1 //===- PoisonChecking.cpp - -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit. That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef. There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language. If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
17 // The rewritten semantics of each instruction will include the following
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 // state of each input to whether the dynamic output of the instruction
24 // 3) A flag validation rule which validates any poison producing flags on the
25 // instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 // execute undefined behavior given the poison state of it's inputs.
29 // At the moment, the UB detection is done in a best effort manner; that is,
30 // the resulting code may produce a false negative result (not report UB when
31 // it actually exists according to the LangRef spec), but should never produce
32 // a false positive (report UB where it doesn't exist). The intention is to
33 // eventually support a "strict" mode which never dynamically reports a false
34 // negative at the cost of rejecting some valid inputs to translation.
36 // Use cases for this pass include:
37 // - Understanding (and testing!) the implications of the definition of poison
39 // - Validating the output of a IR fuzzer to ensure that all programs produced
40 // are well defined on the specific input used.
41 // - Finding/confirming poison specific miscompiles by checking the poison
42 // status of an input/IR pair is the same before and after an optimization
44 // - Checking that a bugpoint reduction does not introduce UB which didn't
45 // exist in the original program being reduced.
47 // The major sources of inaccuracy are currently:
48 // - Most validation rules not yet implemented for instructions with poison
49 // relavant flags. At the moment, only nsw/nuw on add/sub are supported.
50 // - UB which is control dependent on a branch on poison is not yet
51 // reported. Currently, only data flow dependence is modeled.
52 // - Poison which is propagated through memory is not modeled. As such,
53 // storing poison to memory and then reloading it will cause a false negative
54 // as we consider the reloaded value to not be poisoned.
55 // - Poison propagation across function boundaries is not modeled. At the
56 // moment, all arguments and return values are assumed not to be poison.
57 // - Undef is not modeled. In particular, the optimizer's freedom to pick
58 // concrete values for undef bits so as to maximize potential for producing
59 // poison is not modeled.
61 //===----------------------------------------------------------------------===//
63 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/MemoryBuiltins.h"
67 #include "llvm/Analysis/ValueTracking.h"
68 #include "llvm/IR/InstVisitor.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/PatternMatch.h"
72 #include "llvm/Support/Debug.h"
76 #define DEBUG_TYPE "poison-checking"
79 LocalCheck("poison-checking-function-local",
81 cl::desc("Check that returns are non-poison (for testing)"));
84 static bool isConstantFalse(Value
* V
) {
85 assert(V
->getType()->isIntegerTy(1));
86 if (auto *CI
= dyn_cast
<ConstantInt
>(V
))
91 static Value
*buildOrChain(IRBuilder
<> &B
, ArrayRef
<Value
*> Ops
) {
95 for (; i
< Ops
.size() && isConstantFalse(Ops
[i
]); i
++) {}
98 Value
*Accum
= Ops
[i
++];
99 for (; i
< Ops
.size(); i
++)
100 if (!isConstantFalse(Ops
[i
]))
101 Accum
= B
.CreateOr(Accum
, Ops
[i
]);
105 static void generatePoisonChecksForBinOp(Instruction
&I
,
106 SmallVector
<Value
*, 2> &Checks
) {
107 assert(isa
<BinaryOperator
>(I
));
110 Value
*LHS
= I
.getOperand(0);
111 Value
*RHS
= I
.getOperand(1);
112 switch (I
.getOpcode()) {
115 case Instruction::Add
: {
116 if (I
.hasNoSignedWrap()) {
118 B
.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow
, LHS
, RHS
);
119 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
121 if (I
.hasNoUnsignedWrap()) {
123 B
.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow
, LHS
, RHS
);
124 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
128 case Instruction::Sub
: {
129 if (I
.hasNoSignedWrap()) {
131 B
.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow
, LHS
, RHS
);
132 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
134 if (I
.hasNoUnsignedWrap()) {
136 B
.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow
, LHS
, RHS
);
137 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
141 case Instruction::Mul
: {
142 if (I
.hasNoSignedWrap()) {
144 B
.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow
, LHS
, RHS
);
145 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
147 if (I
.hasNoUnsignedWrap()) {
149 B
.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow
, LHS
, RHS
);
150 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
154 case Instruction::UDiv
: {
157 B
.CreateICmp(ICmpInst::ICMP_NE
, B
.CreateURem(LHS
, RHS
),
158 ConstantInt::get(LHS
->getType(), 0));
159 Checks
.push_back(Check
);
163 case Instruction::SDiv
: {
166 B
.CreateICmp(ICmpInst::ICMP_NE
, B
.CreateSRem(LHS
, RHS
),
167 ConstantInt::get(LHS
->getType(), 0));
168 Checks
.push_back(Check
);
172 case Instruction::AShr
:
173 case Instruction::LShr
:
174 case Instruction::Shl
: {
176 B
.CreateICmp(ICmpInst::ICMP_UGE
, RHS
,
177 ConstantInt::get(RHS
->getType(),
178 LHS
->getType()->getScalarSizeInBits()));
179 Checks
.push_back(ShiftCheck
);
185 static Value
* generatePoisonChecks(Instruction
&I
) {
187 SmallVector
<Value
*, 2> Checks
;
188 if (isa
<BinaryOperator
>(I
) && !I
.getType()->isVectorTy())
189 generatePoisonChecksForBinOp(I
, Checks
);
191 // Handle non-binops seperately
192 switch (I
.getOpcode()) {
195 case Instruction::ExtractElement
: {
196 Value
*Vec
= I
.getOperand(0);
197 if (Vec
->getType()->getVectorIsScalable())
199 Value
*Idx
= I
.getOperand(1);
200 unsigned NumElts
= Vec
->getType()->getVectorNumElements();
202 B
.CreateICmp(ICmpInst::ICMP_UGE
, Idx
,
203 ConstantInt::get(Idx
->getType(), NumElts
));
204 Checks
.push_back(Check
);
207 case Instruction::InsertElement
: {
208 Value
*Vec
= I
.getOperand(0);
209 if (Vec
->getType()->getVectorIsScalable())
211 Value
*Idx
= I
.getOperand(2);
212 unsigned NumElts
= Vec
->getType()->getVectorNumElements();
214 B
.CreateICmp(ICmpInst::ICMP_UGE
, Idx
,
215 ConstantInt::get(Idx
->getType(), NumElts
));
216 Checks
.push_back(Check
);
220 return buildOrChain(B
, Checks
);
223 static Value
*getPoisonFor(DenseMap
<Value
*, Value
*> &ValToPoison
, Value
*V
) {
224 auto Itr
= ValToPoison
.find(V
);
225 if (Itr
!= ValToPoison
.end())
227 if (isa
<Constant
>(V
)) {
228 return ConstantInt::getFalse(V
->getContext());
230 // Return false for unknwon values - this implements a non-strict mode where
231 // unhandled IR constructs are simply considered to never produce poison. At
232 // some point in the future, we probably want a "strict mode" for testing if
234 return ConstantInt::getFalse(V
->getContext());
237 static void CreateAssert(IRBuilder
<> &B
, Value
*Cond
) {
238 assert(Cond
->getType()->isIntegerTy(1));
239 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
240 if (CI
->isAllOnesValue())
243 Module
*M
= B
.GetInsertBlock()->getModule();
244 M
->getOrInsertFunction("__poison_checker_assert",
245 Type::getVoidTy(M
->getContext()),
246 Type::getInt1Ty(M
->getContext()));
247 Function
*TrapFunc
= M
->getFunction("__poison_checker_assert");
248 B
.CreateCall(TrapFunc
, Cond
);
251 static void CreateAssertNot(IRBuilder
<> &B
, Value
*Cond
) {
252 assert(Cond
->getType()->isIntegerTy(1));
253 CreateAssert(B
, B
.CreateNot(Cond
));
256 static bool rewrite(Function
&F
) {
257 auto * const Int1Ty
= Type::getInt1Ty(F
.getContext());
259 DenseMap
<Value
*, Value
*> ValToPoison
;
261 for (BasicBlock
&BB
: F
)
262 for (auto I
= BB
.begin(); isa
<PHINode
>(&*I
); I
++) {
263 auto *OldPHI
= cast
<PHINode
>(&*I
);
264 auto *NewPHI
= PHINode::Create(Int1Ty
,
265 OldPHI
->getNumIncomingValues());
266 for (unsigned i
= 0; i
< OldPHI
->getNumIncomingValues(); i
++)
267 NewPHI
->addIncoming(UndefValue::get(Int1Ty
),
268 OldPHI
->getIncomingBlock(i
));
269 NewPHI
->insertBefore(OldPHI
);
270 ValToPoison
[OldPHI
] = NewPHI
;
273 for (BasicBlock
&BB
: F
)
274 for (Instruction
&I
: BB
) {
275 if (isa
<PHINode
>(I
)) continue;
277 IRBuilder
<> B(cast
<Instruction
>(&I
));
279 // Note: There are many more sources of documented UB, but this pass only
280 // attempts to find UB triggered by propagation of poison.
281 if (Value
*Op
= const_cast<Value
*>(getGuaranteedNonFullPoisonOp(&I
)))
282 CreateAssertNot(B
, getPoisonFor(ValToPoison
, Op
));
285 if (auto *RI
= dyn_cast
<ReturnInst
>(&I
))
286 if (RI
->getNumOperands() != 0) {
287 Value
*Op
= RI
->getOperand(0);
288 CreateAssertNot(B
, getPoisonFor(ValToPoison
, Op
));
291 SmallVector
<Value
*, 4> Checks
;
292 if (propagatesFullPoison(&I
))
293 for (Value
*V
: I
.operands())
294 Checks
.push_back(getPoisonFor(ValToPoison
, V
));
296 if (auto *Check
= generatePoisonChecks(I
))
297 Checks
.push_back(Check
);
298 ValToPoison
[&I
] = buildOrChain(B
, Checks
);
301 for (BasicBlock
&BB
: F
)
302 for (auto I
= BB
.begin(); isa
<PHINode
>(&*I
); I
++) {
303 auto *OldPHI
= cast
<PHINode
>(&*I
);
304 if (!ValToPoison
.count(OldPHI
))
305 continue; // skip the newly inserted phis
306 auto *NewPHI
= cast
<PHINode
>(ValToPoison
[OldPHI
]);
307 for (unsigned i
= 0; i
< OldPHI
->getNumIncomingValues(); i
++) {
308 auto *OldVal
= OldPHI
->getIncomingValue(i
);
309 NewPHI
->setIncomingValue(i
, getPoisonFor(ValToPoison
, OldVal
));
316 PreservedAnalyses
PoisonCheckingPass::run(Module
&M
,
317 ModuleAnalysisManager
&AM
) {
318 bool Changed
= false;
320 Changed
|= rewrite(F
);
322 return Changed
? PreservedAnalyses::none() : PreservedAnalyses::all();
325 PreservedAnalyses
PoisonCheckingPass::run(Function
&F
,
326 FunctionAnalysisManager
&AM
) {
327 return rewrite(F
) ? PreservedAnalyses::none() : PreservedAnalyses::all();
332 - Control dependent poison UB
333 - Strict mode - (i.e. must analyze every operand)
334 - Poison through memory
336 - Full coverage of intrinsics, etc.. (ouch)
338 Instructions w/Unclear Semantics:
339 - shufflevector - It would seem reasonable for an out of bounds mask element
340 to produce poison, but the LangRef does not state.
341 - and/or - It would seem reasonable for poison to propagate from both
342 arguments, but LangRef doesn't state and propagatesFullPoison doesn't
344 - all binary ops w/vector operands - The likely interpretation would be that
345 any element overflowing should produce poison for the entire result, but
346 the LangRef does not state.
347 - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
348 strange that only certian flags should be documented as producing poison.
350 Cases of clear poison semantics not yet implemented:
351 - Exact flags on ashr/lshr produce poison
352 - NSW/NUW flags on shl produce poison
353 - Inbounds flag on getelementptr produce poison
354 - fptosi/fptoui (out of bounds input) produce poison
355 - Scalable vector types for insertelement/extractelement
356 - Floating point binary ops w/fmf nnan/noinfs flags produce poison