1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file adds DWARF discriminators to the IR. Path discriminators are
10 // used to decide what CFG path was taken inside sub-graphs whose instructions
11 // share the same line and column number information.
13 // The main user of this is the sample profiler. Instruction samples are
14 // mapped to line number information. Since a single line may be spread
15 // out over several basic blocks, discriminators add more precise location
20 // 1 #define ASSERT(P)
25 // 101 ASSERT (sum < 0);
29 // when converted to IR, this snippet looks something like:
31 // while.body: ; preds = %entry, %if.end
32 // %0 = load i32* %sum, align 4, !dbg !15
33 // %cmp = icmp slt i32 %0, 0, !dbg !15
34 // br i1 %cmp, label %if.end, label %if.then, !dbg !15
36 // if.then: ; preds = %while.body
37 // call void @abort(), !dbg !15
38 // br label %if.end, !dbg !15
40 // Notice that all the instructions in blocks 'while.body' and 'if.then'
41 // have exactly the same debug information. When this program is sampled
42 // at runtime, the profiler will assume that all these instructions are
43 // equally frequent. This, in turn, will consider the edge while.body->if.then
44 // to be frequently taken (which is incorrect).
46 // By adding a discriminator value to the instructions in block 'if.then',
47 // we can distinguish instructions at line 101 with discriminator 0 from
48 // the instructions at line 101 with discriminator 1.
50 // For more details about DWARF discriminators, please visit
51 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Utils/AddDiscriminators.h"
56 #include "llvm/ADT/DenseMap.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/PassManager.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils.h"
76 #define DEBUG_TYPE "add-discriminators"
78 // Command line option to disable discriminator generation even in the
79 // presence of debug information. This is only needed when debugging
80 // debug info generation issues.
81 static cl::opt
<bool> NoDiscriminators(
82 "no-discriminators", cl::init(false),
83 cl::desc("Disable generation of discriminator information."));
87 // The legacy pass of AddDiscriminators.
88 struct AddDiscriminatorsLegacyPass
: public FunctionPass
{
89 static char ID
; // Pass identification, replacement for typeid
91 AddDiscriminatorsLegacyPass() : FunctionPass(ID
) {
92 initializeAddDiscriminatorsLegacyPassPass(*PassRegistry::getPassRegistry());
95 bool runOnFunction(Function
&F
) override
;
98 } // end anonymous namespace
100 char AddDiscriminatorsLegacyPass::ID
= 0;
102 INITIALIZE_PASS_BEGIN(AddDiscriminatorsLegacyPass
, "add-discriminators",
103 "Add DWARF path discriminators", false, false)
104 INITIALIZE_PASS_END(AddDiscriminatorsLegacyPass
, "add-discriminators",
105 "Add DWARF path discriminators", false, false)
107 // Create the legacy AddDiscriminatorsPass.
108 FunctionPass
*llvm::createAddDiscriminatorsPass() {
109 return new AddDiscriminatorsLegacyPass();
112 static bool shouldHaveDiscriminator(const Instruction
*I
) {
113 return !isa
<IntrinsicInst
>(I
) || isa
<MemIntrinsic
>(I
);
116 /// Assign DWARF discriminators.
118 /// To assign discriminators, we examine the boundaries of every
119 /// basic block and its successors. Suppose there is a basic block B1
120 /// with successor B2. The last instruction I1 in B1 and the first
121 /// instruction I2 in B2 are located at the same file and line number.
122 /// This situation is illustrated in the following code snippet:
124 /// if (i < 10) x = i;
127 /// br i1 %cmp, label %if.then, label %if.end, !dbg !10
129 /// %1 = load i32* %i.addr, align 4, !dbg !10
130 /// store i32 %1, i32* %x, align 4, !dbg !10
131 /// br label %if.end, !dbg !10
133 /// ret void, !dbg !12
135 /// Notice how the branch instruction in block 'entry' and all the
136 /// instructions in block 'if.then' have the exact same debug location
137 /// information (!dbg !10).
139 /// To distinguish instructions in block 'entry' from instructions in
140 /// block 'if.then', we generate a new lexical block for all the
141 /// instruction in block 'if.then' that share the same file and line
142 /// location with the last instruction of block 'entry'.
144 /// This new lexical block will have the same location information as
145 /// the previous one, but with a new DWARF discriminator value.
147 /// One of the main uses of this discriminator value is in runtime
148 /// sample profilers. It allows the profiler to distinguish instructions
149 /// at location !dbg !10 that execute on different basic blocks. This is
150 /// important because while the predicate 'if (x < 10)' may have been
151 /// executed millions of times, the assignment 'x = i' may have only
152 /// executed a handful of times (meaning that the entry->if.then edge is
155 /// If we did not have discriminator information, the profiler would
156 /// assign the same weight to both blocks 'entry' and 'if.then', which
157 /// in turn will make it conclude that the entry->if.then edge is very
160 /// To decide where to create new discriminator values, this function
161 /// traverses the CFG and examines instruction at basic block boundaries.
162 /// If the last instruction I1 of a block B1 is at the same file and line
163 /// location as instruction I2 of successor B2, then it creates a new
164 /// lexical block for I2 and all the instruction in B2 that share the same
165 /// file and line location as I2. This new lexical block will have a
166 /// different discriminator number than I1.
167 static bool addDiscriminators(Function
&F
) {
168 // If the function has debug information, but the user has disabled
169 // discriminators, do nothing.
170 // Simlarly, if the function has no debug info, do nothing.
171 if (NoDiscriminators
|| !F
.getSubprogram())
174 bool Changed
= false;
176 using Location
= std::pair
<StringRef
, unsigned>;
177 using BBSet
= DenseSet
<const BasicBlock
*>;
178 using LocationBBMap
= DenseMap
<Location
, BBSet
>;
179 using LocationDiscriminatorMap
= DenseMap
<Location
, unsigned>;
180 using LocationSet
= DenseSet
<Location
>;
183 LocationDiscriminatorMap LDM
;
185 // Traverse all instructions in the function. If the source line location
186 // of the instruction appears in other basic block, assign a new
187 // discriminator for this instruction.
188 for (BasicBlock
&B
: F
) {
189 for (auto &I
: B
.getInstList()) {
190 // Not all intrinsic calls should have a discriminator.
191 // We want to avoid a non-deterministic assignment of discriminators at
192 // different debug levels. We still allow discriminators on memory
193 // intrinsic calls because those can be early expanded by SROA into
194 // pairs of loads and stores, and the expanded load/store instructions
195 // should have a valid discriminator.
196 if (!shouldHaveDiscriminator(&I
))
198 const DILocation
*DIL
= I
.getDebugLoc();
201 Location L
= std::make_pair(DIL
->getFilename(), DIL
->getLine());
202 auto &BBMap
= LBM
[L
];
203 auto R
= BBMap
.insert(&B
);
204 if (BBMap
.size() == 1)
206 // If we could insert more than one block with the same line+file, a
207 // discriminator is needed to distinguish both instructions.
208 // Only the lowest 7 bits are used to represent a discriminator to fit
209 // it in 1 byte ULEB128 representation.
210 unsigned Discriminator
= R
.second
? ++LDM
[L
] : LDM
[L
];
211 auto NewDIL
= DIL
->cloneWithBaseDiscriminator(Discriminator
);
213 LLVM_DEBUG(dbgs() << "Could not encode discriminator: "
214 << DIL
->getFilename() << ":" << DIL
->getLine() << ":"
215 << DIL
->getColumn() << ":" << Discriminator
<< " "
218 I
.setDebugLoc(NewDIL
.getValue());
219 LLVM_DEBUG(dbgs() << DIL
->getFilename() << ":" << DIL
->getLine() << ":"
220 << DIL
->getColumn() << ":" << Discriminator
<< " " << I
227 // Traverse all instructions and assign new discriminators to call
228 // instructions with the same lineno that are in the same basic block.
229 // Sample base profile needs to distinguish different function calls within
230 // a same source line for correct profile annotation.
231 for (BasicBlock
&B
: F
) {
232 LocationSet CallLocations
;
233 for (auto &I
: B
.getInstList()) {
234 // We bypass intrinsic calls for the following two reasons:
235 // 1) We want to avoid a non-deterministic assigment of
237 // 2) We want to minimize the number of base discriminators used.
238 if (!isa
<InvokeInst
>(I
) && (!isa
<CallInst
>(I
) || isa
<IntrinsicInst
>(I
)))
241 DILocation
*CurrentDIL
= I
.getDebugLoc();
245 std::make_pair(CurrentDIL
->getFilename(), CurrentDIL
->getLine());
246 if (!CallLocations
.insert(L
).second
) {
247 unsigned Discriminator
= ++LDM
[L
];
248 auto NewDIL
= CurrentDIL
->cloneWithBaseDiscriminator(Discriminator
);
251 << "Could not encode discriminator: "
252 << CurrentDIL
->getFilename() << ":"
253 << CurrentDIL
->getLine() << ":" << CurrentDIL
->getColumn()
254 << ":" << Discriminator
<< " " << I
<< "\n");
256 I
.setDebugLoc(NewDIL
.getValue());
265 bool AddDiscriminatorsLegacyPass::runOnFunction(Function
&F
) {
266 return addDiscriminators(F
);
269 PreservedAnalyses
AddDiscriminatorsPass::run(Function
&F
,
270 FunctionAnalysisManager
&AM
) {
271 if (!addDiscriminators(F
))
272 return PreservedAnalyses::all();
274 // FIXME: should be all()
275 return PreservedAnalyses::none();