1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DIBuilder.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LegacyPassManager.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/Use.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/IR/ValueHandle.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/CBindingWrapping.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/DebugCounter.h"
96 #include "llvm/Support/ErrorHandling.h"
97 #include "llvm/Support/KnownBits.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Transforms/InstCombine/InstCombine.h"
100 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
101 #include "llvm/Transforms/Utils/Local.h"
109 using namespace llvm
;
110 using namespace llvm::PatternMatch
;
112 #define DEBUG_TYPE "instcombine"
114 STATISTIC(NumCombined
, "Number of insts combined");
115 STATISTIC(NumConstProp
, "Number of constant folds");
116 STATISTIC(NumDeadInst
, "Number of dead inst eliminated");
117 STATISTIC(NumSunkInst
, "Number of instructions sunk");
118 STATISTIC(NumExpand
, "Number of expansions");
119 STATISTIC(NumFactor
, "Number of factorizations");
120 STATISTIC(NumReassoc
, "Number of reassociations");
121 DEBUG_COUNTER(VisitCounter
, "instcombine-visit",
122 "Controls which instructions are visited");
125 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
129 EnableExpensiveCombines("expensive-combines",
130 cl::desc("Enable expensive instruction combines"));
132 static cl::opt
<unsigned>
133 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
134 cl::desc("Maximum array size considered when doing a combine"));
136 // FIXME: Remove this flag when it is no longer necessary to convert
137 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
138 // increases variable availability at the cost of accuracy. Variables that
139 // cannot be promoted by mem2reg or SROA will be described as living in memory
140 // for their entire lifetime. However, passes like DSE and instcombine can
141 // delete stores to the alloca, leading to misleading and inaccurate debug
142 // information. This flag can be removed when those passes are fixed.
143 static cl::opt
<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
144 cl::Hidden
, cl::init(true));
146 Value
*InstCombiner::EmitGEPOffset(User
*GEP
) {
147 return llvm::EmitGEPOffset(&Builder
, DL
, GEP
);
150 /// Return true if it is desirable to convert an integer computation from a
151 /// given bit width to a new bit width.
152 /// We don't want to convert from a legal to an illegal type or from a smaller
153 /// to a larger illegal type. A width of '1' is always treated as a legal type
154 /// because i1 is a fundamental type in IR, and there are many specialized
155 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
156 /// legal to convert to, in order to open up more combining opportunities.
157 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
158 /// from frontend languages.
159 bool InstCombiner::shouldChangeType(unsigned FromWidth
,
160 unsigned ToWidth
) const {
161 bool FromLegal
= FromWidth
== 1 || DL
.isLegalInteger(FromWidth
);
162 bool ToLegal
= ToWidth
== 1 || DL
.isLegalInteger(ToWidth
);
164 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
165 // shrink types, to prevent infinite loops.
166 if (ToWidth
< FromWidth
&& (ToWidth
== 8 || ToWidth
== 16 || ToWidth
== 32))
169 // If this is a legal integer from type, and the result would be an illegal
170 // type, don't do the transformation.
171 if (FromLegal
&& !ToLegal
)
174 // Otherwise, if both are illegal, do not increase the size of the result. We
175 // do allow things like i160 -> i64, but not i64 -> i160.
176 if (!FromLegal
&& !ToLegal
&& ToWidth
> FromWidth
)
182 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
183 /// We don't want to convert from a legal to an illegal type or from a smaller
184 /// to a larger illegal type. i1 is always treated as a legal type because it is
185 /// a fundamental type in IR, and there are many specialized optimizations for
187 bool InstCombiner::shouldChangeType(Type
*From
, Type
*To
) const {
188 // TODO: This could be extended to allow vectors. Datalayout changes might be
189 // needed to properly support that.
190 if (!From
->isIntegerTy() || !To
->isIntegerTy())
193 unsigned FromWidth
= From
->getPrimitiveSizeInBits();
194 unsigned ToWidth
= To
->getPrimitiveSizeInBits();
195 return shouldChangeType(FromWidth
, ToWidth
);
198 // Return true, if No Signed Wrap should be maintained for I.
199 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
200 // where both B and C should be ConstantInts, results in a constant that does
201 // not overflow. This function only handles the Add and Sub opcodes. For
202 // all other opcodes, the function conservatively returns false.
203 static bool maintainNoSignedWrap(BinaryOperator
&I
, Value
*B
, Value
*C
) {
204 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
205 if (!OBO
|| !OBO
->hasNoSignedWrap())
208 // We reason about Add and Sub Only.
209 Instruction::BinaryOps Opcode
= I
.getOpcode();
210 if (Opcode
!= Instruction::Add
&& Opcode
!= Instruction::Sub
)
213 const APInt
*BVal
, *CVal
;
214 if (!match(B
, m_APInt(BVal
)) || !match(C
, m_APInt(CVal
)))
217 bool Overflow
= false;
218 if (Opcode
== Instruction::Add
)
219 (void)BVal
->sadd_ov(*CVal
, Overflow
);
221 (void)BVal
->ssub_ov(*CVal
, Overflow
);
226 static bool hasNoUnsignedWrap(BinaryOperator
&I
) {
227 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
228 return OBO
&& OBO
->hasNoUnsignedWrap();
231 static bool hasNoSignedWrap(BinaryOperator
&I
) {
232 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
233 return OBO
&& OBO
->hasNoSignedWrap();
236 /// Conservatively clears subclassOptionalData after a reassociation or
237 /// commutation. We preserve fast-math flags when applicable as they can be
239 static void ClearSubclassDataAfterReassociation(BinaryOperator
&I
) {
240 FPMathOperator
*FPMO
= dyn_cast
<FPMathOperator
>(&I
);
242 I
.clearSubclassOptionalData();
246 FastMathFlags FMF
= I
.getFastMathFlags();
247 I
.clearSubclassOptionalData();
248 I
.setFastMathFlags(FMF
);
251 /// Combine constant operands of associative operations either before or after a
252 /// cast to eliminate one of the associative operations:
253 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
254 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
255 static bool simplifyAssocCastAssoc(BinaryOperator
*BinOp1
) {
256 auto *Cast
= dyn_cast
<CastInst
>(BinOp1
->getOperand(0));
257 if (!Cast
|| !Cast
->hasOneUse())
260 // TODO: Enhance logic for other casts and remove this check.
261 auto CastOpcode
= Cast
->getOpcode();
262 if (CastOpcode
!= Instruction::ZExt
)
265 // TODO: Enhance logic for other BinOps and remove this check.
266 if (!BinOp1
->isBitwiseLogicOp())
269 auto AssocOpcode
= BinOp1
->getOpcode();
270 auto *BinOp2
= dyn_cast
<BinaryOperator
>(Cast
->getOperand(0));
271 if (!BinOp2
|| !BinOp2
->hasOneUse() || BinOp2
->getOpcode() != AssocOpcode
)
275 if (!match(BinOp1
->getOperand(1), m_Constant(C1
)) ||
276 !match(BinOp2
->getOperand(1), m_Constant(C2
)))
279 // TODO: This assumes a zext cast.
280 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
281 // to the destination type might lose bits.
283 // Fold the constants together in the destination type:
284 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
285 Type
*DestTy
= C1
->getType();
286 Constant
*CastC2
= ConstantExpr::getCast(CastOpcode
, C2
, DestTy
);
287 Constant
*FoldedC
= ConstantExpr::get(AssocOpcode
, C1
, CastC2
);
288 Cast
->setOperand(0, BinOp2
->getOperand(0));
289 BinOp1
->setOperand(1, FoldedC
);
293 /// This performs a few simplifications for operators that are associative or
296 /// Commutative operators:
298 /// 1. Order operands such that they are listed from right (least complex) to
299 /// left (most complex). This puts constants before unary operators before
300 /// binary operators.
302 /// Associative operators:
304 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
305 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
307 /// Associative and commutative operators:
309 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
310 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
311 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
312 /// if C1 and C2 are constants.
313 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator
&I
) {
314 Instruction::BinaryOps Opcode
= I
.getOpcode();
315 bool Changed
= false;
318 // Order operands such that they are listed from right (least complex) to
319 // left (most complex). This puts constants before unary operators before
321 if (I
.isCommutative() && getComplexity(I
.getOperand(0)) <
322 getComplexity(I
.getOperand(1)))
323 Changed
= !I
.swapOperands();
325 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(I
.getOperand(0));
326 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(I
.getOperand(1));
328 if (I
.isAssociative()) {
329 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
330 if (Op0
&& Op0
->getOpcode() == Opcode
) {
331 Value
*A
= Op0
->getOperand(0);
332 Value
*B
= Op0
->getOperand(1);
333 Value
*C
= I
.getOperand(1);
335 // Does "B op C" simplify?
336 if (Value
*V
= SimplifyBinOp(Opcode
, B
, C
, SQ
.getWithInstruction(&I
))) {
337 // It simplifies to V. Form "A op V".
340 bool IsNUW
= hasNoUnsignedWrap(I
) && hasNoUnsignedWrap(*Op0
);
341 bool IsNSW
= maintainNoSignedWrap(I
, B
, C
) && hasNoSignedWrap(*Op0
);
343 // Conservatively clear all optional flags since they may not be
344 // preserved by the reassociation. Reset nsw/nuw based on the above
346 ClearSubclassDataAfterReassociation(I
);
348 // Note: this is only valid because SimplifyBinOp doesn't look at
349 // the operands to Op0.
351 I
.setHasNoUnsignedWrap(true);
354 I
.setHasNoSignedWrap(true);
362 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
363 if (Op1
&& Op1
->getOpcode() == Opcode
) {
364 Value
*A
= I
.getOperand(0);
365 Value
*B
= Op1
->getOperand(0);
366 Value
*C
= Op1
->getOperand(1);
368 // Does "A op B" simplify?
369 if (Value
*V
= SimplifyBinOp(Opcode
, A
, B
, SQ
.getWithInstruction(&I
))) {
370 // It simplifies to V. Form "V op C".
373 // Conservatively clear the optional flags, since they may not be
374 // preserved by the reassociation.
375 ClearSubclassDataAfterReassociation(I
);
383 if (I
.isAssociative() && I
.isCommutative()) {
384 if (simplifyAssocCastAssoc(&I
)) {
390 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
391 if (Op0
&& Op0
->getOpcode() == Opcode
) {
392 Value
*A
= Op0
->getOperand(0);
393 Value
*B
= Op0
->getOperand(1);
394 Value
*C
= I
.getOperand(1);
396 // Does "C op A" simplify?
397 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
398 // It simplifies to V. Form "V op B".
401 // Conservatively clear the optional flags, since they may not be
402 // preserved by the reassociation.
403 ClearSubclassDataAfterReassociation(I
);
410 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
411 if (Op1
&& Op1
->getOpcode() == Opcode
) {
412 Value
*A
= I
.getOperand(0);
413 Value
*B
= Op1
->getOperand(0);
414 Value
*C
= Op1
->getOperand(1);
416 // Does "C op A" simplify?
417 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
418 // It simplifies to V. Form "B op V".
421 // Conservatively clear the optional flags, since they may not be
422 // preserved by the reassociation.
423 ClearSubclassDataAfterReassociation(I
);
430 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
431 // if C1 and C2 are constants.
435 Op0
->getOpcode() == Opcode
&& Op1
->getOpcode() == Opcode
&&
436 match(Op0
, m_OneUse(m_BinOp(m_Value(A
), m_Constant(C1
)))) &&
437 match(Op1
, m_OneUse(m_BinOp(m_Value(B
), m_Constant(C2
))))) {
438 bool IsNUW
= hasNoUnsignedWrap(I
) &&
439 hasNoUnsignedWrap(*Op0
) &&
440 hasNoUnsignedWrap(*Op1
);
441 BinaryOperator
*NewBO
= (IsNUW
&& Opcode
== Instruction::Add
) ?
442 BinaryOperator::CreateNUW(Opcode
, A
, B
) :
443 BinaryOperator::Create(Opcode
, A
, B
);
445 if (isa
<FPMathOperator
>(NewBO
)) {
446 FastMathFlags Flags
= I
.getFastMathFlags();
447 Flags
&= Op0
->getFastMathFlags();
448 Flags
&= Op1
->getFastMathFlags();
449 NewBO
->setFastMathFlags(Flags
);
451 InsertNewInstWith(NewBO
, I
);
452 NewBO
->takeName(Op1
);
453 I
.setOperand(0, NewBO
);
454 I
.setOperand(1, ConstantExpr::get(Opcode
, C1
, C2
));
455 // Conservatively clear the optional flags, since they may not be
456 // preserved by the reassociation.
457 ClearSubclassDataAfterReassociation(I
);
459 I
.setHasNoUnsignedWrap(true);
466 // No further simplifications.
471 /// Return whether "X LOp (Y ROp Z)" is always equal to
472 /// "(X LOp Y) ROp (X LOp Z)".
473 static bool leftDistributesOverRight(Instruction::BinaryOps LOp
,
474 Instruction::BinaryOps ROp
) {
475 // X & (Y | Z) <--> (X & Y) | (X & Z)
476 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
477 if (LOp
== Instruction::And
)
478 return ROp
== Instruction::Or
|| ROp
== Instruction::Xor
;
480 // X | (Y & Z) <--> (X | Y) & (X | Z)
481 if (LOp
== Instruction::Or
)
482 return ROp
== Instruction::And
;
484 // X * (Y + Z) <--> (X * Y) + (X * Z)
485 // X * (Y - Z) <--> (X * Y) - (X * Z)
486 if (LOp
== Instruction::Mul
)
487 return ROp
== Instruction::Add
|| ROp
== Instruction::Sub
;
492 /// Return whether "(X LOp Y) ROp Z" is always equal to
493 /// "(X ROp Z) LOp (Y ROp Z)".
494 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp
,
495 Instruction::BinaryOps ROp
) {
496 if (Instruction::isCommutative(ROp
))
497 return leftDistributesOverRight(ROp
, LOp
);
499 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
500 return Instruction::isBitwiseLogicOp(LOp
) && Instruction::isShift(ROp
);
502 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
503 // but this requires knowing that the addition does not overflow and other
507 /// This function returns identity value for given opcode, which can be used to
508 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
509 static Value
*getIdentityValue(Instruction::BinaryOps Opcode
, Value
*V
) {
510 if (isa
<Constant
>(V
))
513 return ConstantExpr::getBinOpIdentity(Opcode
, V
->getType());
516 /// This function predicates factorization using distributive laws. By default,
517 /// it just returns the 'Op' inputs. But for special-cases like
518 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
519 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
520 /// allow more factorization opportunities.
521 static Instruction::BinaryOps
522 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode
, BinaryOperator
*Op
,
523 Value
*&LHS
, Value
*&RHS
) {
524 assert(Op
&& "Expected a binary operator");
525 LHS
= Op
->getOperand(0);
526 RHS
= Op
->getOperand(1);
527 if (TopOpcode
== Instruction::Add
|| TopOpcode
== Instruction::Sub
) {
529 if (match(Op
, m_Shl(m_Value(), m_Constant(C
)))) {
530 // X << C --> X * (1 << C)
531 RHS
= ConstantExpr::getShl(ConstantInt::get(Op
->getType(), 1), C
);
532 return Instruction::Mul
;
534 // TODO: We can add other conversions e.g. shr => div etc.
536 return Op
->getOpcode();
539 /// This tries to simplify binary operations by factorizing out common terms
540 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
541 Value
*InstCombiner::tryFactorization(BinaryOperator
&I
,
542 Instruction::BinaryOps InnerOpcode
,
543 Value
*A
, Value
*B
, Value
*C
, Value
*D
) {
544 assert(A
&& B
&& C
&& D
&& "All values must be provided");
547 Value
*SimplifiedInst
= nullptr;
548 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
549 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
551 // Does "X op' Y" always equal "Y op' X"?
552 bool InnerCommutative
= Instruction::isCommutative(InnerOpcode
);
554 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
555 if (leftDistributesOverRight(InnerOpcode
, TopLevelOpcode
))
556 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
557 // commutative case, "(A op' B) op (C op' A)"?
558 if (A
== C
|| (InnerCommutative
&& A
== D
)) {
561 // Consider forming "A op' (B op D)".
562 // If "B op D" simplifies then it can be formed with no cost.
563 V
= SimplifyBinOp(TopLevelOpcode
, B
, D
, SQ
.getWithInstruction(&I
));
564 // If "B op D" doesn't simplify then only go on if both of the existing
565 // operations "A op' B" and "C op' D" will be zapped as no longer used.
566 if (!V
&& LHS
->hasOneUse() && RHS
->hasOneUse())
567 V
= Builder
.CreateBinOp(TopLevelOpcode
, B
, D
, RHS
->getName());
569 SimplifiedInst
= Builder
.CreateBinOp(InnerOpcode
, A
, V
);
573 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
574 if (!SimplifiedInst
&& rightDistributesOverLeft(TopLevelOpcode
, InnerOpcode
))
575 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
576 // commutative case, "(A op' B) op (B op' D)"?
577 if (B
== D
|| (InnerCommutative
&& B
== C
)) {
580 // Consider forming "(A op C) op' B".
581 // If "A op C" simplifies then it can be formed with no cost.
582 V
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
584 // If "A op C" doesn't simplify then only go on if both of the existing
585 // operations "A op' B" and "C op' D" will be zapped as no longer used.
586 if (!V
&& LHS
->hasOneUse() && RHS
->hasOneUse())
587 V
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
, LHS
->getName());
589 SimplifiedInst
= Builder
.CreateBinOp(InnerOpcode
, V
, B
);
593 if (SimplifiedInst
) {
595 SimplifiedInst
->takeName(&I
);
597 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
598 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(SimplifiedInst
)) {
599 if (isa
<OverflowingBinaryOperator
>(SimplifiedInst
)) {
602 if (isa
<OverflowingBinaryOperator
>(&I
)) {
603 HasNSW
= I
.hasNoSignedWrap();
604 HasNUW
= I
.hasNoUnsignedWrap();
607 if (auto *LOBO
= dyn_cast
<OverflowingBinaryOperator
>(LHS
)) {
608 HasNSW
&= LOBO
->hasNoSignedWrap();
609 HasNUW
&= LOBO
->hasNoUnsignedWrap();
612 if (auto *ROBO
= dyn_cast
<OverflowingBinaryOperator
>(RHS
)) {
613 HasNSW
&= ROBO
->hasNoSignedWrap();
614 HasNUW
&= ROBO
->hasNoUnsignedWrap();
617 if (TopLevelOpcode
== Instruction::Add
&&
618 InnerOpcode
== Instruction::Mul
) {
619 // We can propagate 'nsw' if we know that
620 // %Y = mul nsw i16 %X, C
621 // %Z = add nsw i16 %Y, %X
623 // %Z = mul nsw i16 %X, C+1
625 // iff C+1 isn't INT_MIN
627 if (match(V
, m_APInt(CInt
))) {
628 if (!CInt
->isMinSignedValue())
629 BO
->setHasNoSignedWrap(HasNSW
);
632 // nuw can be propagated with any constant or nuw value.
633 BO
->setHasNoUnsignedWrap(HasNUW
);
638 return SimplifiedInst
;
641 /// This tries to simplify binary operations which some other binary operation
642 /// distributes over either by factorizing out common terms
643 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
644 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
645 /// Returns the simplified value, or null if it didn't simplify.
646 Value
*InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator
&I
) {
647 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
648 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
649 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
650 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
654 Value
*A
, *B
, *C
, *D
;
655 Instruction::BinaryOps LHSOpcode
, RHSOpcode
;
657 LHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op0
, A
, B
);
659 RHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op1
, C
, D
);
661 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
663 if (Op0
&& Op1
&& LHSOpcode
== RHSOpcode
)
664 if (Value
*V
= tryFactorization(I
, LHSOpcode
, A
, B
, C
, D
))
667 // The instruction has the form "(A op' B) op (C)". Try to factorize common
670 if (Value
*Ident
= getIdentityValue(LHSOpcode
, RHS
))
671 if (Value
*V
= tryFactorization(I
, LHSOpcode
, A
, B
, RHS
, Ident
))
674 // The instruction has the form "(B) op (C op' D)". Try to factorize common
677 if (Value
*Ident
= getIdentityValue(RHSOpcode
, LHS
))
678 if (Value
*V
= tryFactorization(I
, RHSOpcode
, LHS
, Ident
, C
, D
))
683 if (Op0
&& rightDistributesOverLeft(Op0
->getOpcode(), TopLevelOpcode
)) {
684 // The instruction has the form "(A op' B) op C". See if expanding it out
685 // to "(A op C) op' (B op C)" results in simplifications.
686 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
687 Instruction::BinaryOps InnerOpcode
= Op0
->getOpcode(); // op'
689 Value
*L
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
690 Value
*R
= SimplifyBinOp(TopLevelOpcode
, B
, C
, SQ
.getWithInstruction(&I
));
692 // Do "A op C" and "B op C" both simplify?
694 // They do! Return "L op' R".
696 C
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
701 // Does "A op C" simplify to the identity value for the inner opcode?
702 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
703 // They do! Return "B op C".
705 C
= Builder
.CreateBinOp(TopLevelOpcode
, B
, C
);
710 // Does "B op C" simplify to the identity value for the inner opcode?
711 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
712 // They do! Return "A op C".
714 C
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
720 if (Op1
&& leftDistributesOverRight(TopLevelOpcode
, Op1
->getOpcode())) {
721 // The instruction has the form "A op (B op' C)". See if expanding it out
722 // to "(A op B) op' (A op C)" results in simplifications.
723 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
724 Instruction::BinaryOps InnerOpcode
= Op1
->getOpcode(); // op'
726 Value
*L
= SimplifyBinOp(TopLevelOpcode
, A
, B
, SQ
.getWithInstruction(&I
));
727 Value
*R
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
729 // Do "A op B" and "A op C" both simplify?
731 // They do! Return "L op' R".
733 A
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
738 // Does "A op B" simplify to the identity value for the inner opcode?
739 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
740 // They do! Return "A op C".
742 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
747 // Does "A op C" simplify to the identity value for the inner opcode?
748 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
749 // They do! Return "A op B".
751 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, B
);
757 return SimplifySelectsFeedingBinaryOp(I
, LHS
, RHS
);
760 Value
*InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator
&I
,
761 Value
*LHS
, Value
*RHS
) {
762 Instruction::BinaryOps Opcode
= I
.getOpcode();
763 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
765 Value
*A
, *B
, *C
, *D
, *E
;
767 if (match(LHS
, m_Select(m_Value(A
), m_Value(B
), m_Value(C
))) &&
768 match(RHS
, m_Select(m_Specific(A
), m_Value(D
), m_Value(E
)))) {
769 bool SelectsHaveOneUse
= LHS
->hasOneUse() && RHS
->hasOneUse();
772 BuilderTy::FastMathFlagGuard
Guard(Builder
);
773 if (isa
<FPMathOperator
>(&I
)) {
774 FMF
= I
.getFastMathFlags();
775 Builder
.setFastMathFlags(FMF
);
778 Value
*V1
= SimplifyBinOp(Opcode
, C
, E
, FMF
, SQ
.getWithInstruction(&I
));
779 Value
*V2
= SimplifyBinOp(Opcode
, B
, D
, FMF
, SQ
.getWithInstruction(&I
));
781 SI
= Builder
.CreateSelect(A
, V2
, V1
);
782 else if (V2
&& SelectsHaveOneUse
)
783 SI
= Builder
.CreateSelect(A
, V2
, Builder
.CreateBinOp(Opcode
, C
, E
));
784 else if (V1
&& SelectsHaveOneUse
)
785 SI
= Builder
.CreateSelect(A
, Builder
.CreateBinOp(Opcode
, B
, D
), V1
);
794 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
795 /// constant zero (which is the 'negate' form).
796 Value
*InstCombiner::dyn_castNegVal(Value
*V
) const {
798 if (match(V
, m_Neg(m_Value(NegV
))))
801 // Constants can be considered to be negated values if they can be folded.
802 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
803 return ConstantExpr::getNeg(C
);
805 if (ConstantDataVector
*C
= dyn_cast
<ConstantDataVector
>(V
))
806 if (C
->getType()->getElementType()->isIntegerTy())
807 return ConstantExpr::getNeg(C
);
809 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
810 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
811 Constant
*Elt
= CV
->getAggregateElement(i
);
815 if (isa
<UndefValue
>(Elt
))
818 if (!isa
<ConstantInt
>(Elt
))
821 return ConstantExpr::getNeg(CV
);
827 static Value
*foldOperationIntoSelectOperand(Instruction
&I
, Value
*SO
,
828 InstCombiner::BuilderTy
&Builder
) {
829 if (auto *Cast
= dyn_cast
<CastInst
>(&I
))
830 return Builder
.CreateCast(Cast
->getOpcode(), SO
, I
.getType());
832 assert(I
.isBinaryOp() && "Unexpected opcode for select folding");
834 // Figure out if the constant is the left or the right argument.
835 bool ConstIsRHS
= isa
<Constant
>(I
.getOperand(1));
836 Constant
*ConstOperand
= cast
<Constant
>(I
.getOperand(ConstIsRHS
));
838 if (auto *SOC
= dyn_cast
<Constant
>(SO
)) {
840 return ConstantExpr::get(I
.getOpcode(), SOC
, ConstOperand
);
841 return ConstantExpr::get(I
.getOpcode(), ConstOperand
, SOC
);
844 Value
*Op0
= SO
, *Op1
= ConstOperand
;
848 auto *BO
= cast
<BinaryOperator
>(&I
);
849 Value
*RI
= Builder
.CreateBinOp(BO
->getOpcode(), Op0
, Op1
,
850 SO
->getName() + ".op");
851 auto *FPInst
= dyn_cast
<Instruction
>(RI
);
852 if (FPInst
&& isa
<FPMathOperator
>(FPInst
))
853 FPInst
->copyFastMathFlags(BO
);
857 Instruction
*InstCombiner::FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
) {
858 // Don't modify shared select instructions.
859 if (!SI
->hasOneUse())
862 Value
*TV
= SI
->getTrueValue();
863 Value
*FV
= SI
->getFalseValue();
864 if (!(isa
<Constant
>(TV
) || isa
<Constant
>(FV
)))
867 // Bool selects with constant operands can be folded to logical ops.
868 if (SI
->getType()->isIntOrIntVectorTy(1))
871 // If it's a bitcast involving vectors, make sure it has the same number of
872 // elements on both sides.
873 if (auto *BC
= dyn_cast
<BitCastInst
>(&Op
)) {
874 VectorType
*DestTy
= dyn_cast
<VectorType
>(BC
->getDestTy());
875 VectorType
*SrcTy
= dyn_cast
<VectorType
>(BC
->getSrcTy());
877 // Verify that either both or neither are vectors.
878 if ((SrcTy
== nullptr) != (DestTy
== nullptr))
881 // If vectors, verify that they have the same number of elements.
882 if (SrcTy
&& SrcTy
->getNumElements() != DestTy
->getNumElements())
886 // Test if a CmpInst instruction is used exclusively by a select as
887 // part of a minimum or maximum operation. If so, refrain from doing
888 // any other folding. This helps out other analyses which understand
889 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
890 // and CodeGen. And in this case, at least one of the comparison
891 // operands has at least one user besides the compare (the select),
892 // which would often largely negate the benefit of folding anyway.
893 if (auto *CI
= dyn_cast
<CmpInst
>(SI
->getCondition())) {
894 if (CI
->hasOneUse()) {
895 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
896 if ((SI
->getOperand(1) == Op0
&& SI
->getOperand(2) == Op1
) ||
897 (SI
->getOperand(2) == Op0
&& SI
->getOperand(1) == Op1
))
902 Value
*NewTV
= foldOperationIntoSelectOperand(Op
, TV
, Builder
);
903 Value
*NewFV
= foldOperationIntoSelectOperand(Op
, FV
, Builder
);
904 return SelectInst::Create(SI
->getCondition(), NewTV
, NewFV
, "", nullptr, SI
);
907 static Value
*foldOperationIntoPhiValue(BinaryOperator
*I
, Value
*InV
,
908 InstCombiner::BuilderTy
&Builder
) {
909 bool ConstIsRHS
= isa
<Constant
>(I
->getOperand(1));
910 Constant
*C
= cast
<Constant
>(I
->getOperand(ConstIsRHS
));
912 if (auto *InC
= dyn_cast
<Constant
>(InV
)) {
914 return ConstantExpr::get(I
->getOpcode(), InC
, C
);
915 return ConstantExpr::get(I
->getOpcode(), C
, InC
);
918 Value
*Op0
= InV
, *Op1
= C
;
922 Value
*RI
= Builder
.CreateBinOp(I
->getOpcode(), Op0
, Op1
, "phitmp");
923 auto *FPInst
= dyn_cast
<Instruction
>(RI
);
924 if (FPInst
&& isa
<FPMathOperator
>(FPInst
))
925 FPInst
->copyFastMathFlags(I
);
929 Instruction
*InstCombiner::foldOpIntoPhi(Instruction
&I
, PHINode
*PN
) {
930 unsigned NumPHIValues
= PN
->getNumIncomingValues();
931 if (NumPHIValues
== 0)
934 // We normally only transform phis with a single use. However, if a PHI has
935 // multiple uses and they are all the same operation, we can fold *all* of the
936 // uses into the PHI.
937 if (!PN
->hasOneUse()) {
938 // Walk the use list for the instruction, comparing them to I.
939 for (User
*U
: PN
->users()) {
940 Instruction
*UI
= cast
<Instruction
>(U
);
941 if (UI
!= &I
&& !I
.isIdenticalTo(UI
))
944 // Otherwise, we can replace *all* users with the new PHI we form.
947 // Check to see if all of the operands of the PHI are simple constants
948 // (constantint/constantfp/undef). If there is one non-constant value,
949 // remember the BB it is in. If there is more than one or if *it* is a PHI,
950 // bail out. We don't do arbitrary constant expressions here because moving
951 // their computation can be expensive without a cost model.
952 BasicBlock
*NonConstBB
= nullptr;
953 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
954 Value
*InVal
= PN
->getIncomingValue(i
);
955 if (isa
<Constant
>(InVal
) && !isa
<ConstantExpr
>(InVal
))
958 if (isa
<PHINode
>(InVal
)) return nullptr; // Itself a phi.
959 if (NonConstBB
) return nullptr; // More than one non-const value.
961 NonConstBB
= PN
->getIncomingBlock(i
);
963 // If the InVal is an invoke at the end of the pred block, then we can't
964 // insert a computation after it without breaking the edge.
965 if (isa
<InvokeInst
>(InVal
))
966 if (cast
<Instruction
>(InVal
)->getParent() == NonConstBB
)
969 // If the incoming non-constant value is in I's block, we will remove one
970 // instruction, but insert another equivalent one, leading to infinite
972 if (isPotentiallyReachable(I
.getParent(), NonConstBB
, &DT
, LI
))
976 // If there is exactly one non-constant value, we can insert a copy of the
977 // operation in that block. However, if this is a critical edge, we would be
978 // inserting the computation on some other paths (e.g. inside a loop). Only
979 // do this if the pred block is unconditionally branching into the phi block.
980 if (NonConstBB
!= nullptr) {
981 BranchInst
*BI
= dyn_cast
<BranchInst
>(NonConstBB
->getTerminator());
982 if (!BI
|| !BI
->isUnconditional()) return nullptr;
985 // Okay, we can do the transformation: create the new PHI node.
986 PHINode
*NewPN
= PHINode::Create(I
.getType(), PN
->getNumIncomingValues());
987 InsertNewInstBefore(NewPN
, *PN
);
990 // If we are going to have to insert a new computation, do so right before the
991 // predecessor's terminator.
993 Builder
.SetInsertPoint(NonConstBB
->getTerminator());
995 // Next, add all of the operands to the PHI.
996 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(&I
)) {
997 // We only currently try to fold the condition of a select when it is a phi,
998 // not the true/false values.
999 Value
*TrueV
= SI
->getTrueValue();
1000 Value
*FalseV
= SI
->getFalseValue();
1001 BasicBlock
*PhiTransBB
= PN
->getParent();
1002 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1003 BasicBlock
*ThisBB
= PN
->getIncomingBlock(i
);
1004 Value
*TrueVInPred
= TrueV
->DoPHITranslation(PhiTransBB
, ThisBB
);
1005 Value
*FalseVInPred
= FalseV
->DoPHITranslation(PhiTransBB
, ThisBB
);
1006 Value
*InV
= nullptr;
1007 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1008 // even if currently isNullValue gives false.
1009 Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
1010 // For vector constants, we cannot use isNullValue to fold into
1011 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1012 // elements in the vector, we will incorrectly fold InC to
1014 if (InC
&& !isa
<ConstantExpr
>(InC
) && isa
<ConstantInt
>(InC
))
1015 InV
= InC
->isNullValue() ? FalseVInPred
: TrueVInPred
;
1017 // Generate the select in the same block as PN's current incoming block.
1018 // Note: ThisBB need not be the NonConstBB because vector constants
1019 // which are constants by definition are handled here.
1020 // FIXME: This can lead to an increase in IR generation because we might
1021 // generate selects for vector constant phi operand, that could not be
1022 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1023 // non-vector phis, this transformation was always profitable because
1024 // the select would be generated exactly once in the NonConstBB.
1025 Builder
.SetInsertPoint(ThisBB
->getTerminator());
1026 InV
= Builder
.CreateSelect(PN
->getIncomingValue(i
), TrueVInPred
,
1027 FalseVInPred
, "phitmp");
1029 NewPN
->addIncoming(InV
, ThisBB
);
1031 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
)) {
1032 Constant
*C
= cast
<Constant
>(I
.getOperand(1));
1033 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1034 Value
*InV
= nullptr;
1035 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
)))
1036 InV
= ConstantExpr::getCompare(CI
->getPredicate(), InC
, C
);
1037 else if (isa
<ICmpInst
>(CI
))
1038 InV
= Builder
.CreateICmp(CI
->getPredicate(), PN
->getIncomingValue(i
),
1041 InV
= Builder
.CreateFCmp(CI
->getPredicate(), PN
->getIncomingValue(i
),
1043 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1045 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(&I
)) {
1046 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1047 Value
*InV
= foldOperationIntoPhiValue(BO
, PN
->getIncomingValue(i
),
1049 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1052 CastInst
*CI
= cast
<CastInst
>(&I
);
1053 Type
*RetTy
= CI
->getType();
1054 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1056 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
)))
1057 InV
= ConstantExpr::getCast(CI
->getOpcode(), InC
, RetTy
);
1059 InV
= Builder
.CreateCast(CI
->getOpcode(), PN
->getIncomingValue(i
),
1060 I
.getType(), "phitmp");
1061 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1065 for (auto UI
= PN
->user_begin(), E
= PN
->user_end(); UI
!= E
;) {
1066 Instruction
*User
= cast
<Instruction
>(*UI
++);
1067 if (User
== &I
) continue;
1068 replaceInstUsesWith(*User
, NewPN
);
1069 eraseInstFromFunction(*User
);
1071 return replaceInstUsesWith(I
, NewPN
);
1074 Instruction
*InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator
&I
) {
1075 if (!isa
<Constant
>(I
.getOperand(1)))
1078 if (auto *Sel
= dyn_cast
<SelectInst
>(I
.getOperand(0))) {
1079 if (Instruction
*NewSel
= FoldOpIntoSelect(I
, Sel
))
1081 } else if (auto *PN
= dyn_cast
<PHINode
>(I
.getOperand(0))) {
1082 if (Instruction
*NewPhi
= foldOpIntoPhi(I
, PN
))
1088 /// Given a pointer type and a constant offset, determine whether or not there
1089 /// is a sequence of GEP indices into the pointed type that will land us at the
1090 /// specified offset. If so, fill them into NewIndices and return the resultant
1091 /// element type, otherwise return null.
1092 Type
*InstCombiner::FindElementAtOffset(PointerType
*PtrTy
, int64_t Offset
,
1093 SmallVectorImpl
<Value
*> &NewIndices
) {
1094 Type
*Ty
= PtrTy
->getElementType();
1098 // Start with the index over the outer type. Note that the type size
1099 // might be zero (even if the offset isn't zero) if the indexed type
1100 // is something like [0 x {int, int}]
1101 Type
*IndexTy
= DL
.getIndexType(PtrTy
);
1102 int64_t FirstIdx
= 0;
1103 if (int64_t TySize
= DL
.getTypeAllocSize(Ty
)) {
1104 FirstIdx
= Offset
/TySize
;
1105 Offset
-= FirstIdx
*TySize
;
1107 // Handle hosts where % returns negative instead of values [0..TySize).
1111 assert(Offset
>= 0);
1113 assert((uint64_t)Offset
< (uint64_t)TySize
&& "Out of range offset");
1116 NewIndices
.push_back(ConstantInt::get(IndexTy
, FirstIdx
));
1118 // Index into the types. If we fail, set OrigBase to null.
1120 // Indexing into tail padding between struct/array elements.
1121 if (uint64_t(Offset
* 8) >= DL
.getTypeSizeInBits(Ty
))
1124 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1125 const StructLayout
*SL
= DL
.getStructLayout(STy
);
1126 assert(Offset
< (int64_t)SL
->getSizeInBytes() &&
1127 "Offset must stay within the indexed type");
1129 unsigned Elt
= SL
->getElementContainingOffset(Offset
);
1130 NewIndices
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
1133 Offset
-= SL
->getElementOffset(Elt
);
1134 Ty
= STy
->getElementType(Elt
);
1135 } else if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Ty
)) {
1136 uint64_t EltSize
= DL
.getTypeAllocSize(AT
->getElementType());
1137 assert(EltSize
&& "Cannot index into a zero-sized array");
1138 NewIndices
.push_back(ConstantInt::get(IndexTy
,Offset
/EltSize
));
1140 Ty
= AT
->getElementType();
1142 // Otherwise, we can't index into the middle of this atomic type, bail.
1150 static bool shouldMergeGEPs(GEPOperator
&GEP
, GEPOperator
&Src
) {
1151 // If this GEP has only 0 indices, it is the same pointer as
1152 // Src. If Src is not a trivial GEP too, don't combine
1154 if (GEP
.hasAllZeroIndices() && !Src
.hasAllZeroIndices() &&
1160 /// Return a value X such that Val = X * Scale, or null if none.
1161 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1162 Value
*InstCombiner::Descale(Value
*Val
, APInt Scale
, bool &NoSignedWrap
) {
1163 assert(isa
<IntegerType
>(Val
->getType()) && "Can only descale integers!");
1164 assert(cast
<IntegerType
>(Val
->getType())->getBitWidth() ==
1165 Scale
.getBitWidth() && "Scale not compatible with value!");
1167 // If Val is zero or Scale is one then Val = Val * Scale.
1168 if (match(Val
, m_Zero()) || Scale
== 1) {
1169 NoSignedWrap
= true;
1173 // If Scale is zero then it does not divide Val.
1174 if (Scale
.isMinValue())
1177 // Look through chains of multiplications, searching for a constant that is
1178 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1179 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1180 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1183 // Val = M1 * X || Analysis starts here and works down
1184 // M1 = M2 * Y || Doesn't descend into terms with more
1185 // M2 = Z * 4 \/ than one use
1187 // Then to modify a term at the bottom:
1190 // M1 = Z * Y || Replaced M2 with Z
1192 // Then to work back up correcting nsw flags.
1194 // Op - the term we are currently analyzing. Starts at Val then drills down.
1195 // Replaced with its descaled value before exiting from the drill down loop.
1198 // Parent - initially null, but after drilling down notes where Op came from.
1199 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1200 // 0'th operand of Val.
1201 std::pair
<Instruction
*, unsigned> Parent
;
1203 // Set if the transform requires a descaling at deeper levels that doesn't
1205 bool RequireNoSignedWrap
= false;
1207 // Log base 2 of the scale. Negative if not a power of 2.
1208 int32_t logScale
= Scale
.exactLogBase2();
1210 for (;; Op
= Parent
.first
->getOperand(Parent
.second
)) { // Drill down
1211 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
1212 // If Op is a constant divisible by Scale then descale to the quotient.
1213 APInt
Quotient(Scale
), Remainder(Scale
); // Init ensures right bitwidth.
1214 APInt::sdivrem(CI
->getValue(), Scale
, Quotient
, Remainder
);
1215 if (!Remainder
.isMinValue())
1216 // Not divisible by Scale.
1218 // Replace with the quotient in the parent.
1219 Op
= ConstantInt::get(CI
->getType(), Quotient
);
1220 NoSignedWrap
= true;
1224 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op
)) {
1225 if (BO
->getOpcode() == Instruction::Mul
) {
1227 NoSignedWrap
= BO
->hasNoSignedWrap();
1228 if (RequireNoSignedWrap
&& !NoSignedWrap
)
1231 // There are three cases for multiplication: multiplication by exactly
1232 // the scale, multiplication by a constant different to the scale, and
1233 // multiplication by something else.
1234 Value
*LHS
= BO
->getOperand(0);
1235 Value
*RHS
= BO
->getOperand(1);
1237 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
1238 // Multiplication by a constant.
1239 if (CI
->getValue() == Scale
) {
1240 // Multiplication by exactly the scale, replace the multiplication
1241 // by its left-hand side in the parent.
1246 // Otherwise drill down into the constant.
1247 if (!Op
->hasOneUse())
1250 Parent
= std::make_pair(BO
, 1);
1254 // Multiplication by something else. Drill down into the left-hand side
1255 // since that's where the reassociate pass puts the good stuff.
1256 if (!Op
->hasOneUse())
1259 Parent
= std::make_pair(BO
, 0);
1263 if (logScale
> 0 && BO
->getOpcode() == Instruction::Shl
&&
1264 isa
<ConstantInt
>(BO
->getOperand(1))) {
1265 // Multiplication by a power of 2.
1266 NoSignedWrap
= BO
->hasNoSignedWrap();
1267 if (RequireNoSignedWrap
&& !NoSignedWrap
)
1270 Value
*LHS
= BO
->getOperand(0);
1271 int32_t Amt
= cast
<ConstantInt
>(BO
->getOperand(1))->
1272 getLimitedValue(Scale
.getBitWidth());
1275 if (Amt
== logScale
) {
1276 // Multiplication by exactly the scale, replace the multiplication
1277 // by its left-hand side in the parent.
1281 if (Amt
< logScale
|| !Op
->hasOneUse())
1284 // Multiplication by more than the scale. Reduce the multiplying amount
1285 // by the scale in the parent.
1286 Parent
= std::make_pair(BO
, 1);
1287 Op
= ConstantInt::get(BO
->getType(), Amt
- logScale
);
1292 if (!Op
->hasOneUse())
1295 if (CastInst
*Cast
= dyn_cast
<CastInst
>(Op
)) {
1296 if (Cast
->getOpcode() == Instruction::SExt
) {
1297 // Op is sign-extended from a smaller type, descale in the smaller type.
1298 unsigned SmallSize
= Cast
->getSrcTy()->getPrimitiveSizeInBits();
1299 APInt SmallScale
= Scale
.trunc(SmallSize
);
1300 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1301 // descale Op as (sext Y) * Scale. In order to have
1302 // sext (Y * SmallScale) = (sext Y) * Scale
1303 // some conditions need to hold however: SmallScale must sign-extend to
1304 // Scale and the multiplication Y * SmallScale should not overflow.
1305 if (SmallScale
.sext(Scale
.getBitWidth()) != Scale
)
1306 // SmallScale does not sign-extend to Scale.
1308 assert(SmallScale
.exactLogBase2() == logScale
);
1309 // Require that Y * SmallScale must not overflow.
1310 RequireNoSignedWrap
= true;
1312 // Drill down through the cast.
1313 Parent
= std::make_pair(Cast
, 0);
1318 if (Cast
->getOpcode() == Instruction::Trunc
) {
1319 // Op is truncated from a larger type, descale in the larger type.
1320 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1321 // trunc (Y * sext Scale) = (trunc Y) * Scale
1322 // always holds. However (trunc Y) * Scale may overflow even if
1323 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1324 // from this point up in the expression (see later).
1325 if (RequireNoSignedWrap
)
1328 // Drill down through the cast.
1329 unsigned LargeSize
= Cast
->getSrcTy()->getPrimitiveSizeInBits();
1330 Parent
= std::make_pair(Cast
, 0);
1331 Scale
= Scale
.sext(LargeSize
);
1332 if (logScale
+ 1 == (int32_t)Cast
->getType()->getPrimitiveSizeInBits())
1334 assert(Scale
.exactLogBase2() == logScale
);
1339 // Unsupported expression, bail out.
1343 // If Op is zero then Val = Op * Scale.
1344 if (match(Op
, m_Zero())) {
1345 NoSignedWrap
= true;
1349 // We know that we can successfully descale, so from here on we can safely
1350 // modify the IR. Op holds the descaled version of the deepest term in the
1351 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1355 // The expression only had one term.
1358 // Rewrite the parent using the descaled version of its operand.
1359 assert(Parent
.first
->hasOneUse() && "Drilled down when more than one use!");
1360 assert(Op
!= Parent
.first
->getOperand(Parent
.second
) &&
1361 "Descaling was a no-op?");
1362 Parent
.first
->setOperand(Parent
.second
, Op
);
1363 Worklist
.Add(Parent
.first
);
1365 // Now work back up the expression correcting nsw flags. The logic is based
1366 // on the following observation: if X * Y is known not to overflow as a signed
1367 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1368 // then X * Z will not overflow as a signed multiplication either. As we work
1369 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1370 // current level has strictly smaller absolute value than the original.
1371 Instruction
*Ancestor
= Parent
.first
;
1373 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Ancestor
)) {
1374 // If the multiplication wasn't nsw then we can't say anything about the
1375 // value of the descaled multiplication, and we have to clear nsw flags
1376 // from this point on up.
1377 bool OpNoSignedWrap
= BO
->hasNoSignedWrap();
1378 NoSignedWrap
&= OpNoSignedWrap
;
1379 if (NoSignedWrap
!= OpNoSignedWrap
) {
1380 BO
->setHasNoSignedWrap(NoSignedWrap
);
1381 Worklist
.Add(Ancestor
);
1383 } else if (Ancestor
->getOpcode() == Instruction::Trunc
) {
1384 // The fact that the descaled input to the trunc has smaller absolute
1385 // value than the original input doesn't tell us anything useful about
1386 // the absolute values of the truncations.
1387 NoSignedWrap
= false;
1389 assert((Ancestor
->getOpcode() != Instruction::SExt
|| NoSignedWrap
) &&
1390 "Failed to keep proper track of nsw flags while drilling down?");
1392 if (Ancestor
== Val
)
1393 // Got to the top, all done!
1396 // Move up one level in the expression.
1397 assert(Ancestor
->hasOneUse() && "Drilled down when more than one use!");
1398 Ancestor
= Ancestor
->user_back();
1402 Instruction
*InstCombiner::foldVectorBinop(BinaryOperator
&Inst
) {
1403 if (!Inst
.getType()->isVectorTy()) return nullptr;
1405 BinaryOperator::BinaryOps Opcode
= Inst
.getOpcode();
1406 unsigned NumElts
= cast
<VectorType
>(Inst
.getType())->getNumElements();
1407 Value
*LHS
= Inst
.getOperand(0), *RHS
= Inst
.getOperand(1);
1408 assert(cast
<VectorType
>(LHS
->getType())->getNumElements() == NumElts
);
1409 assert(cast
<VectorType
>(RHS
->getType())->getNumElements() == NumElts
);
1411 // If both operands of the binop are vector concatenations, then perform the
1412 // narrow binop on each pair of the source operands followed by concatenation
1414 Value
*L0
, *L1
, *R0
, *R1
;
1416 if (match(LHS
, m_ShuffleVector(m_Value(L0
), m_Value(L1
), m_Constant(Mask
))) &&
1417 match(RHS
, m_ShuffleVector(m_Value(R0
), m_Value(R1
), m_Specific(Mask
))) &&
1418 LHS
->hasOneUse() && RHS
->hasOneUse() &&
1419 cast
<ShuffleVectorInst
>(LHS
)->isConcat() &&
1420 cast
<ShuffleVectorInst
>(RHS
)->isConcat()) {
1421 // This transform does not have the speculative execution constraint as
1422 // below because the shuffle is a concatenation. The new binops are
1423 // operating on exactly the same elements as the existing binop.
1424 // TODO: We could ease the mask requirement to allow different undef lanes,
1425 // but that requires an analysis of the binop-with-undef output value.
1426 Value
*NewBO0
= Builder
.CreateBinOp(Opcode
, L0
, R0
);
1427 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO0
))
1428 BO
->copyIRFlags(&Inst
);
1429 Value
*NewBO1
= Builder
.CreateBinOp(Opcode
, L1
, R1
);
1430 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO1
))
1431 BO
->copyIRFlags(&Inst
);
1432 return new ShuffleVectorInst(NewBO0
, NewBO1
, Mask
);
1435 // It may not be safe to reorder shuffles and things like div, urem, etc.
1436 // because we may trap when executing those ops on unknown vector elements.
1438 if (!isSafeToSpeculativelyExecute(&Inst
))
1441 auto createBinOpShuffle
= [&](Value
*X
, Value
*Y
, Constant
*M
) {
1442 Value
*XY
= Builder
.CreateBinOp(Opcode
, X
, Y
);
1443 if (auto *BO
= dyn_cast
<BinaryOperator
>(XY
))
1444 BO
->copyIRFlags(&Inst
);
1445 return new ShuffleVectorInst(XY
, UndefValue::get(XY
->getType()), M
);
1448 // If both arguments of the binary operation are shuffles that use the same
1449 // mask and shuffle within a single vector, move the shuffle after the binop.
1451 if (match(LHS
, m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(Mask
))) &&
1452 match(RHS
, m_ShuffleVector(m_Value(V2
), m_Undef(), m_Specific(Mask
))) &&
1453 V1
->getType() == V2
->getType() &&
1454 (LHS
->hasOneUse() || RHS
->hasOneUse() || LHS
== RHS
)) {
1455 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1456 return createBinOpShuffle(V1
, V2
, Mask
);
1459 // If both arguments of a commutative binop are select-shuffles that use the
1460 // same mask with commuted operands, the shuffles are unnecessary.
1461 if (Inst
.isCommutative() &&
1462 match(LHS
, m_ShuffleVector(m_Value(V1
), m_Value(V2
), m_Constant(Mask
))) &&
1463 match(RHS
, m_ShuffleVector(m_Specific(V2
), m_Specific(V1
),
1464 m_Specific(Mask
)))) {
1465 auto *LShuf
= cast
<ShuffleVectorInst
>(LHS
);
1466 auto *RShuf
= cast
<ShuffleVectorInst
>(RHS
);
1467 // TODO: Allow shuffles that contain undefs in the mask?
1468 // That is legal, but it reduces undef knowledge.
1469 // TODO: Allow arbitrary shuffles by shuffling after binop?
1470 // That might be legal, but we have to deal with poison.
1471 if (LShuf
->isSelect() && !LShuf
->getMask()->containsUndefElement() &&
1472 RShuf
->isSelect() && !RShuf
->getMask()->containsUndefElement()) {
1474 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1475 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1476 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1477 Instruction
*NewBO
= BinaryOperator::Create(Opcode
, V1
, V2
);
1478 NewBO
->copyIRFlags(&Inst
);
1483 // If one argument is a shuffle within one vector and the other is a constant,
1484 // try moving the shuffle after the binary operation. This canonicalization
1485 // intends to move shuffles closer to other shuffles and binops closer to
1486 // other binops, so they can be folded. It may also enable demanded elements
1489 if (match(&Inst
, m_c_BinOp(
1490 m_OneUse(m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(Mask
))),
1492 V1
->getType()->getVectorNumElements() <= NumElts
) {
1493 assert(Inst
.getType()->getScalarType() == V1
->getType()->getScalarType() &&
1494 "Shuffle should not change scalar type");
1496 // Find constant NewC that has property:
1497 // shuffle(NewC, ShMask) = C
1498 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1499 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1500 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1501 bool ConstOp1
= isa
<Constant
>(RHS
);
1502 SmallVector
<int, 16> ShMask
;
1503 ShuffleVectorInst::getShuffleMask(Mask
, ShMask
);
1504 unsigned SrcVecNumElts
= V1
->getType()->getVectorNumElements();
1505 UndefValue
*UndefScalar
= UndefValue::get(C
->getType()->getScalarType());
1506 SmallVector
<Constant
*, 16> NewVecC(SrcVecNumElts
, UndefScalar
);
1507 bool MayChange
= true;
1508 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1509 Constant
*CElt
= C
->getAggregateElement(I
);
1510 if (ShMask
[I
] >= 0) {
1511 assert(ShMask
[I
] < (int)NumElts
&& "Not expecting narrowing shuffle");
1512 Constant
*NewCElt
= NewVecC
[ShMask
[I
]];
1514 // 1. The constant vector contains a constant expression.
1515 // 2. The shuffle needs an element of the constant vector that can't
1516 // be mapped to a new constant vector.
1517 // 3. This is a widening shuffle that copies elements of V1 into the
1518 // extended elements (extending with undef is allowed).
1519 if (!CElt
|| (!isa
<UndefValue
>(NewCElt
) && NewCElt
!= CElt
) ||
1520 I
>= SrcVecNumElts
) {
1524 NewVecC
[ShMask
[I
]] = CElt
;
1526 // If this is a widening shuffle, we must be able to extend with undef
1527 // elements. If the original binop does not produce an undef in the high
1528 // lanes, then this transform is not safe.
1529 // TODO: We could shuffle those non-undef constant values into the
1530 // result by using a constant vector (rather than an undef vector)
1531 // as operand 1 of the new binop, but that might be too aggressive
1532 // for target-independent shuffle creation.
1533 if (I
>= SrcVecNumElts
) {
1534 Constant
*MaybeUndef
=
1535 ConstOp1
? ConstantExpr::get(Opcode
, UndefScalar
, CElt
)
1536 : ConstantExpr::get(Opcode
, CElt
, UndefScalar
);
1537 if (!isa
<UndefValue
>(MaybeUndef
)) {
1544 Constant
*NewC
= ConstantVector::get(NewVecC
);
1545 // It may not be safe to execute a binop on a vector with undef elements
1546 // because the entire instruction can be folded to undef or create poison
1547 // that did not exist in the original code.
1548 if (Inst
.isIntDivRem() || (Inst
.isShift() && ConstOp1
))
1549 NewC
= getSafeVectorConstantForBinop(Opcode
, NewC
, ConstOp1
);
1551 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1552 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1553 Value
*NewLHS
= ConstOp1
? V1
: NewC
;
1554 Value
*NewRHS
= ConstOp1
? NewC
: V1
;
1555 return createBinOpShuffle(NewLHS
, NewRHS
, Mask
);
1562 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1563 /// of a value. This requires a potentially expensive known bits check to make
1564 /// sure the narrow op does not overflow.
1565 Instruction
*InstCombiner::narrowMathIfNoOverflow(BinaryOperator
&BO
) {
1566 // We need at least one extended operand.
1567 Value
*Op0
= BO
.getOperand(0), *Op1
= BO
.getOperand(1);
1569 // If this is a sub, we swap the operands since we always want an extension
1570 // on the RHS. The LHS can be an extension or a constant.
1571 if (BO
.getOpcode() == Instruction::Sub
)
1572 std::swap(Op0
, Op1
);
1575 bool IsSext
= match(Op0
, m_SExt(m_Value(X
)));
1576 if (!IsSext
&& !match(Op0
, m_ZExt(m_Value(X
))))
1579 // If both operands are the same extension from the same source type and we
1580 // can eliminate at least one (hasOneUse), this might work.
1581 CastInst::CastOps CastOpc
= IsSext
? Instruction::SExt
: Instruction::ZExt
;
1583 if (!(match(Op1
, m_ZExtOrSExt(m_Value(Y
))) && X
->getType() == Y
->getType() &&
1584 cast
<Operator
>(Op1
)->getOpcode() == CastOpc
&&
1585 (Op0
->hasOneUse() || Op1
->hasOneUse()))) {
1586 // If that did not match, see if we have a suitable constant operand.
1587 // Truncating and extending must produce the same constant.
1589 if (!Op0
->hasOneUse() || !match(Op1
, m_Constant(WideC
)))
1591 Constant
*NarrowC
= ConstantExpr::getTrunc(WideC
, X
->getType());
1592 if (ConstantExpr::getCast(CastOpc
, NarrowC
, BO
.getType()) != WideC
)
1597 // Swap back now that we found our operands.
1598 if (BO
.getOpcode() == Instruction::Sub
)
1601 // Both operands have narrow versions. Last step: the math must not overflow
1602 // in the narrow width.
1603 if (!willNotOverflow(BO
.getOpcode(), X
, Y
, BO
, IsSext
))
1606 // bo (ext X), (ext Y) --> ext (bo X, Y)
1607 // bo (ext X), C --> ext (bo X, C')
1608 Value
*NarrowBO
= Builder
.CreateBinOp(BO
.getOpcode(), X
, Y
, "narrow");
1609 if (auto *NewBinOp
= dyn_cast
<BinaryOperator
>(NarrowBO
)) {
1611 NewBinOp
->setHasNoSignedWrap();
1613 NewBinOp
->setHasNoUnsignedWrap();
1615 return CastInst::Create(CastOpc
, NarrowBO
, BO
.getType());
1618 Instruction
*InstCombiner::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1619 SmallVector
<Value
*, 8> Ops(GEP
.op_begin(), GEP
.op_end());
1620 Type
*GEPType
= GEP
.getType();
1621 Type
*GEPEltType
= GEP
.getSourceElementType();
1622 if (Value
*V
= SimplifyGEPInst(GEPEltType
, Ops
, SQ
.getWithInstruction(&GEP
)))
1623 return replaceInstUsesWith(GEP
, V
);
1625 // For vector geps, use the generic demanded vector support.
1626 if (GEP
.getType()->isVectorTy()) {
1627 auto VWidth
= GEP
.getType()->getVectorNumElements();
1628 APInt
UndefElts(VWidth
, 0);
1629 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1630 if (Value
*V
= SimplifyDemandedVectorElts(&GEP
, AllOnesEltMask
,
1633 return replaceInstUsesWith(GEP
, V
);
1637 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1638 // possible (decide on canonical form for pointer broadcast), 3) exploit
1639 // undef elements to decrease demanded bits
1642 Value
*PtrOp
= GEP
.getOperand(0);
1644 // Eliminate unneeded casts for indices, and replace indices which displace
1645 // by multiples of a zero size type with zero.
1646 bool MadeChange
= false;
1648 // Index width may not be the same width as pointer width.
1649 // Data layout chooses the right type based on supported integer types.
1650 Type
*NewScalarIndexTy
=
1651 DL
.getIndexType(GEP
.getPointerOperandType()->getScalarType());
1653 gep_type_iterator GTI
= gep_type_begin(GEP
);
1654 for (User::op_iterator I
= GEP
.op_begin() + 1, E
= GEP
.op_end(); I
!= E
;
1656 // Skip indices into struct types.
1660 Type
*IndexTy
= (*I
)->getType();
1661 Type
*NewIndexType
=
1662 IndexTy
->isVectorTy()
1663 ? VectorType::get(NewScalarIndexTy
, IndexTy
->getVectorNumElements())
1666 // If the element type has zero size then any index over it is equivalent
1667 // to an index of zero, so replace it with zero if it is not zero already.
1668 Type
*EltTy
= GTI
.getIndexedType();
1669 if (EltTy
->isSized() && DL
.getTypeAllocSize(EltTy
) == 0)
1670 if (!isa
<Constant
>(*I
) || !match(I
->get(), m_Zero())) {
1671 *I
= Constant::getNullValue(NewIndexType
);
1675 if (IndexTy
!= NewIndexType
) {
1676 // If we are using a wider index than needed for this platform, shrink
1677 // it to what we need. If narrower, sign-extend it to what we need.
1678 // This explicit cast can make subsequent optimizations more obvious.
1679 *I
= Builder
.CreateIntCast(*I
, NewIndexType
, true);
1686 // Check to see if the inputs to the PHI node are getelementptr instructions.
1687 if (auto *PN
= dyn_cast
<PHINode
>(PtrOp
)) {
1688 auto *Op1
= dyn_cast
<GetElementPtrInst
>(PN
->getOperand(0));
1692 // Don't fold a GEP into itself through a PHI node. This can only happen
1693 // through the back-edge of a loop. Folding a GEP into itself means that
1694 // the value of the previous iteration needs to be stored in the meantime,
1695 // thus requiring an additional register variable to be live, but not
1696 // actually achieving anything (the GEP still needs to be executed once per
1703 for (auto I
= PN
->op_begin()+1, E
= PN
->op_end(); I
!=E
; ++I
) {
1704 auto *Op2
= dyn_cast
<GetElementPtrInst
>(*I
);
1705 if (!Op2
|| Op1
->getNumOperands() != Op2
->getNumOperands())
1708 // As for Op1 above, don't try to fold a GEP into itself.
1712 // Keep track of the type as we walk the GEP.
1713 Type
*CurTy
= nullptr;
1715 for (unsigned J
= 0, F
= Op1
->getNumOperands(); J
!= F
; ++J
) {
1716 if (Op1
->getOperand(J
)->getType() != Op2
->getOperand(J
)->getType())
1719 if (Op1
->getOperand(J
) != Op2
->getOperand(J
)) {
1721 // We have not seen any differences yet in the GEPs feeding the
1722 // PHI yet, so we record this one if it is allowed to be a
1725 // The first two arguments can vary for any GEP, the rest have to be
1726 // static for struct slots
1727 if (J
> 1 && CurTy
->isStructTy())
1732 // The GEP is different by more than one input. While this could be
1733 // extended to support GEPs that vary by more than one variable it
1734 // doesn't make sense since it greatly increases the complexity and
1735 // would result in an R+R+R addressing mode which no backend
1736 // directly supports and would need to be broken into several
1737 // simpler instructions anyway.
1742 // Sink down a layer of the type for the next iteration.
1745 CurTy
= Op1
->getSourceElementType();
1746 } else if (auto *CT
= dyn_cast
<CompositeType
>(CurTy
)) {
1747 CurTy
= CT
->getTypeAtIndex(Op1
->getOperand(J
));
1755 // If not all GEPs are identical we'll have to create a new PHI node.
1756 // Check that the old PHI node has only one use so that it will get
1758 if (DI
!= -1 && !PN
->hasOneUse())
1761 auto *NewGEP
= cast
<GetElementPtrInst
>(Op1
->clone());
1763 // All the GEPs feeding the PHI are identical. Clone one down into our
1764 // BB so that it can be merged with the current GEP.
1765 GEP
.getParent()->getInstList().insert(
1766 GEP
.getParent()->getFirstInsertionPt(), NewGEP
);
1768 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1769 // into the current block so it can be merged, and create a new PHI to
1773 IRBuilderBase::InsertPointGuard
Guard(Builder
);
1774 Builder
.SetInsertPoint(PN
);
1775 NewPN
= Builder
.CreatePHI(Op1
->getOperand(DI
)->getType(),
1776 PN
->getNumOperands());
1779 for (auto &I
: PN
->operands())
1780 NewPN
->addIncoming(cast
<GEPOperator
>(I
)->getOperand(DI
),
1781 PN
->getIncomingBlock(I
));
1783 NewGEP
->setOperand(DI
, NewPN
);
1784 GEP
.getParent()->getInstList().insert(
1785 GEP
.getParent()->getFirstInsertionPt(), NewGEP
);
1786 NewGEP
->setOperand(DI
, NewPN
);
1789 GEP
.setOperand(0, NewGEP
);
1793 // Combine Indices - If the source pointer to this getelementptr instruction
1794 // is a getelementptr instruction, combine the indices of the two
1795 // getelementptr instructions into a single instruction.
1796 if (auto *Src
= dyn_cast
<GEPOperator
>(PtrOp
)) {
1797 if (!shouldMergeGEPs(*cast
<GEPOperator
>(&GEP
), *Src
))
1800 // Try to reassociate loop invariant GEP chains to enable LICM.
1801 if (LI
&& Src
->getNumOperands() == 2 && GEP
.getNumOperands() == 2 &&
1803 if (Loop
*L
= LI
->getLoopFor(GEP
.getParent())) {
1804 Value
*GO1
= GEP
.getOperand(1);
1805 Value
*SO1
= Src
->getOperand(1);
1806 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1807 // invariant: this breaks the dependence between GEPs and allows LICM
1808 // to hoist the invariant part out of the loop.
1809 if (L
->isLoopInvariant(GO1
) && !L
->isLoopInvariant(SO1
)) {
1810 // We have to be careful here.
1811 // We have something like:
1812 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1813 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1814 // If we just swap idx & idx2 then we could inadvertantly
1815 // change %src from a vector to a scalar, or vice versa.
1817 // 1) %base a scalar & idx a scalar & idx2 a vector
1818 // => Swapping idx & idx2 turns %src into a vector type.
1819 // 2) %base a scalar & idx a vector & idx2 a scalar
1820 // => Swapping idx & idx2 turns %src in a scalar type
1821 // 3) %base, %idx, and %idx2 are scalars
1822 // => %src & %gep are scalars
1823 // => swapping idx & idx2 is safe
1824 // 4) %base a vector
1825 // => %src is a vector
1826 // => swapping idx & idx2 is safe.
1827 auto *SO0
= Src
->getOperand(0);
1828 auto *SO0Ty
= SO0
->getType();
1829 if (!isa
<VectorType
>(GEPType
) || // case 3
1830 isa
<VectorType
>(SO0Ty
)) { // case 4
1831 Src
->setOperand(1, GO1
);
1832 GEP
.setOperand(1, SO1
);
1836 // -- have to recreate %src & %gep
1837 // put NewSrc at same location as %src
1838 Builder
.SetInsertPoint(cast
<Instruction
>(PtrOp
));
1839 auto *NewSrc
= cast
<GetElementPtrInst
>(
1840 Builder
.CreateGEP(GEPEltType
, SO0
, GO1
, Src
->getName()));
1841 NewSrc
->setIsInBounds(Src
->isInBounds());
1842 auto *NewGEP
= GetElementPtrInst::Create(GEPEltType
, NewSrc
, {SO1
});
1843 NewGEP
->setIsInBounds(GEP
.isInBounds());
1850 // Note that if our source is a gep chain itself then we wait for that
1851 // chain to be resolved before we perform this transformation. This
1852 // avoids us creating a TON of code in some cases.
1853 if (auto *SrcGEP
= dyn_cast
<GEPOperator
>(Src
->getOperand(0)))
1854 if (SrcGEP
->getNumOperands() == 2 && shouldMergeGEPs(*Src
, *SrcGEP
))
1855 return nullptr; // Wait until our source is folded to completion.
1857 SmallVector
<Value
*, 8> Indices
;
1859 // Find out whether the last index in the source GEP is a sequential idx.
1860 bool EndsWithSequential
= false;
1861 for (gep_type_iterator I
= gep_type_begin(*Src
), E
= gep_type_end(*Src
);
1863 EndsWithSequential
= I
.isSequential();
1865 // Can we combine the two pointer arithmetics offsets?
1866 if (EndsWithSequential
) {
1867 // Replace: gep (gep %P, long B), long A, ...
1868 // With: T = long A+B; gep %P, T, ...
1869 Value
*SO1
= Src
->getOperand(Src
->getNumOperands()-1);
1870 Value
*GO1
= GEP
.getOperand(1);
1872 // If they aren't the same type, then the input hasn't been processed
1873 // by the loop above yet (which canonicalizes sequential index types to
1874 // intptr_t). Just avoid transforming this until the input has been
1876 if (SO1
->getType() != GO1
->getType())
1880 SimplifyAddInst(GO1
, SO1
, false, false, SQ
.getWithInstruction(&GEP
));
1881 // Only do the combine when we are sure the cost after the
1882 // merge is never more than that before the merge.
1886 // Update the GEP in place if possible.
1887 if (Src
->getNumOperands() == 2) {
1888 GEP
.setOperand(0, Src
->getOperand(0));
1889 GEP
.setOperand(1, Sum
);
1892 Indices
.append(Src
->op_begin()+1, Src
->op_end()-1);
1893 Indices
.push_back(Sum
);
1894 Indices
.append(GEP
.op_begin()+2, GEP
.op_end());
1895 } else if (isa
<Constant
>(*GEP
.idx_begin()) &&
1896 cast
<Constant
>(*GEP
.idx_begin())->isNullValue() &&
1897 Src
->getNumOperands() != 1) {
1898 // Otherwise we can do the fold if the first index of the GEP is a zero
1899 Indices
.append(Src
->op_begin()+1, Src
->op_end());
1900 Indices
.append(GEP
.idx_begin()+1, GEP
.idx_end());
1903 if (!Indices
.empty())
1904 return GEP
.isInBounds() && Src
->isInBounds()
1905 ? GetElementPtrInst::CreateInBounds(
1906 Src
->getSourceElementType(), Src
->getOperand(0), Indices
,
1908 : GetElementPtrInst::Create(Src
->getSourceElementType(),
1909 Src
->getOperand(0), Indices
,
1913 if (GEP
.getNumIndices() == 1) {
1914 unsigned AS
= GEP
.getPointerAddressSpace();
1915 if (GEP
.getOperand(1)->getType()->getScalarSizeInBits() ==
1916 DL
.getIndexSizeInBits(AS
)) {
1917 uint64_t TyAllocSize
= DL
.getTypeAllocSize(GEPEltType
);
1919 bool Matched
= false;
1922 if (TyAllocSize
== 1) {
1923 V
= GEP
.getOperand(1);
1925 } else if (match(GEP
.getOperand(1),
1926 m_AShr(m_Value(V
), m_ConstantInt(C
)))) {
1927 if (TyAllocSize
== 1ULL << C
)
1929 } else if (match(GEP
.getOperand(1),
1930 m_SDiv(m_Value(V
), m_ConstantInt(C
)))) {
1931 if (TyAllocSize
== C
)
1936 // Canonicalize (gep i8* X, -(ptrtoint Y))
1937 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1938 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1939 // pointer arithmetic.
1940 if (match(V
, m_Neg(m_PtrToInt(m_Value())))) {
1941 Operator
*Index
= cast
<Operator
>(V
);
1942 Value
*PtrToInt
= Builder
.CreatePtrToInt(PtrOp
, Index
->getType());
1943 Value
*NewSub
= Builder
.CreateSub(PtrToInt
, Index
->getOperand(1));
1944 return CastInst::Create(Instruction::IntToPtr
, NewSub
, GEPType
);
1946 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1949 if (match(V
, m_Sub(m_PtrToInt(m_Value(Y
)),
1950 m_PtrToInt(m_Specific(GEP
.getOperand(0))))))
1951 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y
, GEPType
);
1956 // We do not handle pointer-vector geps here.
1957 if (GEPType
->isVectorTy())
1960 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1961 Value
*StrippedPtr
= PtrOp
->stripPointerCasts();
1962 PointerType
*StrippedPtrTy
= cast
<PointerType
>(StrippedPtr
->getType());
1964 if (StrippedPtr
!= PtrOp
) {
1965 bool HasZeroPointerIndex
= false;
1966 Type
*StrippedPtrEltTy
= StrippedPtrTy
->getElementType();
1968 if (auto *C
= dyn_cast
<ConstantInt
>(GEP
.getOperand(1)))
1969 HasZeroPointerIndex
= C
->isZero();
1971 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1972 // into : GEP [10 x i8]* X, i32 0, ...
1974 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1975 // into : GEP i8* X, ...
1977 // This occurs when the program declares an array extern like "int X[];"
1978 if (HasZeroPointerIndex
) {
1979 if (auto *CATy
= dyn_cast
<ArrayType
>(GEPEltType
)) {
1980 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1981 if (CATy
->getElementType() == StrippedPtrEltTy
) {
1982 // -> GEP i8* X, ...
1983 SmallVector
<Value
*, 8> Idx(GEP
.idx_begin()+1, GEP
.idx_end());
1984 GetElementPtrInst
*Res
= GetElementPtrInst::Create(
1985 StrippedPtrEltTy
, StrippedPtr
, Idx
, GEP
.getName());
1986 Res
->setIsInBounds(GEP
.isInBounds());
1987 if (StrippedPtrTy
->getAddressSpace() == GEP
.getAddressSpace())
1989 // Insert Res, and create an addrspacecast.
1991 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1993 // %0 = GEP i8 addrspace(1)* X, ...
1994 // addrspacecast i8 addrspace(1)* %0 to i8*
1995 return new AddrSpaceCastInst(Builder
.Insert(Res
), GEPType
);
1998 if (auto *XATy
= dyn_cast
<ArrayType
>(StrippedPtrEltTy
)) {
1999 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2000 if (CATy
->getElementType() == XATy
->getElementType()) {
2001 // -> GEP [10 x i8]* X, i32 0, ...
2002 // At this point, we know that the cast source type is a pointer
2003 // to an array of the same type as the destination pointer
2004 // array. Because the array type is never stepped over (there
2005 // is a leading zero) we can fold the cast into this GEP.
2006 if (StrippedPtrTy
->getAddressSpace() == GEP
.getAddressSpace()) {
2007 GEP
.setOperand(0, StrippedPtr
);
2008 GEP
.setSourceElementType(XATy
);
2011 // Cannot replace the base pointer directly because StrippedPtr's
2012 // address space is different. Instead, create a new GEP followed by
2013 // an addrspacecast.
2015 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2018 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2019 // addrspacecast i8 addrspace(1)* %0 to i8*
2020 SmallVector
<Value
*, 8> Idx(GEP
.idx_begin(), GEP
.idx_end());
2023 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
2025 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
2027 return new AddrSpaceCastInst(NewGEP
, GEPType
);
2031 } else if (GEP
.getNumOperands() == 2) {
2032 // Transform things like:
2033 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
2034 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
2035 if (StrippedPtrEltTy
->isArrayTy() &&
2036 DL
.getTypeAllocSize(StrippedPtrEltTy
->getArrayElementType()) ==
2037 DL
.getTypeAllocSize(GEPEltType
)) {
2038 Type
*IdxType
= DL
.getIndexType(GEPType
);
2039 Value
*Idx
[2] = { Constant::getNullValue(IdxType
), GEP
.getOperand(1) };
2042 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
2044 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
2047 // V and GEP are both pointer types --> BitCast
2048 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
, GEPType
);
2051 // Transform things like:
2052 // %V = mul i64 %N, 4
2053 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2054 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2055 if (GEPEltType
->isSized() && StrippedPtrEltTy
->isSized()) {
2056 // Check that changing the type amounts to dividing the index by a scale
2058 uint64_t ResSize
= DL
.getTypeAllocSize(GEPEltType
);
2059 uint64_t SrcSize
= DL
.getTypeAllocSize(StrippedPtrEltTy
);
2060 if (ResSize
&& SrcSize
% ResSize
== 0) {
2061 Value
*Idx
= GEP
.getOperand(1);
2062 unsigned BitWidth
= Idx
->getType()->getPrimitiveSizeInBits();
2063 uint64_t Scale
= SrcSize
/ ResSize
;
2065 // Earlier transforms ensure that the index has the right type
2066 // according to Data Layout, which considerably simplifies the
2067 // logic by eliminating implicit casts.
2068 assert(Idx
->getType() == DL
.getIndexType(GEPType
) &&
2069 "Index type does not match the Data Layout preferences");
2072 if (Value
*NewIdx
= Descale(Idx
, APInt(BitWidth
, Scale
), NSW
)) {
2073 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2074 // If the multiplication NewIdx * Scale may overflow then the new
2075 // GEP may not be "inbounds".
2077 GEP
.isInBounds() && NSW
2078 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
2079 NewIdx
, GEP
.getName())
2080 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, NewIdx
,
2083 // The NewGEP must be pointer typed, so must the old one -> BitCast
2084 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
,
2090 // Similarly, transform things like:
2091 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2092 // (where tmp = 8*tmp2) into:
2093 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2094 if (GEPEltType
->isSized() && StrippedPtrEltTy
->isSized() &&
2095 StrippedPtrEltTy
->isArrayTy()) {
2096 // Check that changing to the array element type amounts to dividing the
2097 // index by a scale factor.
2098 uint64_t ResSize
= DL
.getTypeAllocSize(GEPEltType
);
2099 uint64_t ArrayEltSize
=
2100 DL
.getTypeAllocSize(StrippedPtrEltTy
->getArrayElementType());
2101 if (ResSize
&& ArrayEltSize
% ResSize
== 0) {
2102 Value
*Idx
= GEP
.getOperand(1);
2103 unsigned BitWidth
= Idx
->getType()->getPrimitiveSizeInBits();
2104 uint64_t Scale
= ArrayEltSize
/ ResSize
;
2106 // Earlier transforms ensure that the index has the right type
2107 // according to the Data Layout, which considerably simplifies
2108 // the logic by eliminating implicit casts.
2109 assert(Idx
->getType() == DL
.getIndexType(GEPType
) &&
2110 "Index type does not match the Data Layout preferences");
2113 if (Value
*NewIdx
= Descale(Idx
, APInt(BitWidth
, Scale
), NSW
)) {
2114 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2115 // If the multiplication NewIdx * Scale may overflow then the new
2116 // GEP may not be "inbounds".
2117 Type
*IndTy
= DL
.getIndexType(GEPType
);
2118 Value
*Off
[2] = {Constant::getNullValue(IndTy
), NewIdx
};
2121 GEP
.isInBounds() && NSW
2122 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
2124 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Off
,
2126 // The NewGEP must be pointer typed, so must the old one -> BitCast
2127 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
,
2135 // addrspacecast between types is canonicalized as a bitcast, then an
2136 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2137 // through the addrspacecast.
2138 Value
*ASCStrippedPtrOp
= PtrOp
;
2139 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(PtrOp
)) {
2140 // X = bitcast A addrspace(1)* to B addrspace(1)*
2141 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2142 // Z = gep Y, <...constant indices...>
2143 // Into an addrspacecasted GEP of the struct.
2144 if (auto *BC
= dyn_cast
<BitCastInst
>(ASC
->getOperand(0)))
2145 ASCStrippedPtrOp
= BC
;
2148 if (auto *BCI
= dyn_cast
<BitCastInst
>(ASCStrippedPtrOp
)) {
2149 Value
*SrcOp
= BCI
->getOperand(0);
2150 PointerType
*SrcType
= cast
<PointerType
>(BCI
->getSrcTy());
2151 Type
*SrcEltType
= SrcType
->getElementType();
2153 // GEP directly using the source operand if this GEP is accessing an element
2154 // of a bitcasted pointer to vector or array of the same dimensions:
2155 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2156 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2157 auto areMatchingArrayAndVecTypes
= [](Type
*ArrTy
, Type
*VecTy
) {
2158 return ArrTy
->getArrayElementType() == VecTy
->getVectorElementType() &&
2159 ArrTy
->getArrayNumElements() == VecTy
->getVectorNumElements();
2161 if (GEP
.getNumOperands() == 3 &&
2162 ((GEPEltType
->isArrayTy() && SrcEltType
->isVectorTy() &&
2163 areMatchingArrayAndVecTypes(GEPEltType
, SrcEltType
)) ||
2164 (GEPEltType
->isVectorTy() && SrcEltType
->isArrayTy() &&
2165 areMatchingArrayAndVecTypes(SrcEltType
, GEPEltType
)))) {
2167 // Create a new GEP here, as using `setOperand()` followed by
2168 // `setSourceElementType()` won't actually update the type of the
2169 // existing GEP Value. Causing issues if this Value is accessed when
2170 // constructing an AddrSpaceCastInst
2173 ? Builder
.CreateInBoundsGEP(SrcEltType
, SrcOp
, {Ops
[1], Ops
[2]})
2174 : Builder
.CreateGEP(SrcEltType
, SrcOp
, {Ops
[1], Ops
[2]});
2175 NGEP
->takeName(&GEP
);
2177 // Preserve GEP address space to satisfy users
2178 if (NGEP
->getType()->getPointerAddressSpace() != GEP
.getAddressSpace())
2179 return new AddrSpaceCastInst(NGEP
, GEPType
);
2181 return replaceInstUsesWith(GEP
, NGEP
);
2184 // See if we can simplify:
2185 // X = bitcast A* to B*
2186 // Y = gep X, <...constant indices...>
2187 // into a gep of the original struct. This is important for SROA and alias
2188 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2189 unsigned OffsetBits
= DL
.getIndexTypeSizeInBits(GEPType
);
2190 APInt
Offset(OffsetBits
, 0);
2191 if (!isa
<BitCastInst
>(SrcOp
) && GEP
.accumulateConstantOffset(DL
, Offset
)) {
2192 // If this GEP instruction doesn't move the pointer, just replace the GEP
2193 // with a bitcast of the real input to the dest type.
2195 // If the bitcast is of an allocation, and the allocation will be
2196 // converted to match the type of the cast, don't touch this.
2197 if (isa
<AllocaInst
>(SrcOp
) || isAllocationFn(SrcOp
, &TLI
)) {
2198 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2199 if (Instruction
*I
= visitBitCast(*BCI
)) {
2202 BCI
->getParent()->getInstList().insert(BCI
->getIterator(), I
);
2203 replaceInstUsesWith(*BCI
, I
);
2209 if (SrcType
->getPointerAddressSpace() != GEP
.getAddressSpace())
2210 return new AddrSpaceCastInst(SrcOp
, GEPType
);
2211 return new BitCastInst(SrcOp
, GEPType
);
2214 // Otherwise, if the offset is non-zero, we need to find out if there is a
2215 // field at Offset in 'A's type. If so, we can pull the cast through the
2217 SmallVector
<Value
*, 8> NewIndices
;
2218 if (FindElementAtOffset(SrcType
, Offset
.getSExtValue(), NewIndices
)) {
2221 ? Builder
.CreateInBoundsGEP(SrcEltType
, SrcOp
, NewIndices
)
2222 : Builder
.CreateGEP(SrcEltType
, SrcOp
, NewIndices
);
2224 if (NGEP
->getType() == GEPType
)
2225 return replaceInstUsesWith(GEP
, NGEP
);
2226 NGEP
->takeName(&GEP
);
2228 if (NGEP
->getType()->getPointerAddressSpace() != GEP
.getAddressSpace())
2229 return new AddrSpaceCastInst(NGEP
, GEPType
);
2230 return new BitCastInst(NGEP
, GEPType
);
2235 if (!GEP
.isInBounds()) {
2237 DL
.getIndexSizeInBits(PtrOp
->getType()->getPointerAddressSpace());
2238 APInt
BasePtrOffset(IdxWidth
, 0);
2239 Value
*UnderlyingPtrOp
=
2240 PtrOp
->stripAndAccumulateInBoundsConstantOffsets(DL
,
2242 if (auto *AI
= dyn_cast
<AllocaInst
>(UnderlyingPtrOp
)) {
2243 if (GEP
.accumulateConstantOffset(DL
, BasePtrOffset
) &&
2244 BasePtrOffset
.isNonNegative()) {
2245 APInt
AllocSize(IdxWidth
, DL
.getTypeAllocSize(AI
->getAllocatedType()));
2246 if (BasePtrOffset
.ule(AllocSize
)) {
2247 return GetElementPtrInst::CreateInBounds(
2248 GEP
.getSourceElementType(), PtrOp
, makeArrayRef(Ops
).slice(1),
2258 static bool isNeverEqualToUnescapedAlloc(Value
*V
, const TargetLibraryInfo
*TLI
,
2260 if (isa
<ConstantPointerNull
>(V
))
2262 if (auto *LI
= dyn_cast
<LoadInst
>(V
))
2263 return isa
<GlobalVariable
>(LI
->getPointerOperand());
2264 // Two distinct allocations will never be equal.
2265 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2266 // through bitcasts of V can cause
2267 // the result statement below to be true, even when AI and V (ex:
2268 // i8* ->i32* ->i8* of AI) are the same allocations.
2269 return isAllocLikeFn(V
, TLI
) && V
!= AI
;
2272 static bool isAllocSiteRemovable(Instruction
*AI
,
2273 SmallVectorImpl
<WeakTrackingVH
> &Users
,
2274 const TargetLibraryInfo
*TLI
) {
2275 SmallVector
<Instruction
*, 4> Worklist
;
2276 Worklist
.push_back(AI
);
2279 Instruction
*PI
= Worklist
.pop_back_val();
2280 for (User
*U
: PI
->users()) {
2281 Instruction
*I
= cast
<Instruction
>(U
);
2282 switch (I
->getOpcode()) {
2284 // Give up the moment we see something we can't handle.
2287 case Instruction::AddrSpaceCast
:
2288 case Instruction::BitCast
:
2289 case Instruction::GetElementPtr
:
2290 Users
.emplace_back(I
);
2291 Worklist
.push_back(I
);
2294 case Instruction::ICmp
: {
2295 ICmpInst
*ICI
= cast
<ICmpInst
>(I
);
2296 // We can fold eq/ne comparisons with null to false/true, respectively.
2297 // We also fold comparisons in some conditions provided the alloc has
2298 // not escaped (see isNeverEqualToUnescapedAlloc).
2299 if (!ICI
->isEquality())
2301 unsigned OtherIndex
= (ICI
->getOperand(0) == PI
) ? 1 : 0;
2302 if (!isNeverEqualToUnescapedAlloc(ICI
->getOperand(OtherIndex
), TLI
, AI
))
2304 Users
.emplace_back(I
);
2308 case Instruction::Call
:
2309 // Ignore no-op and store intrinsics.
2310 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
2311 switch (II
->getIntrinsicID()) {
2315 case Intrinsic::memmove
:
2316 case Intrinsic::memcpy
:
2317 case Intrinsic::memset
: {
2318 MemIntrinsic
*MI
= cast
<MemIntrinsic
>(II
);
2319 if (MI
->isVolatile() || MI
->getRawDest() != PI
)
2323 case Intrinsic::invariant_start
:
2324 case Intrinsic::invariant_end
:
2325 case Intrinsic::lifetime_start
:
2326 case Intrinsic::lifetime_end
:
2327 case Intrinsic::objectsize
:
2328 Users
.emplace_back(I
);
2333 if (isFreeCall(I
, TLI
)) {
2334 Users
.emplace_back(I
);
2339 case Instruction::Store
: {
2340 StoreInst
*SI
= cast
<StoreInst
>(I
);
2341 if (SI
->isVolatile() || SI
->getPointerOperand() != PI
)
2343 Users
.emplace_back(I
);
2347 llvm_unreachable("missing a return?");
2349 } while (!Worklist
.empty());
2353 Instruction
*InstCombiner::visitAllocSite(Instruction
&MI
) {
2354 // If we have a malloc call which is only used in any amount of comparisons to
2355 // null and free calls, delete the calls and replace the comparisons with true
2356 // or false as appropriate.
2358 // This is based on the principle that we can substitute our own allocation
2359 // function (which will never return null) rather than knowledge of the
2360 // specific function being called. In some sense this can change the permitted
2361 // outputs of a program (when we convert a malloc to an alloca, the fact that
2362 // the allocation is now on the stack is potentially visible, for example),
2363 // but we believe in a permissible manner.
2364 SmallVector
<WeakTrackingVH
, 64> Users
;
2366 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2367 // before each store.
2368 TinyPtrVector
<DbgVariableIntrinsic
*> DIIs
;
2369 std::unique_ptr
<DIBuilder
> DIB
;
2370 if (isa
<AllocaInst
>(MI
)) {
2371 DIIs
= FindDbgAddrUses(&MI
);
2372 DIB
.reset(new DIBuilder(*MI
.getModule(), /*AllowUnresolved=*/false));
2375 if (isAllocSiteRemovable(&MI
, Users
, &TLI
)) {
2376 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
2377 // Lowering all @llvm.objectsize calls first because they may
2378 // use a bitcast/GEP of the alloca we are removing.
2382 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
2384 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
2385 if (II
->getIntrinsicID() == Intrinsic::objectsize
) {
2387 lowerObjectSizeCall(II
, DL
, &TLI
, /*MustSucceed=*/true);
2388 replaceInstUsesWith(*I
, Result
);
2389 eraseInstFromFunction(*I
);
2390 Users
[i
] = nullptr; // Skip examining in the next loop.
2394 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
2398 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
2400 if (ICmpInst
*C
= dyn_cast
<ICmpInst
>(I
)) {
2401 replaceInstUsesWith(*C
,
2402 ConstantInt::get(Type::getInt1Ty(C
->getContext()),
2403 C
->isFalseWhenEqual()));
2404 } else if (isa
<BitCastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
2405 isa
<AddrSpaceCastInst
>(I
)) {
2406 replaceInstUsesWith(*I
, UndefValue::get(I
->getType()));
2407 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2408 for (auto *DII
: DIIs
)
2409 ConvertDebugDeclareToDebugValue(DII
, SI
, *DIB
);
2411 eraseInstFromFunction(*I
);
2414 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&MI
)) {
2415 // Replace invoke with a NOP intrinsic to maintain the original CFG
2416 Module
*M
= II
->getModule();
2417 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::donothing
);
2418 InvokeInst::Create(F
, II
->getNormalDest(), II
->getUnwindDest(),
2419 None
, "", II
->getParent());
2422 for (auto *DII
: DIIs
)
2423 eraseInstFromFunction(*DII
);
2425 return eraseInstFromFunction(MI
);
2430 /// Move the call to free before a NULL test.
2432 /// Check if this free is accessed after its argument has been test
2433 /// against NULL (property 0).
2434 /// If yes, it is legal to move this call in its predecessor block.
2436 /// The move is performed only if the block containing the call to free
2437 /// will be removed, i.e.:
2438 /// 1. it has only one predecessor P, and P has two successors
2439 /// 2. it contains the call, noops, and an unconditional branch
2440 /// 3. its successor is the same as its predecessor's successor
2442 /// The profitability is out-of concern here and this function should
2443 /// be called only if the caller knows this transformation would be
2444 /// profitable (e.g., for code size).
2445 static Instruction
*tryToMoveFreeBeforeNullTest(CallInst
&FI
,
2446 const DataLayout
&DL
) {
2447 Value
*Op
= FI
.getArgOperand(0);
2448 BasicBlock
*FreeInstrBB
= FI
.getParent();
2449 BasicBlock
*PredBB
= FreeInstrBB
->getSinglePredecessor();
2451 // Validate part of constraint #1: Only one predecessor
2452 // FIXME: We can extend the number of predecessor, but in that case, we
2453 // would duplicate the call to free in each predecessor and it may
2454 // not be profitable even for code size.
2458 // Validate constraint #2: Does this block contains only the call to
2459 // free, noops, and an unconditional branch?
2461 Instruction
*FreeInstrBBTerminator
= FreeInstrBB
->getTerminator();
2462 if (!match(FreeInstrBBTerminator
, m_UnconditionalBr(SuccBB
)))
2465 // If there are only 2 instructions in the block, at this point,
2466 // this is the call to free and unconditional.
2467 // If there are more than 2 instructions, check that they are noops
2468 // i.e., they won't hurt the performance of the generated code.
2469 if (FreeInstrBB
->size() != 2) {
2470 for (const Instruction
&Inst
: *FreeInstrBB
) {
2471 if (&Inst
== &FI
|| &Inst
== FreeInstrBBTerminator
)
2473 auto *Cast
= dyn_cast
<CastInst
>(&Inst
);
2474 if (!Cast
|| !Cast
->isNoopCast(DL
))
2478 // Validate the rest of constraint #1 by matching on the pred branch.
2479 Instruction
*TI
= PredBB
->getTerminator();
2480 BasicBlock
*TrueBB
, *FalseBB
;
2481 ICmpInst::Predicate Pred
;
2482 if (!match(TI
, m_Br(m_ICmp(Pred
,
2483 m_CombineOr(m_Specific(Op
),
2484 m_Specific(Op
->stripPointerCasts())),
2488 if (Pred
!= ICmpInst::ICMP_EQ
&& Pred
!= ICmpInst::ICMP_NE
)
2491 // Validate constraint #3: Ensure the null case just falls through.
2492 if (SuccBB
!= (Pred
== ICmpInst::ICMP_EQ
? TrueBB
: FalseBB
))
2494 assert(FreeInstrBB
== (Pred
== ICmpInst::ICMP_EQ
? FalseBB
: TrueBB
) &&
2495 "Broken CFG: missing edge from predecessor to successor");
2497 // At this point, we know that everything in FreeInstrBB can be moved
2499 for (BasicBlock::iterator It
= FreeInstrBB
->begin(), End
= FreeInstrBB
->end();
2501 Instruction
&Instr
= *It
++;
2502 if (&Instr
== FreeInstrBBTerminator
)
2504 Instr
.moveBefore(TI
);
2506 assert(FreeInstrBB
->size() == 1 &&
2507 "Only the branch instruction should remain");
2511 Instruction
*InstCombiner::visitFree(CallInst
&FI
) {
2512 Value
*Op
= FI
.getArgOperand(0);
2514 // free undef -> unreachable.
2515 if (isa
<UndefValue
>(Op
)) {
2516 // Leave a marker since we can't modify the CFG here.
2517 CreateNonTerminatorUnreachable(&FI
);
2518 return eraseInstFromFunction(FI
);
2521 // If we have 'free null' delete the instruction. This can happen in stl code
2522 // when lots of inlining happens.
2523 if (isa
<ConstantPointerNull
>(Op
))
2524 return eraseInstFromFunction(FI
);
2526 // If we optimize for code size, try to move the call to free before the null
2527 // test so that simplify cfg can remove the empty block and dead code
2528 // elimination the branch. I.e., helps to turn something like:
2529 // if (foo) free(foo);
2533 if (Instruction
*I
= tryToMoveFreeBeforeNullTest(FI
, DL
))
2539 Instruction
*InstCombiner::visitReturnInst(ReturnInst
&RI
) {
2540 if (RI
.getNumOperands() == 0) // ret void
2543 Value
*ResultOp
= RI
.getOperand(0);
2544 Type
*VTy
= ResultOp
->getType();
2545 if (!VTy
->isIntegerTy())
2548 // There might be assume intrinsics dominating this return that completely
2549 // determine the value. If so, constant fold it.
2550 KnownBits Known
= computeKnownBits(ResultOp
, 0, &RI
);
2551 if (Known
.isConstant())
2552 RI
.setOperand(0, Constant::getIntegerValue(VTy
, Known
.getConstant()));
2557 Instruction
*InstCombiner::visitBranchInst(BranchInst
&BI
) {
2558 // Change br (not X), label True, label False to: br X, label False, True
2560 if (match(&BI
, m_Br(m_Not(m_Value(X
)), m_BasicBlock(), m_BasicBlock())) &&
2561 !isa
<Constant
>(X
)) {
2562 // Swap Destinations and condition...
2564 BI
.swapSuccessors();
2568 // If the condition is irrelevant, remove the use so that other
2569 // transforms on the condition become more effective.
2570 if (BI
.isConditional() && !isa
<ConstantInt
>(BI
.getCondition()) &&
2571 BI
.getSuccessor(0) == BI
.getSuccessor(1)) {
2572 BI
.setCondition(ConstantInt::getFalse(BI
.getCondition()->getType()));
2576 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2577 CmpInst::Predicate Pred
;
2578 if (match(&BI
, m_Br(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())),
2579 m_BasicBlock(), m_BasicBlock())) &&
2580 !isCanonicalPredicate(Pred
)) {
2581 // Swap destinations and condition.
2582 CmpInst
*Cond
= cast
<CmpInst
>(BI
.getCondition());
2583 Cond
->setPredicate(CmpInst::getInversePredicate(Pred
));
2584 BI
.swapSuccessors();
2592 Instruction
*InstCombiner::visitSwitchInst(SwitchInst
&SI
) {
2593 Value
*Cond
= SI
.getCondition();
2595 ConstantInt
*AddRHS
;
2596 if (match(Cond
, m_Add(m_Value(Op0
), m_ConstantInt(AddRHS
)))) {
2597 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2598 for (auto Case
: SI
.cases()) {
2599 Constant
*NewCase
= ConstantExpr::getSub(Case
.getCaseValue(), AddRHS
);
2600 assert(isa
<ConstantInt
>(NewCase
) &&
2601 "Result of expression should be constant");
2602 Case
.setValue(cast
<ConstantInt
>(NewCase
));
2604 SI
.setCondition(Op0
);
2608 KnownBits Known
= computeKnownBits(Cond
, 0, &SI
);
2609 unsigned LeadingKnownZeros
= Known
.countMinLeadingZeros();
2610 unsigned LeadingKnownOnes
= Known
.countMinLeadingOnes();
2612 // Compute the number of leading bits we can ignore.
2613 // TODO: A better way to determine this would use ComputeNumSignBits().
2614 for (auto &C
: SI
.cases()) {
2615 LeadingKnownZeros
= std::min(
2616 LeadingKnownZeros
, C
.getCaseValue()->getValue().countLeadingZeros());
2617 LeadingKnownOnes
= std::min(
2618 LeadingKnownOnes
, C
.getCaseValue()->getValue().countLeadingOnes());
2621 unsigned NewWidth
= Known
.getBitWidth() - std::max(LeadingKnownZeros
, LeadingKnownOnes
);
2623 // Shrink the condition operand if the new type is smaller than the old type.
2624 // But do not shrink to a non-standard type, because backend can't generate
2625 // good code for that yet.
2626 // TODO: We can make it aggressive again after fixing PR39569.
2627 if (NewWidth
> 0 && NewWidth
< Known
.getBitWidth() &&
2628 shouldChangeType(Known
.getBitWidth(), NewWidth
)) {
2629 IntegerType
*Ty
= IntegerType::get(SI
.getContext(), NewWidth
);
2630 Builder
.SetInsertPoint(&SI
);
2631 Value
*NewCond
= Builder
.CreateTrunc(Cond
, Ty
, "trunc");
2632 SI
.setCondition(NewCond
);
2634 for (auto Case
: SI
.cases()) {
2635 APInt TruncatedCase
= Case
.getCaseValue()->getValue().trunc(NewWidth
);
2636 Case
.setValue(ConstantInt::get(SI
.getContext(), TruncatedCase
));
2644 Instruction
*InstCombiner::visitExtractValueInst(ExtractValueInst
&EV
) {
2645 Value
*Agg
= EV
.getAggregateOperand();
2647 if (!EV
.hasIndices())
2648 return replaceInstUsesWith(EV
, Agg
);
2650 if (Value
*V
= SimplifyExtractValueInst(Agg
, EV
.getIndices(),
2651 SQ
.getWithInstruction(&EV
)))
2652 return replaceInstUsesWith(EV
, V
);
2654 if (InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(Agg
)) {
2655 // We're extracting from an insertvalue instruction, compare the indices
2656 const unsigned *exti
, *exte
, *insi
, *inse
;
2657 for (exti
= EV
.idx_begin(), insi
= IV
->idx_begin(),
2658 exte
= EV
.idx_end(), inse
= IV
->idx_end();
2659 exti
!= exte
&& insi
!= inse
;
2662 // The insert and extract both reference distinctly different elements.
2663 // This means the extract is not influenced by the insert, and we can
2664 // replace the aggregate operand of the extract with the aggregate
2665 // operand of the insert. i.e., replace
2666 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2667 // %E = extractvalue { i32, { i32 } } %I, 0
2669 // %E = extractvalue { i32, { i32 } } %A, 0
2670 return ExtractValueInst::Create(IV
->getAggregateOperand(),
2673 if (exti
== exte
&& insi
== inse
)
2674 // Both iterators are at the end: Index lists are identical. Replace
2675 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2676 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2678 return replaceInstUsesWith(EV
, IV
->getInsertedValueOperand());
2680 // The extract list is a prefix of the insert list. i.e. replace
2681 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2682 // %E = extractvalue { i32, { i32 } } %I, 1
2684 // %X = extractvalue { i32, { i32 } } %A, 1
2685 // %E = insertvalue { i32 } %X, i32 42, 0
2686 // by switching the order of the insert and extract (though the
2687 // insertvalue should be left in, since it may have other uses).
2688 Value
*NewEV
= Builder
.CreateExtractValue(IV
->getAggregateOperand(),
2690 return InsertValueInst::Create(NewEV
, IV
->getInsertedValueOperand(),
2691 makeArrayRef(insi
, inse
));
2694 // The insert list is a prefix of the extract list
2695 // We can simply remove the common indices from the extract and make it
2696 // operate on the inserted value instead of the insertvalue result.
2698 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2699 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2701 // %E extractvalue { i32 } { i32 42 }, 0
2702 return ExtractValueInst::Create(IV
->getInsertedValueOperand(),
2703 makeArrayRef(exti
, exte
));
2705 if (WithOverflowInst
*WO
= dyn_cast
<WithOverflowInst
>(Agg
)) {
2706 // We're extracting from an overflow intrinsic, see if we're the only user,
2707 // which allows us to simplify multiple result intrinsics to simpler
2708 // things that just get one value.
2709 if (WO
->hasOneUse()) {
2710 // Check if we're grabbing only the result of a 'with overflow' intrinsic
2711 // and replace it with a traditional binary instruction.
2712 if (*EV
.idx_begin() == 0) {
2713 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
2714 Value
*LHS
= WO
->getLHS(), *RHS
= WO
->getRHS();
2715 replaceInstUsesWith(*WO
, UndefValue::get(WO
->getType()));
2716 eraseInstFromFunction(*WO
);
2717 return BinaryOperator::Create(BinOp
, LHS
, RHS
);
2720 // If the normal result of the add is dead, and the RHS is a constant,
2721 // we can transform this into a range comparison.
2722 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2723 if (WO
->getIntrinsicID() == Intrinsic::uadd_with_overflow
)
2724 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(WO
->getRHS()))
2725 return new ICmpInst(ICmpInst::ICMP_UGT
, WO
->getLHS(),
2726 ConstantExpr::getNot(CI
));
2729 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Agg
))
2730 // If the (non-volatile) load only has one use, we can rewrite this to a
2731 // load from a GEP. This reduces the size of the load. If a load is used
2732 // only by extractvalue instructions then this either must have been
2733 // optimized before, or it is a struct with padding, in which case we
2734 // don't want to do the transformation as it loses padding knowledge.
2735 if (L
->isSimple() && L
->hasOneUse()) {
2736 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2737 SmallVector
<Value
*, 4> Indices
;
2738 // Prefix an i32 0 since we need the first element.
2739 Indices
.push_back(Builder
.getInt32(0));
2740 for (ExtractValueInst::idx_iterator I
= EV
.idx_begin(), E
= EV
.idx_end();
2742 Indices
.push_back(Builder
.getInt32(*I
));
2744 // We need to insert these at the location of the old load, not at that of
2745 // the extractvalue.
2746 Builder
.SetInsertPoint(L
);
2747 Value
*GEP
= Builder
.CreateInBoundsGEP(L
->getType(),
2748 L
->getPointerOperand(), Indices
);
2749 Instruction
*NL
= Builder
.CreateLoad(EV
.getType(), GEP
);
2750 // Whatever aliasing information we had for the orignal load must also
2751 // hold for the smaller load, so propagate the annotations.
2753 L
->getAAMetadata(Nodes
);
2754 NL
->setAAMetadata(Nodes
);
2755 // Returning the load directly will cause the main loop to insert it in
2756 // the wrong spot, so use replaceInstUsesWith().
2757 return replaceInstUsesWith(EV
, NL
);
2759 // We could simplify extracts from other values. Note that nested extracts may
2760 // already be simplified implicitly by the above: extract (extract (insert) )
2761 // will be translated into extract ( insert ( extract ) ) first and then just
2762 // the value inserted, if appropriate. Similarly for extracts from single-use
2763 // loads: extract (extract (load)) will be translated to extract (load (gep))
2764 // and if again single-use then via load (gep (gep)) to load (gep).
2765 // However, double extracts from e.g. function arguments or return values
2766 // aren't handled yet.
2770 /// Return 'true' if the given typeinfo will match anything.
2771 static bool isCatchAll(EHPersonality Personality
, Constant
*TypeInfo
) {
2772 switch (Personality
) {
2773 case EHPersonality::GNU_C
:
2774 case EHPersonality::GNU_C_SjLj
:
2775 case EHPersonality::Rust
:
2776 // The GCC C EH and Rust personality only exists to support cleanups, so
2777 // it's not clear what the semantics of catch clauses are.
2779 case EHPersonality::Unknown
:
2781 case EHPersonality::GNU_Ada
:
2782 // While __gnat_all_others_value will match any Ada exception, it doesn't
2783 // match foreign exceptions (or didn't, before gcc-4.7).
2785 case EHPersonality::GNU_CXX
:
2786 case EHPersonality::GNU_CXX_SjLj
:
2787 case EHPersonality::GNU_ObjC
:
2788 case EHPersonality::MSVC_X86SEH
:
2789 case EHPersonality::MSVC_Win64SEH
:
2790 case EHPersonality::MSVC_CXX
:
2791 case EHPersonality::CoreCLR
:
2792 case EHPersonality::Wasm_CXX
:
2793 return TypeInfo
->isNullValue();
2795 llvm_unreachable("invalid enum");
2798 static bool shorter_filter(const Value
*LHS
, const Value
*RHS
) {
2800 cast
<ArrayType
>(LHS
->getType())->getNumElements()
2802 cast
<ArrayType
>(RHS
->getType())->getNumElements();
2805 Instruction
*InstCombiner::visitLandingPadInst(LandingPadInst
&LI
) {
2806 // The logic here should be correct for any real-world personality function.
2807 // However if that turns out not to be true, the offending logic can always
2808 // be conditioned on the personality function, like the catch-all logic is.
2809 EHPersonality Personality
=
2810 classifyEHPersonality(LI
.getParent()->getParent()->getPersonalityFn());
2812 // Simplify the list of clauses, eg by removing repeated catch clauses
2813 // (these are often created by inlining).
2814 bool MakeNewInstruction
= false; // If true, recreate using the following:
2815 SmallVector
<Constant
*, 16> NewClauses
; // - Clauses for the new instruction;
2816 bool CleanupFlag
= LI
.isCleanup(); // - The new instruction is a cleanup.
2818 SmallPtrSet
<Value
*, 16> AlreadyCaught
; // Typeinfos known caught already.
2819 for (unsigned i
= 0, e
= LI
.getNumClauses(); i
!= e
; ++i
) {
2820 bool isLastClause
= i
+ 1 == e
;
2821 if (LI
.isCatch(i
)) {
2823 Constant
*CatchClause
= LI
.getClause(i
);
2824 Constant
*TypeInfo
= CatchClause
->stripPointerCasts();
2826 // If we already saw this clause, there is no point in having a second
2828 if (AlreadyCaught
.insert(TypeInfo
).second
) {
2829 // This catch clause was not already seen.
2830 NewClauses
.push_back(CatchClause
);
2832 // Repeated catch clause - drop the redundant copy.
2833 MakeNewInstruction
= true;
2836 // If this is a catch-all then there is no point in keeping any following
2837 // clauses or marking the landingpad as having a cleanup.
2838 if (isCatchAll(Personality
, TypeInfo
)) {
2840 MakeNewInstruction
= true;
2841 CleanupFlag
= false;
2845 // A filter clause. If any of the filter elements were already caught
2846 // then they can be dropped from the filter. It is tempting to try to
2847 // exploit the filter further by saying that any typeinfo that does not
2848 // occur in the filter can't be caught later (and thus can be dropped).
2849 // However this would be wrong, since typeinfos can match without being
2850 // equal (for example if one represents a C++ class, and the other some
2851 // class derived from it).
2852 assert(LI
.isFilter(i
) && "Unsupported landingpad clause!");
2853 Constant
*FilterClause
= LI
.getClause(i
);
2854 ArrayType
*FilterType
= cast
<ArrayType
>(FilterClause
->getType());
2855 unsigned NumTypeInfos
= FilterType
->getNumElements();
2857 // An empty filter catches everything, so there is no point in keeping any
2858 // following clauses or marking the landingpad as having a cleanup. By
2859 // dealing with this case here the following code is made a bit simpler.
2860 if (!NumTypeInfos
) {
2861 NewClauses
.push_back(FilterClause
);
2863 MakeNewInstruction
= true;
2864 CleanupFlag
= false;
2868 bool MakeNewFilter
= false; // If true, make a new filter.
2869 SmallVector
<Constant
*, 16> NewFilterElts
; // New elements.
2870 if (isa
<ConstantAggregateZero
>(FilterClause
)) {
2871 // Not an empty filter - it contains at least one null typeinfo.
2872 assert(NumTypeInfos
> 0 && "Should have handled empty filter already!");
2873 Constant
*TypeInfo
=
2874 Constant::getNullValue(FilterType
->getElementType());
2875 // If this typeinfo is a catch-all then the filter can never match.
2876 if (isCatchAll(Personality
, TypeInfo
)) {
2877 // Throw the filter away.
2878 MakeNewInstruction
= true;
2882 // There is no point in having multiple copies of this typeinfo, so
2883 // discard all but the first copy if there is more than one.
2884 NewFilterElts
.push_back(TypeInfo
);
2885 if (NumTypeInfos
> 1)
2886 MakeNewFilter
= true;
2888 ConstantArray
*Filter
= cast
<ConstantArray
>(FilterClause
);
2889 SmallPtrSet
<Value
*, 16> SeenInFilter
; // For uniquing the elements.
2890 NewFilterElts
.reserve(NumTypeInfos
);
2892 // Remove any filter elements that were already caught or that already
2893 // occurred in the filter. While there, see if any of the elements are
2894 // catch-alls. If so, the filter can be discarded.
2895 bool SawCatchAll
= false;
2896 for (unsigned j
= 0; j
!= NumTypeInfos
; ++j
) {
2897 Constant
*Elt
= Filter
->getOperand(j
);
2898 Constant
*TypeInfo
= Elt
->stripPointerCasts();
2899 if (isCatchAll(Personality
, TypeInfo
)) {
2900 // This element is a catch-all. Bail out, noting this fact.
2905 // Even if we've seen a type in a catch clause, we don't want to
2906 // remove it from the filter. An unexpected type handler may be
2907 // set up for a call site which throws an exception of the same
2908 // type caught. In order for the exception thrown by the unexpected
2909 // handler to propagate correctly, the filter must be correctly
2910 // described for the call site.
2914 // void unexpected() { throw 1;}
2915 // void foo() throw (int) {
2916 // std::set_unexpected(unexpected);
2919 // } catch (int i) {}
2922 // There is no point in having multiple copies of the same typeinfo in
2923 // a filter, so only add it if we didn't already.
2924 if (SeenInFilter
.insert(TypeInfo
).second
)
2925 NewFilterElts
.push_back(cast
<Constant
>(Elt
));
2927 // A filter containing a catch-all cannot match anything by definition.
2929 // Throw the filter away.
2930 MakeNewInstruction
= true;
2934 // If we dropped something from the filter, make a new one.
2935 if (NewFilterElts
.size() < NumTypeInfos
)
2936 MakeNewFilter
= true;
2938 if (MakeNewFilter
) {
2939 FilterType
= ArrayType::get(FilterType
->getElementType(),
2940 NewFilterElts
.size());
2941 FilterClause
= ConstantArray::get(FilterType
, NewFilterElts
);
2942 MakeNewInstruction
= true;
2945 NewClauses
.push_back(FilterClause
);
2947 // If the new filter is empty then it will catch everything so there is
2948 // no point in keeping any following clauses or marking the landingpad
2949 // as having a cleanup. The case of the original filter being empty was
2950 // already handled above.
2951 if (MakeNewFilter
&& !NewFilterElts
.size()) {
2952 assert(MakeNewInstruction
&& "New filter but not a new instruction!");
2953 CleanupFlag
= false;
2959 // If several filters occur in a row then reorder them so that the shortest
2960 // filters come first (those with the smallest number of elements). This is
2961 // advantageous because shorter filters are more likely to match, speeding up
2962 // unwinding, but mostly because it increases the effectiveness of the other
2963 // filter optimizations below.
2964 for (unsigned i
= 0, e
= NewClauses
.size(); i
+ 1 < e
; ) {
2966 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2967 for (j
= i
; j
!= e
; ++j
)
2968 if (!isa
<ArrayType
>(NewClauses
[j
]->getType()))
2971 // Check whether the filters are already sorted by length. We need to know
2972 // if sorting them is actually going to do anything so that we only make a
2973 // new landingpad instruction if it does.
2974 for (unsigned k
= i
; k
+ 1 < j
; ++k
)
2975 if (shorter_filter(NewClauses
[k
+1], NewClauses
[k
])) {
2976 // Not sorted, so sort the filters now. Doing an unstable sort would be
2977 // correct too but reordering filters pointlessly might confuse users.
2978 std::stable_sort(NewClauses
.begin() + i
, NewClauses
.begin() + j
,
2980 MakeNewInstruction
= true;
2984 // Look for the next batch of filters.
2988 // If typeinfos matched if and only if equal, then the elements of a filter L
2989 // that occurs later than a filter F could be replaced by the intersection of
2990 // the elements of F and L. In reality two typeinfos can match without being
2991 // equal (for example if one represents a C++ class, and the other some class
2992 // derived from it) so it would be wrong to perform this transform in general.
2993 // However the transform is correct and useful if F is a subset of L. In that
2994 // case L can be replaced by F, and thus removed altogether since repeating a
2995 // filter is pointless. So here we look at all pairs of filters F and L where
2996 // L follows F in the list of clauses, and remove L if every element of F is
2997 // an element of L. This can occur when inlining C++ functions with exception
2999 for (unsigned i
= 0; i
+ 1 < NewClauses
.size(); ++i
) {
3000 // Examine each filter in turn.
3001 Value
*Filter
= NewClauses
[i
];
3002 ArrayType
*FTy
= dyn_cast
<ArrayType
>(Filter
->getType());
3004 // Not a filter - skip it.
3006 unsigned FElts
= FTy
->getNumElements();
3007 // Examine each filter following this one. Doing this backwards means that
3008 // we don't have to worry about filters disappearing under us when removed.
3009 for (unsigned j
= NewClauses
.size() - 1; j
!= i
; --j
) {
3010 Value
*LFilter
= NewClauses
[j
];
3011 ArrayType
*LTy
= dyn_cast
<ArrayType
>(LFilter
->getType());
3013 // Not a filter - skip it.
3015 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3016 // an element of LFilter, then discard LFilter.
3017 SmallVectorImpl
<Constant
*>::iterator J
= NewClauses
.begin() + j
;
3018 // If Filter is empty then it is a subset of LFilter.
3021 NewClauses
.erase(J
);
3022 MakeNewInstruction
= true;
3023 // Move on to the next filter.
3026 unsigned LElts
= LTy
->getNumElements();
3027 // If Filter is longer than LFilter then it cannot be a subset of it.
3029 // Move on to the next filter.
3031 // At this point we know that LFilter has at least one element.
3032 if (isa
<ConstantAggregateZero
>(LFilter
)) { // LFilter only contains zeros.
3033 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3034 // already know that Filter is not longer than LFilter).
3035 if (isa
<ConstantAggregateZero
>(Filter
)) {
3036 assert(FElts
<= LElts
&& "Should have handled this case earlier!");
3038 NewClauses
.erase(J
);
3039 MakeNewInstruction
= true;
3041 // Move on to the next filter.
3044 ConstantArray
*LArray
= cast
<ConstantArray
>(LFilter
);
3045 if (isa
<ConstantAggregateZero
>(Filter
)) { // Filter only contains zeros.
3046 // Since Filter is non-empty and contains only zeros, it is a subset of
3047 // LFilter iff LFilter contains a zero.
3048 assert(FElts
> 0 && "Should have eliminated the empty filter earlier!");
3049 for (unsigned l
= 0; l
!= LElts
; ++l
)
3050 if (LArray
->getOperand(l
)->isNullValue()) {
3051 // LFilter contains a zero - discard it.
3052 NewClauses
.erase(J
);
3053 MakeNewInstruction
= true;
3056 // Move on to the next filter.
3059 // At this point we know that both filters are ConstantArrays. Loop over
3060 // operands to see whether every element of Filter is also an element of
3061 // LFilter. Since filters tend to be short this is probably faster than
3062 // using a method that scales nicely.
3063 ConstantArray
*FArray
= cast
<ConstantArray
>(Filter
);
3064 bool AllFound
= true;
3065 for (unsigned f
= 0; f
!= FElts
; ++f
) {
3066 Value
*FTypeInfo
= FArray
->getOperand(f
)->stripPointerCasts();
3068 for (unsigned l
= 0; l
!= LElts
; ++l
) {
3069 Value
*LTypeInfo
= LArray
->getOperand(l
)->stripPointerCasts();
3070 if (LTypeInfo
== FTypeInfo
) {
3080 NewClauses
.erase(J
);
3081 MakeNewInstruction
= true;
3083 // Move on to the next filter.
3087 // If we changed any of the clauses, replace the old landingpad instruction
3089 if (MakeNewInstruction
) {
3090 LandingPadInst
*NLI
= LandingPadInst::Create(LI
.getType(),
3092 for (unsigned i
= 0, e
= NewClauses
.size(); i
!= e
; ++i
)
3093 NLI
->addClause(NewClauses
[i
]);
3094 // A landing pad with no clauses must have the cleanup flag set. It is
3095 // theoretically possible, though highly unlikely, that we eliminated all
3096 // clauses. If so, force the cleanup flag to true.
3097 if (NewClauses
.empty())
3099 NLI
->setCleanup(CleanupFlag
);
3103 // Even if none of the clauses changed, we may nonetheless have understood
3104 // that the cleanup flag is pointless. Clear it if so.
3105 if (LI
.isCleanup() != CleanupFlag
) {
3106 assert(!CleanupFlag
&& "Adding a cleanup, not removing one?!");
3107 LI
.setCleanup(CleanupFlag
);
3114 /// Try to move the specified instruction from its current block into the
3115 /// beginning of DestBlock, which can only happen if it's safe to move the
3116 /// instruction past all of the instructions between it and the end of its
3118 static bool TryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
) {
3119 assert(I
->hasOneUse() && "Invariants didn't hold!");
3120 BasicBlock
*SrcBlock
= I
->getParent();
3122 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3123 if (isa
<PHINode
>(I
) || I
->isEHPad() || I
->mayHaveSideEffects() ||
3127 // Do not sink static or dynamic alloca instructions. Static allocas must
3128 // remain in the entry block, and dynamic allocas must not be sunk in between
3129 // a stacksave / stackrestore pair, which would incorrectly shorten its
3131 if (isa
<AllocaInst
>(I
))
3134 // Do not sink into catchswitch blocks.
3135 if (isa
<CatchSwitchInst
>(DestBlock
->getTerminator()))
3138 // Do not sink convergent call instructions.
3139 if (auto *CI
= dyn_cast
<CallInst
>(I
)) {
3140 if (CI
->isConvergent())
3143 // We can only sink load instructions if there is nothing between the load and
3144 // the end of block that could change the value.
3145 if (I
->mayReadFromMemory()) {
3146 for (BasicBlock::iterator Scan
= I
->getIterator(),
3147 E
= I
->getParent()->end();
3149 if (Scan
->mayWriteToMemory())
3152 BasicBlock::iterator InsertPos
= DestBlock
->getFirstInsertionPt();
3153 I
->moveBefore(&*InsertPos
);
3156 // Also sink all related debug uses from the source basic block. Otherwise we
3157 // get debug use before the def. Attempt to salvage debug uses first, to
3158 // maximise the range variables have location for. If we cannot salvage, then
3159 // mark the location undef: we know it was supposed to receive a new location
3160 // here, but that computation has been sunk.
3161 SmallVector
<DbgVariableIntrinsic
*, 2> DbgUsers
;
3162 findDbgUsers(DbgUsers
, I
);
3163 for (auto *DII
: reverse(DbgUsers
)) {
3164 if (DII
->getParent() == SrcBlock
) {
3165 if (isa
<DbgDeclareInst
>(DII
)) {
3166 // A dbg.declare instruction should not be cloned, since there can only be
3167 // one per variable fragment. It should be left in the original place since
3168 // sunk instruction is not an alloca(otherwise we could not be here).
3169 // But we need to update arguments of dbg.declare instruction, so that it
3170 // would not point into sunk instruction.
3171 if (!isa
<CastInst
>(I
))
3172 continue; // dbg.declare points at something it shouldn't
3175 0, MetadataAsValue::get(I
->getContext(),
3176 ValueAsMetadata::get(I
->getOperand(0))));
3180 // dbg.value is in the same basic block as the sunk inst, see if we can
3181 // salvage it. Clone a new copy of the instruction: on success we need
3182 // both salvaged and unsalvaged copies.
3183 SmallVector
<DbgVariableIntrinsic
*, 1> TmpUser
{
3184 cast
<DbgVariableIntrinsic
>(DII
->clone())};
3186 if (!salvageDebugInfoForDbgValues(*I
, TmpUser
)) {
3187 // We are unable to salvage: sink the cloned dbg.value, and mark the
3188 // original as undef, terminating any earlier variable location.
3189 LLVM_DEBUG(dbgs() << "SINK: " << *DII
<< '\n');
3190 TmpUser
[0]->insertBefore(&*InsertPos
);
3191 Value
*Undef
= UndefValue::get(I
->getType());
3192 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
3193 ValueAsMetadata::get(Undef
)));
3195 // We successfully salvaged: place the salvaged dbg.value in the
3196 // original location, and move the unmodified dbg.value to sink with
3198 TmpUser
[0]->insertBefore(DII
);
3199 DII
->moveBefore(&*InsertPos
);
3206 bool InstCombiner::run() {
3207 while (!Worklist
.isEmpty()) {
3208 Instruction
*I
= Worklist
.RemoveOne();
3209 if (I
== nullptr) continue; // skip null values.
3211 // Check to see if we can DCE the instruction.
3212 if (isInstructionTriviallyDead(I
, &TLI
)) {
3213 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I
<< '\n');
3214 eraseInstFromFunction(*I
);
3216 MadeIRChange
= true;
3220 if (!DebugCounter::shouldExecute(VisitCounter
))
3223 // Instruction isn't dead, see if we can constant propagate it.
3224 if (!I
->use_empty() &&
3225 (I
->getNumOperands() == 0 || isa
<Constant
>(I
->getOperand(0)))) {
3226 if (Constant
*C
= ConstantFoldInstruction(I
, DL
, &TLI
)) {
3227 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C
<< " from: " << *I
3230 // Add operands to the worklist.
3231 replaceInstUsesWith(*I
, C
);
3233 if (isInstructionTriviallyDead(I
, &TLI
))
3234 eraseInstFromFunction(*I
);
3235 MadeIRChange
= true;
3240 // In general, it is possible for computeKnownBits to determine all bits in
3241 // a value even when the operands are not all constants.
3242 Type
*Ty
= I
->getType();
3243 if (ExpensiveCombines
&& !I
->use_empty() && Ty
->isIntOrIntVectorTy()) {
3244 KnownBits Known
= computeKnownBits(I
, /*Depth*/0, I
);
3245 if (Known
.isConstant()) {
3246 Constant
*C
= ConstantInt::get(Ty
, Known
.getConstant());
3247 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3248 << " from: " << *I
<< '\n');
3250 // Add operands to the worklist.
3251 replaceInstUsesWith(*I
, C
);
3253 if (isInstructionTriviallyDead(I
, &TLI
))
3254 eraseInstFromFunction(*I
);
3255 MadeIRChange
= true;
3260 // See if we can trivially sink this instruction to a successor basic block.
3261 if (EnableCodeSinking
&& I
->hasOneUse()) {
3262 BasicBlock
*BB
= I
->getParent();
3263 Instruction
*UserInst
= cast
<Instruction
>(*I
->user_begin());
3264 BasicBlock
*UserParent
;
3266 // Get the block the use occurs in.
3267 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
3268 UserParent
= PN
->getIncomingBlock(*I
->use_begin());
3270 UserParent
= UserInst
->getParent();
3272 if (UserParent
!= BB
) {
3273 bool UserIsSuccessor
= false;
3274 // See if the user is one of our successors.
3275 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
)
3276 if (*SI
== UserParent
) {
3277 UserIsSuccessor
= true;
3281 // If the user is one of our immediate successors, and if that successor
3282 // only has us as a predecessors (we'd have to split the critical edge
3283 // otherwise), we can keep going.
3284 if (UserIsSuccessor
&& UserParent
->getUniquePredecessor()) {
3285 // Okay, the CFG is simple enough, try to sink this instruction.
3286 if (TryToSinkInstruction(I
, UserParent
)) {
3287 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I
<< '\n');
3288 MadeIRChange
= true;
3289 // We'll add uses of the sunk instruction below, but since sinking
3290 // can expose opportunities for it's *operands* add them to the
3292 for (Use
&U
: I
->operands())
3293 if (Instruction
*OpI
= dyn_cast
<Instruction
>(U
.get()))
3300 // Now that we have an instruction, try combining it to simplify it.
3301 Builder
.SetInsertPoint(I
);
3302 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
3307 LLVM_DEBUG(raw_string_ostream
SS(OrigI
); I
->print(SS
); OrigI
= SS
.str(););
3308 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI
<< '\n');
3310 if (Instruction
*Result
= visit(*I
)) {
3312 // Should we replace the old instruction with a new one?
3314 LLVM_DEBUG(dbgs() << "IC: Old = " << *I
<< '\n'
3315 << " New = " << *Result
<< '\n');
3317 if (I
->getDebugLoc())
3318 Result
->setDebugLoc(I
->getDebugLoc());
3319 // Everything uses the new instruction now.
3320 I
->replaceAllUsesWith(Result
);
3322 // Move the name to the new instruction first.
3323 Result
->takeName(I
);
3325 // Push the new instruction and any users onto the worklist.
3326 Worklist
.AddUsersToWorkList(*Result
);
3327 Worklist
.Add(Result
);
3329 // Insert the new instruction into the basic block...
3330 BasicBlock
*InstParent
= I
->getParent();
3331 BasicBlock::iterator InsertPos
= I
->getIterator();
3333 // If we replace a PHI with something that isn't a PHI, fix up the
3335 if (!isa
<PHINode
>(Result
) && isa
<PHINode
>(InsertPos
))
3336 InsertPos
= InstParent
->getFirstInsertionPt();
3338 InstParent
->getInstList().insert(InsertPos
, Result
);
3340 eraseInstFromFunction(*I
);
3342 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI
<< '\n'
3343 << " New = " << *I
<< '\n');
3345 // If the instruction was modified, it's possible that it is now dead.
3346 // if so, remove it.
3347 if (isInstructionTriviallyDead(I
, &TLI
)) {
3348 eraseInstFromFunction(*I
);
3350 Worklist
.AddUsersToWorkList(*I
);
3354 MadeIRChange
= true;
3359 return MadeIRChange
;
3362 /// Walk the function in depth-first order, adding all reachable code to the
3365 /// This has a couple of tricks to make the code faster and more powerful. In
3366 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3367 /// them to the worklist (this significantly speeds up instcombine on code where
3368 /// many instructions are dead or constant). Additionally, if we find a branch
3369 /// whose condition is a known constant, we only visit the reachable successors.
3370 static bool AddReachableCodeToWorklist(BasicBlock
*BB
, const DataLayout
&DL
,
3371 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
3372 InstCombineWorklist
&ICWorklist
,
3373 const TargetLibraryInfo
*TLI
) {
3374 bool MadeIRChange
= false;
3375 SmallVector
<BasicBlock
*, 256> Worklist
;
3376 Worklist
.push_back(BB
);
3378 SmallVector
<Instruction
*, 128> InstrsForInstCombineWorklist
;
3379 DenseMap
<Constant
*, Constant
*> FoldedConstants
;
3382 BB
= Worklist
.pop_back_val();
3384 // We have now visited this block! If we've already been here, ignore it.
3385 if (!Visited
.insert(BB
).second
)
3388 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ) {
3389 Instruction
*Inst
= &*BBI
++;
3391 // DCE instruction if trivially dead.
3392 if (isInstructionTriviallyDead(Inst
, TLI
)) {
3394 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst
<< '\n');
3395 if (!salvageDebugInfo(*Inst
))
3396 replaceDbgUsesWithUndef(Inst
);
3397 Inst
->eraseFromParent();
3398 MadeIRChange
= true;
3402 // ConstantProp instruction if trivially constant.
3403 if (!Inst
->use_empty() &&
3404 (Inst
->getNumOperands() == 0 || isa
<Constant
>(Inst
->getOperand(0))))
3405 if (Constant
*C
= ConstantFoldInstruction(Inst
, DL
, TLI
)) {
3406 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C
<< " from: " << *Inst
3408 Inst
->replaceAllUsesWith(C
);
3410 if (isInstructionTriviallyDead(Inst
, TLI
))
3411 Inst
->eraseFromParent();
3412 MadeIRChange
= true;
3416 // See if we can constant fold its operands.
3417 for (Use
&U
: Inst
->operands()) {
3418 if (!isa
<ConstantVector
>(U
) && !isa
<ConstantExpr
>(U
))
3421 auto *C
= cast
<Constant
>(U
);
3422 Constant
*&FoldRes
= FoldedConstants
[C
];
3424 FoldRes
= ConstantFoldConstant(C
, DL
, TLI
);
3429 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3430 << "\n Old = " << *C
3431 << "\n New = " << *FoldRes
<< '\n');
3433 MadeIRChange
= true;
3437 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3438 // consumes non-trivial amount of time and provides no value for the optimization.
3439 if (!isa
<DbgInfoIntrinsic
>(Inst
))
3440 InstrsForInstCombineWorklist
.push_back(Inst
);
3443 // Recursively visit successors. If this is a branch or switch on a
3444 // constant, only visit the reachable successor.
3445 Instruction
*TI
= BB
->getTerminator();
3446 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
3447 if (BI
->isConditional() && isa
<ConstantInt
>(BI
->getCondition())) {
3448 bool CondVal
= cast
<ConstantInt
>(BI
->getCondition())->getZExtValue();
3449 BasicBlock
*ReachableBB
= BI
->getSuccessor(!CondVal
);
3450 Worklist
.push_back(ReachableBB
);
3453 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
3454 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
3455 Worklist
.push_back(SI
->findCaseValue(Cond
)->getCaseSuccessor());
3460 for (BasicBlock
*SuccBB
: successors(TI
))
3461 Worklist
.push_back(SuccBB
);
3462 } while (!Worklist
.empty());
3464 // Once we've found all of the instructions to add to instcombine's worklist,
3465 // add them in reverse order. This way instcombine will visit from the top
3466 // of the function down. This jives well with the way that it adds all uses
3467 // of instructions to the worklist after doing a transformation, thus avoiding
3468 // some N^2 behavior in pathological cases.
3469 ICWorklist
.AddInitialGroup(InstrsForInstCombineWorklist
);
3471 return MadeIRChange
;
3474 /// Populate the IC worklist from a function, and prune any dead basic
3475 /// blocks discovered in the process.
3477 /// This also does basic constant propagation and other forward fixing to make
3478 /// the combiner itself run much faster.
3479 static bool prepareICWorklistFromFunction(Function
&F
, const DataLayout
&DL
,
3480 TargetLibraryInfo
*TLI
,
3481 InstCombineWorklist
&ICWorklist
) {
3482 bool MadeIRChange
= false;
3484 // Do a depth-first traversal of the function, populate the worklist with
3485 // the reachable instructions. Ignore blocks that are not reachable. Keep
3486 // track of which blocks we visit.
3487 SmallPtrSet
<BasicBlock
*, 32> Visited
;
3489 AddReachableCodeToWorklist(&F
.front(), DL
, Visited
, ICWorklist
, TLI
);
3491 // Do a quick scan over the function. If we find any blocks that are
3492 // unreachable, remove any instructions inside of them. This prevents
3493 // the instcombine code from having to deal with some bad special cases.
3494 for (BasicBlock
&BB
: F
) {
3495 if (Visited
.count(&BB
))
3498 unsigned NumDeadInstInBB
= removeAllNonTerminatorAndEHPadInstructions(&BB
);
3499 MadeIRChange
|= NumDeadInstInBB
> 0;
3500 NumDeadInst
+= NumDeadInstInBB
;
3503 return MadeIRChange
;
3506 static bool combineInstructionsOverFunction(
3507 Function
&F
, InstCombineWorklist
&Worklist
, AliasAnalysis
*AA
,
3508 AssumptionCache
&AC
, TargetLibraryInfo
&TLI
, DominatorTree
&DT
,
3509 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
3510 ProfileSummaryInfo
*PSI
, bool ExpensiveCombines
= true,
3511 LoopInfo
*LI
= nullptr) {
3512 auto &DL
= F
.getParent()->getDataLayout();
3513 ExpensiveCombines
|= EnableExpensiveCombines
;
3515 /// Builder - This is an IRBuilder that automatically inserts new
3516 /// instructions into the worklist when they are created.
3517 IRBuilder
<TargetFolder
, IRBuilderCallbackInserter
> Builder(
3518 F
.getContext(), TargetFolder(DL
),
3519 IRBuilderCallbackInserter([&Worklist
, &AC
](Instruction
*I
) {
3521 if (match(I
, m_Intrinsic
<Intrinsic::assume
>()))
3522 AC
.registerAssumption(cast
<CallInst
>(I
));
3525 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3527 bool MadeIRChange
= false;
3528 if (ShouldLowerDbgDeclare
)
3529 MadeIRChange
= LowerDbgDeclare(F
);
3531 // Iterate while there is work to do.
3535 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration
<< " on "
3536 << F
.getName() << "\n");
3538 MadeIRChange
|= prepareICWorklistFromFunction(F
, DL
, &TLI
, Worklist
);
3540 InstCombiner
IC(Worklist
, Builder
, F
.hasMinSize(), ExpensiveCombines
, AA
,
3541 AC
, TLI
, DT
, ORE
, BFI
, PSI
, DL
, LI
);
3542 IC
.MaxArraySizeForCombine
= MaxArraySize
;
3548 return MadeIRChange
|| Iteration
> 1;
3551 PreservedAnalyses
InstCombinePass::run(Function
&F
,
3552 FunctionAnalysisManager
&AM
) {
3553 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
3554 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
3555 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
3556 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
3558 auto *LI
= AM
.getCachedResult
<LoopAnalysis
>(F
);
3560 auto *AA
= &AM
.getResult
<AAManager
>(F
);
3561 const ModuleAnalysisManager
&MAM
=
3562 AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
3563 ProfileSummaryInfo
*PSI
=
3564 MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
3565 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
3566 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
3568 if (!combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, DT
, ORE
,
3569 BFI
, PSI
, ExpensiveCombines
, LI
))
3570 // No changes, all analyses are preserved.
3571 return PreservedAnalyses::all();
3573 // Mark all the analyses that instcombine updates as preserved.
3574 PreservedAnalyses PA
;
3575 PA
.preserveSet
<CFGAnalyses
>();
3576 PA
.preserve
<AAManager
>();
3577 PA
.preserve
<BasicAA
>();
3578 PA
.preserve
<GlobalsAA
>();
3582 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
3583 AU
.setPreservesCFG();
3584 AU
.addRequired
<AAResultsWrapperPass
>();
3585 AU
.addRequired
<AssumptionCacheTracker
>();
3586 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
3587 AU
.addRequired
<DominatorTreeWrapperPass
>();
3588 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
3589 AU
.addPreserved
<DominatorTreeWrapperPass
>();
3590 AU
.addPreserved
<AAResultsWrapperPass
>();
3591 AU
.addPreserved
<BasicAAWrapperPass
>();
3592 AU
.addPreserved
<GlobalsAAWrapperPass
>();
3593 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
3594 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
3597 bool InstructionCombiningPass::runOnFunction(Function
&F
) {
3598 if (skipFunction(F
))
3601 // Required analyses.
3602 auto AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3603 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
3604 auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
3605 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
3606 auto &ORE
= getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
3608 // Optional analyses.
3609 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
3610 auto *LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
3611 ProfileSummaryInfo
*PSI
=
3612 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
3613 BlockFrequencyInfo
*BFI
=
3614 (PSI
&& PSI
->hasProfileSummary()) ?
3615 &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI() :
3618 return combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, DT
, ORE
,
3619 BFI
, PSI
, ExpensiveCombines
, LI
);
3622 char InstructionCombiningPass::ID
= 0;
3624 INITIALIZE_PASS_BEGIN(InstructionCombiningPass
, "instcombine",
3625 "Combine redundant instructions", false, false)
3626 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
3627 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
3628 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
3629 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
3630 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
3631 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
3632 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass
)
3633 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
3634 INITIALIZE_PASS_END(InstructionCombiningPass
, "instcombine",
3635 "Combine redundant instructions", false, false)
3637 // Initialization Routines
3638 void llvm::initializeInstCombine(PassRegistry
&Registry
) {
3639 initializeInstructionCombiningPassPass(Registry
);
3642 void LLVMInitializeInstCombine(LLVMPassRegistryRef R
) {
3643 initializeInstructionCombiningPassPass(*unwrap(R
));
3646 FunctionPass
*llvm::createInstructionCombiningPass(bool ExpensiveCombines
) {
3647 return new InstructionCombiningPass(ExpensiveCombines
);
3650 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM
) {
3651 unwrap(PM
)->add(createInstructionCombiningPass());