1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header. This simplifies a
15 // number of analyses and transformations, such as LICM.
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header). This simplifies transformations such as store-sinking
21 // that are built into LICM.
23 // This pass also guarantees that loops will have exactly one backedge.
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
78 #define DEBUG_TYPE "loop-simplify"
80 STATISTIC(NumNested
, "Number of nested loops split out");
82 // If the block isn't already, move the new block to right after some 'outside
83 // block' block. This prevents the preheader from being placed inside the loop
84 // body, e.g. when the loop hasn't been rotated.
85 static void placeSplitBlockCarefully(BasicBlock
*NewBB
,
86 SmallVectorImpl
<BasicBlock
*> &SplitPreds
,
88 // Check to see if NewBB is already well placed.
89 Function::iterator BBI
= --NewBB
->getIterator();
90 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
91 if (&*BBI
== SplitPreds
[i
])
95 // If it isn't already after an outside block, move it after one. This is
96 // always good as it makes the uncond branch from the outside block into a
99 // Figure out *which* outside block to put this after. Prefer an outside
100 // block that neighbors a BB actually in the loop.
101 BasicBlock
*FoundBB
= nullptr;
102 for (unsigned i
= 0, e
= SplitPreds
.size(); i
!= e
; ++i
) {
103 Function::iterator BBI
= SplitPreds
[i
]->getIterator();
104 if (++BBI
!= NewBB
->getParent()->end() && L
->contains(&*BBI
)) {
105 FoundBB
= SplitPreds
[i
];
110 // If our heuristic for a *good* bb to place this after doesn't find
111 // anything, just pick something. It's likely better than leaving it within
114 FoundBB
= SplitPreds
[0];
115 NewBB
->moveAfter(FoundBB
);
118 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
119 /// preheader, this method is called to insert one. This method has two phases:
120 /// preheader insertion and analysis updating.
122 BasicBlock
*llvm::InsertPreheaderForLoop(Loop
*L
, DominatorTree
*DT
,
123 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
,
124 bool PreserveLCSSA
) {
125 BasicBlock
*Header
= L
->getHeader();
127 // Compute the set of predecessors of the loop that are not in the loop.
128 SmallVector
<BasicBlock
*, 8> OutsideBlocks
;
129 for (pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
132 if (!L
->contains(P
)) { // Coming in from outside the loop?
133 // If the loop is branched to from an indirect terminator, we won't
134 // be able to fully transform the loop, because it prohibits
136 if (P
->getTerminator()->isIndirectTerminator())
140 OutsideBlocks
.push_back(P
);
144 // Split out the loop pre-header.
145 BasicBlock
*PreheaderBB
;
146 PreheaderBB
= SplitBlockPredecessors(Header
, OutsideBlocks
, ".preheader", DT
,
147 LI
, MSSAU
, PreserveLCSSA
);
151 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
152 << PreheaderBB
->getName() << "\n");
154 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
155 // code layout too horribly.
156 placeSplitBlockCarefully(PreheaderBB
, OutsideBlocks
, L
);
161 /// Add the specified block, and all of its predecessors, to the specified set,
162 /// if it's not already in there. Stop predecessor traversal when we reach
164 static void addBlockAndPredsToSet(BasicBlock
*InputBB
, BasicBlock
*StopBlock
,
165 std::set
<BasicBlock
*> &Blocks
) {
166 SmallVector
<BasicBlock
*, 8> Worklist
;
167 Worklist
.push_back(InputBB
);
169 BasicBlock
*BB
= Worklist
.pop_back_val();
170 if (Blocks
.insert(BB
).second
&& BB
!= StopBlock
)
171 // If BB is not already processed and it is not a stop block then
172 // insert its predecessor in the work list
173 for (pred_iterator I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
174 BasicBlock
*WBB
= *I
;
175 Worklist
.push_back(WBB
);
177 } while (!Worklist
.empty());
180 /// The first part of loop-nestification is to find a PHI node that tells
181 /// us how to partition the loops.
182 static PHINode
*findPHIToPartitionLoops(Loop
*L
, DominatorTree
*DT
,
183 AssumptionCache
*AC
) {
184 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
185 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ) {
186 PHINode
*PN
= cast
<PHINode
>(I
);
188 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
189 // This is a degenerate PHI already, don't modify it!
190 PN
->replaceAllUsesWith(V
);
191 PN
->eraseFromParent();
195 // Scan this PHI node looking for a use of the PHI node by itself.
196 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
197 if (PN
->getIncomingValue(i
) == PN
&&
198 L
->contains(PN
->getIncomingBlock(i
)))
199 // We found something tasty to remove.
205 /// If this loop has multiple backedges, try to pull one of them out into
208 /// This is important for code that looks like
213 /// br cond, Loop, Next
215 /// br cond2, Loop, Out
217 /// To identify this common case, we look at the PHI nodes in the header of the
218 /// loop. PHI nodes with unchanging values on one backedge correspond to values
219 /// that change in the "outer" loop, but not in the "inner" loop.
221 /// If we are able to separate out a loop, return the new outer loop that was
224 static Loop
*separateNestedLoop(Loop
*L
, BasicBlock
*Preheader
,
225 DominatorTree
*DT
, LoopInfo
*LI
,
226 ScalarEvolution
*SE
, bool PreserveLCSSA
,
227 AssumptionCache
*AC
, MemorySSAUpdater
*MSSAU
) {
228 // Don't try to separate loops without a preheader.
232 // The header is not a landing pad; preheader insertion should ensure this.
233 BasicBlock
*Header
= L
->getHeader();
234 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
236 PHINode
*PN
= findPHIToPartitionLoops(L
, DT
, AC
);
237 if (!PN
) return nullptr; // No known way to partition.
239 // Pull out all predecessors that have varying values in the loop. This
240 // handles the case when a PHI node has multiple instances of itself as
242 SmallVector
<BasicBlock
*, 8> OuterLoopPreds
;
243 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
244 if (PN
->getIncomingValue(i
) != PN
||
245 !L
->contains(PN
->getIncomingBlock(i
))) {
246 // We can't split indirect control flow edges.
247 if (PN
->getIncomingBlock(i
)->getTerminator()->isIndirectTerminator())
249 OuterLoopPreds
.push_back(PN
->getIncomingBlock(i
));
252 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
254 // If ScalarEvolution is around and knows anything about values in
255 // this loop, tell it to forget them, because we're about to
256 // substantially change it.
260 BasicBlock
*NewBB
= SplitBlockPredecessors(Header
, OuterLoopPreds
, ".outer",
261 DT
, LI
, MSSAU
, PreserveLCSSA
);
263 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
264 // code layout too horribly.
265 placeSplitBlockCarefully(NewBB
, OuterLoopPreds
, L
);
267 // Create the new outer loop.
268 Loop
*NewOuter
= LI
->AllocateLoop();
270 // Change the parent loop to use the outer loop as its child now.
271 if (Loop
*Parent
= L
->getParentLoop())
272 Parent
->replaceChildLoopWith(L
, NewOuter
);
274 LI
->changeTopLevelLoop(L
, NewOuter
);
276 // L is now a subloop of our outer loop.
277 NewOuter
->addChildLoop(L
);
279 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
281 NewOuter
->addBlockEntry(*I
);
283 // Now reset the header in L, which had been moved by
284 // SplitBlockPredecessors for the outer loop.
285 L
->moveToHeader(Header
);
287 // Determine which blocks should stay in L and which should be moved out to
288 // the Outer loop now.
289 std::set
<BasicBlock
*> BlocksInL
;
290 for (pred_iterator PI
=pred_begin(Header
), E
= pred_end(Header
); PI
!=E
; ++PI
) {
292 if (DT
->dominates(Header
, P
))
293 addBlockAndPredsToSet(P
, Header
, BlocksInL
);
296 // Scan all of the loop children of L, moving them to OuterLoop if they are
297 // not part of the inner loop.
298 const std::vector
<Loop
*> &SubLoops
= L
->getSubLoops();
299 for (size_t I
= 0; I
!= SubLoops
.size(); )
300 if (BlocksInL
.count(SubLoops
[I
]->getHeader()))
301 ++I
; // Loop remains in L
303 NewOuter
->addChildLoop(L
->removeChildLoop(SubLoops
.begin() + I
));
305 SmallVector
<BasicBlock
*, 8> OuterLoopBlocks
;
306 OuterLoopBlocks
.push_back(NewBB
);
307 // Now that we know which blocks are in L and which need to be moved to
308 // OuterLoop, move any blocks that need it.
309 for (unsigned i
= 0; i
!= L
->getBlocks().size(); ++i
) {
310 BasicBlock
*BB
= L
->getBlocks()[i
];
311 if (!BlocksInL
.count(BB
)) {
312 // Move this block to the parent, updating the exit blocks sets
313 L
->removeBlockFromLoop(BB
);
314 if ((*LI
)[BB
] == L
) {
315 LI
->changeLoopFor(BB
, NewOuter
);
316 OuterLoopBlocks
.push_back(BB
);
322 // Split edges to exit blocks from the inner loop, if they emerged in the
323 // process of separating the outer one.
324 formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
327 // Fix LCSSA form for L. Some values, which previously were only used inside
328 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
329 // in corresponding exit blocks.
330 // We don't need to form LCSSA recursively, because there cannot be uses
331 // inside a newly created loop of defs from inner loops as those would
332 // already be a use of an LCSSA phi node.
333 formLCSSA(*L
, *DT
, LI
, SE
);
335 assert(NewOuter
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
336 "LCSSA is broken after separating nested loops!");
342 /// This method is called when the specified loop has more than one
345 /// If this occurs, revector all of these backedges to target a new basic block
346 /// and have that block branch to the loop header. This ensures that loops
347 /// have exactly one backedge.
348 static BasicBlock
*insertUniqueBackedgeBlock(Loop
*L
, BasicBlock
*Preheader
,
349 DominatorTree
*DT
, LoopInfo
*LI
,
350 MemorySSAUpdater
*MSSAU
) {
351 assert(L
->getNumBackEdges() > 1 && "Must have > 1 backedge!");
353 // Get information about the loop
354 BasicBlock
*Header
= L
->getHeader();
355 Function
*F
= Header
->getParent();
357 // Unique backedge insertion currently depends on having a preheader.
361 // The header is not an EH pad; preheader insertion should ensure this.
362 assert(!Header
->isEHPad() && "Can't insert backedge to EH pad");
364 // Figure out which basic blocks contain back-edges to the loop header.
365 std::vector
<BasicBlock
*> BackedgeBlocks
;
366 for (pred_iterator I
= pred_begin(Header
), E
= pred_end(Header
); I
!= E
; ++I
){
369 // Indirect edges cannot be split, so we must fail if we find one.
370 if (P
->getTerminator()->isIndirectTerminator())
373 if (P
!= Preheader
) BackedgeBlocks
.push_back(P
);
376 // Create and insert the new backedge block...
377 BasicBlock
*BEBlock
= BasicBlock::Create(Header
->getContext(),
378 Header
->getName() + ".backedge", F
);
379 BranchInst
*BETerminator
= BranchInst::Create(Header
, BEBlock
);
380 BETerminator
->setDebugLoc(Header
->getFirstNonPHI()->getDebugLoc());
382 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
383 << BEBlock
->getName() << "\n");
385 // Move the new backedge block to right after the last backedge block.
386 Function::iterator InsertPos
= ++BackedgeBlocks
.back()->getIterator();
387 F
->getBasicBlockList().splice(InsertPos
, F
->getBasicBlockList(), BEBlock
);
389 // Now that the block has been inserted into the function, create PHI nodes in
390 // the backedge block which correspond to any PHI nodes in the header block.
391 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
392 PHINode
*PN
= cast
<PHINode
>(I
);
393 PHINode
*NewPN
= PHINode::Create(PN
->getType(), BackedgeBlocks
.size(),
394 PN
->getName()+".be", BETerminator
);
396 // Loop over the PHI node, moving all entries except the one for the
397 // preheader over to the new PHI node.
398 unsigned PreheaderIdx
= ~0U;
399 bool HasUniqueIncomingValue
= true;
400 Value
*UniqueValue
= nullptr;
401 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
402 BasicBlock
*IBB
= PN
->getIncomingBlock(i
);
403 Value
*IV
= PN
->getIncomingValue(i
);
404 if (IBB
== Preheader
) {
407 NewPN
->addIncoming(IV
, IBB
);
408 if (HasUniqueIncomingValue
) {
411 else if (UniqueValue
!= IV
)
412 HasUniqueIncomingValue
= false;
417 // Delete all of the incoming values from the old PN except the preheader's
418 assert(PreheaderIdx
!= ~0U && "PHI has no preheader entry??");
419 if (PreheaderIdx
!= 0) {
420 PN
->setIncomingValue(0, PN
->getIncomingValue(PreheaderIdx
));
421 PN
->setIncomingBlock(0, PN
->getIncomingBlock(PreheaderIdx
));
423 // Nuke all entries except the zero'th.
424 for (unsigned i
= 0, e
= PN
->getNumIncomingValues()-1; i
!= e
; ++i
)
425 PN
->removeIncomingValue(e
-i
, false);
427 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
428 PN
->addIncoming(NewPN
, BEBlock
);
430 // As an optimization, if all incoming values in the new PhiNode (which is a
431 // subset of the incoming values of the old PHI node) have the same value,
432 // eliminate the PHI Node.
433 if (HasUniqueIncomingValue
) {
434 NewPN
->replaceAllUsesWith(UniqueValue
);
435 BEBlock
->getInstList().erase(NewPN
);
439 // Now that all of the PHI nodes have been inserted and adjusted, modify the
440 // backedge blocks to jump to the BEBlock instead of the header.
441 // If one of the backedges has llvm.loop metadata attached, we remove
442 // it from the backedge and add it to BEBlock.
443 unsigned LoopMDKind
= BEBlock
->getContext().getMDKindID("llvm.loop");
444 MDNode
*LoopMD
= nullptr;
445 for (unsigned i
= 0, e
= BackedgeBlocks
.size(); i
!= e
; ++i
) {
446 Instruction
*TI
= BackedgeBlocks
[i
]->getTerminator();
448 LoopMD
= TI
->getMetadata(LoopMDKind
);
449 TI
->setMetadata(LoopMDKind
, nullptr);
450 TI
->replaceSuccessorWith(Header
, BEBlock
);
452 BEBlock
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
454 //===--- Update all analyses which we must preserve now -----------------===//
456 // Update Loop Information - we know that this block is now in the current
457 // loop and all parent loops.
458 L
->addBasicBlockToLoop(BEBlock
, *LI
);
460 // Update dominator information
461 DT
->splitBlock(BEBlock
);
464 MSSAU
->updatePhisWhenInsertingUniqueBackedgeBlock(Header
, Preheader
,
470 /// Simplify one loop and queue further loops for simplification.
471 static bool simplifyOneLoop(Loop
*L
, SmallVectorImpl
<Loop
*> &Worklist
,
472 DominatorTree
*DT
, LoopInfo
*LI
,
473 ScalarEvolution
*SE
, AssumptionCache
*AC
,
474 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
475 bool Changed
= false;
476 if (MSSAU
&& VerifyMemorySSA
)
477 MSSAU
->getMemorySSA()->verifyMemorySSA();
481 // Check to see that no blocks (other than the header) in this loop have
482 // predecessors that are not in the loop. This is not valid for natural
483 // loops, but can occur if the blocks are unreachable. Since they are
484 // unreachable we can just shamelessly delete those CFG edges!
485 for (Loop::block_iterator BB
= L
->block_begin(), E
= L
->block_end();
487 if (*BB
== L
->getHeader()) continue;
489 SmallPtrSet
<BasicBlock
*, 4> BadPreds
;
490 for (pred_iterator PI
= pred_begin(*BB
),
491 PE
= pred_end(*BB
); PI
!= PE
; ++PI
) {
497 // Delete each unique out-of-loop (and thus dead) predecessor.
498 for (BasicBlock
*P
: BadPreds
) {
500 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
501 << P
->getName() << "\n");
503 // Zap the dead pred's terminator and replace it with unreachable.
504 Instruction
*TI
= P
->getTerminator();
505 changeToUnreachable(TI
, /*UseLLVMTrap=*/false, PreserveLCSSA
,
506 /*DTU=*/nullptr, MSSAU
);
511 if (MSSAU
&& VerifyMemorySSA
)
512 MSSAU
->getMemorySSA()->verifyMemorySSA();
514 // If there are exiting blocks with branches on undef, resolve the undef in
515 // the direction which will exit the loop. This will help simplify loop
516 // trip count computations.
517 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
518 L
->getExitingBlocks(ExitingBlocks
);
519 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
520 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
521 if (BI
->isConditional()) {
522 if (UndefValue
*Cond
= dyn_cast
<UndefValue
>(BI
->getCondition())) {
525 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
526 << ExitingBlock
->getName() << "\n");
528 BI
->setCondition(ConstantInt::get(Cond
->getType(),
529 !L
->contains(BI
->getSuccessor(0))));
535 // Does the loop already have a preheader? If so, don't insert one.
536 BasicBlock
*Preheader
= L
->getLoopPreheader();
538 Preheader
= InsertPreheaderForLoop(L
, DT
, LI
, MSSAU
, PreserveLCSSA
);
543 // Next, check to make sure that all exit nodes of the loop only have
544 // predecessors that are inside of the loop. This check guarantees that the
545 // loop preheader/header will dominate the exit blocks. If the exit block has
546 // predecessors from outside of the loop, split the edge now.
547 if (formDedicatedExitBlocks(L
, DT
, LI
, MSSAU
, PreserveLCSSA
))
550 if (MSSAU
&& VerifyMemorySSA
)
551 MSSAU
->getMemorySSA()->verifyMemorySSA();
553 // If the header has more than two predecessors at this point (from the
554 // preheader and from multiple backedges), we must adjust the loop.
555 BasicBlock
*LoopLatch
= L
->getLoopLatch();
557 // If this is really a nested loop, rip it out into a child loop. Don't do
558 // this for loops with a giant number of backedges, just factor them into a
559 // common backedge instead.
560 if (L
->getNumBackEdges() < 8) {
561 if (Loop
*OuterL
= separateNestedLoop(L
, Preheader
, DT
, LI
, SE
,
562 PreserveLCSSA
, AC
, MSSAU
)) {
564 // Enqueue the outer loop as it should be processed next in our
565 // depth-first nest walk.
566 Worklist
.push_back(OuterL
);
568 // This is a big restructuring change, reprocess the whole loop.
570 // GCC doesn't tail recursion eliminate this.
571 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
576 // If we either couldn't, or didn't want to, identify nesting of the loops,
577 // insert a new block that all backedges target, then make it jump to the
579 LoopLatch
= insertUniqueBackedgeBlock(L
, Preheader
, DT
, LI
, MSSAU
);
584 if (MSSAU
&& VerifyMemorySSA
)
585 MSSAU
->getMemorySSA()->verifyMemorySSA();
587 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
589 // Scan over the PHI nodes in the loop header. Since they now have only two
590 // incoming values (the loop is canonicalized), we may have simplified the PHI
591 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
593 for (BasicBlock::iterator I
= L
->getHeader()->begin();
594 (PN
= dyn_cast
<PHINode
>(I
++)); )
595 if (Value
*V
= SimplifyInstruction(PN
, {DL
, nullptr, DT
, AC
})) {
596 if (SE
) SE
->forgetValue(PN
);
597 if (!PreserveLCSSA
|| LI
->replacementPreservesLCSSAForm(PN
, V
)) {
598 PN
->replaceAllUsesWith(V
);
599 PN
->eraseFromParent();
603 // If this loop has multiple exits and the exits all go to the same
604 // block, attempt to merge the exits. This helps several passes, such
605 // as LoopRotation, which do not support loops with multiple exits.
606 // SimplifyCFG also does this (and this code uses the same utility
607 // function), however this code is loop-aware, where SimplifyCFG is
608 // not. That gives it the advantage of being able to hoist
609 // loop-invariant instructions out of the way to open up more
610 // opportunities, and the disadvantage of having the responsibility
611 // to preserve dominator information.
612 auto HasUniqueExitBlock
= [&]() {
613 BasicBlock
*UniqueExit
= nullptr;
614 for (auto *ExitingBB
: ExitingBlocks
)
615 for (auto *SuccBB
: successors(ExitingBB
)) {
616 if (L
->contains(SuccBB
))
621 else if (UniqueExit
!= SuccBB
)
627 if (HasUniqueExitBlock()) {
628 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
629 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
630 if (!ExitingBlock
->getSinglePredecessor()) continue;
631 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
632 if (!BI
|| !BI
->isConditional()) continue;
633 CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition());
634 if (!CI
|| CI
->getParent() != ExitingBlock
) continue;
636 // Attempt to hoist out all instructions except for the
637 // comparison and the branch.
638 bool AllInvariant
= true;
639 bool AnyInvariant
= false;
640 for (auto I
= ExitingBlock
->instructionsWithoutDebug().begin(); &*I
!= BI
; ) {
641 Instruction
*Inst
= &*I
++;
644 if (!L
->makeLoopInvariant(
646 Preheader
? Preheader
->getTerminator() : nullptr, MSSAU
)) {
647 AllInvariant
= false;
653 // The loop disposition of all SCEV expressions that depend on any
654 // hoisted values have also changed.
656 SE
->forgetLoopDispositions(L
);
658 if (!AllInvariant
) continue;
660 // The block has now been cleared of all instructions except for
661 // a comparison and a conditional branch. SimplifyCFG may be able
663 if (!FoldBranchToCommonDest(BI
, MSSAU
))
666 // Success. The block is now dead, so remove it from the loop,
667 // update the dominator tree and delete it.
668 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
669 << ExitingBlock
->getName() << "\n");
671 assert(pred_begin(ExitingBlock
) == pred_end(ExitingBlock
));
673 LI
->removeBlock(ExitingBlock
);
675 DomTreeNode
*Node
= DT
->getNode(ExitingBlock
);
676 const std::vector
<DomTreeNodeBase
<BasicBlock
> *> &Children
=
678 while (!Children
.empty()) {
679 DomTreeNode
*Child
= Children
.front();
680 DT
->changeImmediateDominator(Child
, Node
->getIDom());
682 DT
->eraseNode(ExitingBlock
);
684 SmallSetVector
<BasicBlock
*, 8> ExitBlockSet
;
685 ExitBlockSet
.insert(ExitingBlock
);
686 MSSAU
->removeBlocks(ExitBlockSet
);
689 BI
->getSuccessor(0)->removePredecessor(
690 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
691 BI
->getSuccessor(1)->removePredecessor(
692 ExitingBlock
, /* KeepOneInputPHIs */ PreserveLCSSA
);
693 ExitingBlock
->eraseFromParent();
697 // Changing exit conditions for blocks may affect exit counts of this loop and
698 // any of its paretns, so we must invalidate the entire subtree if we've made
701 SE
->forgetTopmostLoop(L
);
703 if (MSSAU
&& VerifyMemorySSA
)
704 MSSAU
->getMemorySSA()->verifyMemorySSA();
709 bool llvm::simplifyLoop(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
710 ScalarEvolution
*SE
, AssumptionCache
*AC
,
711 MemorySSAUpdater
*MSSAU
, bool PreserveLCSSA
) {
712 bool Changed
= false;
715 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
718 assert(DT
&& "DT not available.");
719 assert(LI
&& "LI not available.");
720 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
721 "Requested to preserve LCSSA, but it's already broken.");
725 // Worklist maintains our depth-first queue of loops in this nest to process.
726 SmallVector
<Loop
*, 4> Worklist
;
727 Worklist
.push_back(L
);
729 // Walk the worklist from front to back, pushing newly found sub loops onto
730 // the back. This will let us process loops from back to front in depth-first
731 // order. We can use this simple process because loops form a tree.
732 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
733 Loop
*L2
= Worklist
[Idx
];
734 Worklist
.append(L2
->begin(), L2
->end());
737 while (!Worklist
.empty())
738 Changed
|= simplifyOneLoop(Worklist
.pop_back_val(), Worklist
, DT
, LI
, SE
,
739 AC
, MSSAU
, PreserveLCSSA
);
745 struct LoopSimplify
: public FunctionPass
{
746 static char ID
; // Pass identification, replacement for typeid
747 LoopSimplify() : FunctionPass(ID
) {
748 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
751 bool runOnFunction(Function
&F
) override
;
753 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
754 AU
.addRequired
<AssumptionCacheTracker
>();
756 // We need loop information to identify the loops...
757 AU
.addRequired
<DominatorTreeWrapperPass
>();
758 AU
.addPreserved
<DominatorTreeWrapperPass
>();
760 AU
.addRequired
<LoopInfoWrapperPass
>();
761 AU
.addPreserved
<LoopInfoWrapperPass
>();
763 AU
.addPreserved
<BasicAAWrapperPass
>();
764 AU
.addPreserved
<AAResultsWrapperPass
>();
765 AU
.addPreserved
<GlobalsAAWrapperPass
>();
766 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
767 AU
.addPreserved
<SCEVAAWrapperPass
>();
768 AU
.addPreservedID(LCSSAID
);
769 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
770 AU
.addPreservedID(BreakCriticalEdgesID
); // No critical edges added.
771 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
772 if (EnableMSSALoopDependency
)
773 AU
.addPreserved
<MemorySSAWrapperPass
>();
776 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
777 void verifyAnalysis() const override
;
781 char LoopSimplify::ID
= 0;
782 INITIALIZE_PASS_BEGIN(LoopSimplify
, "loop-simplify",
783 "Canonicalize natural loops", false, false)
784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
785 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
786 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
787 INITIALIZE_PASS_END(LoopSimplify
, "loop-simplify",
788 "Canonicalize natural loops", false, false)
790 // Publicly exposed interface to pass...
791 char &llvm::LoopSimplifyID
= LoopSimplify::ID
;
792 Pass
*llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
794 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
795 /// it in any convenient order) inserting preheaders...
797 bool LoopSimplify::runOnFunction(Function
&F
) {
798 bool Changed
= false;
799 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
800 DominatorTree
*DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
801 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
802 ScalarEvolution
*SE
= SEWP
? &SEWP
->getSE() : nullptr;
803 AssumptionCache
*AC
=
804 &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
805 MemorySSA
*MSSA
= nullptr;
806 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
807 if (EnableMSSALoopDependency
) {
808 auto *MSSAAnalysis
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
810 MSSA
= &MSSAAnalysis
->getMSSA();
811 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
815 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
817 // Simplify each loop nest in the function.
818 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
819 Changed
|= simplifyLoop(*I
, DT
, LI
, SE
, AC
, MSSAU
.get(), PreserveLCSSA
);
823 bool InLCSSA
= all_of(
824 *LI
, [&](Loop
*L
) { return L
->isRecursivelyLCSSAForm(*DT
, *LI
); });
825 assert(InLCSSA
&& "LCSSA is broken after loop-simplify.");
831 PreservedAnalyses
LoopSimplifyPass::run(Function
&F
,
832 FunctionAnalysisManager
&AM
) {
833 bool Changed
= false;
834 LoopInfo
*LI
= &AM
.getResult
<LoopAnalysis
>(F
);
835 DominatorTree
*DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
836 ScalarEvolution
*SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
837 AssumptionCache
*AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
838 auto *MSSAAnalysis
= AM
.getCachedResult
<MemorySSAAnalysis
>(F
);
839 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
841 auto *MSSA
= &MSSAAnalysis
->getMSSA();
842 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
846 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
847 // after simplifying the loops. MemorySSA is preserved if it exists.
848 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
850 simplifyLoop(*I
, DT
, LI
, SE
, AC
, MSSAU
.get(), /*PreserveLCSSA*/ false);
853 return PreservedAnalyses::all();
855 PreservedAnalyses PA
;
856 PA
.preserve
<DominatorTreeAnalysis
>();
857 PA
.preserve
<LoopAnalysis
>();
858 PA
.preserve
<BasicAA
>();
859 PA
.preserve
<GlobalsAA
>();
860 PA
.preserve
<SCEVAA
>();
861 PA
.preserve
<ScalarEvolutionAnalysis
>();
862 PA
.preserve
<DependenceAnalysis
>();
864 PA
.preserve
<MemorySSAAnalysis
>();
865 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
866 // blocks, but it does so only by splitting existing blocks and edges. This
867 // results in the interesting property that all new terminators inserted are
868 // unconditional branches which do not appear in BPI. All deletions are
869 // handled via ValueHandle callbacks w/in BPI.
870 PA
.preserve
<BranchProbabilityAnalysis
>();
874 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
877 static void verifyLoop(Loop
*L
) {
879 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
882 // It used to be possible to just assert L->isLoopSimplifyForm(), however
883 // with the introduction of indirectbr, there are now cases where it's
884 // not possible to transform a loop as necessary. We can at least check
885 // that there is an indirectbr near any time there's trouble.
887 // Indirectbr can interfere with preheader and unique backedge insertion.
888 if (!L
->getLoopPreheader() || !L
->getLoopLatch()) {
889 bool HasIndBrPred
= false;
890 for (pred_iterator PI
= pred_begin(L
->getHeader()),
891 PE
= pred_end(L
->getHeader()); PI
!= PE
; ++PI
)
892 if (isa
<IndirectBrInst
>((*PI
)->getTerminator())) {
896 assert(HasIndBrPred
&&
897 "LoopSimplify has no excuse for missing loop header info!");
901 // Indirectbr can interfere with exit block canonicalization.
902 if (!L
->hasDedicatedExits()) {
903 bool HasIndBrExiting
= false;
904 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
905 L
->getExitingBlocks(ExitingBlocks
);
906 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
907 if (isa
<IndirectBrInst
>((ExitingBlocks
[i
])->getTerminator())) {
908 HasIndBrExiting
= true;
913 assert(HasIndBrExiting
&&
914 "LoopSimplify has no excuse for missing exit block info!");
915 (void)HasIndBrExiting
;
920 void LoopSimplify::verifyAnalysis() const {
921 // FIXME: This routine is being called mid-way through the loop pass manager
922 // as loop passes destroy this analysis. That's actually fine, but we have no
923 // way of expressing that here. Once all of the passes that destroy this are
924 // hoisted out of the loop pass manager we can add back verification here.
926 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)