (NumTypeInfos > 1)
2886 MakeNewFilter = true;
2887 } else {
2888 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2889 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2890 NewFilterElts.reserve(NumTypeInfos);
2892 // Remove any filter elements that were already caught or that already
2893 // occurred in the filter. While there, see if any of the elements are
2894 // catch-alls. If so, the filter can be discarded.
2895 bool SawCatchAll = false;
2896 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2897 Constant *Elt = Filter->getOperand(j);
2898 Constant *TypeInfo = Elt->stripPointerCasts();
2899 if (isCatchAll(Personality, TypeInfo)) {
2900 // This element is a catch-all. Bail out, noting this fact.
2901 SawCatchAll = true;
2902 break;
2905 // Even if we've seen a type in a catch clause, we don't want to
2906 // remove it from the filter. An unexpected type handler may be
2907 // set up for a call site which throws an exception of the same
2908 // type caught. In order for the exception thrown by the unexpected
2909 // handler to propagate correctly, the filter must be correctly
2910 // described for the call site.
2912 // Example:
2914 // void unexpected() { throw 1;}
2915 // void foo() throw (int) {
2916 // std::set_unexpected(unexpected);
2917 // try {
2918 // throw 2.0;
2919 // } catch (int i) {}
2920 // }
2922 // There is no point in having multiple copies of the same typeinfo in
2923 // a filter, so only add it if we didn't already.
2924 if (SeenInFilter.insert(TypeInfo).second)
2925 NewFilterElts.push_back(cast<Constant>(Elt));
2927 // A filter containing a catch-all cannot match anything by definition.
2928 if (SawCatchAll) {
2929 // Throw the filter away.
2930 MakeNewInstruction = true;
2931 continue;
2934 // If we dropped something from the filter, make a new one.
2935 if (NewFilterElts.size() < NumTypeInfos)
2936 MakeNewFilter = true;
2938 if (MakeNewFilter) {
2939 FilterType = ArrayType::get(FilterType->getElementType(),
2940 NewFilterElts.size());
2941 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2942 MakeNewInstruction = true;
2945 NewClauses.push_back(FilterClause);
2947 // If the new filter is empty then it will catch everything so there is
2948 // no point in keeping any following clauses or marking the landingpad
2949 // as having a cleanup. The case of the original filter being empty was
2950 // already handled above.
2951 if (MakeNewFilter && !NewFilterElts.size()) {
2952 assert(MakeNewInstruction && "New filter but not a new instruction!");
2953 CleanupFlag = false;
2954 break;
2959 // If several filters occur in a row then reorder them so that the shortest
2960 // filters come first (those with the smallest number of elements). This is
2961 // advantageous because shorter filters are more likely to match, speeding up
2962 // unwinding, but mostly because it increases the effectiveness of the other
2963 // filter optimizations below.
2964 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2965 unsigned j;
2966 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2967 for (j = i; j != e; ++j)
2968 if (!isa<ArrayType>(NewClauses[j]->getType()))
2969 break;
2971 // Check whether the filters are already sorted by length. We need to know
2972 // if sorting them is actually going to do anything so that we only make a
2973 // new landingpad instruction if it does.
2974 for (unsigned k = i; k + 1 < j; ++k)
2975 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2976 // Not sorted, so sort the filters now. Doing an unstable sort would be
2977 // correct too but reordering filters pointlessly might confuse users.
2978 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2979 shorter_filter);
2980 MakeNewInstruction = true;
2981 break;
2984 // Look for the next batch of filters.
2985 i = j + 1;
2988 // If typeinfos matched if and only if equal, then the elements of a filter L
2989 // that occurs later than a filter F could be replaced by the intersection of
2990 // the elements of F and L. In reality two typeinfos can match without being
2991 // equal (for example if one represents a C++ class, and the other some class
2992 // derived from it) so it would be wrong to perform this transform in general.
2993 // However the transform is correct and useful if F is a subset of L. In that
2994 // case L can be replaced by F, and thus removed altogether since repeating a
2995 // filter is pointless. So here we look at all pairs of filters F and L where
2996 // L follows F in the list of clauses, and remove L if every element of F is
2997 // an element of L. This can occur when inlining C++ functions with exception
2998 // specifications.
2999 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3000 // Examine each filter in turn.
3001 Value *Filter = NewClauses[i];
3002 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3003 if (!FTy)
3004 // Not a filter - skip it.
3005 continue;
3006 unsigned FElts = FTy->getNumElements();
3007 // Examine each filter following this one. Doing this backwards means that
3008 // we don't have to worry about filters disappearing under us when removed.
3009 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3010 Value *LFilter = NewClauses[j];
3011 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3012 if (!LTy)
3013 // Not a filter - skip it.
3014 continue;
3015 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3016 // an element of LFilter, then discard LFilter.
3017 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3018 // If Filter is empty then it is a subset of LFilter.
3019 if (!FElts) {
3020 // Discard LFilter.
3021 NewClauses.erase(J);
3022 MakeNewInstruction = true;
3023 // Move on to the next filter.
3024 continue;
3026 unsigned LElts = LTy->getNumElements();
3027 // If Filter is longer than LFilter then it cannot be a subset of it.
3028 if (FElts > LElts)
3029 // Move on to the next filter.
3030 continue;
3031 // At this point we know that LFilter has at least one element.
3032 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3033 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3034 // already know that Filter is not longer than LFilter).
3035 if (isa<ConstantAggregateZero>(Filter)) {
3036 assert(FElts <= LElts && "Should have handled this case earlier!");
3037 // Discard LFilter.
3038 NewClauses.erase(J);
3039 MakeNewInstruction = true;
3041 // Move on to the next filter.
3042 continue;
3044 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3045 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3046 // Since Filter is non-empty and contains only zeros, it is a subset of
3047 // LFilter iff LFilter contains a zero.
3048 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3049 for (unsigned l = 0; l != LElts; ++l)
3050 if (LArray->getOperand(l)->isNullValue()) {
3051 // LFilter contains a zero - discard it.
3052 NewClauses.erase(J);
3053 MakeNewInstruction = true;
3054 break;
3056 // Move on to the next filter.
3057 continue;
3059 // At this point we know that both filters are ConstantArrays. Loop over
3060 // operands to see whether every element of Filter is also an element of
3061 // LFilter. Since filters tend to be short this is probably faster than
3062 // using a method that scales nicely.
3063 ConstantArray *FArray = cast<ConstantArray>(Filter);
3064 bool AllFound = true;
3065 for (unsigned f = 0; f != FElts; ++f) {
3066 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3067 AllFound = false;
3068 for (unsigned l = 0; l != LElts; ++l) {
3069 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3070 if (LTypeInfo == FTypeInfo) {
3071 AllFound = true;
3072 break;
3075 if (!AllFound)
3076 break;
3078 if (AllFound) {
3079 // Discard LFilter.
3080 NewClauses.erase(J);
3081 MakeNewInstruction = true;
3083 // Move on to the next filter.
3087 // If we changed any of the clauses, replace the old landingpad instruction
3088 // with a new one.
3089 if (MakeNewInstruction) {
3090 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3091 NewClauses.size());
3092 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3093 NLI->addClause(NewClauses[i]);
3094 // A landing pad with no clauses must have the cleanup flag set. It is
3095 // theoretically possible, though highly unlikely, that we eliminated all
3096 // clauses. If so, force the cleanup flag to true.
3097 if (NewClauses.empty())
3098 CleanupFlag = true;
3099 NLI->setCleanup(CleanupFlag);
3100 return NLI;
3103 // Even if none of the clauses changed, we may nonetheless have understood
3104 // that the cleanup flag is pointless. Clear it if so.
3105 if (LI.isCleanup() != CleanupFlag) {
3106 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3107 LI.setCleanup(CleanupFlag);
3108 return &LI;
3111 return nullptr;
3114 /// Try to move the specified instruction from its current block into the
3115 /// beginning of DestBlock, which can only happen if it's safe to move the
3116 /// instruction past all of the instructions between it and the end of its
3117 /// block.
3118 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3119 assert(I->hasOneUse() && "Invariants didn't hold!");
3120 BasicBlock *SrcBlock = I->getParent();
3122 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3123 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3124 I->isTerminator())
3125 return false;
3127 // Do not sink static or dynamic alloca instructions. Static allocas must
3128 // remain in the entry block, and dynamic allocas must not be sunk in between
3129 // a stacksave / stackrestore pair, which would incorrectly shorten its
3130 // lifetime.
3131 if (isa<AllocaInst>(I))
3132 return false;
3134 // Do not sink into catchswitch blocks.
3135 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3136 return false;
3138 // Do not sink convergent call instructions.
3139 if (auto *CI = dyn_cast<CallInst>(I)) {
3140 if (CI->isConvergent())
3141 return false;
3143 // We can only sink load instructions if there is nothing between the load and
3144 // the end of block that could change the value.
3145 if (I->mayReadFromMemory()) {
3146 for (BasicBlock::iterator Scan = I->getIterator(),
3147 E = I->getParent()->end();
3148 Scan != E; ++Scan)
3149 if (Scan->mayWriteToMemory())
3150 return false;
3152 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3153 I->moveBefore(&*InsertPos);
3154 ++NumSunkInst;
3156 // Also sink all related debug uses from the source basic block. Otherwise we
3157 // get debug use before the def. Attempt to salvage debug uses first, to
3158 // maximise the range variables have location for. If we cannot salvage, then
3159 // mark the location undef: we know it was supposed to receive a new location
3160 // here, but that computation has been sunk.
3161 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3162 findDbgUsers(DbgUsers, I);
3163 for (auto *DII : reverse(DbgUsers)) {
3164 if (DII->getParent() == SrcBlock) {
3165 if (isa<DbgDeclareInst>(DII)) {
3166 // A dbg.declare instruction should not be cloned, since there can only be
3167 // one per variable fragment. It should be left in the original place since
3168 // sunk instruction is not an alloca(otherwise we could not be here).
3169 // But we need to update arguments of dbg.declare instruction, so that it
3170 // would not point into sunk instruction.
3171 if (!isa<CastInst>(I))
3172 continue; // dbg.declare points at something it shouldn't
3174 DII->setOperand(
3175 0, MetadataAsValue::get(I->getContext(),
3176 ValueAsMetadata::get(I->getOperand(0))));
3177 continue;
3180 // dbg.value is in the same basic block as the sunk inst, see if we can
3181 // salvage it. Clone a new copy of the instruction: on success we need
3182 // both salvaged and unsalvaged copies.
3183 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3184 cast<DbgVariableIntrinsic>(DII->clone())};
3186 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3187 // We are unable to salvage: sink the cloned dbg.value, and mark the
3188 // original as undef, terminating any earlier variable location.
3189 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3190 TmpUser[0]->insertBefore(&*InsertPos);
3191 Value *Undef = UndefValue::get(I->getType());
3192 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3193 ValueAsMetadata::get(Undef)));
3194 } else {
3195 // We successfully salvaged: place the salvaged dbg.value in the
3196 // original location, and move the unmodified dbg.value to sink with
3197 // the sunk inst.
3198 TmpUser[0]->insertBefore(DII);
3199 DII->moveBefore(&*InsertPos);
3203 return true;
3206 bool InstCombiner::run() {
3207 while (!Worklist.isEmpty()) {
3208 Instruction *I = Worklist.RemoveOne();
3209 if (I == nullptr) continue; // skip null values.
3211 // Check to see if we can DCE the instruction.
3212 if (isInstructionTriviallyDead(I, &TLI)) {
3213 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
3214 eraseInstFromFunction(*I);
3215 ++NumDeadInst;
3216 MadeIRChange = true;
3217 continue;
3220 if (!DebugCounter::shouldExecute(VisitCounter))
3221 continue;
3223 // Instruction isn't dead, see if we can constant propagate it.
3224 if (!I->use_empty() &&
3225 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3226 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3227 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3228 << '\n');
3230 // Add operands to the worklist.
3231 replaceInstUsesWith(*I, C);
3232 ++NumConstProp;
3233 if (isInstructionTriviallyDead(I, &TLI))
3234 eraseInstFromFunction(*I);
3235 MadeIRChange = true;
3236 continue;
3240 // In general, it is possible for computeKnownBits to determine all bits in
3241 // a value even when the operands are not all constants.
3242 Type *Ty = I->getType();
3243 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
3244 KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
3245 if (Known.isConstant()) {
3246 Constant *C = ConstantInt::get(Ty, Known.getConstant());
3247 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3248 << " from: " << *I << '\n');
3250 // Add operands to the worklist.
3251 replaceInstUsesWith(*I, C);
3252 ++NumConstProp;
3253 if (isInstructionTriviallyDead(I, &TLI))
3254 eraseInstFromFunction(*I);
3255 MadeIRChange = true;
3256 continue;
3260 // See if we can trivially sink this instruction to a successor basic block.
3261 if (EnableCodeSinking && I->hasOneUse()) {
3262 BasicBlock *BB = I->getParent();
3263 Instruction *UserInst = cast<Instruction>(*I->user_begin());
3264 BasicBlock *UserParent;
3266 // Get the block the use occurs in.
3267 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3268 UserParent = PN->getIncomingBlock(*I->use_begin());
3269 else
3270 UserParent = UserInst->getParent();
3272 if (UserParent != BB) {
3273 bool UserIsSuccessor = false;
3274 // See if the user is one of our successors.
3275 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3276 if (*SI == UserParent) {
3277 UserIsSuccessor = true;
3278 break;
3281 // If the user is one of our immediate successors, and if that successor
3282 // only has us as a predecessors (we'd have to split the critical edge
3283 // otherwise), we can keep going.
3284 if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3285 // Okay, the CFG is simple enough, try to sink this instruction.
3286 if (TryToSinkInstruction(I, UserParent)) {
3287 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3288 MadeIRChange = true;
3289 // We'll add uses of the sunk instruction below, but since sinking
3290 // can expose opportunities for it's *operands* add them to the
3291 // worklist
3292 for (Use &U : I->operands())
3293 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3294 Worklist.Add(OpI);
3300 // Now that we have an instruction, try combining it to simplify it.
3301 Builder.SetInsertPoint(I);
3302 Builder.SetCurrentDebugLocation(I->getDebugLoc());
3304 #ifndef NDEBUG
3305 std::string OrigI;
3306 #endif
3307 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3308 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3310 if (Instruction *Result = visit(*I)) {
3311 ++NumCombined;
3312 // Should we replace the old instruction with a new one?
3313 if (Result != I) {
3314 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3315 << " New = " << *Result << '\n');
3317 if (I->getDebugLoc())
3318 Result->setDebugLoc(I->getDebugLoc());
3319 // Everything uses the new instruction now.
3320 I->replaceAllUsesWith(Result);
3322 // Move the name to the new instruction first.
3323 Result->takeName(I);
3325 // Push the new instruction and any users onto the worklist.
3326 Worklist.AddUsersToWorkList(*Result);
3327 Worklist.Add(Result);
3329 // Insert the new instruction into the basic block...
3330 BasicBlock *InstParent = I->getParent();
3331 BasicBlock::iterator InsertPos = I->getIterator();
3333 // If we replace a PHI with something that isn't a PHI, fix up the
3334 // insertion point.
3335 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3336 InsertPos = InstParent->getFirstInsertionPt();
3338 InstParent->getInstList().insert(InsertPos, Result);
3340 eraseInstFromFunction(*I);
3341 } else {
3342 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3343 << " New = " << *I << '\n');
3345 // If the instruction was modified, it's possible that it is now dead.
3346 // if so, remove it.
3347 if (isInstructionTriviallyDead(I, &TLI)) {
3348 eraseInstFromFunction(*I);
3349 } else {
3350 Worklist.AddUsersToWorkList(*I);
3351 Worklist.Add(I);
3354 MadeIRChange = true;
3358 Worklist.Zap();
3359 return MadeIRChange;
3362 /// Walk the function in depth-first order, adding all reachable code to the
3363 /// worklist.
3365 /// This has a couple of tricks to make the code faster and more powerful. In
3366 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3367 /// them to the worklist (this significantly speeds up instcombine on code where
3368 /// many instructions are dead or constant). Additionally, if we find a branch
3369 /// whose condition is a known constant, we only visit the reachable successors.
3370 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3371 SmallPtrSetImpl<BasicBlock *> &Visited,
3372 InstCombineWorklist &ICWorklist,
3373 const TargetLibraryInfo *TLI) {
3374 bool MadeIRChange = false;
3375 SmallVector<BasicBlock*, 256> Worklist;
3376 Worklist.push_back(BB);
3378 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3379 DenseMap<Constant *, Constant *> FoldedConstants;
3381 do {
3382 BB = Worklist.pop_back_val();
3384 // We have now visited this block! If we've already been here, ignore it.
3385 if (!Visited.insert(BB).second)
3386 continue;
3388 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3389 Instruction *Inst = &*BBI++;
3391 // DCE instruction if trivially dead.
3392 if (isInstructionTriviallyDead(Inst, TLI)) {
3393 ++NumDeadInst;
3394 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3395 if (!salvageDebugInfo(*Inst))
3396 replaceDbgUsesWithUndef(Inst);
3397 Inst->eraseFromParent();
3398 MadeIRChange = true;
3399 continue;
3402 // ConstantProp instruction if trivially constant.
3403 if (!Inst->use_empty() &&
3404 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3405 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3406 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3407 << '\n');
3408 Inst->replaceAllUsesWith(C);
3409 ++NumConstProp;
3410 if (isInstructionTriviallyDead(Inst, TLI))
3411 Inst->eraseFromParent();
3412 MadeIRChange = true;
3413 continue;
3416 // See if we can constant fold its operands.
3417 for (Use &U : Inst->operands()) {
3418 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3419 continue;
3421 auto *C = cast<Constant>(U);
3422 Constant *&FoldRes = FoldedConstants[C];
3423 if (!FoldRes)
3424 FoldRes = ConstantFoldConstant(C, DL, TLI);
3425 if (!FoldRes)
3426 FoldRes = C;
3428 if (FoldRes != C) {
3429 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3430 << "\n Old = " << *C
3431 << "\n New = " << *FoldRes << '\n');
3432 U = FoldRes;
3433 MadeIRChange = true;
3437 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3438 // consumes non-trivial amount of time and provides no value for the optimization.
3439 if (!isa<DbgInfoIntrinsic>(Inst))
3440 InstrsForInstCombineWorklist.push_back(Inst);
3443 // Recursively visit successors. If this is a branch or switch on a
3444 // constant, only visit the reachable successor.
3445 Instruction *TI = BB->getTerminator();
3446 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3447 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3448 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3449 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3450 Worklist.push_back(ReachableBB);
3451 continue;
3453 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3454 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3455 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3456 continue;
3460 for (BasicBlock *SuccBB : successors(TI))
3461 Worklist.push_back(SuccBB);
3462 } while (!Worklist.empty());
3464 // Once we've found all of the instructions to add to instcombine's worklist,
3465 // add them in reverse order. This way instcombine will visit from the top
3466 // of the function down. This jives well with the way that it adds all uses
3467 // of instructions to the worklist after doing a transformation, thus avoiding
3468 // some N^2 behavior in pathological cases.
3469 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3471 return MadeIRChange;
3474 /// Populate the IC worklist from a function, and prune any dead basic
3475 /// blocks discovered in the process.
3477 /// This also does basic constant propagation and other forward fixing to make
3478 /// the combiner itself run much faster.
3479 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3480 TargetLibraryInfo *TLI,
3481 InstCombineWorklist &ICWorklist) {
3482 bool MadeIRChange = false;
3484 // Do a depth-first traversal of the function, populate the worklist with
3485 // the reachable instructions. Ignore blocks that are not reachable. Keep
3486 // track of which blocks we visit.
3487 SmallPtrSet<BasicBlock *, 32> Visited;
3488 MadeIRChange |=
3489 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3491 // Do a quick scan over the function. If we find any blocks that are
3492 // unreachable, remove any instructions inside of them. This prevents
3493 // the instcombine code from having to deal with some bad special cases.
3494 for (BasicBlock &BB : F) {
3495 if (Visited.count(&BB))
3496 continue;
3498 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3499 MadeIRChange |= NumDeadInstInBB > 0;
3500 NumDeadInst += NumDeadInstInBB;
3503 return MadeIRChange;
3506 static bool combineInstructionsOverFunction(
3507 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3508 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3509 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3510 ProfileSummaryInfo *PSI, bool ExpensiveCombines = true,
3511 LoopInfo *LI = nullptr) {
3512 auto &DL = F.getParent()->getDataLayout();
3513 ExpensiveCombines |= EnableExpensiveCombines;
3515 /// Builder - This is an IRBuilder that automatically inserts new
3516 /// instructions into the worklist when they are created.
3517 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3518 F.getContext(), TargetFolder(DL),
3519 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3520 Worklist.Add(I);
3521 if (match(I, m_Intrinsic<Intrinsic::assume>()))
3522 AC.registerAssumption(cast<CallInst>(I));
3523 }));
3525 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3526 // by instcombiner.
3527 bool MadeIRChange = false;
3528 if (ShouldLowerDbgDeclare)
3529 MadeIRChange = LowerDbgDeclare(F);
3531 // Iterate while there is work to do.
3532 int Iteration = 0;
3533 while (true) {
3534 ++Iteration;
3535 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3536 << F.getName() << "\n");
3538 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3540 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
3541 AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3542 IC.MaxArraySizeForCombine = MaxArraySize;
3544 if (!IC.run())
3545 break;
3548 return MadeIRChange || Iteration > 1;
3551 PreservedAnalyses InstCombinePass::run(Function &F,
3552 FunctionAnalysisManager &AM) {
3553 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3554 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3555 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3556 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3558 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3560 auto *AA = &AM.getResult<AAManager>(F);
3561 const ModuleAnalysisManager &MAM =
3562 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
3563 ProfileSummaryInfo *PSI =
3564 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3565 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3566 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3568 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3569 BFI, PSI, ExpensiveCombines, LI))
3570 // No changes, all analyses are preserved.
3571 return PreservedAnalyses::all();
3573 // Mark all the analyses that instcombine updates as preserved.
3574 PreservedAnalyses PA;
3575 PA.preserveSet<CFGAnalyses>();
3576 PA.preserve<AAManager>();
3577 PA.preserve<BasicAA>();
3578 PA.preserve<GlobalsAA>();
3579 return PA;
3582 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3583 AU.setPreservesCFG();
3584 AU.addRequired<AAResultsWrapperPass>();
3585 AU.addRequired<AssumptionCacheTracker>();
3586 AU.addRequired<TargetLibraryInfoWrapperPass>();
3587 AU.addRequired<DominatorTreeWrapperPass>();
3588 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3589 AU.addPreserved<DominatorTreeWrapperPass>();
3590 AU.addPreserved<AAResultsWrapperPass>();
3591 AU.addPreserved<BasicAAWrapperPass>();
3592 AU.addPreserved<GlobalsAAWrapperPass>();
3593 AU.addRequired<ProfileSummaryInfoWrapperPass>();
3594 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3597 bool InstructionCombiningPass::runOnFunction(Function &F) {
3598 if (skipFunction(F))
3599 return false;
3601 // Required analyses.
3602 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3603 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3604 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3605 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3606 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3608 // Optional analyses.
3609 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3610 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3611 ProfileSummaryInfo *PSI =
3612 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3613 BlockFrequencyInfo *BFI =
3614 (PSI && PSI->hasProfileSummary()) ?
3615 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3616 nullptr;
3618 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3619 BFI, PSI, ExpensiveCombines, LI);
3622 char InstructionCombiningPass::ID = 0;
3624 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3625 "Combine redundant instructions", false, false)
3626 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3627 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3628 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3629 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3630 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3631 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3632 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3633 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3634 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3635 "Combine redundant instructions", false, false)
3637 // Initialization Routines
3638 void llvm::initializeInstCombine(PassRegistry &Registry) {
3639 initializeInstructionCombiningPassPass(Registry);
3642 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3643 initializeInstructionCombiningPassPass(*unwrap(R));
3646 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3647 return new InstructionCombiningPass(ExpensiveCombines);
3650 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3651 unwrap(PM)->add(createInstructionCombiningPass());