1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the MapValue function, which is shared by various parts of
10 // the lib/Transforms/Utils library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/ValueMapper.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalObject.h"
31 #include "llvm/IR/GlobalIndirectSymbol.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
48 // Out of line method to get vtable etc for class.
49 void ValueMapTypeRemapper::anchor() {}
50 void ValueMaterializer::anchor() {}
54 /// A basic block used in a BlockAddress whose function body is not yet
56 struct DelayedBasicBlock
{
58 std::unique_ptr
<BasicBlock
> TempBB
;
60 DelayedBasicBlock(const BlockAddress
&Old
)
61 : OldBB(Old
.getBasicBlock()),
62 TempBB(BasicBlock::Create(Old
.getContext())) {}
65 struct WorklistEntry
{
69 MapGlobalIndirectSymbol
,
76 struct AppendingGVTy
{
80 struct GlobalIndirectSymbolTy
{
81 GlobalIndirectSymbol
*GIS
;
87 unsigned AppendingGVIsOldCtorDtor
: 1;
88 unsigned AppendingGVNumNewMembers
;
91 AppendingGVTy AppendingGV
;
92 GlobalIndirectSymbolTy GlobalIndirectSymbol
;
97 struct MappingContext
{
98 ValueToValueMapTy
*VM
;
99 ValueMaterializer
*Materializer
= nullptr;
101 /// Construct a MappingContext with a value map and materializer.
102 explicit MappingContext(ValueToValueMapTy
&VM
,
103 ValueMaterializer
*Materializer
= nullptr)
104 : VM(&VM
), Materializer(Materializer
) {}
108 friend class MDNodeMapper
;
111 DenseSet
<GlobalValue
*> AlreadyScheduled
;
115 ValueMapTypeRemapper
*TypeMapper
;
116 unsigned CurrentMCID
= 0;
117 SmallVector
<MappingContext
, 2> MCs
;
118 SmallVector
<WorklistEntry
, 4> Worklist
;
119 SmallVector
<DelayedBasicBlock
, 1> DelayedBBs
;
120 SmallVector
<Constant
*, 16> AppendingInits
;
123 Mapper(ValueToValueMapTy
&VM
, RemapFlags Flags
,
124 ValueMapTypeRemapper
*TypeMapper
, ValueMaterializer
*Materializer
)
125 : Flags(Flags
), TypeMapper(TypeMapper
),
126 MCs(1, MappingContext(VM
, Materializer
)) {}
128 /// ValueMapper should explicitly call \a flush() before destruction.
129 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
131 bool hasWorkToDo() const { return !Worklist
.empty(); }
134 registerAlternateMappingContext(ValueToValueMapTy
&VM
,
135 ValueMaterializer
*Materializer
= nullptr) {
136 MCs
.push_back(MappingContext(VM
, Materializer
));
137 return MCs
.size() - 1;
140 void addFlags(RemapFlags Flags
);
142 void remapGlobalObjectMetadata(GlobalObject
&GO
);
144 Value
*mapValue(const Value
*V
);
145 void remapInstruction(Instruction
*I
);
146 void remapFunction(Function
&F
);
148 Constant
*mapConstant(const Constant
*C
) {
149 return cast_or_null
<Constant
>(mapValue(C
));
154 /// Find the mapping for MD. Guarantees that the return will be resolved
155 /// (not an MDNode, or MDNode::isResolved() returns true).
156 Metadata
*mapMetadata(const Metadata
*MD
);
158 void scheduleMapGlobalInitializer(GlobalVariable
&GV
, Constant
&Init
,
160 void scheduleMapAppendingVariable(GlobalVariable
&GV
, Constant
*InitPrefix
,
162 ArrayRef
<Constant
*> NewMembers
,
164 void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol
&GIS
, Constant
&Target
,
166 void scheduleRemapFunction(Function
&F
, unsigned MCID
);
171 void mapGlobalInitializer(GlobalVariable
&GV
, Constant
&Init
);
172 void mapAppendingVariable(GlobalVariable
&GV
, Constant
*InitPrefix
,
174 ArrayRef
<Constant
*> NewMembers
);
175 void mapGlobalIndirectSymbol(GlobalIndirectSymbol
&GIS
, Constant
&Target
);
176 void remapFunction(Function
&F
, ValueToValueMapTy
&VM
);
178 ValueToValueMapTy
&getVM() { return *MCs
[CurrentMCID
].VM
; }
179 ValueMaterializer
*getMaterializer() { return MCs
[CurrentMCID
].Materializer
; }
181 Value
*mapBlockAddress(const BlockAddress
&BA
);
183 /// Map metadata that doesn't require visiting operands.
184 Optional
<Metadata
*> mapSimpleMetadata(const Metadata
*MD
);
186 Metadata
*mapToMetadata(const Metadata
*Key
, Metadata
*Val
);
187 Metadata
*mapToSelf(const Metadata
*MD
);
193 /// Data about a node in \a UniquedGraph.
195 bool HasChanged
= false;
196 unsigned ID
= std::numeric_limits
<unsigned>::max();
197 TempMDNode Placeholder
;
200 /// A graph of uniqued nodes.
201 struct UniquedGraph
{
202 SmallDenseMap
<const Metadata
*, Data
, 32> Info
; // Node properties.
203 SmallVector
<MDNode
*, 16> POT
; // Post-order traversal.
205 /// Propagate changed operands through the post-order traversal.
207 /// Iteratively update \a Data::HasChanged for each node based on \a
208 /// Data::HasChanged of its operands, until fixed point.
209 void propagateChanges();
211 /// Get a forward reference to a node to use as an operand.
212 Metadata
&getFwdReference(MDNode
&Op
);
215 /// Worklist of distinct nodes whose operands need to be remapped.
216 SmallVector
<MDNode
*, 16> DistinctWorklist
;
218 // Storage for a UniquedGraph.
219 SmallDenseMap
<const Metadata
*, Data
, 32> InfoStorage
;
220 SmallVector
<MDNode
*, 16> POTStorage
;
223 MDNodeMapper(Mapper
&M
) : M(M
) {}
225 /// Map a metadata node (and its transitive operands).
227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative
228 /// algorithm handles distinct nodes and uniqued node subgraphs using
229 /// different strategies.
231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
232 /// using \a mapDistinctNode(). Their mapping can always be computed
233 /// immediately without visiting operands, even if their operands change.
235 /// The mapping for uniqued nodes depends on whether their operands change.
236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are
238 /// added to \a DistinctWorklist with \a mapDistinctNode().
240 /// After mapping \c N itself, this function remaps the operands of the
241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
242 /// N has been mapped.
243 Metadata
*map(const MDNode
&N
);
246 /// Map a top-level uniqued node and the uniqued subgraph underneath it.
248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses
250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
251 /// operands uses the identity mapping.
253 /// The algorithm works as follows:
255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
256 /// save the post-order traversal in the given \a UniquedGraph, tracking
257 /// nodes' operands change.
259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands
260 /// through the \a UniquedGraph until fixed point, following the rule
261 /// that if a node changes, any node that references must also change.
263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
264 /// (referencing new operands) where necessary.
265 Metadata
*mapTopLevelUniquedNode(const MDNode
&FirstN
);
267 /// Try to map the operand of an \a MDNode.
269 /// If \c Op is already mapped, return the mapping. If it's not an \a
270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode,
271 /// return the result of \a mapDistinctNode().
273 /// \return None if \c Op is an unmapped uniqued \a MDNode.
274 /// \post getMappedOp(Op) only returns None if this returns None.
275 Optional
<Metadata
*> tryToMapOperand(const Metadata
*Op
);
277 /// Map a distinct node.
279 /// Return the mapping for the distinct node \c N, saving the result in \a
280 /// DistinctWorklist for later remapping.
282 /// \pre \c N is not yet mapped.
283 /// \pre \c N.isDistinct().
284 MDNode
*mapDistinctNode(const MDNode
&N
);
286 /// Get a previously mapped node.
287 Optional
<Metadata
*> getMappedOp(const Metadata
*Op
) const;
289 /// Create a post-order traversal of an unmapped uniqued node subgraph.
291 /// This traverses the metadata graph deeply enough to map \c FirstN. It
292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
293 /// metadata that has already been mapped will not be part of the POT.
295 /// Each node that has a changed operand from outside the graph (e.g., a
296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
297 /// is marked with \a Data::HasChanged.
299 /// \return \c true if any nodes in \c G have \a Data::HasChanged.
300 /// \post \c G.POT is a post-order traversal ending with \c FirstN.
301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
302 /// to change because of operands outside the graph.
303 bool createPOT(UniquedGraph
&G
, const MDNode
&FirstN
);
305 /// Visit the operands of a uniqued node in the POT.
307 /// Visit the operands in the range from \c I to \c E, returning the first
308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to
309 /// where to continue the loop through the operands.
311 /// This sets \c HasChanged if any of the visited operands change.
312 MDNode
*visitOperands(UniquedGraph
&G
, MDNode::op_iterator
&I
,
313 MDNode::op_iterator E
, bool &HasChanged
);
315 /// Map all the nodes in the given uniqued graph.
317 /// This visits all the nodes in \c G in post-order, using the identity
318 /// mapping or creating a new node depending on \a Data::HasChanged.
320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
321 /// their operands outside of \c G.
322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
323 /// operands have changed.
324 /// \post \a getMappedOp() returns the mapped node for every node in \c G.
325 void mapNodesInPOT(UniquedGraph
&G
);
327 /// Remap a node's operands using the given functor.
329 /// Iterate through the operands of \c N and update them in place using \c
332 /// \pre N.isDistinct() or N.isTemporary().
333 template <class OperandMapper
>
334 void remapOperands(MDNode
&N
, OperandMapper mapOperand
);
337 } // end anonymous namespace
339 Value
*Mapper::mapValue(const Value
*V
) {
340 ValueToValueMapTy::iterator I
= getVM().find(V
);
342 // If the value already exists in the map, use it.
343 if (I
!= getVM().end()) {
344 assert(I
->second
&& "Unexpected null mapping");
348 // If we have a materializer and it can materialize a value, use that.
349 if (auto *Materializer
= getMaterializer()) {
350 if (Value
*NewV
= Materializer
->materialize(const_cast<Value
*>(V
))) {
356 // Global values do not need to be seeded into the VM if they
357 // are using the identity mapping.
358 if (isa
<GlobalValue
>(V
)) {
359 if (Flags
& RF_NullMapMissingGlobalValues
)
361 return getVM()[V
] = const_cast<Value
*>(V
);
364 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
365 // Inline asm may need *type* remapping.
366 FunctionType
*NewTy
= IA
->getFunctionType();
368 NewTy
= cast
<FunctionType
>(TypeMapper
->remapType(NewTy
));
370 if (NewTy
!= IA
->getFunctionType())
371 V
= InlineAsm::get(NewTy
, IA
->getAsmString(), IA
->getConstraintString(),
372 IA
->hasSideEffects(), IA
->isAlignStack());
375 return getVM()[V
] = const_cast<Value
*>(V
);
378 if (const auto *MDV
= dyn_cast
<MetadataAsValue
>(V
)) {
379 const Metadata
*MD
= MDV
->getMetadata();
381 if (auto *LAM
= dyn_cast
<LocalAsMetadata
>(MD
)) {
382 // Look through to grab the local value.
383 if (Value
*LV
= mapValue(LAM
->getValue())) {
384 if (V
== LAM
->getValue())
385 return const_cast<Value
*>(V
);
386 return MetadataAsValue::get(V
->getContext(), ValueAsMetadata::get(LV
));
389 // FIXME: always return nullptr once Verifier::verifyDominatesUse()
390 // ensures metadata operands only reference defined SSA values.
391 return (Flags
& RF_IgnoreMissingLocals
)
393 : MetadataAsValue::get(V
->getContext(),
394 MDTuple::get(V
->getContext(), None
));
397 // If this is a module-level metadata and we know that nothing at the module
398 // level is changing, then use an identity mapping.
399 if (Flags
& RF_NoModuleLevelChanges
)
400 return getVM()[V
] = const_cast<Value
*>(V
);
402 // Map the metadata and turn it into a value.
403 auto *MappedMD
= mapMetadata(MD
);
405 return getVM()[V
] = const_cast<Value
*>(V
);
406 return getVM()[V
] = MetadataAsValue::get(V
->getContext(), MappedMD
);
409 // Okay, this either must be a constant (which may or may not be mappable) or
410 // is something that is not in the mapping table.
411 Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(V
));
415 if (BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
416 return mapBlockAddress(*BA
);
418 auto mapValueOrNull
= [this](Value
*V
) {
419 auto Mapped
= mapValue(V
);
420 assert((Mapped
|| (Flags
& RF_NullMapMissingGlobalValues
)) &&
421 "Unexpected null mapping for constant operand without "
422 "NullMapMissingGlobalValues flag");
426 // Otherwise, we have some other constant to remap. Start by checking to see
427 // if all operands have an identity remapping.
428 unsigned OpNo
= 0, NumOperands
= C
->getNumOperands();
429 Value
*Mapped
= nullptr;
430 for (; OpNo
!= NumOperands
; ++OpNo
) {
431 Value
*Op
= C
->getOperand(OpNo
);
432 Mapped
= mapValueOrNull(Op
);
439 // See if the type mapper wants to remap the type as well.
440 Type
*NewTy
= C
->getType();
442 NewTy
= TypeMapper
->remapType(NewTy
);
444 // If the result type and all operands match up, then just insert an identity
446 if (OpNo
== NumOperands
&& NewTy
== C
->getType())
447 return getVM()[V
] = C
;
449 // Okay, we need to create a new constant. We've already processed some or
450 // all of the operands, set them all up now.
451 SmallVector
<Constant
*, 8> Ops
;
452 Ops
.reserve(NumOperands
);
453 for (unsigned j
= 0; j
!= OpNo
; ++j
)
454 Ops
.push_back(cast
<Constant
>(C
->getOperand(j
)));
456 // If one of the operands mismatch, push it and the other mapped operands.
457 if (OpNo
!= NumOperands
) {
458 Ops
.push_back(cast
<Constant
>(Mapped
));
460 // Map the rest of the operands that aren't processed yet.
461 for (++OpNo
; OpNo
!= NumOperands
; ++OpNo
) {
462 Mapped
= mapValueOrNull(C
->getOperand(OpNo
));
465 Ops
.push_back(cast
<Constant
>(Mapped
));
468 Type
*NewSrcTy
= nullptr;
470 if (auto *GEPO
= dyn_cast
<GEPOperator
>(C
))
471 NewSrcTy
= TypeMapper
->remapType(GEPO
->getSourceElementType());
473 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
474 return getVM()[V
] = CE
->getWithOperands(Ops
, NewTy
, false, NewSrcTy
);
475 if (isa
<ConstantArray
>(C
))
476 return getVM()[V
] = ConstantArray::get(cast
<ArrayType
>(NewTy
), Ops
);
477 if (isa
<ConstantStruct
>(C
))
478 return getVM()[V
] = ConstantStruct::get(cast
<StructType
>(NewTy
), Ops
);
479 if (isa
<ConstantVector
>(C
))
480 return getVM()[V
] = ConstantVector::get(Ops
);
481 // If this is a no-operand constant, it must be because the type was remapped.
482 if (isa
<UndefValue
>(C
))
483 return getVM()[V
] = UndefValue::get(NewTy
);
484 if (isa
<ConstantAggregateZero
>(C
))
485 return getVM()[V
] = ConstantAggregateZero::get(NewTy
);
486 assert(isa
<ConstantPointerNull
>(C
));
487 return getVM()[V
] = ConstantPointerNull::get(cast
<PointerType
>(NewTy
));
490 Value
*Mapper::mapBlockAddress(const BlockAddress
&BA
) {
491 Function
*F
= cast
<Function
>(mapValue(BA
.getFunction()));
493 // F may not have materialized its initializer. In that case, create a
494 // dummy basic block for now, and replace it once we've materialized all
498 DelayedBBs
.push_back(DelayedBasicBlock(BA
));
499 BB
= DelayedBBs
.back().TempBB
.get();
501 BB
= cast_or_null
<BasicBlock
>(mapValue(BA
.getBasicBlock()));
504 return getVM()[&BA
] = BlockAddress::get(F
, BB
? BB
: BA
.getBasicBlock());
507 Metadata
*Mapper::mapToMetadata(const Metadata
*Key
, Metadata
*Val
) {
508 getVM().MD()[Key
].reset(Val
);
512 Metadata
*Mapper::mapToSelf(const Metadata
*MD
) {
513 return mapToMetadata(MD
, const_cast<Metadata
*>(MD
));
516 Optional
<Metadata
*> MDNodeMapper::tryToMapOperand(const Metadata
*Op
) {
520 if (Optional
<Metadata
*> MappedOp
= M
.mapSimpleMetadata(Op
)) {
522 if (auto *CMD
= dyn_cast
<ConstantAsMetadata
>(Op
))
523 assert((!*MappedOp
|| M
.getVM().count(CMD
->getValue()) ||
524 M
.getVM().getMappedMD(Op
)) &&
525 "Expected Value to be memoized");
527 assert((isa
<MDString
>(Op
) || M
.getVM().getMappedMD(Op
)) &&
528 "Expected result to be memoized");
533 const MDNode
&N
= *cast
<MDNode
>(Op
);
535 return mapDistinctNode(N
);
539 static Metadata
*cloneOrBuildODR(const MDNode
&N
) {
540 auto *CT
= dyn_cast
<DICompositeType
>(&N
);
541 // If ODR type uniquing is enabled, we would have uniqued composite types
542 // with identifiers during bitcode reading, so we can just use CT.
543 if (CT
&& CT
->getContext().isODRUniquingDebugTypes() &&
544 CT
->getIdentifier() != "")
545 return const_cast<DICompositeType
*>(CT
);
546 return MDNode::replaceWithDistinct(N
.clone());
549 MDNode
*MDNodeMapper::mapDistinctNode(const MDNode
&N
) {
550 assert(N
.isDistinct() && "Expected a distinct node");
551 assert(!M
.getVM().getMappedMD(&N
) && "Expected an unmapped node");
552 DistinctWorklist
.push_back(
553 cast
<MDNode
>((M
.Flags
& RF_MoveDistinctMDs
)
555 : M
.mapToMetadata(&N
, cloneOrBuildODR(N
))));
556 return DistinctWorklist
.back();
559 static ConstantAsMetadata
*wrapConstantAsMetadata(const ConstantAsMetadata
&CMD
,
561 if (CMD
.getValue() == MappedV
)
562 return const_cast<ConstantAsMetadata
*>(&CMD
);
563 return MappedV
? ConstantAsMetadata::getConstant(MappedV
) : nullptr;
566 Optional
<Metadata
*> MDNodeMapper::getMappedOp(const Metadata
*Op
) const {
570 if (Optional
<Metadata
*> MappedOp
= M
.getVM().getMappedMD(Op
))
573 if (isa
<MDString
>(Op
))
574 return const_cast<Metadata
*>(Op
);
576 if (auto *CMD
= dyn_cast
<ConstantAsMetadata
>(Op
))
577 return wrapConstantAsMetadata(*CMD
, M
.getVM().lookup(CMD
->getValue()));
582 Metadata
&MDNodeMapper::UniquedGraph::getFwdReference(MDNode
&Op
) {
583 auto Where
= Info
.find(&Op
);
584 assert(Where
!= Info
.end() && "Expected a valid reference");
586 auto &OpD
= Where
->second
;
590 // Lazily construct a temporary node.
591 if (!OpD
.Placeholder
)
592 OpD
.Placeholder
= Op
.clone();
594 return *OpD
.Placeholder
;
597 template <class OperandMapper
>
598 void MDNodeMapper::remapOperands(MDNode
&N
, OperandMapper mapOperand
) {
599 assert(!N
.isUniqued() && "Expected distinct or temporary nodes");
600 for (unsigned I
= 0, E
= N
.getNumOperands(); I
!= E
; ++I
) {
601 Metadata
*Old
= N
.getOperand(I
);
602 Metadata
*New
= mapOperand(Old
);
605 N
.replaceOperandWith(I
, New
);
611 /// An entry in the worklist for the post-order traversal.
612 struct POTWorklistEntry
{
613 MDNode
*N
; ///< Current node.
614 MDNode::op_iterator Op
; ///< Current operand of \c N.
616 /// Keep a flag of whether operands have changed in the worklist to avoid
617 /// hitting the map in \a UniquedGraph.
618 bool HasChanged
= false;
620 POTWorklistEntry(MDNode
&N
) : N(&N
), Op(N
.op_begin()) {}
623 } // end anonymous namespace
625 bool MDNodeMapper::createPOT(UniquedGraph
&G
, const MDNode
&FirstN
) {
626 assert(G
.Info
.empty() && "Expected a fresh traversal");
627 assert(FirstN
.isUniqued() && "Expected uniqued node in POT");
629 // Construct a post-order traversal of the uniqued subgraph under FirstN.
630 bool AnyChanges
= false;
631 SmallVector
<POTWorklistEntry
, 16> Worklist
;
632 Worklist
.push_back(POTWorklistEntry(const_cast<MDNode
&>(FirstN
)));
633 (void)G
.Info
[&FirstN
];
634 while (!Worklist
.empty()) {
635 // Start or continue the traversal through the this node's operands.
636 auto &WE
= Worklist
.back();
637 if (MDNode
*N
= visitOperands(G
, WE
.Op
, WE
.N
->op_end(), WE
.HasChanged
)) {
638 // Push a new node to traverse first.
639 Worklist
.push_back(POTWorklistEntry(*N
));
643 // Push the node onto the POT.
644 assert(WE
.N
->isUniqued() && "Expected only uniqued nodes");
645 assert(WE
.Op
== WE
.N
->op_end() && "Expected to visit all operands");
646 auto &D
= G
.Info
[WE
.N
];
647 AnyChanges
|= D
.HasChanged
= WE
.HasChanged
;
649 G
.POT
.push_back(WE
.N
);
651 // Pop the node off the worklist.
657 MDNode
*MDNodeMapper::visitOperands(UniquedGraph
&G
, MDNode::op_iterator
&I
,
658 MDNode::op_iterator E
, bool &HasChanged
) {
660 Metadata
*Op
= *I
++; // Increment even on early return.
661 if (Optional
<Metadata
*> MappedOp
= tryToMapOperand(Op
)) {
662 // Check if the operand changes.
663 HasChanged
|= Op
!= *MappedOp
;
667 // A uniqued metadata node.
668 MDNode
&OpN
= *cast
<MDNode
>(Op
);
669 assert(OpN
.isUniqued() &&
670 "Only uniqued operands cannot be mapped immediately");
671 if (G
.Info
.insert(std::make_pair(&OpN
, Data())).second
)
672 return &OpN
; // This is a new one. Return it.
677 void MDNodeMapper::UniquedGraph::propagateChanges() {
681 for (MDNode
*N
: POT
) {
686 if (llvm::none_of(N
->operands(), [&](const Metadata
*Op
) {
687 auto Where
= Info
.find(Op
);
688 return Where
!= Info
.end() && Where
->second
.HasChanged
;
692 AnyChanges
= D
.HasChanged
= true;
694 } while (AnyChanges
);
697 void MDNodeMapper::mapNodesInPOT(UniquedGraph
&G
) {
698 // Construct uniqued nodes, building forward references as necessary.
699 SmallVector
<MDNode
*, 16> CyclicNodes
;
700 for (auto *N
: G
.POT
) {
703 // The node hasn't changed.
708 // Remember whether this node had a placeholder.
709 bool HadPlaceholder(D
.Placeholder
);
711 // Clone the uniqued node and remap the operands.
712 TempMDNode ClonedN
= D
.Placeholder
? std::move(D
.Placeholder
) : N
->clone();
713 remapOperands(*ClonedN
, [this, &D
, &G
](Metadata
*Old
) {
714 if (Optional
<Metadata
*> MappedOp
= getMappedOp(Old
))
717 assert(G
.Info
[Old
].ID
> D
.ID
&& "Expected a forward reference");
718 return &G
.getFwdReference(*cast
<MDNode
>(Old
));
721 auto *NewN
= MDNode::replaceWithUniqued(std::move(ClonedN
));
722 M
.mapToMetadata(N
, NewN
);
724 // Nodes that were referenced out of order in the POT are involved in a
727 CyclicNodes
.push_back(NewN
);
731 for (auto *N
: CyclicNodes
)
732 if (!N
->isResolved())
736 Metadata
*MDNodeMapper::map(const MDNode
&N
) {
737 assert(DistinctWorklist
.empty() && "MDNodeMapper::map is not recursive");
738 assert(!(M
.Flags
& RF_NoModuleLevelChanges
) &&
739 "MDNodeMapper::map assumes module-level changes");
741 // Require resolved nodes whenever metadata might be remapped.
742 assert(N
.isResolved() && "Unexpected unresolved node");
745 N
.isUniqued() ? mapTopLevelUniquedNode(N
) : mapDistinctNode(N
);
746 while (!DistinctWorklist
.empty())
747 remapOperands(*DistinctWorklist
.pop_back_val(), [this](Metadata
*Old
) {
748 if (Optional
<Metadata
*> MappedOp
= tryToMapOperand(Old
))
750 return mapTopLevelUniquedNode(*cast
<MDNode
>(Old
));
755 Metadata
*MDNodeMapper::mapTopLevelUniquedNode(const MDNode
&FirstN
) {
756 assert(FirstN
.isUniqued() && "Expected uniqued node");
758 // Create a post-order traversal of uniqued nodes under FirstN.
760 if (!createPOT(G
, FirstN
)) {
761 // Return early if no nodes have changed.
762 for (const MDNode
*N
: G
.POT
)
764 return &const_cast<MDNode
&>(FirstN
);
767 // Update graph with all nodes that have changed.
768 G
.propagateChanges();
770 // Map all the nodes in the graph.
773 // Return the original node, remapped.
774 return *getMappedOp(&FirstN
);
777 Optional
<Metadata
*> Mapper::mapSimpleMetadata(const Metadata
*MD
) {
778 // If the value already exists in the map, use it.
779 if (Optional
<Metadata
*> NewMD
= getVM().getMappedMD(MD
))
782 if (isa
<MDString
>(MD
))
783 return const_cast<Metadata
*>(MD
);
785 // This is a module-level metadata. If nothing at the module level is
786 // changing, use an identity mapping.
787 if ((Flags
& RF_NoModuleLevelChanges
))
788 return const_cast<Metadata
*>(MD
);
790 if (auto *CMD
= dyn_cast
<ConstantAsMetadata
>(MD
)) {
791 // Don't memoize ConstantAsMetadata. Instead of lasting until the
792 // LLVMContext is destroyed, they can be deleted when the GlobalValue they
793 // reference is destructed. These aren't super common, so the extra
794 // indirection isn't that expensive.
795 return wrapConstantAsMetadata(*CMD
, mapValue(CMD
->getValue()));
798 assert(isa
<MDNode
>(MD
) && "Expected a metadata node");
803 Metadata
*Mapper::mapMetadata(const Metadata
*MD
) {
804 assert(MD
&& "Expected valid metadata");
805 assert(!isa
<LocalAsMetadata
>(MD
) && "Unexpected local metadata");
807 if (Optional
<Metadata
*> NewMD
= mapSimpleMetadata(MD
))
810 return MDNodeMapper(*this).map(*cast
<MDNode
>(MD
));
813 void Mapper::flush() {
814 // Flush out the worklist of global values.
815 while (!Worklist
.empty()) {
816 WorklistEntry E
= Worklist
.pop_back_val();
817 CurrentMCID
= E
.MCID
;
819 case WorklistEntry::MapGlobalInit
:
820 E
.Data
.GVInit
.GV
->setInitializer(mapConstant(E
.Data
.GVInit
.Init
));
821 remapGlobalObjectMetadata(*E
.Data
.GVInit
.GV
);
823 case WorklistEntry::MapAppendingVar
: {
824 unsigned PrefixSize
= AppendingInits
.size() - E
.AppendingGVNumNewMembers
;
825 mapAppendingVariable(*E
.Data
.AppendingGV
.GV
,
826 E
.Data
.AppendingGV
.InitPrefix
,
827 E
.AppendingGVIsOldCtorDtor
,
828 makeArrayRef(AppendingInits
).slice(PrefixSize
));
829 AppendingInits
.resize(PrefixSize
);
832 case WorklistEntry::MapGlobalIndirectSymbol
:
833 E
.Data
.GlobalIndirectSymbol
.GIS
->setIndirectSymbol(
834 mapConstant(E
.Data
.GlobalIndirectSymbol
.Target
));
836 case WorklistEntry::RemapFunction
:
837 remapFunction(*E
.Data
.RemapF
);
843 // Finish logic for block addresses now that all global values have been
845 while (!DelayedBBs
.empty()) {
846 DelayedBasicBlock DBB
= DelayedBBs
.pop_back_val();
847 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(mapValue(DBB
.OldBB
));
848 DBB
.TempBB
->replaceAllUsesWith(BB
? BB
: DBB
.OldBB
);
852 void Mapper::remapInstruction(Instruction
*I
) {
854 for (Use
&Op
: I
->operands()) {
855 Value
*V
= mapValue(Op
);
856 // If we aren't ignoring missing entries, assert that something happened.
860 assert((Flags
& RF_IgnoreMissingLocals
) &&
861 "Referenced value not in value map!");
864 // Remap phi nodes' incoming blocks.
865 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
866 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
867 Value
*V
= mapValue(PN
->getIncomingBlock(i
));
868 // If we aren't ignoring missing entries, assert that something happened.
870 PN
->setIncomingBlock(i
, cast
<BasicBlock
>(V
));
872 assert((Flags
& RF_IgnoreMissingLocals
) &&
873 "Referenced block not in value map!");
877 // Remap attached metadata.
878 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
879 I
->getAllMetadata(MDs
);
880 for (const auto &MI
: MDs
) {
881 MDNode
*Old
= MI
.second
;
882 MDNode
*New
= cast_or_null
<MDNode
>(mapMetadata(Old
));
884 I
->setMetadata(MI
.first
, New
);
890 // If the instruction's type is being remapped, do so now.
891 if (auto CS
= CallSite(I
)) {
892 SmallVector
<Type
*, 3> Tys
;
893 FunctionType
*FTy
= CS
.getFunctionType();
894 Tys
.reserve(FTy
->getNumParams());
895 for (Type
*Ty
: FTy
->params())
896 Tys
.push_back(TypeMapper
->remapType(Ty
));
897 CS
.mutateFunctionType(FunctionType::get(
898 TypeMapper
->remapType(I
->getType()), Tys
, FTy
->isVarArg()));
900 LLVMContext
&C
= CS
->getContext();
901 AttributeList Attrs
= CS
.getAttributes();
902 for (unsigned i
= 0; i
< Attrs
.getNumAttrSets(); ++i
) {
903 if (Attrs
.hasAttribute(i
, Attribute::ByVal
)) {
904 Type
*Ty
= Attrs
.getAttribute(i
, Attribute::ByVal
).getValueAsType();
908 Attrs
= Attrs
.removeAttribute(C
, i
, Attribute::ByVal
);
909 Attrs
= Attrs
.addAttribute(
910 C
, i
, Attribute::getWithByValType(C
, TypeMapper
->remapType(Ty
)));
913 CS
.setAttributes(Attrs
);
916 if (auto *AI
= dyn_cast
<AllocaInst
>(I
))
917 AI
->setAllocatedType(TypeMapper
->remapType(AI
->getAllocatedType()));
918 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
919 GEP
->setSourceElementType(
920 TypeMapper
->remapType(GEP
->getSourceElementType()));
921 GEP
->setResultElementType(
922 TypeMapper
->remapType(GEP
->getResultElementType()));
924 I
->mutateType(TypeMapper
->remapType(I
->getType()));
927 void Mapper::remapGlobalObjectMetadata(GlobalObject
&GO
) {
928 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MDs
;
929 GO
.getAllMetadata(MDs
);
931 for (const auto &I
: MDs
)
932 GO
.addMetadata(I
.first
, *cast
<MDNode
>(mapMetadata(I
.second
)));
935 void Mapper::remapFunction(Function
&F
) {
936 // Remap the operands.
937 for (Use
&Op
: F
.operands())
941 // Remap the metadata attachments.
942 remapGlobalObjectMetadata(F
);
944 // Remap the argument types.
946 for (Argument
&A
: F
.args())
947 A
.mutateType(TypeMapper
->remapType(A
.getType()));
949 // Remap the instructions.
950 for (BasicBlock
&BB
: F
)
951 for (Instruction
&I
: BB
)
952 remapInstruction(&I
);
955 void Mapper::mapAppendingVariable(GlobalVariable
&GV
, Constant
*InitPrefix
,
957 ArrayRef
<Constant
*> NewMembers
) {
958 SmallVector
<Constant
*, 16> Elements
;
960 unsigned NumElements
=
961 cast
<ArrayType
>(InitPrefix
->getType())->getNumElements();
962 for (unsigned I
= 0; I
!= NumElements
; ++I
)
963 Elements
.push_back(InitPrefix
->getAggregateElement(I
));
966 PointerType
*VoidPtrTy
;
969 // FIXME: This upgrade is done during linking to support the C API. See
970 // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
971 VoidPtrTy
= Type::getInt8Ty(GV
.getContext())->getPointerTo();
972 auto &ST
= *cast
<StructType
>(NewMembers
.front()->getType());
973 Type
*Tys
[3] = {ST
.getElementType(0), ST
.getElementType(1), VoidPtrTy
};
974 EltTy
= StructType::get(GV
.getContext(), Tys
, false);
977 for (auto *V
: NewMembers
) {
980 auto *S
= cast
<ConstantStruct
>(V
);
981 auto *E1
= cast
<Constant
>(mapValue(S
->getOperand(0)));
982 auto *E2
= cast
<Constant
>(mapValue(S
->getOperand(1)));
983 Constant
*Null
= Constant::getNullValue(VoidPtrTy
);
984 NewV
= ConstantStruct::get(cast
<StructType
>(EltTy
), E1
, E2
, Null
);
986 NewV
= cast_or_null
<Constant
>(mapValue(V
));
988 Elements
.push_back(NewV
);
991 GV
.setInitializer(ConstantArray::get(
992 cast
<ArrayType
>(GV
.getType()->getElementType()), Elements
));
995 void Mapper::scheduleMapGlobalInitializer(GlobalVariable
&GV
, Constant
&Init
,
997 assert(AlreadyScheduled
.insert(&GV
).second
&& "Should not reschedule");
998 assert(MCID
< MCs
.size() && "Invalid mapping context");
1001 WE
.Kind
= WorklistEntry::MapGlobalInit
;
1003 WE
.Data
.GVInit
.GV
= &GV
;
1004 WE
.Data
.GVInit
.Init
= &Init
;
1005 Worklist
.push_back(WE
);
1008 void Mapper::scheduleMapAppendingVariable(GlobalVariable
&GV
,
1009 Constant
*InitPrefix
,
1011 ArrayRef
<Constant
*> NewMembers
,
1013 assert(AlreadyScheduled
.insert(&GV
).second
&& "Should not reschedule");
1014 assert(MCID
< MCs
.size() && "Invalid mapping context");
1017 WE
.Kind
= WorklistEntry::MapAppendingVar
;
1019 WE
.Data
.AppendingGV
.GV
= &GV
;
1020 WE
.Data
.AppendingGV
.InitPrefix
= InitPrefix
;
1021 WE
.AppendingGVIsOldCtorDtor
= IsOldCtorDtor
;
1022 WE
.AppendingGVNumNewMembers
= NewMembers
.size();
1023 Worklist
.push_back(WE
);
1024 AppendingInits
.append(NewMembers
.begin(), NewMembers
.end());
1027 void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol
&GIS
,
1028 Constant
&Target
, unsigned MCID
) {
1029 assert(AlreadyScheduled
.insert(&GIS
).second
&& "Should not reschedule");
1030 assert(MCID
< MCs
.size() && "Invalid mapping context");
1033 WE
.Kind
= WorklistEntry::MapGlobalIndirectSymbol
;
1035 WE
.Data
.GlobalIndirectSymbol
.GIS
= &GIS
;
1036 WE
.Data
.GlobalIndirectSymbol
.Target
= &Target
;
1037 Worklist
.push_back(WE
);
1040 void Mapper::scheduleRemapFunction(Function
&F
, unsigned MCID
) {
1041 assert(AlreadyScheduled
.insert(&F
).second
&& "Should not reschedule");
1042 assert(MCID
< MCs
.size() && "Invalid mapping context");
1045 WE
.Kind
= WorklistEntry::RemapFunction
;
1047 WE
.Data
.RemapF
= &F
;
1048 Worklist
.push_back(WE
);
1051 void Mapper::addFlags(RemapFlags Flags
) {
1052 assert(!hasWorkToDo() && "Expected to have flushed the worklist");
1053 this->Flags
= this->Flags
| Flags
;
1056 static Mapper
*getAsMapper(void *pImpl
) {
1057 return reinterpret_cast<Mapper
*>(pImpl
);
1062 class FlushingMapper
{
1066 explicit FlushingMapper(void *pImpl
) : M(*getAsMapper(pImpl
)) {
1067 assert(!M
.hasWorkToDo() && "Expected to be flushed");
1070 ~FlushingMapper() { M
.flush(); }
1072 Mapper
*operator->() const { return &M
; }
1075 } // end anonymous namespace
1077 ValueMapper::ValueMapper(ValueToValueMapTy
&VM
, RemapFlags Flags
,
1078 ValueMapTypeRemapper
*TypeMapper
,
1079 ValueMaterializer
*Materializer
)
1080 : pImpl(new Mapper(VM
, Flags
, TypeMapper
, Materializer
)) {}
1082 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl
); }
1085 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy
&VM
,
1086 ValueMaterializer
*Materializer
) {
1087 return getAsMapper(pImpl
)->registerAlternateMappingContext(VM
, Materializer
);
1090 void ValueMapper::addFlags(RemapFlags Flags
) {
1091 FlushingMapper(pImpl
)->addFlags(Flags
);
1094 Value
*ValueMapper::mapValue(const Value
&V
) {
1095 return FlushingMapper(pImpl
)->mapValue(&V
);
1098 Constant
*ValueMapper::mapConstant(const Constant
&C
) {
1099 return cast_or_null
<Constant
>(mapValue(C
));
1102 Metadata
*ValueMapper::mapMetadata(const Metadata
&MD
) {
1103 return FlushingMapper(pImpl
)->mapMetadata(&MD
);
1106 MDNode
*ValueMapper::mapMDNode(const MDNode
&N
) {
1107 return cast_or_null
<MDNode
>(mapMetadata(N
));
1110 void ValueMapper::remapInstruction(Instruction
&I
) {
1111 FlushingMapper(pImpl
)->remapInstruction(&I
);
1114 void ValueMapper::remapFunction(Function
&F
) {
1115 FlushingMapper(pImpl
)->remapFunction(F
);
1118 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable
&GV
,
1121 getAsMapper(pImpl
)->scheduleMapGlobalInitializer(GV
, Init
, MCID
);
1124 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable
&GV
,
1125 Constant
*InitPrefix
,
1127 ArrayRef
<Constant
*> NewMembers
,
1129 getAsMapper(pImpl
)->scheduleMapAppendingVariable(
1130 GV
, InitPrefix
, IsOldCtorDtor
, NewMembers
, MCID
);
1133 void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol
&GIS
,
1136 getAsMapper(pImpl
)->scheduleMapGlobalIndirectSymbol(GIS
, Target
, MCID
);
1139 void ValueMapper::scheduleRemapFunction(Function
&F
, unsigned MCID
) {
1140 getAsMapper(pImpl
)->scheduleRemapFunction(F
, MCID
);