1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the PredicateInfo class.
11 //===----------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DebugCounter.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/Transforms/Utils.h"
38 #define DEBUG_TYPE "predicateinfo"
40 using namespace PatternMatch
;
41 using namespace llvm::PredicateInfoClasses
;
43 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass
, "print-predicateinfo",
44 "PredicateInfo Printer", false, false)
45 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
46 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
47 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass
, "print-predicateinfo",
48 "PredicateInfo Printer", false, false)
49 static cl::opt
<bool> VerifyPredicateInfo(
50 "verify-predicateinfo", cl::init(false), cl::Hidden
,
51 cl::desc("Verify PredicateInfo in legacy printer pass."));
52 DEBUG_COUNTER(RenameCounter
, "predicateinfo-rename",
53 "Controls which variables are renamed with predicateinfo");
56 // Given a predicate info that is a type of branching terminator, get the
58 const BasicBlock
*getBranchBlock(const PredicateBase
*PB
) {
59 assert(isa
<PredicateWithEdge
>(PB
) &&
60 "Only branches and switches should have PHIOnly defs that "
61 "require branch blocks.");
62 return cast
<PredicateWithEdge
>(PB
)->From
;
65 // Given a predicate info that is a type of branching terminator, get the
66 // branching terminator.
67 static Instruction
*getBranchTerminator(const PredicateBase
*PB
) {
68 assert(isa
<PredicateWithEdge
>(PB
) &&
69 "Not a predicate info type we know how to get a terminator from.");
70 return cast
<PredicateWithEdge
>(PB
)->From
->getTerminator();
73 // Given a predicate info that is a type of branching terminator, get the
74 // edge this predicate info represents
75 const std::pair
<BasicBlock
*, BasicBlock
*>
76 getBlockEdge(const PredicateBase
*PB
) {
77 assert(isa
<PredicateWithEdge
>(PB
) &&
78 "Not a predicate info type we know how to get an edge from.");
79 const auto *PEdge
= cast
<PredicateWithEdge
>(PB
);
80 return std::make_pair(PEdge
->From
, PEdge
->To
);
85 namespace PredicateInfoClasses
{
87 // Operations that must appear first in the block.
89 // Operations that are somewhere in the middle of the block, and are sorted on
92 // Operations that must appear last in a block, like successor phi node uses.
96 // Associate global and local DFS info with defs and uses, so we can sort them
97 // into a global domination ordering.
101 unsigned int LocalNum
= LN_Middle
;
102 // Only one of Def or Use will be set.
103 Value
*Def
= nullptr;
105 // Neither PInfo nor EdgeOnly participate in the ordering
106 PredicateBase
*PInfo
= nullptr;
107 bool EdgeOnly
= false;
110 // Perform a strict weak ordering on instructions and arguments.
111 static bool valueComesBefore(OrderedInstructions
&OI
, const Value
*A
,
113 auto *ArgA
= dyn_cast_or_null
<Argument
>(A
);
114 auto *ArgB
= dyn_cast_or_null
<Argument
>(B
);
120 return ArgA
->getArgNo() < ArgB
->getArgNo();
121 return OI
.dfsBefore(cast
<Instruction
>(A
), cast
<Instruction
>(B
));
124 // This compares ValueDFS structures, creating OrderedBasicBlocks where
125 // necessary to compare uses/defs in the same block. Doing so allows us to walk
126 // the minimum number of instructions necessary to compute our def/use ordering.
127 struct ValueDFS_Compare
{
129 OrderedInstructions
&OI
;
130 ValueDFS_Compare(DominatorTree
&DT
, OrderedInstructions
&OI
)
133 bool operator()(const ValueDFS
&A
, const ValueDFS
&B
) const {
136 // The only case we can't directly compare them is when they in the same
137 // block, and both have localnum == middle. In that case, we have to use
138 // comesbefore to see what the real ordering is, because they are in the
141 assert((A
.DFSIn
!= B
.DFSIn
|| A
.DFSOut
== B
.DFSOut
) &&
142 "Equal DFS-in numbers imply equal out numbers");
143 bool SameBlock
= A
.DFSIn
== B
.DFSIn
;
145 // We want to put the def that will get used for a given set of phi uses,
146 // before those phi uses.
147 // So we sort by edge, then by def.
148 // Note that only phi nodes uses and defs can come last.
149 if (SameBlock
&& A
.LocalNum
== LN_Last
&& B
.LocalNum
== LN_Last
)
150 return comparePHIRelated(A
, B
);
154 if (!SameBlock
|| A
.LocalNum
!= LN_Middle
|| B
.LocalNum
!= LN_Middle
)
155 return std::tie(A
.DFSIn
, A
.LocalNum
, isADef
) <
156 std::tie(B
.DFSIn
, B
.LocalNum
, isBDef
);
157 return localComesBefore(A
, B
);
160 // For a phi use, or a non-materialized def, return the edge it represents.
161 const std::pair
<BasicBlock
*, BasicBlock
*>
162 getBlockEdge(const ValueDFS
&VD
) const {
163 if (!VD
.Def
&& VD
.U
) {
164 auto *PHI
= cast
<PHINode
>(VD
.U
->getUser());
165 return std::make_pair(PHI
->getIncomingBlock(*VD
.U
), PHI
->getParent());
167 // This is really a non-materialized def.
168 return ::getBlockEdge(VD
.PInfo
);
171 // For two phi related values, return the ordering.
172 bool comparePHIRelated(const ValueDFS
&A
, const ValueDFS
&B
) const {
173 BasicBlock
*ASrc
, *ADest
, *BSrc
, *BDest
;
174 std::tie(ASrc
, ADest
) = getBlockEdge(A
);
175 std::tie(BSrc
, BDest
) = getBlockEdge(B
);
178 // This function should only be used for values in the same BB, check that.
179 DomTreeNode
*DomASrc
= DT
.getNode(ASrc
);
180 DomTreeNode
*DomBSrc
= DT
.getNode(BSrc
);
181 assert(DomASrc
->getDFSNumIn() == (unsigned)A
.DFSIn
&&
182 "DFS numbers for A should match the ones of the source block");
183 assert(DomBSrc
->getDFSNumIn() == (unsigned)B
.DFSIn
&&
184 "DFS numbers for B should match the ones of the source block");
185 assert(A
.DFSIn
== B
.DFSIn
&& "Values must be in the same block");
190 // Use DFS numbers to compare destination blocks, to guarantee a
191 // deterministic order.
192 DomTreeNode
*DomADest
= DT
.getNode(ADest
);
193 DomTreeNode
*DomBDest
= DT
.getNode(BDest
);
194 unsigned AIn
= DomADest
->getDFSNumIn();
195 unsigned BIn
= DomBDest
->getDFSNumIn();
198 assert((!A
.Def
|| !A
.U
) && (!B
.Def
|| !B
.U
) &&
199 "Def and U cannot be set at the same time");
200 // Now sort by edge destination and then defs before uses.
201 return std::tie(AIn
, isADef
) < std::tie(BIn
, isBDef
);
204 // Get the definition of an instruction that occurs in the middle of a block.
205 Value
*getMiddleDef(const ValueDFS
&VD
) const {
208 // It's possible for the defs and uses to be null. For branches, the local
209 // numbering will say the placed predicaeinfos should go first (IE
210 // LN_beginning), so we won't be in this function. For assumes, we will end
211 // up here, beause we need to order the def we will place relative to the
212 // assume. So for the purpose of ordering, we pretend the def is the assume
213 // because that is where we will insert the info.
216 "No def, no use, and no predicateinfo should not occur");
217 assert(isa
<PredicateAssume
>(VD
.PInfo
) &&
218 "Middle of block should only occur for assumes");
219 return cast
<PredicateAssume
>(VD
.PInfo
)->AssumeInst
;
224 // Return either the Def, if it's not null, or the user of the Use, if the def
226 const Instruction
*getDefOrUser(const Value
*Def
, const Use
*U
) const {
228 return cast
<Instruction
>(Def
);
229 return cast
<Instruction
>(U
->getUser());
232 // This performs the necessary local basic block ordering checks to tell
233 // whether A comes before B, where both are in the same basic block.
234 bool localComesBefore(const ValueDFS
&A
, const ValueDFS
&B
) const {
235 auto *ADef
= getMiddleDef(A
);
236 auto *BDef
= getMiddleDef(B
);
238 // See if we have real values or uses. If we have real values, we are
239 // guaranteed they are instructions or arguments. No matter what, we are
240 // guaranteed they are in the same block if they are instructions.
241 auto *ArgA
= dyn_cast_or_null
<Argument
>(ADef
);
242 auto *ArgB
= dyn_cast_or_null
<Argument
>(BDef
);
245 return valueComesBefore(OI
, ArgA
, ArgB
);
247 auto *AInst
= getDefOrUser(ADef
, A
.U
);
248 auto *BInst
= getDefOrUser(BDef
, B
.U
);
249 return valueComesBefore(OI
, AInst
, BInst
);
253 } // namespace PredicateInfoClasses
255 bool PredicateInfo::stackIsInScope(const ValueDFSStack
&Stack
,
256 const ValueDFS
&VDUse
) const {
259 // If it's a phi only use, make sure it's for this phi node edge, and that the
260 // use is in a phi node. If it's anything else, and the top of the stack is
261 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
262 // the defs they must go with so that we can know it's time to pop the stack
263 // when we hit the end of the phi uses for a given def.
264 if (Stack
.back().EdgeOnly
) {
267 auto *PHI
= dyn_cast
<PHINode
>(VDUse
.U
->getUser());
271 BasicBlock
*EdgePred
= PHI
->getIncomingBlock(*VDUse
.U
);
272 if (EdgePred
!= getBranchBlock(Stack
.back().PInfo
))
275 // Use dominates, which knows how to handle edge dominance.
276 return DT
.dominates(getBlockEdge(Stack
.back().PInfo
), *VDUse
.U
);
279 return (VDUse
.DFSIn
>= Stack
.back().DFSIn
&&
280 VDUse
.DFSOut
<= Stack
.back().DFSOut
);
283 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack
&Stack
,
284 const ValueDFS
&VD
) {
285 while (!Stack
.empty() && !stackIsInScope(Stack
, VD
))
289 // Convert the uses of Op into a vector of uses, associating global and local
290 // DFS info with each one.
291 void PredicateInfo::convertUsesToDFSOrdered(
292 Value
*Op
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
) {
293 for (auto &U
: Op
->uses()) {
294 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
296 // Put the phi node uses in the incoming block.
298 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
299 IBlock
= PN
->getIncomingBlock(U
);
300 // Make phi node users appear last in the incoming block
302 VD
.LocalNum
= LN_Last
;
304 // If it's not a phi node use, it is somewhere in the middle of the
306 IBlock
= I
->getParent();
307 VD
.LocalNum
= LN_Middle
;
309 DomTreeNode
*DomNode
= DT
.getNode(IBlock
);
310 // It's possible our use is in an unreachable block. Skip it if so.
313 VD
.DFSIn
= DomNode
->getDFSNumIn();
314 VD
.DFSOut
= DomNode
->getDFSNumOut();
316 DFSOrderedSet
.push_back(VD
);
321 // Collect relevant operations from Comparison that we may want to insert copies
323 void collectCmpOps(CmpInst
*Comparison
, SmallVectorImpl
<Value
*> &CmpOperands
) {
324 auto *Op0
= Comparison
->getOperand(0);
325 auto *Op1
= Comparison
->getOperand(1);
328 CmpOperands
.push_back(Comparison
);
329 // Only want real values, not constants. Additionally, operands with one use
330 // are only being used in the comparison, which means they will not be useful
331 // for us to consider for predicateinfo.
333 if ((isa
<Instruction
>(Op0
) || isa
<Argument
>(Op0
)) && !Op0
->hasOneUse())
334 CmpOperands
.push_back(Op0
);
335 if ((isa
<Instruction
>(Op1
) || isa
<Argument
>(Op1
)) && !Op1
->hasOneUse())
336 CmpOperands
.push_back(Op1
);
339 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
340 void PredicateInfo::addInfoFor(SmallVectorImpl
<Value
*> &OpsToRename
, Value
*Op
,
342 auto &OperandInfo
= getOrCreateValueInfo(Op
);
343 if (OperandInfo
.Infos
.empty())
344 OpsToRename
.push_back(Op
);
345 AllInfos
.push_back(PB
);
346 OperandInfo
.Infos
.push_back(PB
);
349 // Process an assume instruction and place relevant operations we want to rename
351 void PredicateInfo::processAssume(IntrinsicInst
*II
, BasicBlock
*AssumeBB
,
352 SmallVectorImpl
<Value
*> &OpsToRename
) {
353 // See if we have a comparison we support
354 SmallVector
<Value
*, 8> CmpOperands
;
355 SmallVector
<Value
*, 2> ConditionsToProcess
;
356 CmpInst::Predicate Pred
;
357 Value
*Operand
= II
->getOperand(0);
358 if (m_c_And(m_Cmp(Pred
, m_Value(), m_Value()),
359 m_Cmp(Pred
, m_Value(), m_Value()))
360 .match(II
->getOperand(0))) {
361 ConditionsToProcess
.push_back(cast
<BinaryOperator
>(Operand
)->getOperand(0));
362 ConditionsToProcess
.push_back(cast
<BinaryOperator
>(Operand
)->getOperand(1));
363 ConditionsToProcess
.push_back(Operand
);
364 } else if (isa
<CmpInst
>(Operand
)) {
366 ConditionsToProcess
.push_back(Operand
);
368 for (auto Cond
: ConditionsToProcess
) {
369 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
)) {
370 collectCmpOps(Cmp
, CmpOperands
);
371 // Now add our copy infos for our operands
372 for (auto *Op
: CmpOperands
) {
373 auto *PA
= new PredicateAssume(Op
, II
, Cmp
);
374 addInfoFor(OpsToRename
, Op
, PA
);
377 } else if (auto *BinOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
378 // Otherwise, it should be an AND.
379 assert(BinOp
->getOpcode() == Instruction::And
&&
380 "Should have been an AND");
381 auto *PA
= new PredicateAssume(BinOp
, II
, BinOp
);
382 addInfoFor(OpsToRename
, BinOp
, PA
);
384 llvm_unreachable("Unknown type of condition");
389 // Process a block terminating branch, and place relevant operations to be
390 // renamed into OpsToRename.
391 void PredicateInfo::processBranch(BranchInst
*BI
, BasicBlock
*BranchBB
,
392 SmallVectorImpl
<Value
*> &OpsToRename
) {
393 BasicBlock
*FirstBB
= BI
->getSuccessor(0);
394 BasicBlock
*SecondBB
= BI
->getSuccessor(1);
395 SmallVector
<BasicBlock
*, 2> SuccsToProcess
;
396 SuccsToProcess
.push_back(FirstBB
);
397 SuccsToProcess
.push_back(SecondBB
);
398 SmallVector
<Value
*, 2> ConditionsToProcess
;
400 auto InsertHelper
= [&](Value
*Op
, bool isAnd
, bool isOr
, Value
*Cond
) {
401 for (auto *Succ
: SuccsToProcess
) {
402 // Don't try to insert on a self-edge. This is mainly because we will
403 // eliminate during renaming anyway.
404 if (Succ
== BranchBB
)
406 bool TakenEdge
= (Succ
== FirstBB
);
407 // For and, only insert on the true edge
408 // For or, only insert on the false edge
409 if ((isAnd
&& !TakenEdge
) || (isOr
&& TakenEdge
))
412 new PredicateBranch(Op
, BranchBB
, Succ
, Cond
, TakenEdge
);
413 addInfoFor(OpsToRename
, Op
, PB
);
414 if (!Succ
->getSinglePredecessor())
415 EdgeUsesOnly
.insert({BranchBB
, Succ
});
419 // Match combinations of conditions.
420 CmpInst::Predicate Pred
;
423 SmallVector
<Value
*, 8> CmpOperands
;
424 if (match(BI
->getCondition(), m_And(m_Cmp(Pred
, m_Value(), m_Value()),
425 m_Cmp(Pred
, m_Value(), m_Value()))) ||
426 match(BI
->getCondition(), m_Or(m_Cmp(Pred
, m_Value(), m_Value()),
427 m_Cmp(Pred
, m_Value(), m_Value())))) {
428 auto *BinOp
= cast
<BinaryOperator
>(BI
->getCondition());
429 if (BinOp
->getOpcode() == Instruction::And
)
431 else if (BinOp
->getOpcode() == Instruction::Or
)
433 ConditionsToProcess
.push_back(BinOp
->getOperand(0));
434 ConditionsToProcess
.push_back(BinOp
->getOperand(1));
435 ConditionsToProcess
.push_back(BI
->getCondition());
436 } else if (isa
<CmpInst
>(BI
->getCondition())) {
437 ConditionsToProcess
.push_back(BI
->getCondition());
439 for (auto Cond
: ConditionsToProcess
) {
440 if (auto *Cmp
= dyn_cast
<CmpInst
>(Cond
)) {
441 collectCmpOps(Cmp
, CmpOperands
);
442 // Now add our copy infos for our operands
443 for (auto *Op
: CmpOperands
)
444 InsertHelper(Op
, isAnd
, isOr
, Cmp
);
445 } else if (auto *BinOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
446 // This must be an AND or an OR.
447 assert((BinOp
->getOpcode() == Instruction::And
||
448 BinOp
->getOpcode() == Instruction::Or
) &&
449 "Should have been an AND or an OR");
450 // The actual value of the binop is not subject to the same restrictions
451 // as the comparison. It's either true or false on the true/false branch.
452 InsertHelper(BinOp
, false, false, BinOp
);
454 llvm_unreachable("Unknown type of condition");
459 // Process a block terminating switch, and place relevant operations to be
460 // renamed into OpsToRename.
461 void PredicateInfo::processSwitch(SwitchInst
*SI
, BasicBlock
*BranchBB
,
462 SmallVectorImpl
<Value
*> &OpsToRename
) {
463 Value
*Op
= SI
->getCondition();
464 if ((!isa
<Instruction
>(Op
) && !isa
<Argument
>(Op
)) || Op
->hasOneUse())
467 // Remember how many outgoing edges there are to every successor.
468 SmallDenseMap
<BasicBlock
*, unsigned, 16> SwitchEdges
;
469 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
470 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
471 ++SwitchEdges
[TargetBlock
];
474 // Now propagate info for each case value
475 for (auto C
: SI
->cases()) {
476 BasicBlock
*TargetBlock
= C
.getCaseSuccessor();
477 if (SwitchEdges
.lookup(TargetBlock
) == 1) {
478 PredicateSwitch
*PS
= new PredicateSwitch(
479 Op
, SI
->getParent(), TargetBlock
, C
.getCaseValue(), SI
);
480 addInfoFor(OpsToRename
, Op
, PS
);
481 if (!TargetBlock
->getSinglePredecessor())
482 EdgeUsesOnly
.insert({BranchBB
, TargetBlock
});
487 // Build predicate info for our function
488 void PredicateInfo::buildPredicateInfo() {
489 DT
.updateDFSNumbers();
490 // Collect operands to rename from all conditional branch terminators, as well
491 // as assume statements.
492 SmallVector
<Value
*, 8> OpsToRename
;
493 for (auto DTN
: depth_first(DT
.getRootNode())) {
494 BasicBlock
*BranchBB
= DTN
->getBlock();
495 if (auto *BI
= dyn_cast
<BranchInst
>(BranchBB
->getTerminator())) {
496 if (!BI
->isConditional())
498 // Can't insert conditional information if they all go to the same place.
499 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
501 processBranch(BI
, BranchBB
, OpsToRename
);
502 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BranchBB
->getTerminator())) {
503 processSwitch(SI
, BranchBB
, OpsToRename
);
506 for (auto &Assume
: AC
.assumptions()) {
507 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(Assume
))
508 if (DT
.isReachableFromEntry(II
->getParent()))
509 processAssume(II
, II
->getParent(), OpsToRename
);
511 // Now rename all our operations.
512 renameUses(OpsToRename
);
515 // Create a ssa_copy declaration with custom mangling, because
516 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
517 // all unnamed types get mangled to the same string. We use the pointer
518 // to the type as name here, as it guarantees unique names for different
519 // types and we remove the declarations when destroying PredicateInfo.
520 // It is a workaround for PR38117, because solving it in a fully general way is
522 static Function
*getCopyDeclaration(Module
*M
, Type
*Ty
) {
523 std::string Name
= "llvm.ssa.copy." + utostr((uintptr_t) Ty
);
524 return cast
<Function
>(
525 M
->getOrInsertFunction(Name
,
526 getType(M
->getContext(), Intrinsic::ssa_copy
, Ty
))
530 // Given the renaming stack, make all the operands currently on the stack real
531 // by inserting them into the IR. Return the last operation's value.
532 Value
*PredicateInfo::materializeStack(unsigned int &Counter
,
533 ValueDFSStack
&RenameStack
,
535 // Find the first thing we have to materialize
536 auto RevIter
= RenameStack
.rbegin();
537 for (; RevIter
!= RenameStack
.rend(); ++RevIter
)
541 size_t Start
= RevIter
- RenameStack
.rbegin();
542 // The maximum number of things we should be trying to materialize at once
543 // right now is 4, depending on if we had an assume, a branch, and both used
544 // and of conditions.
545 for (auto RenameIter
= RenameStack
.end() - Start
;
546 RenameIter
!= RenameStack
.end(); ++RenameIter
) {
548 RenameIter
== RenameStack
.begin() ? OrigOp
: (RenameIter
- 1)->Def
;
549 ValueDFS
&Result
= *RenameIter
;
550 auto *ValInfo
= Result
.PInfo
;
551 // For edge predicates, we can just place the operand in the block before
552 // the terminator. For assume, we have to place it right before the assume
553 // to ensure we dominate all of our uses. Always insert right before the
554 // relevant instruction (terminator, assume), so that we insert in proper
555 // order in the case of multiple predicateinfo in the same block.
556 if (isa
<PredicateWithEdge
>(ValInfo
)) {
557 IRBuilder
<> B(getBranchTerminator(ValInfo
));
558 Function
*IF
= getCopyDeclaration(F
.getParent(), Op
->getType());
559 if (IF
->users().empty())
560 CreatedDeclarations
.insert(IF
);
562 B
.CreateCall(IF
, Op
, Op
->getName() + "." + Twine(Counter
++));
563 PredicateMap
.insert({PIC
, ValInfo
});
566 auto *PAssume
= dyn_cast
<PredicateAssume
>(ValInfo
);
568 "Should not have gotten here without it being an assume");
569 IRBuilder
<> B(PAssume
->AssumeInst
);
570 Function
*IF
= getCopyDeclaration(F
.getParent(), Op
->getType());
571 if (IF
->users().empty())
572 CreatedDeclarations
.insert(IF
);
573 CallInst
*PIC
= B
.CreateCall(IF
, Op
);
574 PredicateMap
.insert({PIC
, ValInfo
});
578 return RenameStack
.back().Def
;
581 // Instead of the standard SSA renaming algorithm, which is O(Number of
582 // instructions), and walks the entire dominator tree, we walk only the defs +
583 // uses. The standard SSA renaming algorithm does not really rely on the
584 // dominator tree except to order the stack push/pops of the renaming stacks, so
585 // that defs end up getting pushed before hitting the correct uses. This does
586 // not require the dominator tree, only the *order* of the dominator tree. The
587 // complete and correct ordering of the defs and uses, in dominator tree is
588 // contained in the DFS numbering of the dominator tree. So we sort the defs and
589 // uses into the DFS ordering, and then just use the renaming stack as per
590 // normal, pushing when we hit a def (which is a predicateinfo instruction),
591 // popping when we are out of the dfs scope for that def, and replacing any uses
592 // with top of stack if it exists. In order to handle liveness without
593 // propagating liveness info, we don't actually insert the predicateinfo
594 // instruction def until we see a use that it would dominate. Once we see such
595 // a use, we materialize the predicateinfo instruction in the right place and
598 // TODO: Use this algorithm to perform fast single-variable renaming in
599 // promotememtoreg and memoryssa.
600 void PredicateInfo::renameUses(SmallVectorImpl
<Value
*> &OpsToRename
) {
601 ValueDFS_Compare
Compare(DT
, OI
);
602 // Compute liveness, and rename in O(uses) per Op.
603 for (auto *Op
: OpsToRename
) {
604 LLVM_DEBUG(dbgs() << "Visiting " << *Op
<< "\n");
605 unsigned Counter
= 0;
606 SmallVector
<ValueDFS
, 16> OrderedUses
;
607 const auto &ValueInfo
= getValueInfo(Op
);
608 // Insert the possible copies into the def/use list.
609 // They will become real copies if we find a real use for them, and never
610 // created otherwise.
611 for (auto &PossibleCopy
: ValueInfo
.Infos
) {
613 // Determine where we are going to place the copy by the copy type.
614 // The predicate info for branches always come first, they will get
615 // materialized in the split block at the top of the block.
616 // The predicate info for assumes will be somewhere in the middle,
617 // it will get materialized in front of the assume.
618 if (const auto *PAssume
= dyn_cast
<PredicateAssume
>(PossibleCopy
)) {
619 VD
.LocalNum
= LN_Middle
;
620 DomTreeNode
*DomNode
= DT
.getNode(PAssume
->AssumeInst
->getParent());
623 VD
.DFSIn
= DomNode
->getDFSNumIn();
624 VD
.DFSOut
= DomNode
->getDFSNumOut();
625 VD
.PInfo
= PossibleCopy
;
626 OrderedUses
.push_back(VD
);
627 } else if (isa
<PredicateWithEdge
>(PossibleCopy
)) {
628 // If we can only do phi uses, we treat it like it's in the branch
629 // block, and handle it specially. We know that it goes last, and only
630 // dominate phi uses.
631 auto BlockEdge
= getBlockEdge(PossibleCopy
);
632 if (EdgeUsesOnly
.count(BlockEdge
)) {
633 VD
.LocalNum
= LN_Last
;
634 auto *DomNode
= DT
.getNode(BlockEdge
.first
);
636 VD
.DFSIn
= DomNode
->getDFSNumIn();
637 VD
.DFSOut
= DomNode
->getDFSNumOut();
638 VD
.PInfo
= PossibleCopy
;
640 OrderedUses
.push_back(VD
);
643 // Otherwise, we are in the split block (even though we perform
644 // insertion in the branch block).
645 // Insert a possible copy at the split block and before the branch.
646 VD
.LocalNum
= LN_First
;
647 auto *DomNode
= DT
.getNode(BlockEdge
.second
);
649 VD
.DFSIn
= DomNode
->getDFSNumIn();
650 VD
.DFSOut
= DomNode
->getDFSNumOut();
651 VD
.PInfo
= PossibleCopy
;
652 OrderedUses
.push_back(VD
);
658 convertUsesToDFSOrdered(Op
, OrderedUses
);
659 // Here we require a stable sort because we do not bother to try to
660 // assign an order to the operands the uses represent. Thus, two
661 // uses in the same instruction do not have a strict sort order
662 // currently and will be considered equal. We could get rid of the
663 // stable sort by creating one if we wanted.
664 llvm::stable_sort(OrderedUses
, Compare
);
665 SmallVector
<ValueDFS
, 8> RenameStack
;
666 // For each use, sorted into dfs order, push values and replaces uses with
667 // top of stack, which will represent the reaching def.
668 for (auto &VD
: OrderedUses
) {
669 // We currently do not materialize copy over copy, but we should decide if
671 bool PossibleCopy
= VD
.PInfo
!= nullptr;
672 if (RenameStack
.empty()) {
673 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
675 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
676 << RenameStack
.back().DFSIn
<< ","
677 << RenameStack
.back().DFSOut
<< ")\n");
680 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD
.DFSIn
<< ","
681 << VD
.DFSOut
<< ")\n");
683 bool ShouldPush
= (VD
.Def
|| PossibleCopy
);
684 bool OutOfScope
= !stackIsInScope(RenameStack
, VD
);
685 if (OutOfScope
|| ShouldPush
) {
686 // Sync to our current scope.
687 popStackUntilDFSScope(RenameStack
, VD
);
689 RenameStack
.push_back(VD
);
692 // If we get to this point, and the stack is empty we must have a use
693 // with no renaming needed, just skip it.
694 if (RenameStack
.empty())
696 // Skip values, only want to rename the uses
697 if (VD
.Def
|| PossibleCopy
)
699 if (!DebugCounter::shouldExecute(RenameCounter
)) {
700 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
703 ValueDFS
&Result
= RenameStack
.back();
705 // If the possible copy dominates something, materialize our stack up to
706 // this point. This ensures every comparison that affects our operation
707 // ends up with predicateinfo.
709 Result
.Def
= materializeStack(Counter
, RenameStack
, Op
);
711 LLVM_DEBUG(dbgs() << "Found replacement " << *Result
.Def
<< " for "
712 << *VD
.U
->get() << " in " << *(VD
.U
->getUser())
714 assert(DT
.dominates(cast
<Instruction
>(Result
.Def
), *VD
.U
) &&
715 "Predicateinfo def should have dominated this use");
716 VD
.U
->set(Result
.Def
);
721 PredicateInfo::ValueInfo
&PredicateInfo::getOrCreateValueInfo(Value
*Operand
) {
722 auto OIN
= ValueInfoNums
.find(Operand
);
723 if (OIN
== ValueInfoNums
.end()) {
725 ValueInfos
.resize(ValueInfos
.size() + 1);
726 // This will use the new size and give us a 0 based number of the info
727 auto InsertResult
= ValueInfoNums
.insert({Operand
, ValueInfos
.size() - 1});
728 assert(InsertResult
.second
&& "Value info number already existed?");
729 return ValueInfos
[InsertResult
.first
->second
];
731 return ValueInfos
[OIN
->second
];
734 const PredicateInfo::ValueInfo
&
735 PredicateInfo::getValueInfo(Value
*Operand
) const {
736 auto OINI
= ValueInfoNums
.lookup(Operand
);
737 assert(OINI
!= 0 && "Operand was not really in the Value Info Numbers");
738 assert(OINI
< ValueInfos
.size() &&
739 "Value Info Number greater than size of Value Info Table");
740 return ValueInfos
[OINI
];
743 PredicateInfo::PredicateInfo(Function
&F
, DominatorTree
&DT
,
745 : F(F
), DT(DT
), AC(AC
), OI(&DT
) {
746 // Push an empty operand info so that we can detect 0 as not finding one
747 ValueInfos
.resize(1);
748 buildPredicateInfo();
751 // Remove all declarations we created . The PredicateInfo consumers are
752 // responsible for remove the ssa_copy calls created.
753 PredicateInfo::~PredicateInfo() {
754 // Collect function pointers in set first, as SmallSet uses a SmallVector
755 // internally and we have to remove the asserting value handles first.
756 SmallPtrSet
<Function
*, 20> FunctionPtrs
;
757 for (auto &F
: CreatedDeclarations
)
758 FunctionPtrs
.insert(&*F
);
759 CreatedDeclarations
.clear();
761 for (Function
*F
: FunctionPtrs
) {
762 assert(F
->user_begin() == F
->user_end() &&
763 "PredicateInfo consumer did not remove all SSA copies.");
764 F
->eraseFromParent();
768 void PredicateInfo::verifyPredicateInfo() const {}
770 char PredicateInfoPrinterLegacyPass::ID
= 0;
772 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
774 initializePredicateInfoPrinterLegacyPassPass(
775 *PassRegistry::getPassRegistry());
778 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
779 AU
.setPreservesAll();
780 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
781 AU
.addRequired
<AssumptionCacheTracker
>();
784 // Replace ssa_copy calls created by PredicateInfo with their operand.
785 static void replaceCreatedSSACopys(PredicateInfo
&PredInfo
, Function
&F
) {
786 for (auto I
= inst_begin(F
), E
= inst_end(F
); I
!= E
;) {
787 Instruction
*Inst
= &*I
++;
788 const auto *PI
= PredInfo
.getPredicateInfoFor(Inst
);
789 auto *II
= dyn_cast
<IntrinsicInst
>(Inst
);
790 if (!PI
|| !II
|| II
->getIntrinsicID() != Intrinsic::ssa_copy
)
793 Inst
->replaceAllUsesWith(II
->getOperand(0));
794 Inst
->eraseFromParent();
798 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function
&F
) {
799 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
800 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
801 auto PredInfo
= std::make_unique
<PredicateInfo
>(F
, DT
, AC
);
802 PredInfo
->print(dbgs());
803 if (VerifyPredicateInfo
)
804 PredInfo
->verifyPredicateInfo();
806 replaceCreatedSSACopys(*PredInfo
, F
);
810 PreservedAnalyses
PredicateInfoPrinterPass::run(Function
&F
,
811 FunctionAnalysisManager
&AM
) {
812 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
813 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
814 OS
<< "PredicateInfo for function: " << F
.getName() << "\n";
815 auto PredInfo
= std::make_unique
<PredicateInfo
>(F
, DT
, AC
);
818 replaceCreatedSSACopys(*PredInfo
, F
);
819 return PreservedAnalyses::all();
822 /// An assembly annotator class to print PredicateInfo information in
824 class PredicateInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
825 friend class PredicateInfo
;
826 const PredicateInfo
*PredInfo
;
829 PredicateInfoAnnotatedWriter(const PredicateInfo
*M
) : PredInfo(M
) {}
831 virtual void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
832 formatted_raw_ostream
&OS
) {}
834 virtual void emitInstructionAnnot(const Instruction
*I
,
835 formatted_raw_ostream
&OS
) {
836 if (const auto *PI
= PredInfo
->getPredicateInfoFor(I
)) {
837 OS
<< "; Has predicate info\n";
838 if (const auto *PB
= dyn_cast
<PredicateBranch
>(PI
)) {
839 OS
<< "; branch predicate info { TrueEdge: " << PB
->TrueEdge
840 << " Comparison:" << *PB
->Condition
<< " Edge: [";
841 PB
->From
->printAsOperand(OS
);
843 PB
->To
->printAsOperand(OS
);
845 } else if (const auto *PS
= dyn_cast
<PredicateSwitch
>(PI
)) {
846 OS
<< "; switch predicate info { CaseValue: " << *PS
->CaseValue
847 << " Switch:" << *PS
->Switch
<< " Edge: [";
848 PS
->From
->printAsOperand(OS
);
850 PS
->To
->printAsOperand(OS
);
852 } else if (const auto *PA
= dyn_cast
<PredicateAssume
>(PI
)) {
853 OS
<< "; assume predicate info {"
854 << " Comparison:" << *PA
->Condition
<< " }\n";
860 void PredicateInfo::print(raw_ostream
&OS
) const {
861 PredicateInfoAnnotatedWriter
Writer(this);
862 F
.print(OS
, &Writer
);
865 void PredicateInfo::dump() const {
866 PredicateInfoAnnotatedWriter
Writer(this);
867 F
.print(dbgs(), &Writer
);
870 PreservedAnalyses
PredicateInfoVerifierPass::run(Function
&F
,
871 FunctionAnalysisManager
&AM
) {
872 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
873 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
874 std::make_unique
<PredicateInfo
>(F
, DT
, AC
)->verifyPredicateInfo();
876 return PreservedAnalyses::all();