[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / Utils / LoopUnroll.cpp
bloba7590fc32545764a747c74443ef76ab8b9266a9c
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches. This will be corrected in the future.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/LoopSimplify.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 #include "llvm/Transforms/Utils/UnrollLoop.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "loop-unroll"
44 // TODO: Should these be here or in LoopUnroll?
45 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
46 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
47 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
48 "conditional latch (completely or otherwise)");
50 static cl::opt<bool>
51 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
52 cl::desc("Allow runtime unrolled loops to be unrolled "
53 "with epilog instead of prolog."));
55 static cl::opt<bool>
56 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
57 cl::desc("Verify domtree after unrolling"),
58 #ifdef EXPENSIVE_CHECKS
59 cl::init(true)
60 #else
61 cl::init(false)
62 #endif
65 /// Convert the instruction operands from referencing the current values into
66 /// those specified by VMap.
67 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
68 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
69 Value *Op = I->getOperand(op);
71 // Unwrap arguments of dbg.value intrinsics.
72 bool Wrapped = false;
73 if (auto *V = dyn_cast<MetadataAsValue>(Op))
74 if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
75 Op = Unwrapped->getValue();
76 Wrapped = true;
79 auto wrap = [&](Value *V) {
80 auto &C = I->getContext();
81 return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
84 ValueToValueMapTy::iterator It = VMap.find(Op);
85 if (It != VMap.end())
86 I->setOperand(op, wrap(It->second));
89 if (PHINode *PN = dyn_cast<PHINode>(I)) {
90 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
91 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
92 if (It != VMap.end())
93 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
98 /// Check if unrolling created a situation where we need to insert phi nodes to
99 /// preserve LCSSA form.
100 /// \param Blocks is a vector of basic blocks representing unrolled loop.
101 /// \param L is the outer loop.
102 /// It's possible that some of the blocks are in L, and some are not. In this
103 /// case, if there is a use is outside L, and definition is inside L, we need to
104 /// insert a phi-node, otherwise LCSSA will be broken.
105 /// The function is just a helper function for llvm::UnrollLoop that returns
106 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
107 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
108 LoopInfo *LI) {
109 for (BasicBlock *BB : Blocks) {
110 if (LI->getLoopFor(BB) == L)
111 continue;
112 for (Instruction &I : *BB) {
113 for (Use &U : I.operands()) {
114 if (auto Def = dyn_cast<Instruction>(U)) {
115 Loop *DefLoop = LI->getLoopFor(Def->getParent());
116 if (!DefLoop)
117 continue;
118 if (DefLoop->contains(L))
119 return true;
124 return false;
127 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
128 /// and adds a mapping from the original loop to the new loop to NewLoops.
129 /// Returns nullptr if no new loop was created and a pointer to the
130 /// original loop OriginalBB was part of otherwise.
131 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
132 BasicBlock *ClonedBB, LoopInfo *LI,
133 NewLoopsMap &NewLoops) {
134 // Figure out which loop New is in.
135 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
136 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
138 Loop *&NewLoop = NewLoops[OldLoop];
139 if (!NewLoop) {
140 // Found a new sub-loop.
141 assert(OriginalBB == OldLoop->getHeader() &&
142 "Header should be first in RPO");
144 NewLoop = LI->AllocateLoop();
145 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
147 if (NewLoopParent)
148 NewLoopParent->addChildLoop(NewLoop);
149 else
150 LI->addTopLevelLoop(NewLoop);
152 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
153 return OldLoop;
154 } else {
155 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
156 return nullptr;
160 /// The function chooses which type of unroll (epilog or prolog) is more
161 /// profitabale.
162 /// Epilog unroll is more profitable when there is PHI that starts from
163 /// constant. In this case epilog will leave PHI start from constant,
164 /// but prolog will convert it to non-constant.
166 /// loop:
167 /// PN = PHI [I, Latch], [CI, PreHeader]
168 /// I = foo(PN)
169 /// ...
171 /// Epilog unroll case.
172 /// loop:
173 /// PN = PHI [I2, Latch], [CI, PreHeader]
174 /// I1 = foo(PN)
175 /// I2 = foo(I1)
176 /// ...
177 /// Prolog unroll case.
178 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
179 /// loop:
180 /// PN = PHI [I2, Latch], [NewPN, PreHeader]
181 /// I1 = foo(PN)
182 /// I2 = foo(I1)
183 /// ...
185 static bool isEpilogProfitable(Loop *L) {
186 BasicBlock *PreHeader = L->getLoopPreheader();
187 BasicBlock *Header = L->getHeader();
188 assert(PreHeader && Header);
189 for (const PHINode &PN : Header->phis()) {
190 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
191 return true;
193 return false;
196 /// Perform some cleanup and simplifications on loops after unrolling. It is
197 /// useful to simplify the IV's in the new loop, as well as do a quick
198 /// simplify/dce pass of the instructions.
199 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
200 ScalarEvolution *SE, DominatorTree *DT,
201 AssumptionCache *AC) {
202 // Simplify any new induction variables in the partially unrolled loop.
203 if (SE && SimplifyIVs) {
204 SmallVector<WeakTrackingVH, 16> DeadInsts;
205 simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
207 // Aggressively clean up dead instructions that simplifyLoopIVs already
208 // identified. Any remaining should be cleaned up below.
209 while (!DeadInsts.empty())
210 if (Instruction *Inst =
211 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
212 RecursivelyDeleteTriviallyDeadInstructions(Inst);
215 // At this point, the code is well formed. We now do a quick sweep over the
216 // inserted code, doing constant propagation and dead code elimination as we
217 // go.
218 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
219 for (BasicBlock *BB : L->getBlocks()) {
220 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
221 Instruction *Inst = &*I++;
223 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
224 if (LI->replacementPreservesLCSSAForm(Inst, V))
225 Inst->replaceAllUsesWith(V);
226 if (isInstructionTriviallyDead(Inst))
227 BB->getInstList().erase(Inst);
231 // TODO: after peeling or unrolling, previously loop variant conditions are
232 // likely to fold to constants, eagerly propagating those here will require
233 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
234 // appropriate.
237 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
238 /// can only fail when the loop's latch block is not terminated by a conditional
239 /// branch instruction. However, if the trip count (and multiple) are not known,
240 /// loop unrolling will mostly produce more code that is no faster.
242 /// TripCount is the upper bound of the iteration on which control exits
243 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
244 /// via an early branch in other loop block or via LatchBlock terminator. This
245 /// is relaxed from the general definition of trip count which is the number of
246 /// times the loop header executes. Note that UnrollLoop assumes that the loop
247 /// counter test is in LatchBlock in order to remove unnecesssary instances of
248 /// the test. If control can exit the loop from the LatchBlock's terminator
249 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
251 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
252 /// needs to be preserved. It is needed when we use trip count upper bound to
253 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
254 /// conditional branch needs to be preserved.
256 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
257 /// execute without exiting the loop.
259 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
260 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
261 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
262 /// iterations before branching into the unrolled loop. UnrollLoop will not
263 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
264 /// AllowExpensiveTripCount is false.
266 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
267 /// number of iterations we want to peel off.
269 /// The LoopInfo Analysis that is passed will be kept consistent.
271 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
272 /// DominatorTree if they are non-null.
274 /// If RemainderLoop is non-null, it will receive the remainder loop (if
275 /// required and not fully unrolled).
276 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
277 ScalarEvolution *SE, DominatorTree *DT,
278 AssumptionCache *AC,
279 OptimizationRemarkEmitter *ORE,
280 bool PreserveLCSSA, Loop **RemainderLoop) {
282 BasicBlock *Preheader = L->getLoopPreheader();
283 if (!Preheader) {
284 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
285 return LoopUnrollResult::Unmodified;
288 BasicBlock *LatchBlock = L->getLoopLatch();
289 if (!LatchBlock) {
290 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
291 return LoopUnrollResult::Unmodified;
294 // Loops with indirectbr cannot be cloned.
295 if (!L->isSafeToClone()) {
296 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
297 return LoopUnrollResult::Unmodified;
300 // The current loop unroll pass can unroll loops with a single latch or header
301 // that's a conditional branch exiting the loop.
302 // FIXME: The implementation can be extended to work with more complicated
303 // cases, e.g. loops with multiple latches.
304 BasicBlock *Header = L->getHeader();
305 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
306 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
308 // FIXME: Support loops without conditional latch and multiple exiting blocks.
309 if (!BI ||
310 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
311 L->getExitingBlock() != Header))) {
312 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional "
313 "branch in the latch or header.\n");
314 return LoopUnrollResult::Unmodified;
317 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
318 return BI->isConditional() && BI->getSuccessor(S1) == Header &&
319 !L->contains(BI->getSuccessor(S2));
322 // If we have a conditional latch, it must exit the loop.
323 if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
324 !CheckLatchSuccessors(1, 0)) {
325 LLVM_DEBUG(
326 dbgs() << "Can't unroll; a conditional latch must exit the loop");
327 return LoopUnrollResult::Unmodified;
330 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
331 return HeaderBI && HeaderBI->isConditional() &&
332 L->contains(HeaderBI->getSuccessor(S1)) &&
333 !L->contains(HeaderBI->getSuccessor(S2));
336 // If we do not have a conditional latch, the header must exit the loop.
337 if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
338 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
339 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
340 return LoopUnrollResult::Unmodified;
343 if (Header->hasAddressTaken()) {
344 // The loop-rotate pass can be helpful to avoid this in many cases.
345 LLVM_DEBUG(
346 dbgs() << " Won't unroll loop: address of header block is taken.\n");
347 return LoopUnrollResult::Unmodified;
350 if (ULO.TripCount != 0)
351 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n");
352 if (ULO.TripMultiple != 1)
353 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n");
355 // Effectively "DCE" unrolled iterations that are beyond the tripcount
356 // and will never be executed.
357 if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
358 ULO.Count = ULO.TripCount;
360 // Don't enter the unroll code if there is nothing to do.
361 if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
362 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
363 return LoopUnrollResult::Unmodified;
366 assert(ULO.Count > 0);
367 assert(ULO.TripMultiple > 0);
368 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
370 // Are we eliminating the loop control altogether?
371 bool CompletelyUnroll = ULO.Count == ULO.TripCount;
372 SmallVector<BasicBlock *, 4> ExitBlocks;
373 L->getExitBlocks(ExitBlocks);
374 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
376 // Go through all exits of L and see if there are any phi-nodes there. We just
377 // conservatively assume that they're inserted to preserve LCSSA form, which
378 // means that complete unrolling might break this form. We need to either fix
379 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
380 // now we just recompute LCSSA for the outer loop, but it should be possible
381 // to fix it in-place.
382 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
383 any_of(ExitBlocks, [](const BasicBlock *BB) {
384 return isa<PHINode>(BB->begin());
387 // We assume a run-time trip count if the compiler cannot
388 // figure out the loop trip count and the unroll-runtime
389 // flag is specified.
390 bool RuntimeTripCount =
391 (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
393 assert((!RuntimeTripCount || !ULO.PeelCount) &&
394 "Did not expect runtime trip-count unrolling "
395 "and peeling for the same loop");
397 bool Peeled = false;
398 if (ULO.PeelCount) {
399 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
401 // Successful peeling may result in a change in the loop preheader/trip
402 // counts. If we later unroll the loop, we want these to be updated.
403 if (Peeled) {
404 // According to our guards and profitability checks the only
405 // meaningful exit should be latch block. Other exits go to deopt,
406 // so we do not worry about them.
407 BasicBlock *ExitingBlock = L->getLoopLatch();
408 assert(ExitingBlock && "Loop without exiting block?");
409 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
410 Preheader = L->getLoopPreheader();
411 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
412 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
416 // Loops containing convergent instructions must have a count that divides
417 // their TripMultiple.
418 LLVM_DEBUG(
420 bool HasConvergent = false;
421 for (auto &BB : L->blocks())
422 for (auto &I : *BB)
423 if (auto CS = CallSite(&I))
424 HasConvergent |= CS.isConvergent();
425 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
426 "Unroll count must divide trip multiple if loop contains a "
427 "convergent operation.");
430 bool EpilogProfitability =
431 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
432 : isEpilogProfitable(L);
434 if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
435 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
436 EpilogProfitability, ULO.UnrollRemainder,
437 ULO.ForgetAllSCEV, LI, SE, DT, AC,
438 PreserveLCSSA, RemainderLoop)) {
439 if (ULO.Force)
440 RuntimeTripCount = false;
441 else {
442 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
443 "generated when assuming runtime trip count\n");
444 return LoopUnrollResult::Unmodified;
448 // If we know the trip count, we know the multiple...
449 unsigned BreakoutTrip = 0;
450 if (ULO.TripCount != 0) {
451 BreakoutTrip = ULO.TripCount % ULO.Count;
452 ULO.TripMultiple = 0;
453 } else {
454 // Figure out what multiple to use.
455 BreakoutTrip = ULO.TripMultiple =
456 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
459 using namespace ore;
460 // Report the unrolling decision.
461 if (CompletelyUnroll) {
462 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
463 << " with trip count " << ULO.TripCount << "!\n");
464 if (ORE)
465 ORE->emit([&]() {
466 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
467 L->getHeader())
468 << "completely unrolled loop with "
469 << NV("UnrollCount", ULO.TripCount) << " iterations";
471 } else if (ULO.PeelCount) {
472 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
473 << " with iteration count " << ULO.PeelCount << "!\n");
474 if (ORE)
475 ORE->emit([&]() {
476 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
477 L->getHeader())
478 << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
479 << " iterations";
481 } else {
482 auto DiagBuilder = [&]() {
483 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
484 L->getHeader());
485 return Diag << "unrolled loop by a factor of "
486 << NV("UnrollCount", ULO.Count);
489 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
490 << ULO.Count);
491 if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
492 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
493 if (ORE)
494 ORE->emit([&]() {
495 return DiagBuilder() << " with a breakout at trip "
496 << NV("BreakoutTrip", BreakoutTrip);
498 } else if (ULO.TripMultiple != 1) {
499 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
500 if (ORE)
501 ORE->emit([&]() {
502 return DiagBuilder()
503 << " with " << NV("TripMultiple", ULO.TripMultiple)
504 << " trips per branch";
506 } else if (RuntimeTripCount) {
507 LLVM_DEBUG(dbgs() << " with run-time trip count");
508 if (ORE)
509 ORE->emit(
510 [&]() { return DiagBuilder() << " with run-time trip count"; });
512 LLVM_DEBUG(dbgs() << "!\n");
515 // We are going to make changes to this loop. SCEV may be keeping cached info
516 // about it, in particular about backedge taken count. The changes we make
517 // are guaranteed to invalidate this information for our loop. It is tempting
518 // to only invalidate the loop being unrolled, but it is incorrect as long as
519 // all exiting branches from all inner loops have impact on the outer loops,
520 // and if something changes inside them then any of outer loops may also
521 // change. When we forget outermost loop, we also forget all contained loops
522 // and this is what we need here.
523 if (SE) {
524 if (ULO.ForgetAllSCEV)
525 SE->forgetAllLoops();
526 else
527 SE->forgetTopmostLoop(L);
530 bool ContinueOnTrue;
531 bool LatchIsExiting = BI->isConditional();
532 BasicBlock *LoopExit = nullptr;
533 if (LatchIsExiting) {
534 ContinueOnTrue = L->contains(BI->getSuccessor(0));
535 LoopExit = BI->getSuccessor(ContinueOnTrue);
536 } else {
537 NumUnrolledWithHeader++;
538 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
539 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
542 // For the first iteration of the loop, we should use the precloned values for
543 // PHI nodes. Insert associations now.
544 ValueToValueMapTy LastValueMap;
545 std::vector<PHINode*> OrigPHINode;
546 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
547 OrigPHINode.push_back(cast<PHINode>(I));
550 std::vector<BasicBlock *> Headers;
551 std::vector<BasicBlock *> HeaderSucc;
552 std::vector<BasicBlock *> Latches;
553 Headers.push_back(Header);
554 Latches.push_back(LatchBlock);
556 if (!LatchIsExiting) {
557 auto *Term = cast<BranchInst>(Header->getTerminator());
558 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
559 assert(L->contains(Term->getSuccessor(0)));
560 HeaderSucc.push_back(Term->getSuccessor(0));
561 } else {
562 assert(L->contains(Term->getSuccessor(1)));
563 HeaderSucc.push_back(Term->getSuccessor(1));
567 // The current on-the-fly SSA update requires blocks to be processed in
568 // reverse postorder so that LastValueMap contains the correct value at each
569 // exit.
570 LoopBlocksDFS DFS(L);
571 DFS.perform(LI);
573 // Stash the DFS iterators before adding blocks to the loop.
574 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
575 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
577 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
579 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
580 // might break loop-simplified form for these loops (as they, e.g., would
581 // share the same exit blocks). We'll keep track of loops for which we can
582 // break this so that later we can re-simplify them.
583 SmallSetVector<Loop *, 4> LoopsToSimplify;
584 for (Loop *SubLoop : *L)
585 LoopsToSimplify.insert(SubLoop);
587 if (Header->getParent()->isDebugInfoForProfiling())
588 for (BasicBlock *BB : L->getBlocks())
589 for (Instruction &I : *BB)
590 if (!isa<DbgInfoIntrinsic>(&I))
591 if (const DILocation *DIL = I.getDebugLoc()) {
592 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
593 if (NewDIL)
594 I.setDebugLoc(NewDIL.getValue());
595 else
596 LLVM_DEBUG(dbgs()
597 << "Failed to create new discriminator: "
598 << DIL->getFilename() << " Line: " << DIL->getLine());
601 for (unsigned It = 1; It != ULO.Count; ++It) {
602 std::vector<BasicBlock*> NewBlocks;
603 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
604 NewLoops[L] = L;
606 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
607 ValueToValueMapTy VMap;
608 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
609 Header->getParent()->getBasicBlockList().push_back(New);
611 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
612 "Header should not be in a sub-loop");
613 // Tell LI about New.
614 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
615 if (OldLoop)
616 LoopsToSimplify.insert(NewLoops[OldLoop]);
618 if (*BB == Header)
619 // Loop over all of the PHI nodes in the block, changing them to use
620 // the incoming values from the previous block.
621 for (PHINode *OrigPHI : OrigPHINode) {
622 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
623 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
624 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
625 if (It > 1 && L->contains(InValI))
626 InVal = LastValueMap[InValI];
627 VMap[OrigPHI] = InVal;
628 New->getInstList().erase(NewPHI);
631 // Update our running map of newest clones
632 LastValueMap[*BB] = New;
633 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
634 VI != VE; ++VI)
635 LastValueMap[VI->first] = VI->second;
637 // Add phi entries for newly created values to all exit blocks.
638 for (BasicBlock *Succ : successors(*BB)) {
639 if (L->contains(Succ))
640 continue;
641 for (PHINode &PHI : Succ->phis()) {
642 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
643 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
644 if (It != LastValueMap.end())
645 Incoming = It->second;
646 PHI.addIncoming(Incoming, New);
649 // Keep track of new headers and latches as we create them, so that
650 // we can insert the proper branches later.
651 if (*BB == Header)
652 Headers.push_back(New);
653 if (*BB == LatchBlock)
654 Latches.push_back(New);
656 // Keep track of the successor of the new header in the current iteration.
657 for (auto *Pred : predecessors(*BB))
658 if (Pred == Header) {
659 HeaderSucc.push_back(New);
660 break;
663 NewBlocks.push_back(New);
664 UnrolledLoopBlocks.push_back(New);
666 // Update DomTree: since we just copy the loop body, and each copy has a
667 // dedicated entry block (copy of the header block), this header's copy
668 // dominates all copied blocks. That means, dominance relations in the
669 // copied body are the same as in the original body.
670 if (DT) {
671 if (*BB == Header)
672 DT->addNewBlock(New, Latches[It - 1]);
673 else {
674 auto BBDomNode = DT->getNode(*BB);
675 auto BBIDom = BBDomNode->getIDom();
676 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
677 DT->addNewBlock(
678 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
683 // Remap all instructions in the most recent iteration
684 for (BasicBlock *NewBlock : NewBlocks) {
685 for (Instruction &I : *NewBlock) {
686 ::remapInstruction(&I, LastValueMap);
687 if (auto *II = dyn_cast<IntrinsicInst>(&I))
688 if (II->getIntrinsicID() == Intrinsic::assume)
689 AC->registerAssumption(II);
694 // Loop over the PHI nodes in the original block, setting incoming values.
695 for (PHINode *PN : OrigPHINode) {
696 if (CompletelyUnroll) {
697 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
698 Header->getInstList().erase(PN);
699 } else if (ULO.Count > 1) {
700 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
701 // If this value was defined in the loop, take the value defined by the
702 // last iteration of the loop.
703 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
704 if (L->contains(InValI))
705 InVal = LastValueMap[InVal];
707 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
708 PN->addIncoming(InVal, Latches.back());
712 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
713 ArrayRef<BasicBlock *> NextBlocks,
714 BasicBlock *BlockInLoop,
715 bool NeedConditional) {
716 auto *Term = cast<BranchInst>(Src->getTerminator());
717 if (NeedConditional) {
718 // Update the conditional branch's successor for the following
719 // iteration.
720 Term->setSuccessor(!ContinueOnTrue, Dest);
721 } else {
722 // Remove phi operands at this loop exit
723 if (Dest != LoopExit) {
724 BasicBlock *BB = Src;
725 for (BasicBlock *Succ : successors(BB)) {
726 // Preserve the incoming value from BB if we are jumping to the block
727 // in the current loop.
728 if (Succ == BlockInLoop)
729 continue;
730 for (PHINode &Phi : Succ->phis())
731 Phi.removeIncomingValue(BB, false);
734 // Replace the conditional branch with an unconditional one.
735 BranchInst::Create(Dest, Term);
736 Term->eraseFromParent();
740 // Now that all the basic blocks for the unrolled iterations are in place,
741 // set up the branches to connect them.
742 if (LatchIsExiting) {
743 // Set up latches to branch to the new header in the unrolled iterations or
744 // the loop exit for the last latch in a fully unrolled loop.
745 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
746 // The branch destination.
747 unsigned j = (i + 1) % e;
748 BasicBlock *Dest = Headers[j];
749 bool NeedConditional = true;
751 if (RuntimeTripCount && j != 0) {
752 NeedConditional = false;
755 // For a complete unroll, make the last iteration end with a branch
756 // to the exit block.
757 if (CompletelyUnroll) {
758 if (j == 0)
759 Dest = LoopExit;
760 // If using trip count upper bound to completely unroll, we need to keep
761 // the conditional branch except the last one because the loop may exit
762 // after any iteration.
763 assert(NeedConditional &&
764 "NeedCondition cannot be modified by both complete "
765 "unrolling and runtime unrolling");
766 NeedConditional =
767 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
768 } else if (j != BreakoutTrip &&
769 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
770 // If we know the trip count or a multiple of it, we can safely use an
771 // unconditional branch for some iterations.
772 NeedConditional = false;
775 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
777 } else {
778 // Setup headers to branch to their new successors in the unrolled
779 // iterations.
780 for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
781 // The branch destination.
782 unsigned j = (i + 1) % e;
783 BasicBlock *Dest = HeaderSucc[i];
784 bool NeedConditional = true;
786 if (RuntimeTripCount && j != 0)
787 NeedConditional = false;
789 if (CompletelyUnroll)
790 // We cannot drop the conditional branch for the last condition, as we
791 // may have to execute the loop body depending on the condition.
792 NeedConditional = j == 0 || ULO.PreserveCondBr;
793 else if (j != BreakoutTrip &&
794 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
795 // If we know the trip count or a multiple of it, we can safely use an
796 // unconditional branch for some iterations.
797 NeedConditional = false;
799 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
802 // Set up latches to branch to the new header in the unrolled iterations or
803 // the loop exit for the last latch in a fully unrolled loop.
805 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
806 // The original branch was replicated in each unrolled iteration.
807 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
809 // The branch destination.
810 unsigned j = (i + 1) % e;
811 BasicBlock *Dest = Headers[j];
813 // When completely unrolling, the last latch becomes unreachable.
814 if (CompletelyUnroll && j == 0)
815 new UnreachableInst(Term->getContext(), Term);
816 else
817 // Replace the conditional branch with an unconditional one.
818 BranchInst::Create(Dest, Term);
820 Term->eraseFromParent();
824 // Update dominators of blocks we might reach through exits.
825 // Immediate dominator of such block might change, because we add more
826 // routes which can lead to the exit: we can now reach it from the copied
827 // iterations too.
828 if (DT && ULO.Count > 1) {
829 for (auto *BB : OriginalLoopBlocks) {
830 auto *BBDomNode = DT->getNode(BB);
831 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
832 for (auto *ChildDomNode : BBDomNode->getChildren()) {
833 auto *ChildBB = ChildDomNode->getBlock();
834 if (!L->contains(ChildBB))
835 ChildrenToUpdate.push_back(ChildBB);
837 BasicBlock *NewIDom;
838 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
839 auto &TermBlocks = LatchIsExiting ? Latches : Headers;
840 if (BB == TermBlock) {
841 // The latch is special because we emit unconditional branches in
842 // some cases where the original loop contained a conditional branch.
843 // Since the latch is always at the bottom of the loop, if the latch
844 // dominated an exit before unrolling, the new dominator of that exit
845 // must also be a latch. Specifically, the dominator is the first
846 // latch which ends in a conditional branch, or the last latch if
847 // there is no such latch.
848 // For loops exiting from the header, we limit the supported loops
849 // to have a single exiting block.
850 NewIDom = TermBlocks.back();
851 for (BasicBlock *Iter : TermBlocks) {
852 Instruction *Term = Iter->getTerminator();
853 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
854 NewIDom = Iter;
855 break;
858 } else {
859 // The new idom of the block will be the nearest common dominator
860 // of all copies of the previous idom. This is equivalent to the
861 // nearest common dominator of the previous idom and the first latch,
862 // which dominates all copies of the previous idom.
863 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
865 for (auto *ChildBB : ChildrenToUpdate)
866 DT->changeImmediateDominator(ChildBB, NewIDom);
870 assert(!DT || !UnrollVerifyDomtree ||
871 DT->verify(DominatorTree::VerificationLevel::Fast));
873 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
874 // Merge adjacent basic blocks, if possible.
875 for (BasicBlock *Latch : Latches) {
876 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
877 assert((Term ||
878 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
879 "Need a branch as terminator, except when fully unrolling with "
880 "unconditional latch");
881 if (Term && Term->isUnconditional()) {
882 BasicBlock *Dest = Term->getSuccessor(0);
883 BasicBlock *Fold = Dest->getUniquePredecessor();
884 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
885 // Dest has been folded into Fold. Update our worklists accordingly.
886 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
887 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
888 UnrolledLoopBlocks.end(), Dest),
889 UnrolledLoopBlocks.end());
893 // Apply updates to the DomTree.
894 DT = &DTU.getDomTree();
896 // At this point, the code is well formed. We now simplify the unrolled loop,
897 // doing constant propagation and dead code elimination as we go.
898 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
899 SE, DT, AC);
901 NumCompletelyUnrolled += CompletelyUnroll;
902 ++NumUnrolled;
904 Loop *OuterL = L->getParentLoop();
905 // Update LoopInfo if the loop is completely removed.
906 if (CompletelyUnroll)
907 LI->erase(L);
909 // After complete unrolling most of the blocks should be contained in OuterL.
910 // However, some of them might happen to be out of OuterL (e.g. if they
911 // precede a loop exit). In this case we might need to insert PHI nodes in
912 // order to preserve LCSSA form.
913 // We don't need to check this if we already know that we need to fix LCSSA
914 // form.
915 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
916 // it should be possible to fix it in-place.
917 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
918 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
920 // If we have a pass and a DominatorTree we should re-simplify impacted loops
921 // to ensure subsequent analyses can rely on this form. We want to simplify
922 // at least one layer outside of the loop that was unrolled so that any
923 // changes to the parent loop exposed by the unrolling are considered.
924 if (DT) {
925 if (OuterL) {
926 // OuterL includes all loops for which we can break loop-simplify, so
927 // it's sufficient to simplify only it (it'll recursively simplify inner
928 // loops too).
929 if (NeedToFixLCSSA) {
930 // LCSSA must be performed on the outermost affected loop. The unrolled
931 // loop's last loop latch is guaranteed to be in the outermost loop
932 // after LoopInfo's been updated by LoopInfo::erase.
933 Loop *LatchLoop = LI->getLoopFor(Latches.back());
934 Loop *FixLCSSALoop = OuterL;
935 if (!FixLCSSALoop->contains(LatchLoop))
936 while (FixLCSSALoop->getParentLoop() != LatchLoop)
937 FixLCSSALoop = FixLCSSALoop->getParentLoop();
939 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
940 } else if (PreserveLCSSA) {
941 assert(OuterL->isLCSSAForm(*DT) &&
942 "Loops should be in LCSSA form after loop-unroll.");
945 // TODO: That potentially might be compile-time expensive. We should try
946 // to fix the loop-simplified form incrementally.
947 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
948 } else {
949 // Simplify loops for which we might've broken loop-simplify form.
950 for (Loop *SubLoop : LoopsToSimplify)
951 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
955 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
956 : LoopUnrollResult::PartiallyUnrolled;
959 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
960 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
961 /// such metadata node exists, then nullptr is returned.
962 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
963 // First operand should refer to the loop id itself.
964 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
965 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
967 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
968 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
969 if (!MD)
970 continue;
972 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
973 if (!S)
974 continue;
976 if (Name.equals(S->getString()))
977 return MD;
979 return nullptr;