[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / Utils / BreakCriticalEdges.cpp
blobf5e4b53f6d97d1a76bf8fb41b4f0f3f168febff2
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block. This pass may be "required" by passes that
11 // cannot deal with critical edges. For this usage, the structure type is
12 // forward declared. This pass obviously invalidates the CFG, but can update
13 // dominator trees.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Transforms/Utils.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "break-crit-edges"
40 STATISTIC(NumBroken, "Number of blocks inserted");
42 namespace {
43 struct BreakCriticalEdges : public FunctionPass {
44 static char ID; // Pass identification, replacement for typeid
45 BreakCriticalEdges() : FunctionPass(ID) {
46 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
49 bool runOnFunction(Function &F) override {
50 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
51 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
54 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
57 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
58 unsigned N =
59 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
60 NumBroken += N;
61 return N > 0;
64 void getAnalysisUsage(AnalysisUsage &AU) const override {
65 AU.addPreserved<DominatorTreeWrapperPass>();
66 AU.addPreserved<LoopInfoWrapperPass>();
68 // No loop canonicalization guarantees are broken by this pass.
69 AU.addPreservedID(LoopSimplifyID);
74 char BreakCriticalEdges::ID = 0;
75 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
76 "Break critical edges in CFG", false, false)
78 // Publicly exposed interface to pass...
79 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
80 FunctionPass *llvm::createBreakCriticalEdgesPass() {
81 return new BreakCriticalEdges();
84 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
85 FunctionAnalysisManager &AM) {
86 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
87 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
88 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
89 NumBroken += N;
90 if (N == 0)
91 return PreservedAnalyses::all();
92 PreservedAnalyses PA;
93 PA.preserve<DominatorTreeAnalysis>();
94 PA.preserve<LoopAnalysis>();
95 return PA;
98 //===----------------------------------------------------------------------===//
99 // Implementation of the external critical edge manipulation functions
100 //===----------------------------------------------------------------------===//
102 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
103 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
104 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
105 /// the old loop exit, now the successor of SplitBB.
106 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
107 BasicBlock *SplitBB,
108 BasicBlock *DestBB) {
109 // SplitBB shouldn't have anything non-trivial in it yet.
110 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
111 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
113 // For each PHI in the destination block.
114 for (PHINode &PN : DestBB->phis()) {
115 unsigned Idx = PN.getBasicBlockIndex(SplitBB);
116 Value *V = PN.getIncomingValue(Idx);
118 // If the input is a PHI which already satisfies LCSSA, don't create
119 // a new one.
120 if (const PHINode *VP = dyn_cast<PHINode>(V))
121 if (VP->getParent() == SplitBB)
122 continue;
124 // Otherwise a new PHI is needed. Create one and populate it.
125 PHINode *NewPN = PHINode::Create(
126 PN.getType(), Preds.size(), "split",
127 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
128 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
129 NewPN->addIncoming(V, Preds[i]);
131 // Update the original PHI.
132 PN.setIncomingValue(Idx, NewPN);
136 BasicBlock *
137 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
138 const CriticalEdgeSplittingOptions &Options) {
139 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
140 return nullptr;
142 assert(!isa<IndirectBrInst>(TI) &&
143 "Cannot split critical edge from IndirectBrInst");
145 BasicBlock *TIBB = TI->getParent();
146 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
148 // Splitting the critical edge to a pad block is non-trivial. Don't do
149 // it in this generic function.
150 if (DestBB->isEHPad()) return nullptr;
152 // Don't split the non-fallthrough edge from a callbr.
153 if (isa<CallBrInst>(TI) && SuccNum > 0)
154 return nullptr;
156 if (Options.IgnoreUnreachableDests &&
157 isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
158 return nullptr;
160 // Create a new basic block, linking it into the CFG.
161 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
162 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
163 // Create our unconditional branch.
164 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
165 NewBI->setDebugLoc(TI->getDebugLoc());
167 // Branch to the new block, breaking the edge.
168 TI->setSuccessor(SuccNum, NewBB);
170 // Insert the block into the function... right after the block TI lives in.
171 Function &F = *TIBB->getParent();
172 Function::iterator FBBI = TIBB->getIterator();
173 F.getBasicBlockList().insert(++FBBI, NewBB);
175 // If there are any PHI nodes in DestBB, we need to update them so that they
176 // merge incoming values from NewBB instead of from TIBB.
178 unsigned BBIdx = 0;
179 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
180 // We no longer enter through TIBB, now we come in through NewBB.
181 // Revector exactly one entry in the PHI node that used to come from
182 // TIBB to come from NewBB.
183 PHINode *PN = cast<PHINode>(I);
185 // Reuse the previous value of BBIdx if it lines up. In cases where we
186 // have multiple phi nodes with *lots* of predecessors, this is a speed
187 // win because we don't have to scan the PHI looking for TIBB. This
188 // happens because the BB list of PHI nodes are usually in the same
189 // order.
190 if (PN->getIncomingBlock(BBIdx) != TIBB)
191 BBIdx = PN->getBasicBlockIndex(TIBB);
192 PN->setIncomingBlock(BBIdx, NewBB);
196 // If there are any other edges from TIBB to DestBB, update those to go
197 // through the split block, making those edges non-critical as well (and
198 // reducing the number of phi entries in the DestBB if relevant).
199 if (Options.MergeIdenticalEdges) {
200 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
201 if (TI->getSuccessor(i) != DestBB) continue;
203 // Remove an entry for TIBB from DestBB phi nodes.
204 DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
206 // We found another edge to DestBB, go to NewBB instead.
207 TI->setSuccessor(i, NewBB);
211 // If we have nothing to update, just return.
212 auto *DT = Options.DT;
213 auto *PDT = Options.PDT;
214 auto *LI = Options.LI;
215 auto *MSSAU = Options.MSSAU;
216 if (MSSAU)
217 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
218 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
220 if (!DT && !PDT && !LI)
221 return NewBB;
223 if (DT || PDT) {
224 // Update the DominatorTree.
225 // ---> NewBB -----\
226 // / V
227 // TIBB -------\\------> DestBB
229 // First, inform the DT about the new path from TIBB to DestBB via NewBB,
230 // then delete the old edge from TIBB to DestBB. By doing this in that order
231 // DestBB stays reachable in the DT the whole time and its subtree doesn't
232 // get disconnected.
233 SmallVector<DominatorTree::UpdateType, 3> Updates;
234 Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
235 Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
236 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
237 Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
239 if (DT)
240 DT->applyUpdates(Updates);
241 if (PDT)
242 PDT->applyUpdates(Updates);
245 // Update LoopInfo if it is around.
246 if (LI) {
247 if (Loop *TIL = LI->getLoopFor(TIBB)) {
248 // If one or the other blocks were not in a loop, the new block is not
249 // either, and thus LI doesn't need to be updated.
250 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
251 if (TIL == DestLoop) {
252 // Both in the same loop, the NewBB joins loop.
253 DestLoop->addBasicBlockToLoop(NewBB, *LI);
254 } else if (TIL->contains(DestLoop)) {
255 // Edge from an outer loop to an inner loop. Add to the outer loop.
256 TIL->addBasicBlockToLoop(NewBB, *LI);
257 } else if (DestLoop->contains(TIL)) {
258 // Edge from an inner loop to an outer loop. Add to the outer loop.
259 DestLoop->addBasicBlockToLoop(NewBB, *LI);
260 } else {
261 // Edge from two loops with no containment relation. Because these
262 // are natural loops, we know that the destination block must be the
263 // header of its loop (adding a branch into a loop elsewhere would
264 // create an irreducible loop).
265 assert(DestLoop->getHeader() == DestBB &&
266 "Should not create irreducible loops!");
267 if (Loop *P = DestLoop->getParentLoop())
268 P->addBasicBlockToLoop(NewBB, *LI);
272 // If TIBB is in a loop and DestBB is outside of that loop, we may need
273 // to update LoopSimplify form and LCSSA form.
274 if (!TIL->contains(DestBB)) {
275 assert(!TIL->contains(NewBB) &&
276 "Split point for loop exit is contained in loop!");
278 // Update LCSSA form in the newly created exit block.
279 if (Options.PreserveLCSSA) {
280 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
283 // The only that we can break LoopSimplify form by splitting a critical
284 // edge is if after the split there exists some edge from TIL to DestBB
285 // *and* the only edge into DestBB from outside of TIL is that of
286 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
287 // is the new exit block and it has no non-loop predecessors. If the
288 // second isn't true, then DestBB was not in LoopSimplify form prior to
289 // the split as it had a non-loop predecessor. In both of these cases,
290 // the predecessor must be directly in TIL, not in a subloop, or again
291 // LoopSimplify doesn't hold.
292 SmallVector<BasicBlock *, 4> LoopPreds;
293 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
294 ++I) {
295 BasicBlock *P = *I;
296 if (P == NewBB)
297 continue; // The new block is known.
298 if (LI->getLoopFor(P) != TIL) {
299 // No need to re-simplify, it wasn't to start with.
300 LoopPreds.clear();
301 break;
303 LoopPreds.push_back(P);
305 if (!LoopPreds.empty()) {
306 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
307 BasicBlock *NewExitBB = SplitBlockPredecessors(
308 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
309 if (Options.PreserveLCSSA)
310 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
316 return NewBB;
319 // Return the unique indirectbr predecessor of a block. This may return null
320 // even if such a predecessor exists, if it's not useful for splitting.
321 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
322 // predecessors of BB.
323 static BasicBlock *
324 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
325 // If the block doesn't have any PHIs, we don't care about it, since there's
326 // no point in splitting it.
327 PHINode *PN = dyn_cast<PHINode>(BB->begin());
328 if (!PN)
329 return nullptr;
331 // Verify we have exactly one IBR predecessor.
332 // Conservatively bail out if one of the other predecessors is not a "regular"
333 // terminator (that is, not a switch or a br).
334 BasicBlock *IBB = nullptr;
335 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
336 BasicBlock *PredBB = PN->getIncomingBlock(Pred);
337 Instruction *PredTerm = PredBB->getTerminator();
338 switch (PredTerm->getOpcode()) {
339 case Instruction::IndirectBr:
340 if (IBB)
341 return nullptr;
342 IBB = PredBB;
343 break;
344 case Instruction::Br:
345 case Instruction::Switch:
346 OtherPreds.push_back(PredBB);
347 continue;
348 default:
349 return nullptr;
353 return IBB;
356 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
357 BranchProbabilityInfo *BPI,
358 BlockFrequencyInfo *BFI) {
359 // Check whether the function has any indirectbrs, and collect which blocks
360 // they may jump to. Since most functions don't have indirect branches,
361 // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
362 SmallSetVector<BasicBlock *, 16> Targets;
363 for (auto &BB : F) {
364 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
365 if (!IBI)
366 continue;
368 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
369 Targets.insert(IBI->getSuccessor(Succ));
372 if (Targets.empty())
373 return false;
375 bool ShouldUpdateAnalysis = BPI && BFI;
376 bool Changed = false;
377 for (BasicBlock *Target : Targets) {
378 SmallVector<BasicBlock *, 16> OtherPreds;
379 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
380 // If we did not found an indirectbr, or the indirectbr is the only
381 // incoming edge, this isn't the kind of edge we're looking for.
382 if (!IBRPred || OtherPreds.empty())
383 continue;
385 // Don't even think about ehpads/landingpads.
386 Instruction *FirstNonPHI = Target->getFirstNonPHI();
387 if (FirstNonPHI->isEHPad() || Target->isLandingPad())
388 continue;
390 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
391 if (ShouldUpdateAnalysis) {
392 // Copy the BFI/BPI from Target to BodyBlock.
393 for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
394 I < E; ++I)
395 BPI->setEdgeProbability(BodyBlock, I,
396 BPI->getEdgeProbability(Target, I));
397 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
399 // It's possible Target was its own successor through an indirectbr.
400 // In this case, the indirectbr now comes from BodyBlock.
401 if (IBRPred == Target)
402 IBRPred = BodyBlock;
404 // At this point Target only has PHIs, and BodyBlock has the rest of the
405 // block's body. Create a copy of Target that will be used by the "direct"
406 // preds.
407 ValueToValueMapTy VMap;
408 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
410 BlockFrequency BlockFreqForDirectSucc;
411 for (BasicBlock *Pred : OtherPreds) {
412 // If the target is a loop to itself, then the terminator of the split
413 // block (BodyBlock) needs to be updated.
414 BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
415 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
416 if (ShouldUpdateAnalysis)
417 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
418 BPI->getEdgeProbability(Src, DirectSucc);
420 if (ShouldUpdateAnalysis) {
421 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
422 BlockFrequency NewBlockFreqForTarget =
423 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
424 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
425 BPI->eraseBlock(Target);
428 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
429 // they are clones, so the number of PHIs are the same.
430 // (a) Remove the edge coming from IBRPred from the "Direct" PHI
431 // (b) Leave that as the only edge in the "Indirect" PHI.
432 // (c) Merge the two in the body block.
433 BasicBlock::iterator Indirect = Target->begin(),
434 End = Target->getFirstNonPHI()->getIterator();
435 BasicBlock::iterator Direct = DirectSucc->begin();
436 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
438 assert(&*End == Target->getTerminator() &&
439 "Block was expected to only contain PHIs");
441 while (Indirect != End) {
442 PHINode *DirPHI = cast<PHINode>(Direct);
443 PHINode *IndPHI = cast<PHINode>(Indirect);
445 // Now, clean up - the direct block shouldn't get the indirect value,
446 // and vice versa.
447 DirPHI->removeIncomingValue(IBRPred);
448 Direct++;
450 // Advance the pointer here, to avoid invalidation issues when the old
451 // PHI is erased.
452 Indirect++;
454 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
455 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
456 IBRPred);
458 // Create a PHI in the body block, to merge the direct and indirect
459 // predecessors.
460 PHINode *MergePHI =
461 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
462 MergePHI->addIncoming(NewIndPHI, Target);
463 MergePHI->addIncoming(DirPHI, DirectSucc);
465 IndPHI->replaceAllUsesWith(MergePHI);
466 IndPHI->eraseFromParent();
469 Changed = true;
472 return Changed;