[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
blobac274a155a80329329b2cd47f2f18ab88bdd1502
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
50 using namespace llvm;
52 #define DEBUG_TYPE "tsan"
54 static cl::opt<bool> ClInstrumentMemoryAccesses(
55 "tsan-instrument-memory-accesses", cl::init(true),
56 cl::desc("Instrument memory accesses"), cl::Hidden);
57 static cl::opt<bool> ClInstrumentFuncEntryExit(
58 "tsan-instrument-func-entry-exit", cl::init(true),
59 cl::desc("Instrument function entry and exit"), cl::Hidden);
60 static cl::opt<bool> ClHandleCxxExceptions(
61 "tsan-handle-cxx-exceptions", cl::init(true),
62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
63 cl::Hidden);
64 static cl::opt<bool> ClInstrumentAtomics(
65 "tsan-instrument-atomics", cl::init(true),
66 cl::desc("Instrument atomics"), cl::Hidden);
67 static cl::opt<bool> ClInstrumentMemIntrinsics(
68 "tsan-instrument-memintrinsics", cl::init(true),
69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
71 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
72 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
73 STATISTIC(NumOmittedReadsBeforeWrite,
74 "Number of reads ignored due to following writes");
75 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
76 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
77 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
78 STATISTIC(NumOmittedReadsFromConstantGlobals,
79 "Number of reads from constant globals");
80 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
81 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
83 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
84 static const char *const kTsanInitName = "__tsan_init";
86 namespace {
88 /// ThreadSanitizer: instrument the code in module to find races.
89 ///
90 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
91 /// declarations into the module if they don't exist already. Instantiating
92 /// ensures the __tsan_init function is in the list of global constructors for
93 /// the module.
94 struct ThreadSanitizer {
95 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
97 private:
98 void initialize(Module &M);
99 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
100 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
101 bool instrumentMemIntrinsic(Instruction *I);
102 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
103 SmallVectorImpl<Instruction *> &All,
104 const DataLayout &DL);
105 bool addrPointsToConstantData(Value *Addr);
106 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
107 void InsertRuntimeIgnores(Function &F);
109 Type *IntptrTy;
110 FunctionCallee TsanFuncEntry;
111 FunctionCallee TsanFuncExit;
112 FunctionCallee TsanIgnoreBegin;
113 FunctionCallee TsanIgnoreEnd;
114 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
115 static const size_t kNumberOfAccessSizes = 5;
116 FunctionCallee TsanRead[kNumberOfAccessSizes];
117 FunctionCallee TsanWrite[kNumberOfAccessSizes];
118 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
119 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
120 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
121 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
122 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
123 [kNumberOfAccessSizes];
124 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
125 FunctionCallee TsanAtomicThreadFence;
126 FunctionCallee TsanAtomicSignalFence;
127 FunctionCallee TsanVptrUpdate;
128 FunctionCallee TsanVptrLoad;
129 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
132 struct ThreadSanitizerLegacyPass : FunctionPass {
133 ThreadSanitizerLegacyPass() : FunctionPass(ID) {}
134 StringRef getPassName() const override;
135 void getAnalysisUsage(AnalysisUsage &AU) const override;
136 bool runOnFunction(Function &F) override;
137 bool doInitialization(Module &M) override;
138 static char ID; // Pass identification, replacement for typeid.
139 private:
140 Optional<ThreadSanitizer> TSan;
143 void insertModuleCtor(Module &M) {
144 getOrCreateSanitizerCtorAndInitFunctions(
145 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
146 /*InitArgs=*/{},
147 // This callback is invoked when the functions are created the first
148 // time. Hook them into the global ctors list in that case:
149 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
152 } // namespace
154 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
155 FunctionAnalysisManager &FAM) {
156 ThreadSanitizer TSan;
157 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
158 return PreservedAnalyses::none();
159 return PreservedAnalyses::all();
162 PreservedAnalyses ThreadSanitizerPass::run(Module &M,
163 ModuleAnalysisManager &MAM) {
164 insertModuleCtor(M);
165 return PreservedAnalyses::none();
168 char ThreadSanitizerLegacyPass::ID = 0;
169 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
170 "ThreadSanitizer: detects data races.", false, false)
171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
172 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
173 "ThreadSanitizer: detects data races.", false, false)
175 StringRef ThreadSanitizerLegacyPass::getPassName() const {
176 return "ThreadSanitizerLegacyPass";
179 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
180 AU.addRequired<TargetLibraryInfoWrapperPass>();
183 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
184 insertModuleCtor(M);
185 TSan.emplace();
186 return true;
189 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
190 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
191 TSan->sanitizeFunction(F, TLI);
192 return true;
195 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
196 return new ThreadSanitizerLegacyPass();
199 void ThreadSanitizer::initialize(Module &M) {
200 const DataLayout &DL = M.getDataLayout();
201 IntptrTy = DL.getIntPtrType(M.getContext());
203 IRBuilder<> IRB(M.getContext());
204 AttributeList Attr;
205 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
206 Attribute::NoUnwind);
207 // Initialize the callbacks.
208 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
209 IRB.getVoidTy(), IRB.getInt8PtrTy());
210 TsanFuncExit =
211 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
212 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
213 IRB.getVoidTy());
214 TsanIgnoreEnd =
215 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
216 IntegerType *OrdTy = IRB.getInt32Ty();
217 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
218 const unsigned ByteSize = 1U << i;
219 const unsigned BitSize = ByteSize * 8;
220 std::string ByteSizeStr = utostr(ByteSize);
221 std::string BitSizeStr = utostr(BitSize);
222 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
223 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
224 IRB.getInt8PtrTy());
226 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
227 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
228 IRB.getInt8PtrTy());
230 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
231 TsanUnalignedRead[i] = M.getOrInsertFunction(
232 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
234 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
235 TsanUnalignedWrite[i] = M.getOrInsertFunction(
236 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
238 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
239 Type *PtrTy = Ty->getPointerTo();
240 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
241 TsanAtomicLoad[i] =
242 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
244 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
245 TsanAtomicStore[i] = M.getOrInsertFunction(
246 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
248 for (int op = AtomicRMWInst::FIRST_BINOP;
249 op <= AtomicRMWInst::LAST_BINOP; ++op) {
250 TsanAtomicRMW[op][i] = nullptr;
251 const char *NamePart = nullptr;
252 if (op == AtomicRMWInst::Xchg)
253 NamePart = "_exchange";
254 else if (op == AtomicRMWInst::Add)
255 NamePart = "_fetch_add";
256 else if (op == AtomicRMWInst::Sub)
257 NamePart = "_fetch_sub";
258 else if (op == AtomicRMWInst::And)
259 NamePart = "_fetch_and";
260 else if (op == AtomicRMWInst::Or)
261 NamePart = "_fetch_or";
262 else if (op == AtomicRMWInst::Xor)
263 NamePart = "_fetch_xor";
264 else if (op == AtomicRMWInst::Nand)
265 NamePart = "_fetch_nand";
266 else
267 continue;
268 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
269 TsanAtomicRMW[op][i] =
270 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
273 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
274 "_compare_exchange_val");
275 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
276 Ty, OrdTy, OrdTy);
278 TsanVptrUpdate =
279 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
280 IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
281 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
282 IRB.getVoidTy(), IRB.getInt8PtrTy());
283 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
284 Attr, IRB.getVoidTy(), OrdTy);
285 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
286 Attr, IRB.getVoidTy(), OrdTy);
288 MemmoveFn =
289 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
290 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
291 MemcpyFn =
292 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
293 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
294 MemsetFn =
295 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
296 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
299 static bool isVtableAccess(Instruction *I) {
300 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
301 return Tag->isTBAAVtableAccess();
302 return false;
305 // Do not instrument known races/"benign races" that come from compiler
306 // instrumentatin. The user has no way of suppressing them.
307 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
308 // Peel off GEPs and BitCasts.
309 Addr = Addr->stripInBoundsOffsets();
311 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
312 if (GV->hasSection()) {
313 StringRef SectionName = GV->getSection();
314 // Check if the global is in the PGO counters section.
315 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
316 if (SectionName.endswith(
317 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
318 return false;
321 // Check if the global is private gcov data.
322 if (GV->getName().startswith("__llvm_gcov") ||
323 GV->getName().startswith("__llvm_gcda"))
324 return false;
327 // Do not instrument acesses from different address spaces; we cannot deal
328 // with them.
329 if (Addr) {
330 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
331 if (PtrTy->getPointerAddressSpace() != 0)
332 return false;
335 return true;
338 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
339 // If this is a GEP, just analyze its pointer operand.
340 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
341 Addr = GEP->getPointerOperand();
343 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
344 if (GV->isConstant()) {
345 // Reads from constant globals can not race with any writes.
346 NumOmittedReadsFromConstantGlobals++;
347 return true;
349 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
350 if (isVtableAccess(L)) {
351 // Reads from a vtable pointer can not race with any writes.
352 NumOmittedReadsFromVtable++;
353 return true;
356 return false;
359 // Instrumenting some of the accesses may be proven redundant.
360 // Currently handled:
361 // - read-before-write (within same BB, no calls between)
362 // - not captured variables
364 // We do not handle some of the patterns that should not survive
365 // after the classic compiler optimizations.
366 // E.g. two reads from the same temp should be eliminated by CSE,
367 // two writes should be eliminated by DSE, etc.
369 // 'Local' is a vector of insns within the same BB (no calls between).
370 // 'All' is a vector of insns that will be instrumented.
371 void ThreadSanitizer::chooseInstructionsToInstrument(
372 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
373 const DataLayout &DL) {
374 SmallPtrSet<Value*, 8> WriteTargets;
375 // Iterate from the end.
376 for (Instruction *I : reverse(Local)) {
377 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
378 Value *Addr = Store->getPointerOperand();
379 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
380 continue;
381 WriteTargets.insert(Addr);
382 } else {
383 LoadInst *Load = cast<LoadInst>(I);
384 Value *Addr = Load->getPointerOperand();
385 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
386 continue;
387 if (WriteTargets.count(Addr)) {
388 // We will write to this temp, so no reason to analyze the read.
389 NumOmittedReadsBeforeWrite++;
390 continue;
392 if (addrPointsToConstantData(Addr)) {
393 // Addr points to some constant data -- it can not race with any writes.
394 continue;
397 Value *Addr = isa<StoreInst>(*I)
398 ? cast<StoreInst>(I)->getPointerOperand()
399 : cast<LoadInst>(I)->getPointerOperand();
400 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
401 !PointerMayBeCaptured(Addr, true, true)) {
402 // The variable is addressable but not captured, so it cannot be
403 // referenced from a different thread and participate in a data race
404 // (see llvm/Analysis/CaptureTracking.h for details).
405 NumOmittedNonCaptured++;
406 continue;
408 All.push_back(I);
410 Local.clear();
413 static bool isAtomic(Instruction *I) {
414 // TODO: Ask TTI whether synchronization scope is between threads.
415 if (LoadInst *LI = dyn_cast<LoadInst>(I))
416 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
417 if (StoreInst *SI = dyn_cast<StoreInst>(I))
418 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
419 if (isa<AtomicRMWInst>(I))
420 return true;
421 if (isa<AtomicCmpXchgInst>(I))
422 return true;
423 if (isa<FenceInst>(I))
424 return true;
425 return false;
428 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
429 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
430 IRB.CreateCall(TsanIgnoreBegin);
431 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
432 while (IRBuilder<> *AtExit = EE.Next()) {
433 AtExit->CreateCall(TsanIgnoreEnd);
437 bool ThreadSanitizer::sanitizeFunction(Function &F,
438 const TargetLibraryInfo &TLI) {
439 // This is required to prevent instrumenting call to __tsan_init from within
440 // the module constructor.
441 if (F.getName() == kTsanModuleCtorName)
442 return false;
443 initialize(*F.getParent());
444 SmallVector<Instruction*, 8> AllLoadsAndStores;
445 SmallVector<Instruction*, 8> LocalLoadsAndStores;
446 SmallVector<Instruction*, 8> AtomicAccesses;
447 SmallVector<Instruction*, 8> MemIntrinCalls;
448 bool Res = false;
449 bool HasCalls = false;
450 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
451 const DataLayout &DL = F.getParent()->getDataLayout();
453 // Traverse all instructions, collect loads/stores/returns, check for calls.
454 for (auto &BB : F) {
455 for (auto &Inst : BB) {
456 if (isAtomic(&Inst))
457 AtomicAccesses.push_back(&Inst);
458 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
459 LocalLoadsAndStores.push_back(&Inst);
460 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
461 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
462 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
463 if (isa<MemIntrinsic>(Inst))
464 MemIntrinCalls.push_back(&Inst);
465 HasCalls = true;
466 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
467 DL);
470 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
473 // We have collected all loads and stores.
474 // FIXME: many of these accesses do not need to be checked for races
475 // (e.g. variables that do not escape, etc).
477 // Instrument memory accesses only if we want to report bugs in the function.
478 if (ClInstrumentMemoryAccesses && SanitizeFunction)
479 for (auto Inst : AllLoadsAndStores) {
480 Res |= instrumentLoadOrStore(Inst, DL);
483 // Instrument atomic memory accesses in any case (they can be used to
484 // implement synchronization).
485 if (ClInstrumentAtomics)
486 for (auto Inst : AtomicAccesses) {
487 Res |= instrumentAtomic(Inst, DL);
490 if (ClInstrumentMemIntrinsics && SanitizeFunction)
491 for (auto Inst : MemIntrinCalls) {
492 Res |= instrumentMemIntrinsic(Inst);
495 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
496 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
497 if (HasCalls)
498 InsertRuntimeIgnores(F);
501 // Instrument function entry/exit points if there were instrumented accesses.
502 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
503 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
504 Value *ReturnAddress = IRB.CreateCall(
505 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
506 IRB.getInt32(0));
507 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
509 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
510 while (IRBuilder<> *AtExit = EE.Next()) {
511 AtExit->CreateCall(TsanFuncExit, {});
513 Res = true;
515 return Res;
518 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
519 const DataLayout &DL) {
520 IRBuilder<> IRB(I);
521 bool IsWrite = isa<StoreInst>(*I);
522 Value *Addr = IsWrite
523 ? cast<StoreInst>(I)->getPointerOperand()
524 : cast<LoadInst>(I)->getPointerOperand();
526 // swifterror memory addresses are mem2reg promoted by instruction selection.
527 // As such they cannot have regular uses like an instrumentation function and
528 // it makes no sense to track them as memory.
529 if (Addr->isSwiftError())
530 return false;
532 int Idx = getMemoryAccessFuncIndex(Addr, DL);
533 if (Idx < 0)
534 return false;
535 if (IsWrite && isVtableAccess(I)) {
536 LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n");
537 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
538 // StoredValue may be a vector type if we are storing several vptrs at once.
539 // In this case, just take the first element of the vector since this is
540 // enough to find vptr races.
541 if (isa<VectorType>(StoredValue->getType()))
542 StoredValue = IRB.CreateExtractElement(
543 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
544 if (StoredValue->getType()->isIntegerTy())
545 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
546 // Call TsanVptrUpdate.
547 IRB.CreateCall(TsanVptrUpdate,
548 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
549 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
550 NumInstrumentedVtableWrites++;
551 return true;
553 if (!IsWrite && isVtableAccess(I)) {
554 IRB.CreateCall(TsanVptrLoad,
555 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
556 NumInstrumentedVtableReads++;
557 return true;
559 const unsigned Alignment = IsWrite
560 ? cast<StoreInst>(I)->getAlignment()
561 : cast<LoadInst>(I)->getAlignment();
562 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
563 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
564 FunctionCallee OnAccessFunc = nullptr;
565 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
566 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
567 else
568 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
569 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
570 if (IsWrite) NumInstrumentedWrites++;
571 else NumInstrumentedReads++;
572 return true;
575 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
576 uint32_t v = 0;
577 switch (ord) {
578 case AtomicOrdering::NotAtomic:
579 llvm_unreachable("unexpected atomic ordering!");
580 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
581 case AtomicOrdering::Monotonic: v = 0; break;
582 // Not specified yet:
583 // case AtomicOrdering::Consume: v = 1; break;
584 case AtomicOrdering::Acquire: v = 2; break;
585 case AtomicOrdering::Release: v = 3; break;
586 case AtomicOrdering::AcquireRelease: v = 4; break;
587 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
589 return IRB->getInt32(v);
592 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
593 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
594 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
595 // instead we simply replace them with regular function calls, which are then
596 // intercepted by the run-time.
597 // Since tsan is running after everyone else, the calls should not be
598 // replaced back with intrinsics. If that becomes wrong at some point,
599 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
600 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
601 IRBuilder<> IRB(I);
602 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
603 IRB.CreateCall(
604 MemsetFn,
605 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
606 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
607 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
608 I->eraseFromParent();
609 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
610 IRB.CreateCall(
611 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
612 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
613 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
614 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
615 I->eraseFromParent();
617 return false;
620 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
621 // standards. For background see C++11 standard. A slightly older, publicly
622 // available draft of the standard (not entirely up-to-date, but close enough
623 // for casual browsing) is available here:
624 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
625 // The following page contains more background information:
626 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
628 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
629 IRBuilder<> IRB(I);
630 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
631 Value *Addr = LI->getPointerOperand();
632 int Idx = getMemoryAccessFuncIndex(Addr, DL);
633 if (Idx < 0)
634 return false;
635 const unsigned ByteSize = 1U << Idx;
636 const unsigned BitSize = ByteSize * 8;
637 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
638 Type *PtrTy = Ty->getPointerTo();
639 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
640 createOrdering(&IRB, LI->getOrdering())};
641 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
642 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
643 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
644 I->replaceAllUsesWith(Cast);
645 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
646 Value *Addr = SI->getPointerOperand();
647 int Idx = getMemoryAccessFuncIndex(Addr, DL);
648 if (Idx < 0)
649 return false;
650 const unsigned ByteSize = 1U << Idx;
651 const unsigned BitSize = ByteSize * 8;
652 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
653 Type *PtrTy = Ty->getPointerTo();
654 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
655 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
656 createOrdering(&IRB, SI->getOrdering())};
657 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
658 ReplaceInstWithInst(I, C);
659 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
660 Value *Addr = RMWI->getPointerOperand();
661 int Idx = getMemoryAccessFuncIndex(Addr, DL);
662 if (Idx < 0)
663 return false;
664 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
665 if (!F)
666 return false;
667 const unsigned ByteSize = 1U << Idx;
668 const unsigned BitSize = ByteSize * 8;
669 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
670 Type *PtrTy = Ty->getPointerTo();
671 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
672 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
673 createOrdering(&IRB, RMWI->getOrdering())};
674 CallInst *C = CallInst::Create(F, Args);
675 ReplaceInstWithInst(I, C);
676 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
677 Value *Addr = CASI->getPointerOperand();
678 int Idx = getMemoryAccessFuncIndex(Addr, DL);
679 if (Idx < 0)
680 return false;
681 const unsigned ByteSize = 1U << Idx;
682 const unsigned BitSize = ByteSize * 8;
683 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
684 Type *PtrTy = Ty->getPointerTo();
685 Value *CmpOperand =
686 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
687 Value *NewOperand =
688 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
689 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
690 CmpOperand,
691 NewOperand,
692 createOrdering(&IRB, CASI->getSuccessOrdering()),
693 createOrdering(&IRB, CASI->getFailureOrdering())};
694 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
695 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
696 Value *OldVal = C;
697 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
698 if (Ty != OrigOldValTy) {
699 // The value is a pointer, so we need to cast the return value.
700 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
703 Value *Res =
704 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
705 Res = IRB.CreateInsertValue(Res, Success, 1);
707 I->replaceAllUsesWith(Res);
708 I->eraseFromParent();
709 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
710 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
711 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
712 ? TsanAtomicSignalFence
713 : TsanAtomicThreadFence;
714 CallInst *C = CallInst::Create(F, Args);
715 ReplaceInstWithInst(I, C);
717 return true;
720 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
721 const DataLayout &DL) {
722 Type *OrigPtrTy = Addr->getType();
723 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
724 assert(OrigTy->isSized());
725 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
726 if (TypeSize != 8 && TypeSize != 16 &&
727 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
728 NumAccessesWithBadSize++;
729 // Ignore all unusual sizes.
730 return -1;
732 size_t Idx = countTrailingZeros(TypeSize / 8);
733 assert(Idx < kNumberOfAccessSizes);
734 return Idx;