[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
blob974eff9974d9a4cc0fec1d1ce20f6f0bfaf70aba
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Vectorize.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <iterator>
92 #include <memory>
93 #include <set>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 using namespace slpvectorizer;
103 #define SV_NAME "slp-vectorizer"
104 #define DEBUG_TYPE "SLP"
106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108 cl::opt<bool>
109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
110 cl::desc("Run the SLP vectorization passes"));
112 static cl::opt<int>
113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
114 cl::desc("Only vectorize if you gain more than this "
115 "number "));
117 static cl::opt<bool>
118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
119 cl::desc("Attempt to vectorize horizontal reductions"));
121 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
123 cl::desc(
124 "Attempt to vectorize horizontal reductions feeding into a store"));
126 static cl::opt<int>
127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
128 cl::desc("Attempt to vectorize for this register size in bits"));
130 /// Limits the size of scheduling regions in a block.
131 /// It avoid long compile times for _very_ large blocks where vector
132 /// instructions are spread over a wide range.
133 /// This limit is way higher than needed by real-world functions.
134 static cl::opt<int>
135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
136 cl::desc("Limit the size of the SLP scheduling region per block"));
138 static cl::opt<int> MinVectorRegSizeOption(
139 "slp-min-reg-size", cl::init(128), cl::Hidden,
140 cl::desc("Attempt to vectorize for this register size in bits"));
142 static cl::opt<unsigned> RecursionMaxDepth(
143 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
144 cl::desc("Limit the recursion depth when building a vectorizable tree"));
146 static cl::opt<unsigned> MinTreeSize(
147 "slp-min-tree-size", cl::init(3), cl::Hidden,
148 cl::desc("Only vectorize small trees if they are fully vectorizable"));
150 static cl::opt<bool>
151 ViewSLPTree("view-slp-tree", cl::Hidden,
152 cl::desc("Display the SLP trees with Graphviz"));
154 // Limit the number of alias checks. The limit is chosen so that
155 // it has no negative effect on the llvm benchmarks.
156 static const unsigned AliasedCheckLimit = 10;
158 // Another limit for the alias checks: The maximum distance between load/store
159 // instructions where alias checks are done.
160 // This limit is useful for very large basic blocks.
161 static const unsigned MaxMemDepDistance = 160;
163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
164 /// regions to be handled.
165 static const int MinScheduleRegionSize = 16;
167 /// Predicate for the element types that the SLP vectorizer supports.
169 /// The most important thing to filter here are types which are invalid in LLVM
170 /// vectors. We also filter target specific types which have absolutely no
171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
172 /// avoids spending time checking the cost model and realizing that they will
173 /// be inevitably scalarized.
174 static bool isValidElementType(Type *Ty) {
175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
176 !Ty->isPPC_FP128Ty();
179 /// \returns true if all of the instructions in \p VL are in the same block or
180 /// false otherwise.
181 static bool allSameBlock(ArrayRef<Value *> VL) {
182 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
183 if (!I0)
184 return false;
185 BasicBlock *BB = I0->getParent();
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I)
189 return false;
191 if (BB != I->getParent())
192 return false;
194 return true;
197 /// \returns True if all of the values in \p VL are constants (but not
198 /// globals/constant expressions).
199 static bool allConstant(ArrayRef<Value *> VL) {
200 // Constant expressions and globals can't be vectorized like normal integer/FP
201 // constants.
202 for (Value *i : VL)
203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
204 return false;
205 return true;
208 /// \returns True if all of the values in \p VL are identical.
209 static bool isSplat(ArrayRef<Value *> VL) {
210 for (unsigned i = 1, e = VL.size(); i < e; ++i)
211 if (VL[i] != VL[0])
212 return false;
213 return true;
216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
217 static bool isCommutative(Instruction *I) {
218 if (auto *IC = dyn_cast<CmpInst>(I))
219 return IC->isCommutative();
220 return I->isCommutative();
223 /// Checks if the vector of instructions can be represented as a shuffle, like:
224 /// %x0 = extractelement <4 x i8> %x, i32 0
225 /// %x3 = extractelement <4 x i8> %x, i32 3
226 /// %y1 = extractelement <4 x i8> %y, i32 1
227 /// %y2 = extractelement <4 x i8> %y, i32 2
228 /// %x0x0 = mul i8 %x0, %x0
229 /// %x3x3 = mul i8 %x3, %x3
230 /// %y1y1 = mul i8 %y1, %y1
231 /// %y2y2 = mul i8 %y2, %y2
232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
236 /// ret <4 x i8> %ins4
237 /// can be transformed into:
238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
239 /// i32 6>
240 /// %2 = mul <4 x i8> %1, %1
241 /// ret <4 x i8> %2
242 /// We convert this initially to something like:
243 /// %x0 = extractelement <4 x i8> %x, i32 0
244 /// %x3 = extractelement <4 x i8> %x, i32 3
245 /// %y1 = extractelement <4 x i8> %y, i32 1
246 /// %y2 = extractelement <4 x i8> %y, i32 2
247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
251 /// %5 = mul <4 x i8> %4, %4
252 /// %6 = extractelement <4 x i8> %5, i32 0
253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
254 /// %7 = extractelement <4 x i8> %5, i32 1
255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
256 /// %8 = extractelement <4 x i8> %5, i32 2
257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
258 /// %9 = extractelement <4 x i8> %5, i32 3
259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
260 /// ret <4 x i8> %ins4
261 /// InstCombiner transforms this into a shuffle and vector mul
262 /// TODO: Can we split off and reuse the shuffle mask detection from
263 /// TargetTransformInfo::getInstructionThroughput?
264 static Optional<TargetTransformInfo::ShuffleKind>
265 isShuffle(ArrayRef<Value *> VL) {
266 auto *EI0 = cast<ExtractElementInst>(VL[0]);
267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
268 Value *Vec1 = nullptr;
269 Value *Vec2 = nullptr;
270 enum ShuffleMode { Unknown, Select, Permute };
271 ShuffleMode CommonShuffleMode = Unknown;
272 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
273 auto *EI = cast<ExtractElementInst>(VL[I]);
274 auto *Vec = EI->getVectorOperand();
275 // All vector operands must have the same number of vector elements.
276 if (Vec->getType()->getVectorNumElements() != Size)
277 return None;
278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
279 if (!Idx)
280 return None;
281 // Undefined behavior if Idx is negative or >= Size.
282 if (Idx->getValue().uge(Size))
283 continue;
284 unsigned IntIdx = Idx->getValue().getZExtValue();
285 // We can extractelement from undef vector.
286 if (isa<UndefValue>(Vec))
287 continue;
288 // For correct shuffling we have to have at most 2 different vector operands
289 // in all extractelement instructions.
290 if (!Vec1 || Vec1 == Vec)
291 Vec1 = Vec;
292 else if (!Vec2 || Vec2 == Vec)
293 Vec2 = Vec;
294 else
295 return None;
296 if (CommonShuffleMode == Permute)
297 continue;
298 // If the extract index is not the same as the operation number, it is a
299 // permutation.
300 if (IntIdx != I) {
301 CommonShuffleMode = Permute;
302 continue;
304 CommonShuffleMode = Select;
306 // If we're not crossing lanes in different vectors, consider it as blending.
307 if (CommonShuffleMode == Select && Vec2)
308 return TargetTransformInfo::SK_Select;
309 // If Vec2 was never used, we have a permutation of a single vector, otherwise
310 // we have permutation of 2 vectors.
311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
312 : TargetTransformInfo::SK_PermuteSingleSrc;
315 namespace {
317 /// Main data required for vectorization of instructions.
318 struct InstructionsState {
319 /// The very first instruction in the list with the main opcode.
320 Value *OpValue = nullptr;
322 /// The main/alternate instruction.
323 Instruction *MainOp = nullptr;
324 Instruction *AltOp = nullptr;
326 /// The main/alternate opcodes for the list of instructions.
327 unsigned getOpcode() const {
328 return MainOp ? MainOp->getOpcode() : 0;
331 unsigned getAltOpcode() const {
332 return AltOp ? AltOp->getOpcode() : 0;
335 /// Some of the instructions in the list have alternate opcodes.
336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
338 bool isOpcodeOrAlt(Instruction *I) const {
339 unsigned CheckedOpcode = I->getOpcode();
340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
343 InstructionsState() = delete;
344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
348 } // end anonymous namespace
350 /// Chooses the correct key for scheduling data. If \p Op has the same (or
351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
352 /// OpValue.
353 static Value *isOneOf(const InstructionsState &S, Value *Op) {
354 auto *I = dyn_cast<Instruction>(Op);
355 if (I && S.isOpcodeOrAlt(I))
356 return Op;
357 return S.OpValue;
360 /// \returns analysis of the Instructions in \p VL described in
361 /// InstructionsState, the Opcode that we suppose the whole list
362 /// could be vectorized even if its structure is diverse.
363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
364 unsigned BaseIndex = 0) {
365 // Make sure these are all Instructions.
366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
367 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
372 unsigned AltOpcode = Opcode;
373 unsigned AltIndex = BaseIndex;
375 // Check for one alternate opcode from another BinaryOperator.
376 // TODO - generalize to support all operators (types, calls etc.).
377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
380 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
381 continue;
382 if (Opcode == AltOpcode) {
383 AltOpcode = InstOpcode;
384 AltIndex = Cnt;
385 continue;
387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
390 if (Ty0 == Ty1) {
391 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
392 continue;
393 if (Opcode == AltOpcode) {
394 AltOpcode = InstOpcode;
395 AltIndex = Cnt;
396 continue;
399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
400 continue;
401 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
405 cast<Instruction>(VL[AltIndex]));
408 /// \returns true if all of the values in \p VL have the same type or false
409 /// otherwise.
410 static bool allSameType(ArrayRef<Value *> VL) {
411 Type *Ty = VL[0]->getType();
412 for (int i = 1, e = VL.size(); i < e; i++)
413 if (VL[i]->getType() != Ty)
414 return false;
416 return true;
419 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
420 static Optional<unsigned> getExtractIndex(Instruction *E) {
421 unsigned Opcode = E->getOpcode();
422 assert((Opcode == Instruction::ExtractElement ||
423 Opcode == Instruction::ExtractValue) &&
424 "Expected extractelement or extractvalue instruction.");
425 if (Opcode == Instruction::ExtractElement) {
426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
427 if (!CI)
428 return None;
429 return CI->getZExtValue();
431 ExtractValueInst *EI = cast<ExtractValueInst>(E);
432 if (EI->getNumIndices() != 1)
433 return None;
434 return *EI->idx_begin();
437 /// \returns True if in-tree use also needs extract. This refers to
438 /// possible scalar operand in vectorized instruction.
439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
440 TargetLibraryInfo *TLI) {
441 unsigned Opcode = UserInst->getOpcode();
442 switch (Opcode) {
443 case Instruction::Load: {
444 LoadInst *LI = cast<LoadInst>(UserInst);
445 return (LI->getPointerOperand() == Scalar);
447 case Instruction::Store: {
448 StoreInst *SI = cast<StoreInst>(UserInst);
449 return (SI->getPointerOperand() == Scalar);
451 case Instruction::Call: {
452 CallInst *CI = cast<CallInst>(UserInst);
453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
455 if (hasVectorInstrinsicScalarOpd(ID, i))
456 return (CI->getArgOperand(i) == Scalar);
458 LLVM_FALLTHROUGH;
460 default:
461 return false;
465 /// \returns the AA location that is being access by the instruction.
466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
467 if (StoreInst *SI = dyn_cast<StoreInst>(I))
468 return MemoryLocation::get(SI);
469 if (LoadInst *LI = dyn_cast<LoadInst>(I))
470 return MemoryLocation::get(LI);
471 return MemoryLocation();
474 /// \returns True if the instruction is not a volatile or atomic load/store.
475 static bool isSimple(Instruction *I) {
476 if (LoadInst *LI = dyn_cast<LoadInst>(I))
477 return LI->isSimple();
478 if (StoreInst *SI = dyn_cast<StoreInst>(I))
479 return SI->isSimple();
480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
481 return !MI->isVolatile();
482 return true;
485 namespace llvm {
487 namespace slpvectorizer {
489 /// Bottom Up SLP Vectorizer.
490 class BoUpSLP {
491 struct TreeEntry;
492 struct ScheduleData;
494 public:
495 using ValueList = SmallVector<Value *, 8>;
496 using InstrList = SmallVector<Instruction *, 16>;
497 using ValueSet = SmallPtrSet<Value *, 16>;
498 using StoreList = SmallVector<StoreInst *, 8>;
499 using ExtraValueToDebugLocsMap =
500 MapVector<Value *, SmallVector<Instruction *, 2>>;
502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
505 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
508 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
509 // Use the vector register size specified by the target unless overridden
510 // by a command-line option.
511 // TODO: It would be better to limit the vectorization factor based on
512 // data type rather than just register size. For example, x86 AVX has
513 // 256-bit registers, but it does not support integer operations
514 // at that width (that requires AVX2).
515 if (MaxVectorRegSizeOption.getNumOccurrences())
516 MaxVecRegSize = MaxVectorRegSizeOption;
517 else
518 MaxVecRegSize = TTI->getRegisterBitWidth(true);
520 if (MinVectorRegSizeOption.getNumOccurrences())
521 MinVecRegSize = MinVectorRegSizeOption;
522 else
523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
526 /// Vectorize the tree that starts with the elements in \p VL.
527 /// Returns the vectorized root.
528 Value *vectorizeTree();
530 /// Vectorize the tree but with the list of externally used values \p
531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
532 /// generated extractvalue instructions.
533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
535 /// \returns the cost incurred by unwanted spills and fills, caused by
536 /// holding live values over call sites.
537 int getSpillCost() const;
539 /// \returns the vectorization cost of the subtree that starts at \p VL.
540 /// A negative number means that this is profitable.
541 int getTreeCost();
543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
545 void buildTree(ArrayRef<Value *> Roots,
546 ArrayRef<Value *> UserIgnoreLst = None);
548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
550 /// into account (anf updating it, if required) list of externally used
551 /// values stored in \p ExternallyUsedValues.
552 void buildTree(ArrayRef<Value *> Roots,
553 ExtraValueToDebugLocsMap &ExternallyUsedValues,
554 ArrayRef<Value *> UserIgnoreLst = None);
556 /// Clear the internal data structures that are created by 'buildTree'.
557 void deleteTree() {
558 VectorizableTree.clear();
559 ScalarToTreeEntry.clear();
560 MustGather.clear();
561 ExternalUses.clear();
562 NumOpsWantToKeepOrder.clear();
563 NumOpsWantToKeepOriginalOrder = 0;
564 for (auto &Iter : BlocksSchedules) {
565 BlockScheduling *BS = Iter.second.get();
566 BS->clear();
568 MinBWs.clear();
571 unsigned getTreeSize() const { return VectorizableTree.size(); }
573 /// Perform LICM and CSE on the newly generated gather sequences.
574 void optimizeGatherSequence();
576 /// \returns The best order of instructions for vectorization.
577 Optional<ArrayRef<unsigned>> bestOrder() const {
578 auto I = std::max_element(
579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
582 return D1.second < D2.second;
584 if (I == NumOpsWantToKeepOrder.end() ||
585 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
586 return None;
588 return makeArrayRef(I->getFirst());
591 /// \return The vector element size in bits to use when vectorizing the
592 /// expression tree ending at \p V. If V is a store, the size is the width of
593 /// the stored value. Otherwise, the size is the width of the largest loaded
594 /// value reaching V. This method is used by the vectorizer to calculate
595 /// vectorization factors.
596 unsigned getVectorElementSize(Value *V) const;
598 /// Compute the minimum type sizes required to represent the entries in a
599 /// vectorizable tree.
600 void computeMinimumValueSizes();
602 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
603 unsigned getMaxVecRegSize() const {
604 return MaxVecRegSize;
607 // \returns minimum vector register size as set by cl::opt.
608 unsigned getMinVecRegSize() const {
609 return MinVecRegSize;
612 /// Check if ArrayType or StructType is isomorphic to some VectorType.
614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
615 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
617 /// \returns True if the VectorizableTree is both tiny and not fully
618 /// vectorizable. We do not vectorize such trees.
619 bool isTreeTinyAndNotFullyVectorizable() const;
621 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
622 /// can be load combined in the backend. Load combining may not be allowed in
623 /// the IR optimizer, so we do not want to alter the pattern. For example,
624 /// partially transforming a scalar bswap() pattern into vector code is
625 /// effectively impossible for the backend to undo.
626 /// TODO: If load combining is allowed in the IR optimizer, this analysis
627 /// may not be necessary.
628 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
630 OptimizationRemarkEmitter *getORE() { return ORE; }
632 /// This structure holds any data we need about the edges being traversed
633 /// during buildTree_rec(). We keep track of:
634 /// (i) the user TreeEntry index, and
635 /// (ii) the index of the edge.
636 struct EdgeInfo {
637 EdgeInfo() = default;
638 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
639 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
640 /// The user TreeEntry.
641 TreeEntry *UserTE = nullptr;
642 /// The operand index of the use.
643 unsigned EdgeIdx = UINT_MAX;
644 #ifndef NDEBUG
645 friend inline raw_ostream &operator<<(raw_ostream &OS,
646 const BoUpSLP::EdgeInfo &EI) {
647 EI.dump(OS);
648 return OS;
650 /// Debug print.
651 void dump(raw_ostream &OS) const {
652 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
653 << " EdgeIdx:" << EdgeIdx << "}";
655 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
656 #endif
659 /// A helper data structure to hold the operands of a vector of instructions.
660 /// This supports a fixed vector length for all operand vectors.
661 class VLOperands {
662 /// For each operand we need (i) the value, and (ii) the opcode that it
663 /// would be attached to if the expression was in a left-linearized form.
664 /// This is required to avoid illegal operand reordering.
665 /// For example:
666 /// \verbatim
667 /// 0 Op1
668 /// |/
669 /// Op1 Op2 Linearized + Op2
670 /// \ / ----------> |/
671 /// - -
673 /// Op1 - Op2 (0 + Op1) - Op2
674 /// \endverbatim
676 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
678 /// Another way to think of this is to track all the operations across the
679 /// path from the operand all the way to the root of the tree and to
680 /// calculate the operation that corresponds to this path. For example, the
681 /// path from Op2 to the root crosses the RHS of the '-', therefore the
682 /// corresponding operation is a '-' (which matches the one in the
683 /// linearized tree, as shown above).
685 /// For lack of a better term, we refer to this operation as Accumulated
686 /// Path Operation (APO).
687 struct OperandData {
688 OperandData() = default;
689 OperandData(Value *V, bool APO, bool IsUsed)
690 : V(V), APO(APO), IsUsed(IsUsed) {}
691 /// The operand value.
692 Value *V = nullptr;
693 /// TreeEntries only allow a single opcode, or an alternate sequence of
694 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
695 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
696 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
697 /// (e.g., Add/Mul)
698 bool APO = false;
699 /// Helper data for the reordering function.
700 bool IsUsed = false;
703 /// During operand reordering, we are trying to select the operand at lane
704 /// that matches best with the operand at the neighboring lane. Our
705 /// selection is based on the type of value we are looking for. For example,
706 /// if the neighboring lane has a load, we need to look for a load that is
707 /// accessing a consecutive address. These strategies are summarized in the
708 /// 'ReorderingMode' enumerator.
709 enum class ReorderingMode {
710 Load, ///< Matching loads to consecutive memory addresses
711 Opcode, ///< Matching instructions based on opcode (same or alternate)
712 Constant, ///< Matching constants
713 Splat, ///< Matching the same instruction multiple times (broadcast)
714 Failed, ///< We failed to create a vectorizable group
717 using OperandDataVec = SmallVector<OperandData, 2>;
719 /// A vector of operand vectors.
720 SmallVector<OperandDataVec, 4> OpsVec;
722 const DataLayout &DL;
723 ScalarEvolution &SE;
725 /// \returns the operand data at \p OpIdx and \p Lane.
726 OperandData &getData(unsigned OpIdx, unsigned Lane) {
727 return OpsVec[OpIdx][Lane];
730 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
731 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
732 return OpsVec[OpIdx][Lane];
735 /// Clears the used flag for all entries.
736 void clearUsed() {
737 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
738 OpIdx != NumOperands; ++OpIdx)
739 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
740 ++Lane)
741 OpsVec[OpIdx][Lane].IsUsed = false;
744 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
745 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
746 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
749 // Search all operands in Ops[*][Lane] for the one that matches best
750 // Ops[OpIdx][LastLane] and return its opreand index.
751 // If no good match can be found, return None.
752 Optional<unsigned>
753 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
754 ArrayRef<ReorderingMode> ReorderingModes) {
755 unsigned NumOperands = getNumOperands();
757 // The operand of the previous lane at OpIdx.
758 Value *OpLastLane = getData(OpIdx, LastLane).V;
760 // Our strategy mode for OpIdx.
761 ReorderingMode RMode = ReorderingModes[OpIdx];
763 // The linearized opcode of the operand at OpIdx, Lane.
764 bool OpIdxAPO = getData(OpIdx, Lane).APO;
766 const unsigned BestScore = 2;
767 const unsigned GoodScore = 1;
769 // The best operand index and its score.
770 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
771 // are using the score to differentiate between the two.
772 struct BestOpData {
773 Optional<unsigned> Idx = None;
774 unsigned Score = 0;
775 } BestOp;
777 // Iterate through all unused operands and look for the best.
778 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
779 // Get the operand at Idx and Lane.
780 OperandData &OpData = getData(Idx, Lane);
781 Value *Op = OpData.V;
782 bool OpAPO = OpData.APO;
784 // Skip already selected operands.
785 if (OpData.IsUsed)
786 continue;
788 // Skip if we are trying to move the operand to a position with a
789 // different opcode in the linearized tree form. This would break the
790 // semantics.
791 if (OpAPO != OpIdxAPO)
792 continue;
794 // Look for an operand that matches the current mode.
795 switch (RMode) {
796 case ReorderingMode::Load:
797 if (isa<LoadInst>(Op)) {
798 // Figure out which is left and right, so that we can check for
799 // consecutive loads
800 bool LeftToRight = Lane > LastLane;
801 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
802 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
803 if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
804 cast<LoadInst>(OpRight), DL, SE))
805 BestOp.Idx = Idx;
807 break;
808 case ReorderingMode::Opcode:
809 // We accept both Instructions and Undefs, but with different scores.
810 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
811 cast<Instruction>(Op)->getOpcode() ==
812 cast<Instruction>(OpLastLane)->getOpcode()) ||
813 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
814 isa<UndefValue>(Op)) {
815 // An instruction has a higher score than an undef.
816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
817 if (Score > BestOp.Score) {
818 BestOp.Idx = Idx;
819 BestOp.Score = Score;
822 break;
823 case ReorderingMode::Constant:
824 if (isa<Constant>(Op)) {
825 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
826 if (Score > BestOp.Score) {
827 BestOp.Idx = Idx;
828 BestOp.Score = Score;
831 break;
832 case ReorderingMode::Splat:
833 if (Op == OpLastLane)
834 BestOp.Idx = Idx;
835 break;
836 case ReorderingMode::Failed:
837 return None;
841 if (BestOp.Idx) {
842 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
843 return BestOp.Idx;
845 // If we could not find a good match return None.
846 return None;
849 /// Helper for reorderOperandVecs. \Returns the lane that we should start
850 /// reordering from. This is the one which has the least number of operands
851 /// that can freely move about.
852 unsigned getBestLaneToStartReordering() const {
853 unsigned BestLane = 0;
854 unsigned Min = UINT_MAX;
855 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
856 ++Lane) {
857 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
858 if (NumFreeOps < Min) {
859 Min = NumFreeOps;
860 BestLane = Lane;
863 return BestLane;
866 /// \Returns the maximum number of operands that are allowed to be reordered
867 /// for \p Lane. This is used as a heuristic for selecting the first lane to
868 /// start operand reordering.
869 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
870 unsigned CntTrue = 0;
871 unsigned NumOperands = getNumOperands();
872 // Operands with the same APO can be reordered. We therefore need to count
873 // how many of them we have for each APO, like this: Cnt[APO] = x.
874 // Since we only have two APOs, namely true and false, we can avoid using
875 // a map. Instead we can simply count the number of operands that
876 // correspond to one of them (in this case the 'true' APO), and calculate
877 // the other by subtracting it from the total number of operands.
878 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
879 if (getData(OpIdx, Lane).APO)
880 ++CntTrue;
881 unsigned CntFalse = NumOperands - CntTrue;
882 return std::max(CntTrue, CntFalse);
885 /// Go through the instructions in VL and append their operands.
886 void appendOperandsOfVL(ArrayRef<Value *> VL) {
887 assert(!VL.empty() && "Bad VL");
888 assert((empty() || VL.size() == getNumLanes()) &&
889 "Expected same number of lanes");
890 assert(isa<Instruction>(VL[0]) && "Expected instruction");
891 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
892 OpsVec.resize(NumOperands);
893 unsigned NumLanes = VL.size();
894 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
895 OpsVec[OpIdx].resize(NumLanes);
896 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
897 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
898 // Our tree has just 3 nodes: the root and two operands.
899 // It is therefore trivial to get the APO. We only need to check the
900 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
901 // RHS operand. The LHS operand of both add and sub is never attached
902 // to an inversese operation in the linearized form, therefore its APO
903 // is false. The RHS is true only if VL[Lane] is an inverse operation.
905 // Since operand reordering is performed on groups of commutative
906 // operations or alternating sequences (e.g., +, -), we can safely
907 // tell the inverse operations by checking commutativity.
908 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
909 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
910 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
911 APO, false};
916 /// \returns the number of operands.
917 unsigned getNumOperands() const { return OpsVec.size(); }
919 /// \returns the number of lanes.
920 unsigned getNumLanes() const { return OpsVec[0].size(); }
922 /// \returns the operand value at \p OpIdx and \p Lane.
923 Value *getValue(unsigned OpIdx, unsigned Lane) const {
924 return getData(OpIdx, Lane).V;
927 /// \returns true if the data structure is empty.
928 bool empty() const { return OpsVec.empty(); }
930 /// Clears the data.
931 void clear() { OpsVec.clear(); }
933 /// \Returns true if there are enough operands identical to \p Op to fill
934 /// the whole vector.
935 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
936 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
937 bool OpAPO = getData(OpIdx, Lane).APO;
938 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
939 if (Ln == Lane)
940 continue;
941 // This is set to true if we found a candidate for broadcast at Lane.
942 bool FoundCandidate = false;
943 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
944 OperandData &Data = getData(OpI, Ln);
945 if (Data.APO != OpAPO || Data.IsUsed)
946 continue;
947 if (Data.V == Op) {
948 FoundCandidate = true;
949 Data.IsUsed = true;
950 break;
953 if (!FoundCandidate)
954 return false;
956 return true;
959 public:
960 /// Initialize with all the operands of the instruction vector \p RootVL.
961 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
962 ScalarEvolution &SE)
963 : DL(DL), SE(SE) {
964 // Append all the operands of RootVL.
965 appendOperandsOfVL(RootVL);
968 /// \Returns a value vector with the operands across all lanes for the
969 /// opearnd at \p OpIdx.
970 ValueList getVL(unsigned OpIdx) const {
971 ValueList OpVL(OpsVec[OpIdx].size());
972 assert(OpsVec[OpIdx].size() == getNumLanes() &&
973 "Expected same num of lanes across all operands");
974 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
975 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
976 return OpVL;
979 // Performs operand reordering for 2 or more operands.
980 // The original operands are in OrigOps[OpIdx][Lane].
981 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
982 void reorder() {
983 unsigned NumOperands = getNumOperands();
984 unsigned NumLanes = getNumLanes();
985 // Each operand has its own mode. We are using this mode to help us select
986 // the instructions for each lane, so that they match best with the ones
987 // we have selected so far.
988 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
990 // This is a greedy single-pass algorithm. We are going over each lane
991 // once and deciding on the best order right away with no back-tracking.
992 // However, in order to increase its effectiveness, we start with the lane
993 // that has operands that can move the least. For example, given the
994 // following lanes:
995 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
996 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
997 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
998 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
999 // we will start at Lane 1, since the operands of the subtraction cannot
1000 // be reordered. Then we will visit the rest of the lanes in a circular
1001 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1003 // Find the first lane that we will start our search from.
1004 unsigned FirstLane = getBestLaneToStartReordering();
1006 // Initialize the modes.
1007 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1008 Value *OpLane0 = getValue(OpIdx, FirstLane);
1009 // Keep track if we have instructions with all the same opcode on one
1010 // side.
1011 if (isa<LoadInst>(OpLane0))
1012 ReorderingModes[OpIdx] = ReorderingMode::Load;
1013 else if (isa<Instruction>(OpLane0)) {
1014 // Check if OpLane0 should be broadcast.
1015 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1016 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1017 else
1018 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1020 else if (isa<Constant>(OpLane0))
1021 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1022 else if (isa<Argument>(OpLane0))
1023 // Our best hope is a Splat. It may save some cost in some cases.
1024 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1025 else
1026 // NOTE: This should be unreachable.
1027 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1030 // If the initial strategy fails for any of the operand indexes, then we
1031 // perform reordering again in a second pass. This helps avoid assigning
1032 // high priority to the failed strategy, and should improve reordering for
1033 // the non-failed operand indexes.
1034 for (int Pass = 0; Pass != 2; ++Pass) {
1035 // Skip the second pass if the first pass did not fail.
1036 bool StrategyFailed = false;
1037 // Mark all operand data as free to use.
1038 clearUsed();
1039 // We keep the original operand order for the FirstLane, so reorder the
1040 // rest of the lanes. We are visiting the nodes in a circular fashion,
1041 // using FirstLane as the center point and increasing the radius
1042 // distance.
1043 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1044 // Visit the lane on the right and then the lane on the left.
1045 for (int Direction : {+1, -1}) {
1046 int Lane = FirstLane + Direction * Distance;
1047 if (Lane < 0 || Lane >= (int)NumLanes)
1048 continue;
1049 int LastLane = Lane - Direction;
1050 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1051 "Out of bounds");
1052 // Look for a good match for each operand.
1053 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1054 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1055 Optional<unsigned> BestIdx =
1056 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1057 // By not selecting a value, we allow the operands that follow to
1058 // select a better matching value. We will get a non-null value in
1059 // the next run of getBestOperand().
1060 if (BestIdx) {
1061 // Swap the current operand with the one returned by
1062 // getBestOperand().
1063 swap(OpIdx, BestIdx.getValue(), Lane);
1064 } else {
1065 // We failed to find a best operand, set mode to 'Failed'.
1066 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1067 // Enable the second pass.
1068 StrategyFailed = true;
1073 // Skip second pass if the strategy did not fail.
1074 if (!StrategyFailed)
1075 break;
1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1080 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1081 switch (RMode) {
1082 case ReorderingMode::Load:
1083 return "Load";
1084 case ReorderingMode::Opcode:
1085 return "Opcode";
1086 case ReorderingMode::Constant:
1087 return "Constant";
1088 case ReorderingMode::Splat:
1089 return "Splat";
1090 case ReorderingMode::Failed:
1091 return "Failed";
1093 llvm_unreachable("Unimplemented Reordering Type");
1096 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1097 raw_ostream &OS) {
1098 return OS << getModeStr(RMode);
1101 /// Debug print.
1102 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1103 printMode(RMode, dbgs());
1106 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1107 return printMode(RMode, OS);
1110 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1111 const unsigned Indent = 2;
1112 unsigned Cnt = 0;
1113 for (const OperandDataVec &OpDataVec : OpsVec) {
1114 OS << "Operand " << Cnt++ << "\n";
1115 for (const OperandData &OpData : OpDataVec) {
1116 OS.indent(Indent) << "{";
1117 if (Value *V = OpData.V)
1118 OS << *V;
1119 else
1120 OS << "null";
1121 OS << ", APO:" << OpData.APO << "}\n";
1123 OS << "\n";
1125 return OS;
1128 /// Debug print.
1129 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1130 #endif
1133 /// Checks if the instruction is marked for deletion.
1134 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1136 /// Marks values operands for later deletion by replacing them with Undefs.
1137 void eraseInstructions(ArrayRef<Value *> AV);
1139 ~BoUpSLP();
1141 private:
1142 /// Checks if all users of \p I are the part of the vectorization tree.
1143 bool areAllUsersVectorized(Instruction *I) const;
1145 /// \returns the cost of the vectorizable entry.
1146 int getEntryCost(TreeEntry *E);
1148 /// This is the recursive part of buildTree.
1149 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1150 const EdgeInfo &EI);
1152 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1153 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1154 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1155 /// returns false, setting \p CurrentOrder to either an empty vector or a
1156 /// non-identity permutation that allows to reuse extract instructions.
1157 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1158 SmallVectorImpl<unsigned> &CurrentOrder) const;
1160 /// Vectorize a single entry in the tree.
1161 Value *vectorizeTree(TreeEntry *E);
1163 /// Vectorize a single entry in the tree, starting in \p VL.
1164 Value *vectorizeTree(ArrayRef<Value *> VL);
1166 /// \returns the scalarization cost for this type. Scalarization in this
1167 /// context means the creation of vectors from a group of scalars.
1168 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1170 /// \returns the scalarization cost for this list of values. Assuming that
1171 /// this subtree gets vectorized, we may need to extract the values from the
1172 /// roots. This method calculates the cost of extracting the values.
1173 int getGatherCost(ArrayRef<Value *> VL) const;
1175 /// Set the Builder insert point to one after the last instruction in
1176 /// the bundle
1177 void setInsertPointAfterBundle(TreeEntry *E);
1179 /// \returns a vector from a collection of scalars in \p VL.
1180 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1182 /// \returns whether the VectorizableTree is fully vectorizable and will
1183 /// be beneficial even the tree height is tiny.
1184 bool isFullyVectorizableTinyTree() const;
1186 /// Reorder commutative or alt operands to get better probability of
1187 /// generating vectorized code.
1188 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1189 SmallVectorImpl<Value *> &Left,
1190 SmallVectorImpl<Value *> &Right,
1191 const DataLayout &DL,
1192 ScalarEvolution &SE);
1193 struct TreeEntry {
1194 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1195 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1197 /// \returns true if the scalars in VL are equal to this entry.
1198 bool isSame(ArrayRef<Value *> VL) const {
1199 if (VL.size() == Scalars.size())
1200 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1201 return VL.size() == ReuseShuffleIndices.size() &&
1202 std::equal(
1203 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1204 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1207 /// A vector of scalars.
1208 ValueList Scalars;
1210 /// The Scalars are vectorized into this value. It is initialized to Null.
1211 Value *VectorizedValue = nullptr;
1213 /// Do we need to gather this sequence ?
1214 bool NeedToGather = false;
1216 /// Does this sequence require some shuffling?
1217 SmallVector<unsigned, 4> ReuseShuffleIndices;
1219 /// Does this entry require reordering?
1220 ArrayRef<unsigned> ReorderIndices;
1222 /// Points back to the VectorizableTree.
1224 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1225 /// to be a pointer and needs to be able to initialize the child iterator.
1226 /// Thus we need a reference back to the container to translate the indices
1227 /// to entries.
1228 VecTreeTy &Container;
1230 /// The TreeEntry index containing the user of this entry. We can actually
1231 /// have multiple users so the data structure is not truly a tree.
1232 SmallVector<EdgeInfo, 1> UserTreeIndices;
1234 /// The index of this treeEntry in VectorizableTree.
1235 int Idx = -1;
1237 private:
1238 /// The operands of each instruction in each lane Operands[op_index][lane].
1239 /// Note: This helps avoid the replication of the code that performs the
1240 /// reordering of operands during buildTree_rec() and vectorizeTree().
1241 SmallVector<ValueList, 2> Operands;
1243 /// The main/alternate instruction.
1244 Instruction *MainOp = nullptr;
1245 Instruction *AltOp = nullptr;
1247 public:
1248 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1249 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1250 if (Operands.size() < OpIdx + 1)
1251 Operands.resize(OpIdx + 1);
1252 assert(Operands[OpIdx].size() == 0 && "Already resized?");
1253 Operands[OpIdx].resize(Scalars.size());
1254 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1255 Operands[OpIdx][Lane] = OpVL[Lane];
1258 /// Set the operands of this bundle in their original order.
1259 void setOperandsInOrder() {
1260 assert(Operands.empty() && "Already initialized?");
1261 auto *I0 = cast<Instruction>(Scalars[0]);
1262 Operands.resize(I0->getNumOperands());
1263 unsigned NumLanes = Scalars.size();
1264 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1265 OpIdx != NumOperands; ++OpIdx) {
1266 Operands[OpIdx].resize(NumLanes);
1267 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1268 auto *I = cast<Instruction>(Scalars[Lane]);
1269 assert(I->getNumOperands() == NumOperands &&
1270 "Expected same number of operands");
1271 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1276 /// \returns the \p OpIdx operand of this TreeEntry.
1277 ValueList &getOperand(unsigned OpIdx) {
1278 assert(OpIdx < Operands.size() && "Off bounds");
1279 return Operands[OpIdx];
1282 /// \returns the number of operands.
1283 unsigned getNumOperands() const { return Operands.size(); }
1285 /// \return the single \p OpIdx operand.
1286 Value *getSingleOperand(unsigned OpIdx) const {
1287 assert(OpIdx < Operands.size() && "Off bounds");
1288 assert(!Operands[OpIdx].empty() && "No operand available");
1289 return Operands[OpIdx][0];
1292 /// Some of the instructions in the list have alternate opcodes.
1293 bool isAltShuffle() const {
1294 return getOpcode() != getAltOpcode();
1297 bool isOpcodeOrAlt(Instruction *I) const {
1298 unsigned CheckedOpcode = I->getOpcode();
1299 return (getOpcode() == CheckedOpcode ||
1300 getAltOpcode() == CheckedOpcode);
1303 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1304 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1305 /// \p OpValue.
1306 Value *isOneOf(Value *Op) const {
1307 auto *I = dyn_cast<Instruction>(Op);
1308 if (I && isOpcodeOrAlt(I))
1309 return Op;
1310 return MainOp;
1313 void setOperations(const InstructionsState &S) {
1314 MainOp = S.MainOp;
1315 AltOp = S.AltOp;
1318 Instruction *getMainOp() const {
1319 return MainOp;
1322 Instruction *getAltOp() const {
1323 return AltOp;
1326 /// The main/alternate opcodes for the list of instructions.
1327 unsigned getOpcode() const {
1328 return MainOp ? MainOp->getOpcode() : 0;
1331 unsigned getAltOpcode() const {
1332 return AltOp ? AltOp->getOpcode() : 0;
1335 /// Update operations state of this entry if reorder occurred.
1336 bool updateStateIfReorder() {
1337 if (ReorderIndices.empty())
1338 return false;
1339 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1340 setOperations(S);
1341 return true;
1344 #ifndef NDEBUG
1345 /// Debug printer.
1346 LLVM_DUMP_METHOD void dump() const {
1347 dbgs() << Idx << ".\n";
1348 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1349 dbgs() << "Operand " << OpI << ":\n";
1350 for (const Value *V : Operands[OpI])
1351 dbgs().indent(2) << *V << "\n";
1353 dbgs() << "Scalars: \n";
1354 for (Value *V : Scalars)
1355 dbgs().indent(2) << *V << "\n";
1356 dbgs() << "NeedToGather: " << NeedToGather << "\n";
1357 dbgs() << "MainOp: " << *MainOp << "\n";
1358 dbgs() << "AltOp: " << *AltOp << "\n";
1359 dbgs() << "VectorizedValue: ";
1360 if (VectorizedValue)
1361 dbgs() << *VectorizedValue;
1362 else
1363 dbgs() << "NULL";
1364 dbgs() << "\n";
1365 dbgs() << "ReuseShuffleIndices: ";
1366 if (ReuseShuffleIndices.empty())
1367 dbgs() << "Emtpy";
1368 else
1369 for (unsigned ReuseIdx : ReuseShuffleIndices)
1370 dbgs() << ReuseIdx << ", ";
1371 dbgs() << "\n";
1372 dbgs() << "ReorderIndices: ";
1373 for (unsigned ReorderIdx : ReorderIndices)
1374 dbgs() << ReorderIdx << ", ";
1375 dbgs() << "\n";
1376 dbgs() << "UserTreeIndices: ";
1377 for (const auto &EInfo : UserTreeIndices)
1378 dbgs() << EInfo << ", ";
1379 dbgs() << "\n";
1381 #endif
1384 /// Create a new VectorizableTree entry.
1385 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1386 const InstructionsState &S,
1387 const EdgeInfo &UserTreeIdx,
1388 ArrayRef<unsigned> ReuseShuffleIndices = None,
1389 ArrayRef<unsigned> ReorderIndices = None) {
1390 bool Vectorized = (bool)Bundle;
1391 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1392 TreeEntry *Last = VectorizableTree.back().get();
1393 Last->Idx = VectorizableTree.size() - 1;
1394 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1395 Last->NeedToGather = !Vectorized;
1396 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1397 ReuseShuffleIndices.end());
1398 Last->ReorderIndices = ReorderIndices;
1399 Last->setOperations(S);
1400 if (Vectorized) {
1401 for (int i = 0, e = VL.size(); i != e; ++i) {
1402 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1403 ScalarToTreeEntry[VL[i]] = Last;
1405 // Update the scheduler bundle to point to this TreeEntry.
1406 unsigned Lane = 0;
1407 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1408 BundleMember = BundleMember->NextInBundle) {
1409 BundleMember->TE = Last;
1410 BundleMember->Lane = Lane;
1411 ++Lane;
1413 assert((!Bundle.getValue() || Lane == VL.size()) &&
1414 "Bundle and VL out of sync");
1415 } else {
1416 MustGather.insert(VL.begin(), VL.end());
1419 if (UserTreeIdx.UserTE)
1420 Last->UserTreeIndices.push_back(UserTreeIdx);
1422 return Last;
1425 /// -- Vectorization State --
1426 /// Holds all of the tree entries.
1427 TreeEntry::VecTreeTy VectorizableTree;
1429 #ifndef NDEBUG
1430 /// Debug printer.
1431 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1432 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1433 VectorizableTree[Id]->dump();
1434 dbgs() << "\n";
1437 #endif
1439 TreeEntry *getTreeEntry(Value *V) {
1440 auto I = ScalarToTreeEntry.find(V);
1441 if (I != ScalarToTreeEntry.end())
1442 return I->second;
1443 return nullptr;
1446 const TreeEntry *getTreeEntry(Value *V) const {
1447 auto I = ScalarToTreeEntry.find(V);
1448 if (I != ScalarToTreeEntry.end())
1449 return I->second;
1450 return nullptr;
1453 /// Maps a specific scalar to its tree entry.
1454 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1456 /// A list of scalars that we found that we need to keep as scalars.
1457 ValueSet MustGather;
1459 /// This POD struct describes one external user in the vectorized tree.
1460 struct ExternalUser {
1461 ExternalUser(Value *S, llvm::User *U, int L)
1462 : Scalar(S), User(U), Lane(L) {}
1464 // Which scalar in our function.
1465 Value *Scalar;
1467 // Which user that uses the scalar.
1468 llvm::User *User;
1470 // Which lane does the scalar belong to.
1471 int Lane;
1473 using UserList = SmallVector<ExternalUser, 16>;
1475 /// Checks if two instructions may access the same memory.
1477 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1478 /// is invariant in the calling loop.
1479 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1480 Instruction *Inst2) {
1481 // First check if the result is already in the cache.
1482 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1483 Optional<bool> &result = AliasCache[key];
1484 if (result.hasValue()) {
1485 return result.getValue();
1487 MemoryLocation Loc2 = getLocation(Inst2, AA);
1488 bool aliased = true;
1489 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1490 // Do the alias check.
1491 aliased = AA->alias(Loc1, Loc2);
1493 // Store the result in the cache.
1494 result = aliased;
1495 return aliased;
1498 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1500 /// Cache for alias results.
1501 /// TODO: consider moving this to the AliasAnalysis itself.
1502 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1504 /// Removes an instruction from its block and eventually deletes it.
1505 /// It's like Instruction::eraseFromParent() except that the actual deletion
1506 /// is delayed until BoUpSLP is destructed.
1507 /// This is required to ensure that there are no incorrect collisions in the
1508 /// AliasCache, which can happen if a new instruction is allocated at the
1509 /// same address as a previously deleted instruction.
1510 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1511 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1512 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1515 /// Temporary store for deleted instructions. Instructions will be deleted
1516 /// eventually when the BoUpSLP is destructed.
1517 DenseMap<Instruction *, bool> DeletedInstructions;
1519 /// A list of values that need to extracted out of the tree.
1520 /// This list holds pairs of (Internal Scalar : External User). External User
1521 /// can be nullptr, it means that this Internal Scalar will be used later,
1522 /// after vectorization.
1523 UserList ExternalUses;
1525 /// Values used only by @llvm.assume calls.
1526 SmallPtrSet<const Value *, 32> EphValues;
1528 /// Holds all of the instructions that we gathered.
1529 SetVector<Instruction *> GatherSeq;
1531 /// A list of blocks that we are going to CSE.
1532 SetVector<BasicBlock *> CSEBlocks;
1534 /// Contains all scheduling relevant data for an instruction.
1535 /// A ScheduleData either represents a single instruction or a member of an
1536 /// instruction bundle (= a group of instructions which is combined into a
1537 /// vector instruction).
1538 struct ScheduleData {
1539 // The initial value for the dependency counters. It means that the
1540 // dependencies are not calculated yet.
1541 enum { InvalidDeps = -1 };
1543 ScheduleData() = default;
1545 void init(int BlockSchedulingRegionID, Value *OpVal) {
1546 FirstInBundle = this;
1547 NextInBundle = nullptr;
1548 NextLoadStore = nullptr;
1549 IsScheduled = false;
1550 SchedulingRegionID = BlockSchedulingRegionID;
1551 UnscheduledDepsInBundle = UnscheduledDeps;
1552 clearDependencies();
1553 OpValue = OpVal;
1554 TE = nullptr;
1555 Lane = -1;
1558 /// Returns true if the dependency information has been calculated.
1559 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1561 /// Returns true for single instructions and for bundle representatives
1562 /// (= the head of a bundle).
1563 bool isSchedulingEntity() const { return FirstInBundle == this; }
1565 /// Returns true if it represents an instruction bundle and not only a
1566 /// single instruction.
1567 bool isPartOfBundle() const {
1568 return NextInBundle != nullptr || FirstInBundle != this;
1571 /// Returns true if it is ready for scheduling, i.e. it has no more
1572 /// unscheduled depending instructions/bundles.
1573 bool isReady() const {
1574 assert(isSchedulingEntity() &&
1575 "can't consider non-scheduling entity for ready list");
1576 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1579 /// Modifies the number of unscheduled dependencies, also updating it for
1580 /// the whole bundle.
1581 int incrementUnscheduledDeps(int Incr) {
1582 UnscheduledDeps += Incr;
1583 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1586 /// Sets the number of unscheduled dependencies to the number of
1587 /// dependencies.
1588 void resetUnscheduledDeps() {
1589 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1592 /// Clears all dependency information.
1593 void clearDependencies() {
1594 Dependencies = InvalidDeps;
1595 resetUnscheduledDeps();
1596 MemoryDependencies.clear();
1599 void dump(raw_ostream &os) const {
1600 if (!isSchedulingEntity()) {
1601 os << "/ " << *Inst;
1602 } else if (NextInBundle) {
1603 os << '[' << *Inst;
1604 ScheduleData *SD = NextInBundle;
1605 while (SD) {
1606 os << ';' << *SD->Inst;
1607 SD = SD->NextInBundle;
1609 os << ']';
1610 } else {
1611 os << *Inst;
1615 Instruction *Inst = nullptr;
1617 /// Points to the head in an instruction bundle (and always to this for
1618 /// single instructions).
1619 ScheduleData *FirstInBundle = nullptr;
1621 /// Single linked list of all instructions in a bundle. Null if it is a
1622 /// single instruction.
1623 ScheduleData *NextInBundle = nullptr;
1625 /// Single linked list of all memory instructions (e.g. load, store, call)
1626 /// in the block - until the end of the scheduling region.
1627 ScheduleData *NextLoadStore = nullptr;
1629 /// The dependent memory instructions.
1630 /// This list is derived on demand in calculateDependencies().
1631 SmallVector<ScheduleData *, 4> MemoryDependencies;
1633 /// This ScheduleData is in the current scheduling region if this matches
1634 /// the current SchedulingRegionID of BlockScheduling.
1635 int SchedulingRegionID = 0;
1637 /// Used for getting a "good" final ordering of instructions.
1638 int SchedulingPriority = 0;
1640 /// The number of dependencies. Constitutes of the number of users of the
1641 /// instruction plus the number of dependent memory instructions (if any).
1642 /// This value is calculated on demand.
1643 /// If InvalidDeps, the number of dependencies is not calculated yet.
1644 int Dependencies = InvalidDeps;
1646 /// The number of dependencies minus the number of dependencies of scheduled
1647 /// instructions. As soon as this is zero, the instruction/bundle gets ready
1648 /// for scheduling.
1649 /// Note that this is negative as long as Dependencies is not calculated.
1650 int UnscheduledDeps = InvalidDeps;
1652 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1653 /// single instructions.
1654 int UnscheduledDepsInBundle = InvalidDeps;
1656 /// True if this instruction is scheduled (or considered as scheduled in the
1657 /// dry-run).
1658 bool IsScheduled = false;
1660 /// Opcode of the current instruction in the schedule data.
1661 Value *OpValue = nullptr;
1663 /// The TreeEntry that this instruction corresponds to.
1664 TreeEntry *TE = nullptr;
1666 /// The lane of this node in the TreeEntry.
1667 int Lane = -1;
1670 #ifndef NDEBUG
1671 friend inline raw_ostream &operator<<(raw_ostream &os,
1672 const BoUpSLP::ScheduleData &SD) {
1673 SD.dump(os);
1674 return os;
1676 #endif
1678 friend struct GraphTraits<BoUpSLP *>;
1679 friend struct DOTGraphTraits<BoUpSLP *>;
1681 /// Contains all scheduling data for a basic block.
1682 struct BlockScheduling {
1683 BlockScheduling(BasicBlock *BB)
1684 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1686 void clear() {
1687 ReadyInsts.clear();
1688 ScheduleStart = nullptr;
1689 ScheduleEnd = nullptr;
1690 FirstLoadStoreInRegion = nullptr;
1691 LastLoadStoreInRegion = nullptr;
1693 // Reduce the maximum schedule region size by the size of the
1694 // previous scheduling run.
1695 ScheduleRegionSizeLimit -= ScheduleRegionSize;
1696 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1697 ScheduleRegionSizeLimit = MinScheduleRegionSize;
1698 ScheduleRegionSize = 0;
1700 // Make a new scheduling region, i.e. all existing ScheduleData is not
1701 // in the new region yet.
1702 ++SchedulingRegionID;
1705 ScheduleData *getScheduleData(Value *V) {
1706 ScheduleData *SD = ScheduleDataMap[V];
1707 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1708 return SD;
1709 return nullptr;
1712 ScheduleData *getScheduleData(Value *V, Value *Key) {
1713 if (V == Key)
1714 return getScheduleData(V);
1715 auto I = ExtraScheduleDataMap.find(V);
1716 if (I != ExtraScheduleDataMap.end()) {
1717 ScheduleData *SD = I->second[Key];
1718 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1719 return SD;
1721 return nullptr;
1724 bool isInSchedulingRegion(ScheduleData *SD) {
1725 return SD->SchedulingRegionID == SchedulingRegionID;
1728 /// Marks an instruction as scheduled and puts all dependent ready
1729 /// instructions into the ready-list.
1730 template <typename ReadyListType>
1731 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1732 SD->IsScheduled = true;
1733 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
1735 ScheduleData *BundleMember = SD;
1736 while (BundleMember) {
1737 if (BundleMember->Inst != BundleMember->OpValue) {
1738 BundleMember = BundleMember->NextInBundle;
1739 continue;
1741 // Handle the def-use chain dependencies.
1743 // Decrement the unscheduled counter and insert to ready list if ready.
1744 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1745 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1746 if (OpDef && OpDef->hasValidDependencies() &&
1747 OpDef->incrementUnscheduledDeps(-1) == 0) {
1748 // There are no more unscheduled dependencies after
1749 // decrementing, so we can put the dependent instruction
1750 // into the ready list.
1751 ScheduleData *DepBundle = OpDef->FirstInBundle;
1752 assert(!DepBundle->IsScheduled &&
1753 "already scheduled bundle gets ready");
1754 ReadyList.insert(DepBundle);
1755 LLVM_DEBUG(dbgs()
1756 << "SLP: gets ready (def): " << *DepBundle << "\n");
1761 // If BundleMember is a vector bundle, its operands may have been
1762 // reordered duiring buildTree(). We therefore need to get its operands
1763 // through the TreeEntry.
1764 if (TreeEntry *TE = BundleMember->TE) {
1765 int Lane = BundleMember->Lane;
1766 assert(Lane >= 0 && "Lane not set");
1767 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
1768 OpIdx != NumOperands; ++OpIdx)
1769 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
1770 DecrUnsched(I);
1771 } else {
1772 // If BundleMember is a stand-alone instruction, no operand reordering
1773 // has taken place, so we directly access its operands.
1774 for (Use &U : BundleMember->Inst->operands())
1775 if (auto *I = dyn_cast<Instruction>(U.get()))
1776 DecrUnsched(I);
1778 // Handle the memory dependencies.
1779 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1780 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1781 // There are no more unscheduled dependencies after decrementing,
1782 // so we can put the dependent instruction into the ready list.
1783 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1784 assert(!DepBundle->IsScheduled &&
1785 "already scheduled bundle gets ready");
1786 ReadyList.insert(DepBundle);
1787 LLVM_DEBUG(dbgs()
1788 << "SLP: gets ready (mem): " << *DepBundle << "\n");
1791 BundleMember = BundleMember->NextInBundle;
1795 void doForAllOpcodes(Value *V,
1796 function_ref<void(ScheduleData *SD)> Action) {
1797 if (ScheduleData *SD = getScheduleData(V))
1798 Action(SD);
1799 auto I = ExtraScheduleDataMap.find(V);
1800 if (I != ExtraScheduleDataMap.end())
1801 for (auto &P : I->second)
1802 if (P.second->SchedulingRegionID == SchedulingRegionID)
1803 Action(P.second);
1806 /// Put all instructions into the ReadyList which are ready for scheduling.
1807 template <typename ReadyListType>
1808 void initialFillReadyList(ReadyListType &ReadyList) {
1809 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1810 doForAllOpcodes(I, [&](ScheduleData *SD) {
1811 if (SD->isSchedulingEntity() && SD->isReady()) {
1812 ReadyList.insert(SD);
1813 LLVM_DEBUG(dbgs()
1814 << "SLP: initially in ready list: " << *I << "\n");
1820 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1821 /// cyclic dependencies. This is only a dry-run, no instructions are
1822 /// actually moved at this stage.
1823 /// \returns the scheduling bundle. The returned Optional value is non-None
1824 /// if \p VL is allowed to be scheduled.
1825 Optional<ScheduleData *>
1826 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1827 const InstructionsState &S);
1829 /// Un-bundles a group of instructions.
1830 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1832 /// Allocates schedule data chunk.
1833 ScheduleData *allocateScheduleDataChunks();
1835 /// Extends the scheduling region so that V is inside the region.
1836 /// \returns true if the region size is within the limit.
1837 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1839 /// Initialize the ScheduleData structures for new instructions in the
1840 /// scheduling region.
1841 void initScheduleData(Instruction *FromI, Instruction *ToI,
1842 ScheduleData *PrevLoadStore,
1843 ScheduleData *NextLoadStore);
1845 /// Updates the dependency information of a bundle and of all instructions/
1846 /// bundles which depend on the original bundle.
1847 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1848 BoUpSLP *SLP);
1850 /// Sets all instruction in the scheduling region to un-scheduled.
1851 void resetSchedule();
1853 BasicBlock *BB;
1855 /// Simple memory allocation for ScheduleData.
1856 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1858 /// The size of a ScheduleData array in ScheduleDataChunks.
1859 int ChunkSize;
1861 /// The allocator position in the current chunk, which is the last entry
1862 /// of ScheduleDataChunks.
1863 int ChunkPos;
1865 /// Attaches ScheduleData to Instruction.
1866 /// Note that the mapping survives during all vectorization iterations, i.e.
1867 /// ScheduleData structures are recycled.
1868 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1870 /// Attaches ScheduleData to Instruction with the leading key.
1871 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1872 ExtraScheduleDataMap;
1874 struct ReadyList : SmallVector<ScheduleData *, 8> {
1875 void insert(ScheduleData *SD) { push_back(SD); }
1878 /// The ready-list for scheduling (only used for the dry-run).
1879 ReadyList ReadyInsts;
1881 /// The first instruction of the scheduling region.
1882 Instruction *ScheduleStart = nullptr;
1884 /// The first instruction _after_ the scheduling region.
1885 Instruction *ScheduleEnd = nullptr;
1887 /// The first memory accessing instruction in the scheduling region
1888 /// (can be null).
1889 ScheduleData *FirstLoadStoreInRegion = nullptr;
1891 /// The last memory accessing instruction in the scheduling region
1892 /// (can be null).
1893 ScheduleData *LastLoadStoreInRegion = nullptr;
1895 /// The current size of the scheduling region.
1896 int ScheduleRegionSize = 0;
1898 /// The maximum size allowed for the scheduling region.
1899 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1901 /// The ID of the scheduling region. For a new vectorization iteration this
1902 /// is incremented which "removes" all ScheduleData from the region.
1903 // Make sure that the initial SchedulingRegionID is greater than the
1904 // initial SchedulingRegionID in ScheduleData (which is 0).
1905 int SchedulingRegionID = 1;
1908 /// Attaches the BlockScheduling structures to basic blocks.
1909 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1911 /// Performs the "real" scheduling. Done before vectorization is actually
1912 /// performed in a basic block.
1913 void scheduleBlock(BlockScheduling *BS);
1915 /// List of users to ignore during scheduling and that don't need extracting.
1916 ArrayRef<Value *> UserIgnoreList;
1918 using OrdersType = SmallVector<unsigned, 4>;
1919 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1920 /// sorted SmallVectors of unsigned.
1921 struct OrdersTypeDenseMapInfo {
1922 static OrdersType getEmptyKey() {
1923 OrdersType V;
1924 V.push_back(~1U);
1925 return V;
1928 static OrdersType getTombstoneKey() {
1929 OrdersType V;
1930 V.push_back(~2U);
1931 return V;
1934 static unsigned getHashValue(const OrdersType &V) {
1935 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1938 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1939 return LHS == RHS;
1943 /// Contains orders of operations along with the number of bundles that have
1944 /// operations in this order. It stores only those orders that require
1945 /// reordering, if reordering is not required it is counted using \a
1946 /// NumOpsWantToKeepOriginalOrder.
1947 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1948 /// Number of bundles that do not require reordering.
1949 unsigned NumOpsWantToKeepOriginalOrder = 0;
1951 // Analysis and block reference.
1952 Function *F;
1953 ScalarEvolution *SE;
1954 TargetTransformInfo *TTI;
1955 TargetLibraryInfo *TLI;
1956 AliasAnalysis *AA;
1957 LoopInfo *LI;
1958 DominatorTree *DT;
1959 AssumptionCache *AC;
1960 DemandedBits *DB;
1961 const DataLayout *DL;
1962 OptimizationRemarkEmitter *ORE;
1964 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1965 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1967 /// Instruction builder to construct the vectorized tree.
1968 IRBuilder<> Builder;
1970 /// A map of scalar integer values to the smallest bit width with which they
1971 /// can legally be represented. The values map to (width, signed) pairs,
1972 /// where "width" indicates the minimum bit width and "signed" is True if the
1973 /// value must be signed-extended, rather than zero-extended, back to its
1974 /// original width.
1975 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1978 } // end namespace slpvectorizer
1980 template <> struct GraphTraits<BoUpSLP *> {
1981 using TreeEntry = BoUpSLP::TreeEntry;
1983 /// NodeRef has to be a pointer per the GraphWriter.
1984 using NodeRef = TreeEntry *;
1986 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
1988 /// Add the VectorizableTree to the index iterator to be able to return
1989 /// TreeEntry pointers.
1990 struct ChildIteratorType
1991 : public iterator_adaptor_base<
1992 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
1993 ContainerTy &VectorizableTree;
1995 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
1996 ContainerTy &VT)
1997 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1999 NodeRef operator*() { return I->UserTE; }
2002 static NodeRef getEntryNode(BoUpSLP &R) {
2003 return R.VectorizableTree[0].get();
2006 static ChildIteratorType child_begin(NodeRef N) {
2007 return {N->UserTreeIndices.begin(), N->Container};
2010 static ChildIteratorType child_end(NodeRef N) {
2011 return {N->UserTreeIndices.end(), N->Container};
2014 /// For the node iterator we just need to turn the TreeEntry iterator into a
2015 /// TreeEntry* iterator so that it dereferences to NodeRef.
2016 class nodes_iterator {
2017 using ItTy = ContainerTy::iterator;
2018 ItTy It;
2020 public:
2021 nodes_iterator(const ItTy &It2) : It(It2) {}
2022 NodeRef operator*() { return It->get(); }
2023 nodes_iterator operator++() {
2024 ++It;
2025 return *this;
2027 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2030 static nodes_iterator nodes_begin(BoUpSLP *R) {
2031 return nodes_iterator(R->VectorizableTree.begin());
2034 static nodes_iterator nodes_end(BoUpSLP *R) {
2035 return nodes_iterator(R->VectorizableTree.end());
2038 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2041 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2042 using TreeEntry = BoUpSLP::TreeEntry;
2044 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2046 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2047 std::string Str;
2048 raw_string_ostream OS(Str);
2049 if (isSplat(Entry->Scalars)) {
2050 OS << "<splat> " << *Entry->Scalars[0];
2051 return Str;
2053 for (auto V : Entry->Scalars) {
2054 OS << *V;
2055 if (std::any_of(
2056 R->ExternalUses.begin(), R->ExternalUses.end(),
2057 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2058 OS << " <extract>";
2059 OS << "\n";
2061 return Str;
2064 static std::string getNodeAttributes(const TreeEntry *Entry,
2065 const BoUpSLP *) {
2066 if (Entry->NeedToGather)
2067 return "color=red";
2068 return "";
2072 } // end namespace llvm
2074 BoUpSLP::~BoUpSLP() {
2075 for (const auto &Pair : DeletedInstructions) {
2076 // Replace operands of ignored instructions with Undefs in case if they were
2077 // marked for deletion.
2078 if (Pair.getSecond()) {
2079 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2080 Pair.getFirst()->replaceAllUsesWith(Undef);
2082 Pair.getFirst()->dropAllReferences();
2084 for (const auto &Pair : DeletedInstructions) {
2085 assert(Pair.getFirst()->use_empty() &&
2086 "trying to erase instruction with users.");
2087 Pair.getFirst()->eraseFromParent();
2091 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2092 for (auto *V : AV) {
2093 if (auto *I = dyn_cast<Instruction>(V))
2094 eraseInstruction(I, /*ReplaceWithUndef=*/true);
2098 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2099 ArrayRef<Value *> UserIgnoreLst) {
2100 ExtraValueToDebugLocsMap ExternallyUsedValues;
2101 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2104 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2105 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2106 ArrayRef<Value *> UserIgnoreLst) {
2107 deleteTree();
2108 UserIgnoreList = UserIgnoreLst;
2109 if (!allSameType(Roots))
2110 return;
2111 buildTree_rec(Roots, 0, EdgeInfo());
2113 // Collect the values that we need to extract from the tree.
2114 for (auto &TEPtr : VectorizableTree) {
2115 TreeEntry *Entry = TEPtr.get();
2117 // No need to handle users of gathered values.
2118 if (Entry->NeedToGather)
2119 continue;
2121 // For each lane:
2122 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2123 Value *Scalar = Entry->Scalars[Lane];
2124 int FoundLane = Lane;
2125 if (!Entry->ReuseShuffleIndices.empty()) {
2126 FoundLane =
2127 std::distance(Entry->ReuseShuffleIndices.begin(),
2128 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2131 // Check if the scalar is externally used as an extra arg.
2132 auto ExtI = ExternallyUsedValues.find(Scalar);
2133 if (ExtI != ExternallyUsedValues.end()) {
2134 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2135 << Lane << " from " << *Scalar << ".\n");
2136 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2138 for (User *U : Scalar->users()) {
2139 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2141 Instruction *UserInst = dyn_cast<Instruction>(U);
2142 if (!UserInst)
2143 continue;
2145 // Skip in-tree scalars that become vectors
2146 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2147 Value *UseScalar = UseEntry->Scalars[0];
2148 // Some in-tree scalars will remain as scalar in vectorized
2149 // instructions. If that is the case, the one in Lane 0 will
2150 // be used.
2151 if (UseScalar != U ||
2152 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2153 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2154 << ".\n");
2155 assert(!UseEntry->NeedToGather && "Bad state");
2156 continue;
2160 // Ignore users in the user ignore list.
2161 if (is_contained(UserIgnoreList, UserInst))
2162 continue;
2164 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2165 << Lane << " from " << *Scalar << ".\n");
2166 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2172 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2173 const EdgeInfo &UserTreeIdx) {
2174 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2176 InstructionsState S = getSameOpcode(VL);
2177 if (Depth == RecursionMaxDepth) {
2178 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2179 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2180 return;
2183 // Don't handle vectors.
2184 if (S.OpValue->getType()->isVectorTy()) {
2185 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2186 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2187 return;
2190 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2191 if (SI->getValueOperand()->getType()->isVectorTy()) {
2192 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2194 return;
2197 // If all of the operands are identical or constant we have a simple solution.
2198 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2199 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2201 return;
2204 // We now know that this is a vector of instructions of the same type from
2205 // the same block.
2207 // Don't vectorize ephemeral values.
2208 for (Value *V : VL) {
2209 if (EphValues.count(V)) {
2210 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2211 << ") is ephemeral.\n");
2212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2213 return;
2217 // Check if this is a duplicate of another entry.
2218 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2219 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2220 if (!E->isSame(VL)) {
2221 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2222 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2223 return;
2225 // Record the reuse of the tree node. FIXME, currently this is only used to
2226 // properly draw the graph rather than for the actual vectorization.
2227 E->UserTreeIndices.push_back(UserTreeIdx);
2228 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2229 << ".\n");
2230 return;
2233 // Check that none of the instructions in the bundle are already in the tree.
2234 for (Value *V : VL) {
2235 auto *I = dyn_cast<Instruction>(V);
2236 if (!I)
2237 continue;
2238 if (getTreeEntry(I)) {
2239 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2240 << ") is already in tree.\n");
2241 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2242 return;
2246 // If any of the scalars is marked as a value that needs to stay scalar, then
2247 // we need to gather the scalars.
2248 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2249 for (Value *V : VL) {
2250 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2251 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2252 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2253 return;
2257 // Check that all of the users of the scalars that we want to vectorize are
2258 // schedulable.
2259 auto *VL0 = cast<Instruction>(S.OpValue);
2260 BasicBlock *BB = VL0->getParent();
2262 if (!DT->isReachableFromEntry(BB)) {
2263 // Don't go into unreachable blocks. They may contain instructions with
2264 // dependency cycles which confuse the final scheduling.
2265 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2266 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2267 return;
2270 // Check that every instruction appears once in this bundle.
2271 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2272 SmallVector<Value *, 4> UniqueValues;
2273 DenseMap<Value *, unsigned> UniquePositions;
2274 for (Value *V : VL) {
2275 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2276 ReuseShuffleIndicies.emplace_back(Res.first->second);
2277 if (Res.second)
2278 UniqueValues.emplace_back(V);
2280 size_t NumUniqueScalarValues = UniqueValues.size();
2281 if (NumUniqueScalarValues == VL.size()) {
2282 ReuseShuffleIndicies.clear();
2283 } else {
2284 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2285 if (NumUniqueScalarValues <= 1 ||
2286 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2287 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2289 return;
2291 VL = UniqueValues;
2294 auto &BSRef = BlocksSchedules[BB];
2295 if (!BSRef)
2296 BSRef = std::make_unique<BlockScheduling>(BB);
2298 BlockScheduling &BS = *BSRef.get();
2300 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2301 if (!Bundle) {
2302 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2303 assert((!BS.getScheduleData(VL0) ||
2304 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2305 "tryScheduleBundle should cancelScheduling on failure");
2306 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2307 ReuseShuffleIndicies);
2308 return;
2310 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2312 unsigned ShuffleOrOp = S.isAltShuffle() ?
2313 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2314 switch (ShuffleOrOp) {
2315 case Instruction::PHI: {
2316 auto *PH = cast<PHINode>(VL0);
2318 // Check for terminator values (e.g. invoke).
2319 for (unsigned j = 0; j < VL.size(); ++j)
2320 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2321 Instruction *Term = dyn_cast<Instruction>(
2322 cast<PHINode>(VL[j])->getIncomingValueForBlock(
2323 PH->getIncomingBlock(i)));
2324 if (Term && Term->isTerminator()) {
2325 LLVM_DEBUG(dbgs()
2326 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2327 BS.cancelScheduling(VL, VL0);
2328 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2329 ReuseShuffleIndicies);
2330 return;
2334 TreeEntry *TE =
2335 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2338 // Keeps the reordered operands to avoid code duplication.
2339 SmallVector<ValueList, 2> OperandsVec;
2340 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2341 ValueList Operands;
2342 // Prepare the operand vector.
2343 for (Value *j : VL)
2344 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2345 PH->getIncomingBlock(i)));
2346 TE->setOperand(i, Operands);
2347 OperandsVec.push_back(Operands);
2349 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2350 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2351 return;
2353 case Instruction::ExtractValue:
2354 case Instruction::ExtractElement: {
2355 OrdersType CurrentOrder;
2356 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2357 if (Reuse) {
2358 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2359 ++NumOpsWantToKeepOriginalOrder;
2360 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2361 ReuseShuffleIndicies);
2362 // This is a special case, as it does not gather, but at the same time
2363 // we are not extending buildTree_rec() towards the operands.
2364 ValueList Op0;
2365 Op0.assign(VL.size(), VL0->getOperand(0));
2366 VectorizableTree.back()->setOperand(0, Op0);
2367 return;
2369 if (!CurrentOrder.empty()) {
2370 LLVM_DEBUG({
2371 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2372 "with order";
2373 for (unsigned Idx : CurrentOrder)
2374 dbgs() << " " << Idx;
2375 dbgs() << "\n";
2377 // Insert new order with initial value 0, if it does not exist,
2378 // otherwise return the iterator to the existing one.
2379 auto StoredCurrentOrderAndNum =
2380 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2381 ++StoredCurrentOrderAndNum->getSecond();
2382 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2383 ReuseShuffleIndicies,
2384 StoredCurrentOrderAndNum->getFirst());
2385 // This is a special case, as it does not gather, but at the same time
2386 // we are not extending buildTree_rec() towards the operands.
2387 ValueList Op0;
2388 Op0.assign(VL.size(), VL0->getOperand(0));
2389 VectorizableTree.back()->setOperand(0, Op0);
2390 return;
2392 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2394 ReuseShuffleIndicies);
2395 BS.cancelScheduling(VL, VL0);
2396 return;
2398 case Instruction::Load: {
2399 // Check that a vectorized load would load the same memory as a scalar
2400 // load. For example, we don't want to vectorize loads that are smaller
2401 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2402 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2403 // from such a struct, we read/write packed bits disagreeing with the
2404 // unvectorized version.
2405 Type *ScalarTy = VL0->getType();
2407 if (DL->getTypeSizeInBits(ScalarTy) !=
2408 DL->getTypeAllocSizeInBits(ScalarTy)) {
2409 BS.cancelScheduling(VL, VL0);
2410 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2411 ReuseShuffleIndicies);
2412 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2413 return;
2416 // Make sure all loads in the bundle are simple - we can't vectorize
2417 // atomic or volatile loads.
2418 SmallVector<Value *, 4> PointerOps(VL.size());
2419 auto POIter = PointerOps.begin();
2420 for (Value *V : VL) {
2421 auto *L = cast<LoadInst>(V);
2422 if (!L->isSimple()) {
2423 BS.cancelScheduling(VL, VL0);
2424 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2425 ReuseShuffleIndicies);
2426 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2427 return;
2429 *POIter = L->getPointerOperand();
2430 ++POIter;
2433 OrdersType CurrentOrder;
2434 // Check the order of pointer operands.
2435 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2436 Value *Ptr0;
2437 Value *PtrN;
2438 if (CurrentOrder.empty()) {
2439 Ptr0 = PointerOps.front();
2440 PtrN = PointerOps.back();
2441 } else {
2442 Ptr0 = PointerOps[CurrentOrder.front()];
2443 PtrN = PointerOps[CurrentOrder.back()];
2445 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2446 const SCEV *ScevN = SE->getSCEV(PtrN);
2447 const auto *Diff =
2448 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2449 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2450 // Check that the sorted loads are consecutive.
2451 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
2452 if (CurrentOrder.empty()) {
2453 // Original loads are consecutive and does not require reordering.
2454 ++NumOpsWantToKeepOriginalOrder;
2455 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2456 UserTreeIdx, ReuseShuffleIndicies);
2457 TE->setOperandsInOrder();
2458 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2459 } else {
2460 // Need to reorder.
2461 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2462 ++I->getSecond();
2463 TreeEntry *TE =
2464 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2465 ReuseShuffleIndicies, I->getFirst());
2466 TE->setOperandsInOrder();
2467 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2469 return;
2473 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2474 BS.cancelScheduling(VL, VL0);
2475 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2476 ReuseShuffleIndicies);
2477 return;
2479 case Instruction::ZExt:
2480 case Instruction::SExt:
2481 case Instruction::FPToUI:
2482 case Instruction::FPToSI:
2483 case Instruction::FPExt:
2484 case Instruction::PtrToInt:
2485 case Instruction::IntToPtr:
2486 case Instruction::SIToFP:
2487 case Instruction::UIToFP:
2488 case Instruction::Trunc:
2489 case Instruction::FPTrunc:
2490 case Instruction::BitCast: {
2491 Type *SrcTy = VL0->getOperand(0)->getType();
2492 for (Value *V : VL) {
2493 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2494 if (Ty != SrcTy || !isValidElementType(Ty)) {
2495 BS.cancelScheduling(VL, VL0);
2496 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2497 ReuseShuffleIndicies);
2498 LLVM_DEBUG(dbgs()
2499 << "SLP: Gathering casts with different src types.\n");
2500 return;
2503 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2504 ReuseShuffleIndicies);
2505 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2507 TE->setOperandsInOrder();
2508 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2509 ValueList Operands;
2510 // Prepare the operand vector.
2511 for (Value *V : VL)
2512 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2514 buildTree_rec(Operands, Depth + 1, {TE, i});
2516 return;
2518 case Instruction::ICmp:
2519 case Instruction::FCmp: {
2520 // Check that all of the compares have the same predicate.
2521 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2522 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2523 Type *ComparedTy = VL0->getOperand(0)->getType();
2524 for (Value *V : VL) {
2525 CmpInst *Cmp = cast<CmpInst>(V);
2526 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2527 Cmp->getOperand(0)->getType() != ComparedTy) {
2528 BS.cancelScheduling(VL, VL0);
2529 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2530 ReuseShuffleIndicies);
2531 LLVM_DEBUG(dbgs()
2532 << "SLP: Gathering cmp with different predicate.\n");
2533 return;
2537 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2538 ReuseShuffleIndicies);
2539 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2541 ValueList Left, Right;
2542 if (cast<CmpInst>(VL0)->isCommutative()) {
2543 // Commutative predicate - collect + sort operands of the instructions
2544 // so that each side is more likely to have the same opcode.
2545 assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2546 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2547 } else {
2548 // Collect operands - commute if it uses the swapped predicate.
2549 for (Value *V : VL) {
2550 auto *Cmp = cast<CmpInst>(V);
2551 Value *LHS = Cmp->getOperand(0);
2552 Value *RHS = Cmp->getOperand(1);
2553 if (Cmp->getPredicate() != P0)
2554 std::swap(LHS, RHS);
2555 Left.push_back(LHS);
2556 Right.push_back(RHS);
2559 TE->setOperand(0, Left);
2560 TE->setOperand(1, Right);
2561 buildTree_rec(Left, Depth + 1, {TE, 0});
2562 buildTree_rec(Right, Depth + 1, {TE, 1});
2563 return;
2565 case Instruction::Select:
2566 case Instruction::FNeg:
2567 case Instruction::Add:
2568 case Instruction::FAdd:
2569 case Instruction::Sub:
2570 case Instruction::FSub:
2571 case Instruction::Mul:
2572 case Instruction::FMul:
2573 case Instruction::UDiv:
2574 case Instruction::SDiv:
2575 case Instruction::FDiv:
2576 case Instruction::URem:
2577 case Instruction::SRem:
2578 case Instruction::FRem:
2579 case Instruction::Shl:
2580 case Instruction::LShr:
2581 case Instruction::AShr:
2582 case Instruction::And:
2583 case Instruction::Or:
2584 case Instruction::Xor: {
2585 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2586 ReuseShuffleIndicies);
2587 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2589 // Sort operands of the instructions so that each side is more likely to
2590 // have the same opcode.
2591 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2592 ValueList Left, Right;
2593 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2594 TE->setOperand(0, Left);
2595 TE->setOperand(1, Right);
2596 buildTree_rec(Left, Depth + 1, {TE, 0});
2597 buildTree_rec(Right, Depth + 1, {TE, 1});
2598 return;
2601 TE->setOperandsInOrder();
2602 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2603 ValueList Operands;
2604 // Prepare the operand vector.
2605 for (Value *j : VL)
2606 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2608 buildTree_rec(Operands, Depth + 1, {TE, i});
2610 return;
2612 case Instruction::GetElementPtr: {
2613 // We don't combine GEPs with complicated (nested) indexing.
2614 for (Value *V : VL) {
2615 if (cast<Instruction>(V)->getNumOperands() != 2) {
2616 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2617 BS.cancelScheduling(VL, VL0);
2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2619 ReuseShuffleIndicies);
2620 return;
2624 // We can't combine several GEPs into one vector if they operate on
2625 // different types.
2626 Type *Ty0 = VL0->getOperand(0)->getType();
2627 for (Value *V : VL) {
2628 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2629 if (Ty0 != CurTy) {
2630 LLVM_DEBUG(dbgs()
2631 << "SLP: not-vectorizable GEP (different types).\n");
2632 BS.cancelScheduling(VL, VL0);
2633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2634 ReuseShuffleIndicies);
2635 return;
2639 // We don't combine GEPs with non-constant indexes.
2640 for (Value *V : VL) {
2641 auto Op = cast<Instruction>(V)->getOperand(1);
2642 if (!isa<ConstantInt>(Op)) {
2643 LLVM_DEBUG(dbgs()
2644 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2645 BS.cancelScheduling(VL, VL0);
2646 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2647 ReuseShuffleIndicies);
2648 return;
2652 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2653 ReuseShuffleIndicies);
2654 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2655 TE->setOperandsInOrder();
2656 for (unsigned i = 0, e = 2; i < e; ++i) {
2657 ValueList Operands;
2658 // Prepare the operand vector.
2659 for (Value *V : VL)
2660 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2662 buildTree_rec(Operands, Depth + 1, {TE, i});
2664 return;
2666 case Instruction::Store: {
2667 // Check if the stores are consecutive or if we need to swizzle them.
2668 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
2669 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
2670 BS.cancelScheduling(VL, VL0);
2671 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2672 ReuseShuffleIndicies);
2673 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2674 return;
2677 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2678 ReuseShuffleIndicies);
2679 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2681 ValueList Operands;
2682 for (Value *V : VL)
2683 Operands.push_back(cast<Instruction>(V)->getOperand(0));
2684 TE->setOperandsInOrder();
2685 buildTree_rec(Operands, Depth + 1, {TE, 0});
2686 return;
2688 case Instruction::Call: {
2689 // Check if the calls are all to the same vectorizable intrinsic.
2690 CallInst *CI = cast<CallInst>(VL0);
2691 // Check if this is an Intrinsic call or something that can be
2692 // represented by an intrinsic call
2693 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2694 if (!isTriviallyVectorizable(ID)) {
2695 BS.cancelScheduling(VL, VL0);
2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2697 ReuseShuffleIndicies);
2698 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
2699 return;
2701 Function *Int = CI->getCalledFunction();
2702 unsigned NumArgs = CI->getNumArgOperands();
2703 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
2704 for (unsigned j = 0; j != NumArgs; ++j)
2705 if (hasVectorInstrinsicScalarOpd(ID, j))
2706 ScalarArgs[j] = CI->getArgOperand(j);
2707 for (Value *V : VL) {
2708 CallInst *CI2 = dyn_cast<CallInst>(V);
2709 if (!CI2 || CI2->getCalledFunction() != Int ||
2710 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
2711 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
2712 BS.cancelScheduling(VL, VL0);
2713 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2714 ReuseShuffleIndicies);
2715 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
2716 << "\n");
2717 return;
2719 // Some intrinsics have scalar arguments and should be same in order for
2720 // them to be vectorized.
2721 for (unsigned j = 0; j != NumArgs; ++j) {
2722 if (hasVectorInstrinsicScalarOpd(ID, j)) {
2723 Value *A1J = CI2->getArgOperand(j);
2724 if (ScalarArgs[j] != A1J) {
2725 BS.cancelScheduling(VL, VL0);
2726 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2727 ReuseShuffleIndicies);
2728 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
2729 << " argument " << ScalarArgs[j] << "!=" << A1J
2730 << "\n");
2731 return;
2735 // Verify that the bundle operands are identical between the two calls.
2736 if (CI->hasOperandBundles() &&
2737 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
2738 CI->op_begin() + CI->getBundleOperandsEndIndex(),
2739 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
2740 BS.cancelScheduling(VL, VL0);
2741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2742 ReuseShuffleIndicies);
2743 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
2744 << *CI << "!=" << *V << '\n');
2745 return;
2749 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2750 ReuseShuffleIndicies);
2751 TE->setOperandsInOrder();
2752 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
2753 ValueList Operands;
2754 // Prepare the operand vector.
2755 for (Value *V : VL) {
2756 auto *CI2 = cast<CallInst>(V);
2757 Operands.push_back(CI2->getArgOperand(i));
2759 buildTree_rec(Operands, Depth + 1, {TE, i});
2761 return;
2763 case Instruction::ShuffleVector: {
2764 // If this is not an alternate sequence of opcode like add-sub
2765 // then do not vectorize this instruction.
2766 if (!S.isAltShuffle()) {
2767 BS.cancelScheduling(VL, VL0);
2768 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2769 ReuseShuffleIndicies);
2770 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
2771 return;
2773 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2774 ReuseShuffleIndicies);
2775 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
2777 // Reorder operands if reordering would enable vectorization.
2778 if (isa<BinaryOperator>(VL0)) {
2779 ValueList Left, Right;
2780 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2781 TE->setOperand(0, Left);
2782 TE->setOperand(1, Right);
2783 buildTree_rec(Left, Depth + 1, {TE, 0});
2784 buildTree_rec(Right, Depth + 1, {TE, 1});
2785 return;
2788 TE->setOperandsInOrder();
2789 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2790 ValueList Operands;
2791 // Prepare the operand vector.
2792 for (Value *V : VL)
2793 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2795 buildTree_rec(Operands, Depth + 1, {TE, i});
2797 return;
2799 default:
2800 BS.cancelScheduling(VL, VL0);
2801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2802 ReuseShuffleIndicies);
2803 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
2804 return;
2808 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
2809 unsigned N;
2810 Type *EltTy;
2811 auto *ST = dyn_cast<StructType>(T);
2812 if (ST) {
2813 N = ST->getNumElements();
2814 EltTy = *ST->element_begin();
2815 } else {
2816 N = cast<ArrayType>(T)->getNumElements();
2817 EltTy = cast<ArrayType>(T)->getElementType();
2819 if (!isValidElementType(EltTy))
2820 return 0;
2821 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
2822 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
2823 return 0;
2824 if (ST) {
2825 // Check that struct is homogeneous.
2826 for (const auto *Ty : ST->elements())
2827 if (Ty != EltTy)
2828 return 0;
2830 return N;
2833 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2834 SmallVectorImpl<unsigned> &CurrentOrder) const {
2835 Instruction *E0 = cast<Instruction>(OpValue);
2836 assert(E0->getOpcode() == Instruction::ExtractElement ||
2837 E0->getOpcode() == Instruction::ExtractValue);
2838 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
2839 // Check if all of the extracts come from the same vector and from the
2840 // correct offset.
2841 Value *Vec = E0->getOperand(0);
2843 CurrentOrder.clear();
2845 // We have to extract from a vector/aggregate with the same number of elements.
2846 unsigned NElts;
2847 if (E0->getOpcode() == Instruction::ExtractValue) {
2848 const DataLayout &DL = E0->getModule()->getDataLayout();
2849 NElts = canMapToVector(Vec->getType(), DL);
2850 if (!NElts)
2851 return false;
2852 // Check if load can be rewritten as load of vector.
2853 LoadInst *LI = dyn_cast<LoadInst>(Vec);
2854 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2855 return false;
2856 } else {
2857 NElts = Vec->getType()->getVectorNumElements();
2860 if (NElts != VL.size())
2861 return false;
2863 // Check that all of the indices extract from the correct offset.
2864 bool ShouldKeepOrder = true;
2865 unsigned E = VL.size();
2866 // Assign to all items the initial value E + 1 so we can check if the extract
2867 // instruction index was used already.
2868 // Also, later we can check that all the indices are used and we have a
2869 // consecutive access in the extract instructions, by checking that no
2870 // element of CurrentOrder still has value E + 1.
2871 CurrentOrder.assign(E, E + 1);
2872 unsigned I = 0;
2873 for (; I < E; ++I) {
2874 auto *Inst = cast<Instruction>(VL[I]);
2875 if (Inst->getOperand(0) != Vec)
2876 break;
2877 Optional<unsigned> Idx = getExtractIndex(Inst);
2878 if (!Idx)
2879 break;
2880 const unsigned ExtIdx = *Idx;
2881 if (ExtIdx != I) {
2882 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2883 break;
2884 ShouldKeepOrder = false;
2885 CurrentOrder[ExtIdx] = I;
2886 } else {
2887 if (CurrentOrder[I] != E + 1)
2888 break;
2889 CurrentOrder[I] = I;
2892 if (I < E) {
2893 CurrentOrder.clear();
2894 return false;
2897 return ShouldKeepOrder;
2900 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2901 return I->hasOneUse() ||
2902 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2903 return ScalarToTreeEntry.count(U) > 0;
2907 int BoUpSLP::getEntryCost(TreeEntry *E) {
2908 ArrayRef<Value*> VL = E->Scalars;
2910 Type *ScalarTy = VL[0]->getType();
2911 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2912 ScalarTy = SI->getValueOperand()->getType();
2913 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2914 ScalarTy = CI->getOperand(0)->getType();
2915 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2917 // If we have computed a smaller type for the expression, update VecTy so
2918 // that the costs will be accurate.
2919 if (MinBWs.count(VL[0]))
2920 VecTy = VectorType::get(
2921 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2923 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2924 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2925 int ReuseShuffleCost = 0;
2926 if (NeedToShuffleReuses) {
2927 ReuseShuffleCost =
2928 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2930 if (E->NeedToGather) {
2931 if (allConstant(VL))
2932 return 0;
2933 if (isSplat(VL)) {
2934 return ReuseShuffleCost +
2935 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2937 if (E->getOpcode() == Instruction::ExtractElement &&
2938 allSameType(VL) && allSameBlock(VL)) {
2939 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2940 if (ShuffleKind.hasValue()) {
2941 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2942 for (auto *V : VL) {
2943 // If all users of instruction are going to be vectorized and this
2944 // instruction itself is not going to be vectorized, consider this
2945 // instruction as dead and remove its cost from the final cost of the
2946 // vectorized tree.
2947 if (areAllUsersVectorized(cast<Instruction>(V)) &&
2948 !ScalarToTreeEntry.count(V)) {
2949 auto *IO = cast<ConstantInt>(
2950 cast<ExtractElementInst>(V)->getIndexOperand());
2951 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2952 IO->getZExtValue());
2955 return ReuseShuffleCost + Cost;
2958 return ReuseShuffleCost + getGatherCost(VL);
2960 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2961 Instruction *VL0 = E->getMainOp();
2962 unsigned ShuffleOrOp =
2963 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
2964 switch (ShuffleOrOp) {
2965 case Instruction::PHI:
2966 return 0;
2968 case Instruction::ExtractValue:
2969 case Instruction::ExtractElement:
2970 if (NeedToShuffleReuses) {
2971 unsigned Idx = 0;
2972 for (unsigned I : E->ReuseShuffleIndices) {
2973 if (ShuffleOrOp == Instruction::ExtractElement) {
2974 auto *IO = cast<ConstantInt>(
2975 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2976 Idx = IO->getZExtValue();
2977 ReuseShuffleCost -= TTI->getVectorInstrCost(
2978 Instruction::ExtractElement, VecTy, Idx);
2979 } else {
2980 ReuseShuffleCost -= TTI->getVectorInstrCost(
2981 Instruction::ExtractElement, VecTy, Idx);
2982 ++Idx;
2985 Idx = ReuseShuffleNumbers;
2986 for (Value *V : VL) {
2987 if (ShuffleOrOp == Instruction::ExtractElement) {
2988 auto *IO = cast<ConstantInt>(
2989 cast<ExtractElementInst>(V)->getIndexOperand());
2990 Idx = IO->getZExtValue();
2991 } else {
2992 --Idx;
2994 ReuseShuffleCost +=
2995 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2998 if (!E->NeedToGather) {
2999 int DeadCost = ReuseShuffleCost;
3000 if (!E->ReorderIndices.empty()) {
3001 // TODO: Merge this shuffle with the ReuseShuffleCost.
3002 DeadCost += TTI->getShuffleCost(
3003 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3005 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3006 Instruction *E = cast<Instruction>(VL[i]);
3007 // If all users are going to be vectorized, instruction can be
3008 // considered as dead.
3009 // The same, if have only one user, it will be vectorized for sure.
3010 if (areAllUsersVectorized(E)) {
3011 // Take credit for instruction that will become dead.
3012 if (E->hasOneUse()) {
3013 Instruction *Ext = E->user_back();
3014 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3015 all_of(Ext->users(),
3016 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3017 // Use getExtractWithExtendCost() to calculate the cost of
3018 // extractelement/ext pair.
3019 DeadCost -= TTI->getExtractWithExtendCost(
3020 Ext->getOpcode(), Ext->getType(), VecTy, i);
3021 // Add back the cost of s|zext which is subtracted separately.
3022 DeadCost += TTI->getCastInstrCost(
3023 Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
3024 continue;
3027 DeadCost -=
3028 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3031 return DeadCost;
3033 return ReuseShuffleCost + getGatherCost(VL);
3035 case Instruction::ZExt:
3036 case Instruction::SExt:
3037 case Instruction::FPToUI:
3038 case Instruction::FPToSI:
3039 case Instruction::FPExt:
3040 case Instruction::PtrToInt:
3041 case Instruction::IntToPtr:
3042 case Instruction::SIToFP:
3043 case Instruction::UIToFP:
3044 case Instruction::Trunc:
3045 case Instruction::FPTrunc:
3046 case Instruction::BitCast: {
3047 Type *SrcTy = VL0->getOperand(0)->getType();
3048 int ScalarEltCost =
3049 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3050 if (NeedToShuffleReuses) {
3051 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3054 // Calculate the cost of this instruction.
3055 int ScalarCost = VL.size() * ScalarEltCost;
3057 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3058 int VecCost = 0;
3059 // Check if the values are candidates to demote.
3060 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3061 VecCost = ReuseShuffleCost +
3062 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3064 return VecCost - ScalarCost;
3066 case Instruction::FCmp:
3067 case Instruction::ICmp:
3068 case Instruction::Select: {
3069 // Calculate the cost of this instruction.
3070 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3071 Builder.getInt1Ty(), VL0);
3072 if (NeedToShuffleReuses) {
3073 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3075 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3076 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3077 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3078 return ReuseShuffleCost + VecCost - ScalarCost;
3080 case Instruction::FNeg:
3081 case Instruction::Add:
3082 case Instruction::FAdd:
3083 case Instruction::Sub:
3084 case Instruction::FSub:
3085 case Instruction::Mul:
3086 case Instruction::FMul:
3087 case Instruction::UDiv:
3088 case Instruction::SDiv:
3089 case Instruction::FDiv:
3090 case Instruction::URem:
3091 case Instruction::SRem:
3092 case Instruction::FRem:
3093 case Instruction::Shl:
3094 case Instruction::LShr:
3095 case Instruction::AShr:
3096 case Instruction::And:
3097 case Instruction::Or:
3098 case Instruction::Xor: {
3099 // Certain instructions can be cheaper to vectorize if they have a
3100 // constant second vector operand.
3101 TargetTransformInfo::OperandValueKind Op1VK =
3102 TargetTransformInfo::OK_AnyValue;
3103 TargetTransformInfo::OperandValueKind Op2VK =
3104 TargetTransformInfo::OK_UniformConstantValue;
3105 TargetTransformInfo::OperandValueProperties Op1VP =
3106 TargetTransformInfo::OP_None;
3107 TargetTransformInfo::OperandValueProperties Op2VP =
3108 TargetTransformInfo::OP_PowerOf2;
3110 // If all operands are exactly the same ConstantInt then set the
3111 // operand kind to OK_UniformConstantValue.
3112 // If instead not all operands are constants, then set the operand kind
3113 // to OK_AnyValue. If all operands are constants but not the same,
3114 // then set the operand kind to OK_NonUniformConstantValue.
3115 ConstantInt *CInt0 = nullptr;
3116 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3117 const Instruction *I = cast<Instruction>(VL[i]);
3118 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3119 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3120 if (!CInt) {
3121 Op2VK = TargetTransformInfo::OK_AnyValue;
3122 Op2VP = TargetTransformInfo::OP_None;
3123 break;
3125 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3126 !CInt->getValue().isPowerOf2())
3127 Op2VP = TargetTransformInfo::OP_None;
3128 if (i == 0) {
3129 CInt0 = CInt;
3130 continue;
3132 if (CInt0 != CInt)
3133 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3136 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3137 int ScalarEltCost = TTI->getArithmeticInstrCost(
3138 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
3139 if (NeedToShuffleReuses) {
3140 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3142 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3143 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK,
3144 Op2VK, Op1VP, Op2VP, Operands);
3145 return ReuseShuffleCost + VecCost - ScalarCost;
3147 case Instruction::GetElementPtr: {
3148 TargetTransformInfo::OperandValueKind Op1VK =
3149 TargetTransformInfo::OK_AnyValue;
3150 TargetTransformInfo::OperandValueKind Op2VK =
3151 TargetTransformInfo::OK_UniformConstantValue;
3153 int ScalarEltCost =
3154 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3155 if (NeedToShuffleReuses) {
3156 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3158 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3159 int VecCost =
3160 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3161 return ReuseShuffleCost + VecCost - ScalarCost;
3163 case Instruction::Load: {
3164 // Cost of wide load - cost of scalar loads.
3165 unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
3166 int ScalarEltCost =
3167 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3168 if (NeedToShuffleReuses) {
3169 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3171 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3172 int VecLdCost =
3173 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3174 if (!E->ReorderIndices.empty()) {
3175 // TODO: Merge this shuffle with the ReuseShuffleCost.
3176 VecLdCost += TTI->getShuffleCost(
3177 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3179 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3181 case Instruction::Store: {
3182 // We know that we can merge the stores. Calculate the cost.
3183 unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
3184 int ScalarEltCost =
3185 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
3186 if (NeedToShuffleReuses) {
3187 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3189 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3190 int VecStCost =
3191 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
3192 return ReuseShuffleCost + VecStCost - ScalarStCost;
3194 case Instruction::Call: {
3195 CallInst *CI = cast<CallInst>(VL0);
3196 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3198 // Calculate the cost of the scalar and vector calls.
3199 SmallVector<Type *, 4> ScalarTys;
3200 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3201 ScalarTys.push_back(CI->getArgOperand(op)->getType());
3203 FastMathFlags FMF;
3204 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3205 FMF = FPMO->getFastMathFlags();
3207 int ScalarEltCost =
3208 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3209 if (NeedToShuffleReuses) {
3210 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3212 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3214 SmallVector<Value *, 4> Args(CI->arg_operands());
3215 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3216 VecTy->getNumElements());
3218 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3219 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3220 << " for " << *CI << "\n");
3222 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3224 case Instruction::ShuffleVector: {
3225 assert(E->isAltShuffle() &&
3226 ((Instruction::isBinaryOp(E->getOpcode()) &&
3227 Instruction::isBinaryOp(E->getAltOpcode())) ||
3228 (Instruction::isCast(E->getOpcode()) &&
3229 Instruction::isCast(E->getAltOpcode()))) &&
3230 "Invalid Shuffle Vector Operand");
3231 int ScalarCost = 0;
3232 if (NeedToShuffleReuses) {
3233 for (unsigned Idx : E->ReuseShuffleIndices) {
3234 Instruction *I = cast<Instruction>(VL[Idx]);
3235 ReuseShuffleCost -= TTI->getInstructionCost(
3236 I, TargetTransformInfo::TCK_RecipThroughput);
3238 for (Value *V : VL) {
3239 Instruction *I = cast<Instruction>(V);
3240 ReuseShuffleCost += TTI->getInstructionCost(
3241 I, TargetTransformInfo::TCK_RecipThroughput);
3244 for (Value *V : VL) {
3245 Instruction *I = cast<Instruction>(V);
3246 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3247 ScalarCost += TTI->getInstructionCost(
3248 I, TargetTransformInfo::TCK_RecipThroughput);
3250 // VecCost is equal to sum of the cost of creating 2 vectors
3251 // and the cost of creating shuffle.
3252 int VecCost = 0;
3253 if (Instruction::isBinaryOp(E->getOpcode())) {
3254 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3255 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3256 } else {
3257 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3258 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3259 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3260 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3261 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3262 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3264 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3265 return ReuseShuffleCost + VecCost - ScalarCost;
3267 default:
3268 llvm_unreachable("Unknown instruction");
3272 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3273 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3274 << VectorizableTree.size() << " is fully vectorizable .\n");
3276 // We only handle trees of heights 1 and 2.
3277 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
3278 return true;
3280 if (VectorizableTree.size() != 2)
3281 return false;
3283 // Handle splat and all-constants stores.
3284 if (!VectorizableTree[0]->NeedToGather &&
3285 (allConstant(VectorizableTree[1]->Scalars) ||
3286 isSplat(VectorizableTree[1]->Scalars)))
3287 return true;
3289 // Gathering cost would be too much for tiny trees.
3290 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
3291 return false;
3293 return true;
3296 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3297 if (RdxOpcode != Instruction::Or)
3298 return false;
3300 unsigned NumElts = VectorizableTree[0]->Scalars.size();
3301 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3303 // Look past the reduction to find a source value. Arbitrarily follow the
3304 // path through operand 0 of any 'or'. Also, peek through optional
3305 // shift-left-by-constant.
3306 Value *ZextLoad = FirstReduced;
3307 while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3308 match(ZextLoad, m_Shl(m_Value(), m_Constant())))
3309 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3311 // Check if the input to the reduction is an extended load.
3312 Value *LoadPtr;
3313 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3314 return false;
3316 // Require that the total load bit width is a legal integer type.
3317 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3318 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3319 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3320 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3321 LLVMContext &Context = FirstReduced->getContext();
3322 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
3323 return false;
3325 // Everything matched - assume that we can fold the whole sequence using
3326 // load combining.
3327 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
3328 << *(cast<Instruction>(FirstReduced)) << "\n");
3330 return true;
3333 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3334 // We can vectorize the tree if its size is greater than or equal to the
3335 // minimum size specified by the MinTreeSize command line option.
3336 if (VectorizableTree.size() >= MinTreeSize)
3337 return false;
3339 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3340 // can vectorize it if we can prove it fully vectorizable.
3341 if (isFullyVectorizableTinyTree())
3342 return false;
3344 assert(VectorizableTree.empty()
3345 ? ExternalUses.empty()
3346 : true && "We shouldn't have any external users");
3348 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3349 // vectorizable.
3350 return true;
3353 int BoUpSLP::getSpillCost() const {
3354 // Walk from the bottom of the tree to the top, tracking which values are
3355 // live. When we see a call instruction that is not part of our tree,
3356 // query TTI to see if there is a cost to keeping values live over it
3357 // (for example, if spills and fills are required).
3358 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3359 int Cost = 0;
3361 SmallPtrSet<Instruction*, 4> LiveValues;
3362 Instruction *PrevInst = nullptr;
3364 for (const auto &TEPtr : VectorizableTree) {
3365 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3366 if (!Inst)
3367 continue;
3369 if (!PrevInst) {
3370 PrevInst = Inst;
3371 continue;
3374 // Update LiveValues.
3375 LiveValues.erase(PrevInst);
3376 for (auto &J : PrevInst->operands()) {
3377 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3378 LiveValues.insert(cast<Instruction>(&*J));
3381 LLVM_DEBUG({
3382 dbgs() << "SLP: #LV: " << LiveValues.size();
3383 for (auto *X : LiveValues)
3384 dbgs() << " " << X->getName();
3385 dbgs() << ", Looking at ";
3386 Inst->dump();
3389 // Now find the sequence of instructions between PrevInst and Inst.
3390 unsigned NumCalls = 0;
3391 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3392 PrevInstIt =
3393 PrevInst->getIterator().getReverse();
3394 while (InstIt != PrevInstIt) {
3395 if (PrevInstIt == PrevInst->getParent()->rend()) {
3396 PrevInstIt = Inst->getParent()->rbegin();
3397 continue;
3400 // Debug informations don't impact spill cost.
3401 if ((isa<CallInst>(&*PrevInstIt) &&
3402 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3403 &*PrevInstIt != PrevInst)
3404 NumCalls++;
3406 ++PrevInstIt;
3409 if (NumCalls) {
3410 SmallVector<Type*, 4> V;
3411 for (auto *II : LiveValues)
3412 V.push_back(VectorType::get(II->getType(), BundleWidth));
3413 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3416 PrevInst = Inst;
3419 return Cost;
3422 int BoUpSLP::getTreeCost() {
3423 int Cost = 0;
3424 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3425 << VectorizableTree.size() << ".\n");
3427 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3429 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3430 TreeEntry &TE = *VectorizableTree[I].get();
3432 // We create duplicate tree entries for gather sequences that have multiple
3433 // uses. However, we should not compute the cost of duplicate sequences.
3434 // For example, if we have a build vector (i.e., insertelement sequence)
3435 // that is used by more than one vector instruction, we only need to
3436 // compute the cost of the insertelement instructions once. The redundant
3437 // instructions will be eliminated by CSE.
3439 // We should consider not creating duplicate tree entries for gather
3440 // sequences, and instead add additional edges to the tree representing
3441 // their uses. Since such an approach results in fewer total entries,
3442 // existing heuristics based on tree size may yield different results.
3444 if (TE.NeedToGather &&
3445 std::any_of(
3446 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
3447 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3448 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
3450 continue;
3452 int C = getEntryCost(&TE);
3453 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3454 << " for bundle that starts with " << *TE.Scalars[0]
3455 << ".\n");
3456 Cost += C;
3459 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3460 int ExtractCost = 0;
3461 for (ExternalUser &EU : ExternalUses) {
3462 // We only add extract cost once for the same scalar.
3463 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3464 continue;
3466 // Uses by ephemeral values are free (because the ephemeral value will be
3467 // removed prior to code generation, and so the extraction will be
3468 // removed as well).
3469 if (EphValues.count(EU.User))
3470 continue;
3472 // If we plan to rewrite the tree in a smaller type, we will need to sign
3473 // extend the extracted value back to the original type. Here, we account
3474 // for the extract and the added cost of the sign extend if needed.
3475 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3476 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3477 if (MinBWs.count(ScalarRoot)) {
3478 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3479 auto Extend =
3480 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3481 VecTy = VectorType::get(MinTy, BundleWidth);
3482 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3483 VecTy, EU.Lane);
3484 } else {
3485 ExtractCost +=
3486 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3490 int SpillCost = getSpillCost();
3491 Cost += SpillCost + ExtractCost;
3493 std::string Str;
3495 raw_string_ostream OS(Str);
3496 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3497 << "SLP: Extract Cost = " << ExtractCost << ".\n"
3498 << "SLP: Total Cost = " << Cost << ".\n";
3500 LLVM_DEBUG(dbgs() << Str);
3502 if (ViewSLPTree)
3503 ViewGraph(this, "SLP" + F->getName(), false, Str);
3505 return Cost;
3508 int BoUpSLP::getGatherCost(Type *Ty,
3509 const DenseSet<unsigned> &ShuffledIndices) const {
3510 int Cost = 0;
3511 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3512 if (!ShuffledIndices.count(i))
3513 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3514 if (!ShuffledIndices.empty())
3515 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3516 return Cost;
3519 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3520 // Find the type of the operands in VL.
3521 Type *ScalarTy = VL[0]->getType();
3522 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3523 ScalarTy = SI->getValueOperand()->getType();
3524 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3525 // Find the cost of inserting/extracting values from the vector.
3526 // Check if the same elements are inserted several times and count them as
3527 // shuffle candidates.
3528 DenseSet<unsigned> ShuffledElements;
3529 DenseSet<Value *> UniqueElements;
3530 // Iterate in reverse order to consider insert elements with the high cost.
3531 for (unsigned I = VL.size(); I > 0; --I) {
3532 unsigned Idx = I - 1;
3533 if (!UniqueElements.insert(VL[Idx]).second)
3534 ShuffledElements.insert(Idx);
3536 return getGatherCost(VecTy, ShuffledElements);
3539 // Perform operand reordering on the instructions in VL and return the reordered
3540 // operands in Left and Right.
3541 void BoUpSLP::reorderInputsAccordingToOpcode(
3542 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3543 SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3544 ScalarEvolution &SE) {
3545 if (VL.empty())
3546 return;
3547 VLOperands Ops(VL, DL, SE);
3548 // Reorder the operands in place.
3549 Ops.reorder();
3550 Left = Ops.getVL(0);
3551 Right = Ops.getVL(1);
3554 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3555 // Get the basic block this bundle is in. All instructions in the bundle
3556 // should be in this block.
3557 auto *Front = E->getMainOp();
3558 auto *BB = Front->getParent();
3559 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3560 [=](Value *V) -> bool {
3561 auto *I = cast<Instruction>(V);
3562 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3563 }));
3565 // The last instruction in the bundle in program order.
3566 Instruction *LastInst = nullptr;
3568 // Find the last instruction. The common case should be that BB has been
3569 // scheduled, and the last instruction is VL.back(). So we start with
3570 // VL.back() and iterate over schedule data until we reach the end of the
3571 // bundle. The end of the bundle is marked by null ScheduleData.
3572 if (BlocksSchedules.count(BB)) {
3573 auto *Bundle =
3574 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3575 if (Bundle && Bundle->isPartOfBundle())
3576 for (; Bundle; Bundle = Bundle->NextInBundle)
3577 if (Bundle->OpValue == Bundle->Inst)
3578 LastInst = Bundle->Inst;
3581 // LastInst can still be null at this point if there's either not an entry
3582 // for BB in BlocksSchedules or there's no ScheduleData available for
3583 // VL.back(). This can be the case if buildTree_rec aborts for various
3584 // reasons (e.g., the maximum recursion depth is reached, the maximum region
3585 // size is reached, etc.). ScheduleData is initialized in the scheduling
3586 // "dry-run".
3588 // If this happens, we can still find the last instruction by brute force. We
3589 // iterate forwards from Front (inclusive) until we either see all
3590 // instructions in the bundle or reach the end of the block. If Front is the
3591 // last instruction in program order, LastInst will be set to Front, and we
3592 // will visit all the remaining instructions in the block.
3594 // One of the reasons we exit early from buildTree_rec is to place an upper
3595 // bound on compile-time. Thus, taking an additional compile-time hit here is
3596 // not ideal. However, this should be exceedingly rare since it requires that
3597 // we both exit early from buildTree_rec and that the bundle be out-of-order
3598 // (causing us to iterate all the way to the end of the block).
3599 if (!LastInst) {
3600 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3601 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3602 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3603 LastInst = &I;
3604 if (Bundle.empty())
3605 break;
3608 assert(LastInst && "Failed to find last instruction in bundle");
3610 // Set the insertion point after the last instruction in the bundle. Set the
3611 // debug location to Front.
3612 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3613 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3616 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3617 Value *Vec = UndefValue::get(Ty);
3618 // Generate the 'InsertElement' instruction.
3619 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3620 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3621 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
3622 GatherSeq.insert(Insrt);
3623 CSEBlocks.insert(Insrt->getParent());
3625 // Add to our 'need-to-extract' list.
3626 if (TreeEntry *E = getTreeEntry(VL[i])) {
3627 // Find which lane we need to extract.
3628 int FoundLane = -1;
3629 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3630 // Is this the lane of the scalar that we are looking for ?
3631 if (E->Scalars[Lane] == VL[i]) {
3632 FoundLane = Lane;
3633 break;
3636 assert(FoundLane >= 0 && "Could not find the correct lane");
3637 if (!E->ReuseShuffleIndices.empty()) {
3638 FoundLane =
3639 std::distance(E->ReuseShuffleIndices.begin(),
3640 llvm::find(E->ReuseShuffleIndices, FoundLane));
3642 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3647 return Vec;
3650 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3651 InstructionsState S = getSameOpcode(VL);
3652 if (S.getOpcode()) {
3653 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3654 if (E->isSame(VL)) {
3655 Value *V = vectorizeTree(E);
3656 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3657 // We need to get the vectorized value but without shuffle.
3658 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3659 V = SV->getOperand(0);
3660 } else {
3661 // Reshuffle to get only unique values.
3662 SmallVector<unsigned, 4> UniqueIdxs;
3663 SmallSet<unsigned, 4> UsedIdxs;
3664 for(unsigned Idx : E->ReuseShuffleIndices)
3665 if (UsedIdxs.insert(Idx).second)
3666 UniqueIdxs.emplace_back(Idx);
3667 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3668 UniqueIdxs);
3671 return V;
3676 Type *ScalarTy = S.OpValue->getType();
3677 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3678 ScalarTy = SI->getValueOperand()->getType();
3680 // Check that every instruction appears once in this bundle.
3681 SmallVector<unsigned, 4> ReuseShuffleIndicies;
3682 SmallVector<Value *, 4> UniqueValues;
3683 if (VL.size() > 2) {
3684 DenseMap<Value *, unsigned> UniquePositions;
3685 for (Value *V : VL) {
3686 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3687 ReuseShuffleIndicies.emplace_back(Res.first->second);
3688 if (Res.second || isa<Constant>(V))
3689 UniqueValues.emplace_back(V);
3691 // Do not shuffle single element or if number of unique values is not power
3692 // of 2.
3693 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3694 !llvm::isPowerOf2_32(UniqueValues.size()))
3695 ReuseShuffleIndicies.clear();
3696 else
3697 VL = UniqueValues;
3699 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3701 Value *V = Gather(VL, VecTy);
3702 if (!ReuseShuffleIndicies.empty()) {
3703 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3704 ReuseShuffleIndicies, "shuffle");
3705 if (auto *I = dyn_cast<Instruction>(V)) {
3706 GatherSeq.insert(I);
3707 CSEBlocks.insert(I->getParent());
3710 return V;
3713 static void inversePermutation(ArrayRef<unsigned> Indices,
3714 SmallVectorImpl<unsigned> &Mask) {
3715 Mask.clear();
3716 const unsigned E = Indices.size();
3717 Mask.resize(E);
3718 for (unsigned I = 0; I < E; ++I)
3719 Mask[Indices[I]] = I;
3722 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3723 IRBuilder<>::InsertPointGuard Guard(Builder);
3725 if (E->VectorizedValue) {
3726 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
3727 return E->VectorizedValue;
3730 Instruction *VL0 = E->getMainOp();
3731 Type *ScalarTy = VL0->getType();
3732 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3733 ScalarTy = SI->getValueOperand()->getType();
3734 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3736 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3738 if (E->NeedToGather) {
3739 setInsertPointAfterBundle(E);
3740 auto *V = Gather(E->Scalars, VecTy);
3741 if (NeedToShuffleReuses) {
3742 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3743 E->ReuseShuffleIndices, "shuffle");
3744 if (auto *I = dyn_cast<Instruction>(V)) {
3745 GatherSeq.insert(I);
3746 CSEBlocks.insert(I->getParent());
3749 E->VectorizedValue = V;
3750 return V;
3753 unsigned ShuffleOrOp =
3754 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3755 switch (ShuffleOrOp) {
3756 case Instruction::PHI: {
3757 auto *PH = cast<PHINode>(VL0);
3758 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3759 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3760 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3761 Value *V = NewPhi;
3762 if (NeedToShuffleReuses) {
3763 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3764 E->ReuseShuffleIndices, "shuffle");
3766 E->VectorizedValue = V;
3768 // PHINodes may have multiple entries from the same block. We want to
3769 // visit every block once.
3770 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3772 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3773 ValueList Operands;
3774 BasicBlock *IBB = PH->getIncomingBlock(i);
3776 if (!VisitedBBs.insert(IBB).second) {
3777 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3778 continue;
3781 Builder.SetInsertPoint(IBB->getTerminator());
3782 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3783 Value *Vec = vectorizeTree(E->getOperand(i));
3784 NewPhi->addIncoming(Vec, IBB);
3787 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
3788 "Invalid number of incoming values");
3789 return V;
3792 case Instruction::ExtractElement: {
3793 if (!E->NeedToGather) {
3794 Value *V = E->getSingleOperand(0);
3795 if (!E->ReorderIndices.empty()) {
3796 OrdersType Mask;
3797 inversePermutation(E->ReorderIndices, Mask);
3798 Builder.SetInsertPoint(VL0);
3799 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3800 "reorder_shuffle");
3802 if (NeedToShuffleReuses) {
3803 // TODO: Merge this shuffle with the ReorderShuffleMask.
3804 if (E->ReorderIndices.empty())
3805 Builder.SetInsertPoint(VL0);
3806 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3807 E->ReuseShuffleIndices, "shuffle");
3809 E->VectorizedValue = V;
3810 return V;
3812 setInsertPointAfterBundle(E);
3813 auto *V = Gather(E->Scalars, VecTy);
3814 if (NeedToShuffleReuses) {
3815 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3816 E->ReuseShuffleIndices, "shuffle");
3817 if (auto *I = dyn_cast<Instruction>(V)) {
3818 GatherSeq.insert(I);
3819 CSEBlocks.insert(I->getParent());
3822 E->VectorizedValue = V;
3823 return V;
3825 case Instruction::ExtractValue: {
3826 if (!E->NeedToGather) {
3827 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
3828 Builder.SetInsertPoint(LI);
3829 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3830 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3831 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3832 Value *NewV = propagateMetadata(V, E->Scalars);
3833 if (!E->ReorderIndices.empty()) {
3834 OrdersType Mask;
3835 inversePermutation(E->ReorderIndices, Mask);
3836 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3837 "reorder_shuffle");
3839 if (NeedToShuffleReuses) {
3840 // TODO: Merge this shuffle with the ReorderShuffleMask.
3841 NewV = Builder.CreateShuffleVector(
3842 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3844 E->VectorizedValue = NewV;
3845 return NewV;
3847 setInsertPointAfterBundle(E);
3848 auto *V = Gather(E->Scalars, VecTy);
3849 if (NeedToShuffleReuses) {
3850 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3851 E->ReuseShuffleIndices, "shuffle");
3852 if (auto *I = dyn_cast<Instruction>(V)) {
3853 GatherSeq.insert(I);
3854 CSEBlocks.insert(I->getParent());
3857 E->VectorizedValue = V;
3858 return V;
3860 case Instruction::ZExt:
3861 case Instruction::SExt:
3862 case Instruction::FPToUI:
3863 case Instruction::FPToSI:
3864 case Instruction::FPExt:
3865 case Instruction::PtrToInt:
3866 case Instruction::IntToPtr:
3867 case Instruction::SIToFP:
3868 case Instruction::UIToFP:
3869 case Instruction::Trunc:
3870 case Instruction::FPTrunc:
3871 case Instruction::BitCast: {
3872 setInsertPointAfterBundle(E);
3874 Value *InVec = vectorizeTree(E->getOperand(0));
3876 if (E->VectorizedValue) {
3877 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3878 return E->VectorizedValue;
3881 auto *CI = cast<CastInst>(VL0);
3882 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3883 if (NeedToShuffleReuses) {
3884 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3885 E->ReuseShuffleIndices, "shuffle");
3887 E->VectorizedValue = V;
3888 ++NumVectorInstructions;
3889 return V;
3891 case Instruction::FCmp:
3892 case Instruction::ICmp: {
3893 setInsertPointAfterBundle(E);
3895 Value *L = vectorizeTree(E->getOperand(0));
3896 Value *R = vectorizeTree(E->getOperand(1));
3898 if (E->VectorizedValue) {
3899 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3900 return E->VectorizedValue;
3903 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3904 Value *V;
3905 if (E->getOpcode() == Instruction::FCmp)
3906 V = Builder.CreateFCmp(P0, L, R);
3907 else
3908 V = Builder.CreateICmp(P0, L, R);
3910 propagateIRFlags(V, E->Scalars, VL0);
3911 if (NeedToShuffleReuses) {
3912 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3913 E->ReuseShuffleIndices, "shuffle");
3915 E->VectorizedValue = V;
3916 ++NumVectorInstructions;
3917 return V;
3919 case Instruction::Select: {
3920 setInsertPointAfterBundle(E);
3922 Value *Cond = vectorizeTree(E->getOperand(0));
3923 Value *True = vectorizeTree(E->getOperand(1));
3924 Value *False = vectorizeTree(E->getOperand(2));
3926 if (E->VectorizedValue) {
3927 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3928 return E->VectorizedValue;
3931 Value *V = Builder.CreateSelect(Cond, True, False);
3932 if (NeedToShuffleReuses) {
3933 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3934 E->ReuseShuffleIndices, "shuffle");
3936 E->VectorizedValue = V;
3937 ++NumVectorInstructions;
3938 return V;
3940 case Instruction::FNeg: {
3941 setInsertPointAfterBundle(E);
3943 Value *Op = vectorizeTree(E->getOperand(0));
3945 if (E->VectorizedValue) {
3946 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3947 return E->VectorizedValue;
3950 Value *V = Builder.CreateUnOp(
3951 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
3952 propagateIRFlags(V, E->Scalars, VL0);
3953 if (auto *I = dyn_cast<Instruction>(V))
3954 V = propagateMetadata(I, E->Scalars);
3956 if (NeedToShuffleReuses) {
3957 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3958 E->ReuseShuffleIndices, "shuffle");
3960 E->VectorizedValue = V;
3961 ++NumVectorInstructions;
3963 return V;
3965 case Instruction::Add:
3966 case Instruction::FAdd:
3967 case Instruction::Sub:
3968 case Instruction::FSub:
3969 case Instruction::Mul:
3970 case Instruction::FMul:
3971 case Instruction::UDiv:
3972 case Instruction::SDiv:
3973 case Instruction::FDiv:
3974 case Instruction::URem:
3975 case Instruction::SRem:
3976 case Instruction::FRem:
3977 case Instruction::Shl:
3978 case Instruction::LShr:
3979 case Instruction::AShr:
3980 case Instruction::And:
3981 case Instruction::Or:
3982 case Instruction::Xor: {
3983 setInsertPointAfterBundle(E);
3985 Value *LHS = vectorizeTree(E->getOperand(0));
3986 Value *RHS = vectorizeTree(E->getOperand(1));
3988 if (E->VectorizedValue) {
3989 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3990 return E->VectorizedValue;
3993 Value *V = Builder.CreateBinOp(
3994 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
3995 RHS);
3996 propagateIRFlags(V, E->Scalars, VL0);
3997 if (auto *I = dyn_cast<Instruction>(V))
3998 V = propagateMetadata(I, E->Scalars);
4000 if (NeedToShuffleReuses) {
4001 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4002 E->ReuseShuffleIndices, "shuffle");
4004 E->VectorizedValue = V;
4005 ++NumVectorInstructions;
4007 return V;
4009 case Instruction::Load: {
4010 // Loads are inserted at the head of the tree because we don't want to
4011 // sink them all the way down past store instructions.
4012 bool IsReorder = E->updateStateIfReorder();
4013 if (IsReorder)
4014 VL0 = E->getMainOp();
4015 setInsertPointAfterBundle(E);
4017 LoadInst *LI = cast<LoadInst>(VL0);
4018 Type *ScalarLoadTy = LI->getType();
4019 unsigned AS = LI->getPointerAddressSpace();
4021 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4022 VecTy->getPointerTo(AS));
4024 // The pointer operand uses an in-tree scalar so we add the new BitCast to
4025 // ExternalUses list to make sure that an extract will be generated in the
4026 // future.
4027 Value *PO = LI->getPointerOperand();
4028 if (getTreeEntry(PO))
4029 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4031 MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
4032 LI = Builder.CreateLoad(VecTy, VecPtr);
4033 if (!Alignment)
4034 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
4035 LI->setAlignment(Alignment);
4036 Value *V = propagateMetadata(LI, E->Scalars);
4037 if (IsReorder) {
4038 OrdersType Mask;
4039 inversePermutation(E->ReorderIndices, Mask);
4040 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4041 Mask, "reorder_shuffle");
4043 if (NeedToShuffleReuses) {
4044 // TODO: Merge this shuffle with the ReorderShuffleMask.
4045 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4046 E->ReuseShuffleIndices, "shuffle");
4048 E->VectorizedValue = V;
4049 ++NumVectorInstructions;
4050 return V;
4052 case Instruction::Store: {
4053 StoreInst *SI = cast<StoreInst>(VL0);
4054 unsigned Alignment = SI->getAlignment();
4055 unsigned AS = SI->getPointerAddressSpace();
4057 setInsertPointAfterBundle(E);
4059 Value *VecValue = vectorizeTree(E->getOperand(0));
4060 Value *ScalarPtr = SI->getPointerOperand();
4061 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
4062 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
4064 // The pointer operand uses an in-tree scalar, so add the new BitCast to
4065 // ExternalUses to make sure that an extract will be generated in the
4066 // future.
4067 if (getTreeEntry(ScalarPtr))
4068 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4070 if (!Alignment)
4071 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
4073 ST->setAlignment(Align(Alignment));
4074 Value *V = propagateMetadata(ST, E->Scalars);
4075 if (NeedToShuffleReuses) {
4076 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4077 E->ReuseShuffleIndices, "shuffle");
4079 E->VectorizedValue = V;
4080 ++NumVectorInstructions;
4081 return V;
4083 case Instruction::GetElementPtr: {
4084 setInsertPointAfterBundle(E);
4086 Value *Op0 = vectorizeTree(E->getOperand(0));
4088 std::vector<Value *> OpVecs;
4089 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4090 ++j) {
4091 Value *OpVec = vectorizeTree(E->getOperand(j));
4092 OpVecs.push_back(OpVec);
4095 Value *V = Builder.CreateGEP(
4096 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4097 if (Instruction *I = dyn_cast<Instruction>(V))
4098 V = propagateMetadata(I, E->Scalars);
4100 if (NeedToShuffleReuses) {
4101 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4102 E->ReuseShuffleIndices, "shuffle");
4104 E->VectorizedValue = V;
4105 ++NumVectorInstructions;
4107 return V;
4109 case Instruction::Call: {
4110 CallInst *CI = cast<CallInst>(VL0);
4111 setInsertPointAfterBundle(E);
4113 Intrinsic::ID IID = Intrinsic::not_intrinsic;
4114 if (Function *FI = CI->getCalledFunction())
4115 IID = FI->getIntrinsicID();
4117 Value *ScalarArg = nullptr;
4118 std::vector<Value *> OpVecs;
4119 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4120 ValueList OpVL;
4121 // Some intrinsics have scalar arguments. This argument should not be
4122 // vectorized.
4123 if (hasVectorInstrinsicScalarOpd(IID, j)) {
4124 CallInst *CEI = cast<CallInst>(VL0);
4125 ScalarArg = CEI->getArgOperand(j);
4126 OpVecs.push_back(CEI->getArgOperand(j));
4127 continue;
4130 Value *OpVec = vectorizeTree(E->getOperand(j));
4131 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4132 OpVecs.push_back(OpVec);
4135 Module *M = F->getParent();
4136 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4137 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4138 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4139 SmallVector<OperandBundleDef, 1> OpBundles;
4140 CI->getOperandBundlesAsDefs(OpBundles);
4141 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4143 // The scalar argument uses an in-tree scalar so we add the new vectorized
4144 // call to ExternalUses list to make sure that an extract will be
4145 // generated in the future.
4146 if (ScalarArg && getTreeEntry(ScalarArg))
4147 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4149 propagateIRFlags(V, E->Scalars, VL0);
4150 if (NeedToShuffleReuses) {
4151 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4152 E->ReuseShuffleIndices, "shuffle");
4154 E->VectorizedValue = V;
4155 ++NumVectorInstructions;
4156 return V;
4158 case Instruction::ShuffleVector: {
4159 assert(E->isAltShuffle() &&
4160 ((Instruction::isBinaryOp(E->getOpcode()) &&
4161 Instruction::isBinaryOp(E->getAltOpcode())) ||
4162 (Instruction::isCast(E->getOpcode()) &&
4163 Instruction::isCast(E->getAltOpcode()))) &&
4164 "Invalid Shuffle Vector Operand");
4166 Value *LHS = nullptr, *RHS = nullptr;
4167 if (Instruction::isBinaryOp(E->getOpcode())) {
4168 setInsertPointAfterBundle(E);
4169 LHS = vectorizeTree(E->getOperand(0));
4170 RHS = vectorizeTree(E->getOperand(1));
4171 } else {
4172 setInsertPointAfterBundle(E);
4173 LHS = vectorizeTree(E->getOperand(0));
4176 if (E->VectorizedValue) {
4177 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4178 return E->VectorizedValue;
4181 Value *V0, *V1;
4182 if (Instruction::isBinaryOp(E->getOpcode())) {
4183 V0 = Builder.CreateBinOp(
4184 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4185 V1 = Builder.CreateBinOp(
4186 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4187 } else {
4188 V0 = Builder.CreateCast(
4189 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4190 V1 = Builder.CreateCast(
4191 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4194 // Create shuffle to take alternate operations from the vector.
4195 // Also, gather up main and alt scalar ops to propagate IR flags to
4196 // each vector operation.
4197 ValueList OpScalars, AltScalars;
4198 unsigned e = E->Scalars.size();
4199 SmallVector<Constant *, 8> Mask(e);
4200 for (unsigned i = 0; i < e; ++i) {
4201 auto *OpInst = cast<Instruction>(E->Scalars[i]);
4202 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4203 if (OpInst->getOpcode() == E->getAltOpcode()) {
4204 Mask[i] = Builder.getInt32(e + i);
4205 AltScalars.push_back(E->Scalars[i]);
4206 } else {
4207 Mask[i] = Builder.getInt32(i);
4208 OpScalars.push_back(E->Scalars[i]);
4212 Value *ShuffleMask = ConstantVector::get(Mask);
4213 propagateIRFlags(V0, OpScalars);
4214 propagateIRFlags(V1, AltScalars);
4216 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4217 if (Instruction *I = dyn_cast<Instruction>(V))
4218 V = propagateMetadata(I, E->Scalars);
4219 if (NeedToShuffleReuses) {
4220 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4221 E->ReuseShuffleIndices, "shuffle");
4223 E->VectorizedValue = V;
4224 ++NumVectorInstructions;
4226 return V;
4228 default:
4229 llvm_unreachable("unknown inst");
4231 return nullptr;
4234 Value *BoUpSLP::vectorizeTree() {
4235 ExtraValueToDebugLocsMap ExternallyUsedValues;
4236 return vectorizeTree(ExternallyUsedValues);
4239 Value *
4240 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4241 // All blocks must be scheduled before any instructions are inserted.
4242 for (auto &BSIter : BlocksSchedules) {
4243 scheduleBlock(BSIter.second.get());
4246 Builder.SetInsertPoint(&F->getEntryBlock().front());
4247 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4249 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4250 // vectorized root. InstCombine will then rewrite the entire expression. We
4251 // sign extend the extracted values below.
4252 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4253 if (MinBWs.count(ScalarRoot)) {
4254 if (auto *I = dyn_cast<Instruction>(VectorRoot))
4255 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4256 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4257 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4258 auto *VecTy = VectorType::get(MinTy, BundleWidth);
4259 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4260 VectorizableTree[0]->VectorizedValue = Trunc;
4263 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4264 << " values .\n");
4266 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4267 // specified by ScalarType.
4268 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4269 if (!MinBWs.count(ScalarRoot))
4270 return Ex;
4271 if (MinBWs[ScalarRoot].second)
4272 return Builder.CreateSExt(Ex, ScalarType);
4273 return Builder.CreateZExt(Ex, ScalarType);
4276 // Extract all of the elements with the external uses.
4277 for (const auto &ExternalUse : ExternalUses) {
4278 Value *Scalar = ExternalUse.Scalar;
4279 llvm::User *User = ExternalUse.User;
4281 // Skip users that we already RAUW. This happens when one instruction
4282 // has multiple uses of the same value.
4283 if (User && !is_contained(Scalar->users(), User))
4284 continue;
4285 TreeEntry *E = getTreeEntry(Scalar);
4286 assert(E && "Invalid scalar");
4287 assert(!E->NeedToGather && "Extracting from a gather list");
4289 Value *Vec = E->VectorizedValue;
4290 assert(Vec && "Can't find vectorizable value");
4292 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4293 // If User == nullptr, the Scalar is used as extra arg. Generate
4294 // ExtractElement instruction and update the record for this scalar in
4295 // ExternallyUsedValues.
4296 if (!User) {
4297 assert(ExternallyUsedValues.count(Scalar) &&
4298 "Scalar with nullptr as an external user must be registered in "
4299 "ExternallyUsedValues map");
4300 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4301 Builder.SetInsertPoint(VecI->getParent(),
4302 std::next(VecI->getIterator()));
4303 } else {
4304 Builder.SetInsertPoint(&F->getEntryBlock().front());
4306 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4307 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4308 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4309 auto &Locs = ExternallyUsedValues[Scalar];
4310 ExternallyUsedValues.insert({Ex, Locs});
4311 ExternallyUsedValues.erase(Scalar);
4312 // Required to update internally referenced instructions.
4313 Scalar->replaceAllUsesWith(Ex);
4314 continue;
4317 // Generate extracts for out-of-tree users.
4318 // Find the insertion point for the extractelement lane.
4319 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4320 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4321 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4322 if (PH->getIncomingValue(i) == Scalar) {
4323 Instruction *IncomingTerminator =
4324 PH->getIncomingBlock(i)->getTerminator();
4325 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4326 Builder.SetInsertPoint(VecI->getParent(),
4327 std::next(VecI->getIterator()));
4328 } else {
4329 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4331 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4332 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4333 CSEBlocks.insert(PH->getIncomingBlock(i));
4334 PH->setOperand(i, Ex);
4337 } else {
4338 Builder.SetInsertPoint(cast<Instruction>(User));
4339 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4340 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4341 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4342 User->replaceUsesOfWith(Scalar, Ex);
4344 } else {
4345 Builder.SetInsertPoint(&F->getEntryBlock().front());
4346 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4347 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4348 CSEBlocks.insert(&F->getEntryBlock());
4349 User->replaceUsesOfWith(Scalar, Ex);
4352 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4355 // For each vectorized value:
4356 for (auto &TEPtr : VectorizableTree) {
4357 TreeEntry *Entry = TEPtr.get();
4359 // No need to handle users of gathered values.
4360 if (Entry->NeedToGather)
4361 continue;
4363 assert(Entry->VectorizedValue && "Can't find vectorizable value");
4365 // For each lane:
4366 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4367 Value *Scalar = Entry->Scalars[Lane];
4369 #ifndef NDEBUG
4370 Type *Ty = Scalar->getType();
4371 if (!Ty->isVoidTy()) {
4372 for (User *U : Scalar->users()) {
4373 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4375 // It is legal to delete users in the ignorelist.
4376 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4377 "Deleting out-of-tree value");
4380 #endif
4381 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4382 eraseInstruction(cast<Instruction>(Scalar));
4386 Builder.ClearInsertionPoint();
4388 return VectorizableTree[0]->VectorizedValue;
4391 void BoUpSLP::optimizeGatherSequence() {
4392 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4393 << " gather sequences instructions.\n");
4394 // LICM InsertElementInst sequences.
4395 for (Instruction *I : GatherSeq) {
4396 if (isDeleted(I))
4397 continue;
4399 // Check if this block is inside a loop.
4400 Loop *L = LI->getLoopFor(I->getParent());
4401 if (!L)
4402 continue;
4404 // Check if it has a preheader.
4405 BasicBlock *PreHeader = L->getLoopPreheader();
4406 if (!PreHeader)
4407 continue;
4409 // If the vector or the element that we insert into it are
4410 // instructions that are defined in this basic block then we can't
4411 // hoist this instruction.
4412 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4413 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4414 if (Op0 && L->contains(Op0))
4415 continue;
4416 if (Op1 && L->contains(Op1))
4417 continue;
4419 // We can hoist this instruction. Move it to the pre-header.
4420 I->moveBefore(PreHeader->getTerminator());
4423 // Make a list of all reachable blocks in our CSE queue.
4424 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4425 CSEWorkList.reserve(CSEBlocks.size());
4426 for (BasicBlock *BB : CSEBlocks)
4427 if (DomTreeNode *N = DT->getNode(BB)) {
4428 assert(DT->isReachableFromEntry(N));
4429 CSEWorkList.push_back(N);
4432 // Sort blocks by domination. This ensures we visit a block after all blocks
4433 // dominating it are visited.
4434 llvm::stable_sort(CSEWorkList,
4435 [this](const DomTreeNode *A, const DomTreeNode *B) {
4436 return DT->properlyDominates(A, B);
4439 // Perform O(N^2) search over the gather sequences and merge identical
4440 // instructions. TODO: We can further optimize this scan if we split the
4441 // instructions into different buckets based on the insert lane.
4442 SmallVector<Instruction *, 16> Visited;
4443 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4444 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4445 "Worklist not sorted properly!");
4446 BasicBlock *BB = (*I)->getBlock();
4447 // For all instructions in blocks containing gather sequences:
4448 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4449 Instruction *In = &*it++;
4450 if (isDeleted(In))
4451 continue;
4452 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4453 continue;
4455 // Check if we can replace this instruction with any of the
4456 // visited instructions.
4457 for (Instruction *v : Visited) {
4458 if (In->isIdenticalTo(v) &&
4459 DT->dominates(v->getParent(), In->getParent())) {
4460 In->replaceAllUsesWith(v);
4461 eraseInstruction(In);
4462 In = nullptr;
4463 break;
4466 if (In) {
4467 assert(!is_contained(Visited, In));
4468 Visited.push_back(In);
4472 CSEBlocks.clear();
4473 GatherSeq.clear();
4476 // Groups the instructions to a bundle (which is then a single scheduling entity)
4477 // and schedules instructions until the bundle gets ready.
4478 Optional<BoUpSLP::ScheduleData *>
4479 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4480 const InstructionsState &S) {
4481 if (isa<PHINode>(S.OpValue))
4482 return nullptr;
4484 // Initialize the instruction bundle.
4485 Instruction *OldScheduleEnd = ScheduleEnd;
4486 ScheduleData *PrevInBundle = nullptr;
4487 ScheduleData *Bundle = nullptr;
4488 bool ReSchedule = false;
4489 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
4491 // Make sure that the scheduling region contains all
4492 // instructions of the bundle.
4493 for (Value *V : VL) {
4494 if (!extendSchedulingRegion(V, S))
4495 return None;
4498 for (Value *V : VL) {
4499 ScheduleData *BundleMember = getScheduleData(V);
4500 assert(BundleMember &&
4501 "no ScheduleData for bundle member (maybe not in same basic block)");
4502 if (BundleMember->IsScheduled) {
4503 // A bundle member was scheduled as single instruction before and now
4504 // needs to be scheduled as part of the bundle. We just get rid of the
4505 // existing schedule.
4506 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
4507 << " was already scheduled\n");
4508 ReSchedule = true;
4510 assert(BundleMember->isSchedulingEntity() &&
4511 "bundle member already part of other bundle");
4512 if (PrevInBundle) {
4513 PrevInBundle->NextInBundle = BundleMember;
4514 } else {
4515 Bundle = BundleMember;
4517 BundleMember->UnscheduledDepsInBundle = 0;
4518 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4520 // Group the instructions to a bundle.
4521 BundleMember->FirstInBundle = Bundle;
4522 PrevInBundle = BundleMember;
4524 if (ScheduleEnd != OldScheduleEnd) {
4525 // The scheduling region got new instructions at the lower end (or it is a
4526 // new region for the first bundle). This makes it necessary to
4527 // recalculate all dependencies.
4528 // It is seldom that this needs to be done a second time after adding the
4529 // initial bundle to the region.
4530 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4531 doForAllOpcodes(I, [](ScheduleData *SD) {
4532 SD->clearDependencies();
4535 ReSchedule = true;
4537 if (ReSchedule) {
4538 resetSchedule();
4539 initialFillReadyList(ReadyInsts);
4541 assert(Bundle && "Failed to find schedule bundle");
4543 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4544 << BB->getName() << "\n");
4546 calculateDependencies(Bundle, true, SLP);
4548 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4549 // means that there are no cyclic dependencies and we can schedule it.
4550 // Note that's important that we don't "schedule" the bundle yet (see
4551 // cancelScheduling).
4552 while (!Bundle->isReady() && !ReadyInsts.empty()) {
4554 ScheduleData *pickedSD = ReadyInsts.back();
4555 ReadyInsts.pop_back();
4557 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4558 schedule(pickedSD, ReadyInsts);
4561 if (!Bundle->isReady()) {
4562 cancelScheduling(VL, S.OpValue);
4563 return None;
4565 return Bundle;
4568 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4569 Value *OpValue) {
4570 if (isa<PHINode>(OpValue))
4571 return;
4573 ScheduleData *Bundle = getScheduleData(OpValue);
4574 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
4575 assert(!Bundle->IsScheduled &&
4576 "Can't cancel bundle which is already scheduled");
4577 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4578 "tried to unbundle something which is not a bundle");
4580 // Un-bundle: make single instructions out of the bundle.
4581 ScheduleData *BundleMember = Bundle;
4582 while (BundleMember) {
4583 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4584 BundleMember->FirstInBundle = BundleMember;
4585 ScheduleData *Next = BundleMember->NextInBundle;
4586 BundleMember->NextInBundle = nullptr;
4587 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4588 if (BundleMember->UnscheduledDepsInBundle == 0) {
4589 ReadyInsts.insert(BundleMember);
4591 BundleMember = Next;
4595 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4596 // Allocate a new ScheduleData for the instruction.
4597 if (ChunkPos >= ChunkSize) {
4598 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4599 ChunkPos = 0;
4601 return &(ScheduleDataChunks.back()[ChunkPos++]);
4604 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4605 const InstructionsState &S) {
4606 if (getScheduleData(V, isOneOf(S, V)))
4607 return true;
4608 Instruction *I = dyn_cast<Instruction>(V);
4609 assert(I && "bundle member must be an instruction");
4610 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4611 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4612 ScheduleData *ISD = getScheduleData(I);
4613 if (!ISD)
4614 return false;
4615 assert(isInSchedulingRegion(ISD) &&
4616 "ScheduleData not in scheduling region");
4617 ScheduleData *SD = allocateScheduleDataChunks();
4618 SD->Inst = I;
4619 SD->init(SchedulingRegionID, S.OpValue);
4620 ExtraScheduleDataMap[I][S.OpValue] = SD;
4621 return true;
4623 if (CheckSheduleForI(I))
4624 return true;
4625 if (!ScheduleStart) {
4626 // It's the first instruction in the new region.
4627 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4628 ScheduleStart = I;
4629 ScheduleEnd = I->getNextNode();
4630 if (isOneOf(S, I) != I)
4631 CheckSheduleForI(I);
4632 assert(ScheduleEnd && "tried to vectorize a terminator?");
4633 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
4634 return true;
4636 // Search up and down at the same time, because we don't know if the new
4637 // instruction is above or below the existing scheduling region.
4638 BasicBlock::reverse_iterator UpIter =
4639 ++ScheduleStart->getIterator().getReverse();
4640 BasicBlock::reverse_iterator UpperEnd = BB->rend();
4641 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4642 BasicBlock::iterator LowerEnd = BB->end();
4643 while (true) {
4644 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4645 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
4646 return false;
4649 if (UpIter != UpperEnd) {
4650 if (&*UpIter == I) {
4651 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4652 ScheduleStart = I;
4653 if (isOneOf(S, I) != I)
4654 CheckSheduleForI(I);
4655 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
4656 << "\n");
4657 return true;
4659 ++UpIter;
4661 if (DownIter != LowerEnd) {
4662 if (&*DownIter == I) {
4663 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4664 nullptr);
4665 ScheduleEnd = I->getNextNode();
4666 if (isOneOf(S, I) != I)
4667 CheckSheduleForI(I);
4668 assert(ScheduleEnd && "tried to vectorize a terminator?");
4669 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
4670 << "\n");
4671 return true;
4673 ++DownIter;
4675 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
4676 "instruction not found in block");
4678 return true;
4681 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4682 Instruction *ToI,
4683 ScheduleData *PrevLoadStore,
4684 ScheduleData *NextLoadStore) {
4685 ScheduleData *CurrentLoadStore = PrevLoadStore;
4686 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4687 ScheduleData *SD = ScheduleDataMap[I];
4688 if (!SD) {
4689 SD = allocateScheduleDataChunks();
4690 ScheduleDataMap[I] = SD;
4691 SD->Inst = I;
4693 assert(!isInSchedulingRegion(SD) &&
4694 "new ScheduleData already in scheduling region");
4695 SD->init(SchedulingRegionID, I);
4697 if (I->mayReadOrWriteMemory() &&
4698 (!isa<IntrinsicInst>(I) ||
4699 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4700 // Update the linked list of memory accessing instructions.
4701 if (CurrentLoadStore) {
4702 CurrentLoadStore->NextLoadStore = SD;
4703 } else {
4704 FirstLoadStoreInRegion = SD;
4706 CurrentLoadStore = SD;
4709 if (NextLoadStore) {
4710 if (CurrentLoadStore)
4711 CurrentLoadStore->NextLoadStore = NextLoadStore;
4712 } else {
4713 LastLoadStoreInRegion = CurrentLoadStore;
4717 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4718 bool InsertInReadyList,
4719 BoUpSLP *SLP) {
4720 assert(SD->isSchedulingEntity());
4722 SmallVector<ScheduleData *, 10> WorkList;
4723 WorkList.push_back(SD);
4725 while (!WorkList.empty()) {
4726 ScheduleData *SD = WorkList.back();
4727 WorkList.pop_back();
4729 ScheduleData *BundleMember = SD;
4730 while (BundleMember) {
4731 assert(isInSchedulingRegion(BundleMember));
4732 if (!BundleMember->hasValidDependencies()) {
4734 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
4735 << "\n");
4736 BundleMember->Dependencies = 0;
4737 BundleMember->resetUnscheduledDeps();
4739 // Handle def-use chain dependencies.
4740 if (BundleMember->OpValue != BundleMember->Inst) {
4741 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4742 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4743 BundleMember->Dependencies++;
4744 ScheduleData *DestBundle = UseSD->FirstInBundle;
4745 if (!DestBundle->IsScheduled)
4746 BundleMember->incrementUnscheduledDeps(1);
4747 if (!DestBundle->hasValidDependencies())
4748 WorkList.push_back(DestBundle);
4750 } else {
4751 for (User *U : BundleMember->Inst->users()) {
4752 if (isa<Instruction>(U)) {
4753 ScheduleData *UseSD = getScheduleData(U);
4754 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4755 BundleMember->Dependencies++;
4756 ScheduleData *DestBundle = UseSD->FirstInBundle;
4757 if (!DestBundle->IsScheduled)
4758 BundleMember->incrementUnscheduledDeps(1);
4759 if (!DestBundle->hasValidDependencies())
4760 WorkList.push_back(DestBundle);
4762 } else {
4763 // I'm not sure if this can ever happen. But we need to be safe.
4764 // This lets the instruction/bundle never be scheduled and
4765 // eventually disable vectorization.
4766 BundleMember->Dependencies++;
4767 BundleMember->incrementUnscheduledDeps(1);
4772 // Handle the memory dependencies.
4773 ScheduleData *DepDest = BundleMember->NextLoadStore;
4774 if (DepDest) {
4775 Instruction *SrcInst = BundleMember->Inst;
4776 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4777 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4778 unsigned numAliased = 0;
4779 unsigned DistToSrc = 1;
4781 while (DepDest) {
4782 assert(isInSchedulingRegion(DepDest));
4784 // We have two limits to reduce the complexity:
4785 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4786 // SLP->isAliased (which is the expensive part in this loop).
4787 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4788 // the whole loop (even if the loop is fast, it's quadratic).
4789 // It's important for the loop break condition (see below) to
4790 // check this limit even between two read-only instructions.
4791 if (DistToSrc >= MaxMemDepDistance ||
4792 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4793 (numAliased >= AliasedCheckLimit ||
4794 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4796 // We increment the counter only if the locations are aliased
4797 // (instead of counting all alias checks). This gives a better
4798 // balance between reduced runtime and accurate dependencies.
4799 numAliased++;
4801 DepDest->MemoryDependencies.push_back(BundleMember);
4802 BundleMember->Dependencies++;
4803 ScheduleData *DestBundle = DepDest->FirstInBundle;
4804 if (!DestBundle->IsScheduled) {
4805 BundleMember->incrementUnscheduledDeps(1);
4807 if (!DestBundle->hasValidDependencies()) {
4808 WorkList.push_back(DestBundle);
4811 DepDest = DepDest->NextLoadStore;
4813 // Example, explaining the loop break condition: Let's assume our
4814 // starting instruction is i0 and MaxMemDepDistance = 3.
4816 // +--------v--v--v
4817 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4818 // +--------^--^--^
4820 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4821 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4822 // Previously we already added dependencies from i3 to i6,i7,i8
4823 // (because of MaxMemDepDistance). As we added a dependency from
4824 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4825 // and we can abort this loop at i6.
4826 if (DistToSrc >= 2 * MaxMemDepDistance)
4827 break;
4828 DistToSrc++;
4832 BundleMember = BundleMember->NextInBundle;
4834 if (InsertInReadyList && SD->isReady()) {
4835 ReadyInsts.push_back(SD);
4836 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
4837 << "\n");
4842 void BoUpSLP::BlockScheduling::resetSchedule() {
4843 assert(ScheduleStart &&
4844 "tried to reset schedule on block which has not been scheduled");
4845 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4846 doForAllOpcodes(I, [&](ScheduleData *SD) {
4847 assert(isInSchedulingRegion(SD) &&
4848 "ScheduleData not in scheduling region");
4849 SD->IsScheduled = false;
4850 SD->resetUnscheduledDeps();
4853 ReadyInsts.clear();
4856 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4857 if (!BS->ScheduleStart)
4858 return;
4860 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4862 BS->resetSchedule();
4864 // For the real scheduling we use a more sophisticated ready-list: it is
4865 // sorted by the original instruction location. This lets the final schedule
4866 // be as close as possible to the original instruction order.
4867 struct ScheduleDataCompare {
4868 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4869 return SD2->SchedulingPriority < SD1->SchedulingPriority;
4872 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4874 // Ensure that all dependency data is updated and fill the ready-list with
4875 // initial instructions.
4876 int Idx = 0;
4877 int NumToSchedule = 0;
4878 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4879 I = I->getNextNode()) {
4880 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4881 assert(SD->isPartOfBundle() ==
4882 (getTreeEntry(SD->Inst) != nullptr) &&
4883 "scheduler and vectorizer bundle mismatch");
4884 SD->FirstInBundle->SchedulingPriority = Idx++;
4885 if (SD->isSchedulingEntity()) {
4886 BS->calculateDependencies(SD, false, this);
4887 NumToSchedule++;
4891 BS->initialFillReadyList(ReadyInsts);
4893 Instruction *LastScheduledInst = BS->ScheduleEnd;
4895 // Do the "real" scheduling.
4896 while (!ReadyInsts.empty()) {
4897 ScheduleData *picked = *ReadyInsts.begin();
4898 ReadyInsts.erase(ReadyInsts.begin());
4900 // Move the scheduled instruction(s) to their dedicated places, if not
4901 // there yet.
4902 ScheduleData *BundleMember = picked;
4903 while (BundleMember) {
4904 Instruction *pickedInst = BundleMember->Inst;
4905 if (LastScheduledInst->getNextNode() != pickedInst) {
4906 BS->BB->getInstList().remove(pickedInst);
4907 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4908 pickedInst);
4910 LastScheduledInst = pickedInst;
4911 BundleMember = BundleMember->NextInBundle;
4914 BS->schedule(picked, ReadyInsts);
4915 NumToSchedule--;
4917 assert(NumToSchedule == 0 && "could not schedule all instructions");
4919 // Avoid duplicate scheduling of the block.
4920 BS->ScheduleStart = nullptr;
4923 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
4924 // If V is a store, just return the width of the stored value without
4925 // traversing the expression tree. This is the common case.
4926 if (auto *Store = dyn_cast<StoreInst>(V))
4927 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4929 // If V is not a store, we can traverse the expression tree to find loads
4930 // that feed it. The type of the loaded value may indicate a more suitable
4931 // width than V's type. We want to base the vector element size on the width
4932 // of memory operations where possible.
4933 SmallVector<Instruction *, 16> Worklist;
4934 SmallPtrSet<Instruction *, 16> Visited;
4935 if (auto *I = dyn_cast<Instruction>(V))
4936 Worklist.push_back(I);
4938 // Traverse the expression tree in bottom-up order looking for loads. If we
4939 // encounter an instruction we don't yet handle, we give up.
4940 auto MaxWidth = 0u;
4941 auto FoundUnknownInst = false;
4942 while (!Worklist.empty() && !FoundUnknownInst) {
4943 auto *I = Worklist.pop_back_val();
4944 Visited.insert(I);
4946 // We should only be looking at scalar instructions here. If the current
4947 // instruction has a vector type, give up.
4948 auto *Ty = I->getType();
4949 if (isa<VectorType>(Ty))
4950 FoundUnknownInst = true;
4952 // If the current instruction is a load, update MaxWidth to reflect the
4953 // width of the loaded value.
4954 else if (isa<LoadInst>(I))
4955 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4957 // Otherwise, we need to visit the operands of the instruction. We only
4958 // handle the interesting cases from buildTree here. If an operand is an
4959 // instruction we haven't yet visited, we add it to the worklist.
4960 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4961 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4962 for (Use &U : I->operands())
4963 if (auto *J = dyn_cast<Instruction>(U.get()))
4964 if (!Visited.count(J))
4965 Worklist.push_back(J);
4968 // If we don't yet handle the instruction, give up.
4969 else
4970 FoundUnknownInst = true;
4973 // If we didn't encounter a memory access in the expression tree, or if we
4974 // gave up for some reason, just return the width of V.
4975 if (!MaxWidth || FoundUnknownInst)
4976 return DL->getTypeSizeInBits(V->getType());
4978 // Otherwise, return the maximum width we found.
4979 return MaxWidth;
4982 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4983 // smaller type with a truncation. We collect the values that will be demoted
4984 // in ToDemote and additional roots that require investigating in Roots.
4985 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4986 SmallVectorImpl<Value *> &ToDemote,
4987 SmallVectorImpl<Value *> &Roots) {
4988 // We can always demote constants.
4989 if (isa<Constant>(V)) {
4990 ToDemote.push_back(V);
4991 return true;
4994 // If the value is not an instruction in the expression with only one use, it
4995 // cannot be demoted.
4996 auto *I = dyn_cast<Instruction>(V);
4997 if (!I || !I->hasOneUse() || !Expr.count(I))
4998 return false;
5000 switch (I->getOpcode()) {
5002 // We can always demote truncations and extensions. Since truncations can
5003 // seed additional demotion, we save the truncated value.
5004 case Instruction::Trunc:
5005 Roots.push_back(I->getOperand(0));
5006 break;
5007 case Instruction::ZExt:
5008 case Instruction::SExt:
5009 break;
5011 // We can demote certain binary operations if we can demote both of their
5012 // operands.
5013 case Instruction::Add:
5014 case Instruction::Sub:
5015 case Instruction::Mul:
5016 case Instruction::And:
5017 case Instruction::Or:
5018 case Instruction::Xor:
5019 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5020 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5021 return false;
5022 break;
5024 // We can demote selects if we can demote their true and false values.
5025 case Instruction::Select: {
5026 SelectInst *SI = cast<SelectInst>(I);
5027 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5028 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5029 return false;
5030 break;
5033 // We can demote phis if we can demote all their incoming operands. Note that
5034 // we don't need to worry about cycles since we ensure single use above.
5035 case Instruction::PHI: {
5036 PHINode *PN = cast<PHINode>(I);
5037 for (Value *IncValue : PN->incoming_values())
5038 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5039 return false;
5040 break;
5043 // Otherwise, conservatively give up.
5044 default:
5045 return false;
5048 // Record the value that we can demote.
5049 ToDemote.push_back(V);
5050 return true;
5053 void BoUpSLP::computeMinimumValueSizes() {
5054 // If there are no external uses, the expression tree must be rooted by a
5055 // store. We can't demote in-memory values, so there is nothing to do here.
5056 if (ExternalUses.empty())
5057 return;
5059 // We only attempt to truncate integer expressions.
5060 auto &TreeRoot = VectorizableTree[0]->Scalars;
5061 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5062 if (!TreeRootIT)
5063 return;
5065 // If the expression is not rooted by a store, these roots should have
5066 // external uses. We will rely on InstCombine to rewrite the expression in
5067 // the narrower type. However, InstCombine only rewrites single-use values.
5068 // This means that if a tree entry other than a root is used externally, it
5069 // must have multiple uses and InstCombine will not rewrite it. The code
5070 // below ensures that only the roots are used externally.
5071 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5072 for (auto &EU : ExternalUses)
5073 if (!Expr.erase(EU.Scalar))
5074 return;
5075 if (!Expr.empty())
5076 return;
5078 // Collect the scalar values of the vectorizable expression. We will use this
5079 // context to determine which values can be demoted. If we see a truncation,
5080 // we mark it as seeding another demotion.
5081 for (auto &EntryPtr : VectorizableTree)
5082 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5084 // Ensure the roots of the vectorizable tree don't form a cycle. They must
5085 // have a single external user that is not in the vectorizable tree.
5086 for (auto *Root : TreeRoot)
5087 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5088 return;
5090 // Conservatively determine if we can actually truncate the roots of the
5091 // expression. Collect the values that can be demoted in ToDemote and
5092 // additional roots that require investigating in Roots.
5093 SmallVector<Value *, 32> ToDemote;
5094 SmallVector<Value *, 4> Roots;
5095 for (auto *Root : TreeRoot)
5096 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5097 return;
5099 // The maximum bit width required to represent all the values that can be
5100 // demoted without loss of precision. It would be safe to truncate the roots
5101 // of the expression to this width.
5102 auto MaxBitWidth = 8u;
5104 // We first check if all the bits of the roots are demanded. If they're not,
5105 // we can truncate the roots to this narrower type.
5106 for (auto *Root : TreeRoot) {
5107 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5108 MaxBitWidth = std::max<unsigned>(
5109 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5112 // True if the roots can be zero-extended back to their original type, rather
5113 // than sign-extended. We know that if the leading bits are not demanded, we
5114 // can safely zero-extend. So we initialize IsKnownPositive to True.
5115 bool IsKnownPositive = true;
5117 // If all the bits of the roots are demanded, we can try a little harder to
5118 // compute a narrower type. This can happen, for example, if the roots are
5119 // getelementptr indices. InstCombine promotes these indices to the pointer
5120 // width. Thus, all their bits are technically demanded even though the
5121 // address computation might be vectorized in a smaller type.
5123 // We start by looking at each entry that can be demoted. We compute the
5124 // maximum bit width required to store the scalar by using ValueTracking to
5125 // compute the number of high-order bits we can truncate.
5126 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5127 llvm::all_of(TreeRoot, [](Value *R) {
5128 assert(R->hasOneUse() && "Root should have only one use!");
5129 return isa<GetElementPtrInst>(R->user_back());
5130 })) {
5131 MaxBitWidth = 8u;
5133 // Determine if the sign bit of all the roots is known to be zero. If not,
5134 // IsKnownPositive is set to False.
5135 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5136 KnownBits Known = computeKnownBits(R, *DL);
5137 return Known.isNonNegative();
5140 // Determine the maximum number of bits required to store the scalar
5141 // values.
5142 for (auto *Scalar : ToDemote) {
5143 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5144 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5145 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5148 // If we can't prove that the sign bit is zero, we must add one to the
5149 // maximum bit width to account for the unknown sign bit. This preserves
5150 // the existing sign bit so we can safely sign-extend the root back to the
5151 // original type. Otherwise, if we know the sign bit is zero, we will
5152 // zero-extend the root instead.
5154 // FIXME: This is somewhat suboptimal, as there will be cases where adding
5155 // one to the maximum bit width will yield a larger-than-necessary
5156 // type. In general, we need to add an extra bit only if we can't
5157 // prove that the upper bit of the original type is equal to the
5158 // upper bit of the proposed smaller type. If these two bits are the
5159 // same (either zero or one) we know that sign-extending from the
5160 // smaller type will result in the same value. Here, since we can't
5161 // yet prove this, we are just making the proposed smaller type
5162 // larger to ensure correctness.
5163 if (!IsKnownPositive)
5164 ++MaxBitWidth;
5167 // Round MaxBitWidth up to the next power-of-two.
5168 if (!isPowerOf2_64(MaxBitWidth))
5169 MaxBitWidth = NextPowerOf2(MaxBitWidth);
5171 // If the maximum bit width we compute is less than the with of the roots'
5172 // type, we can proceed with the narrowing. Otherwise, do nothing.
5173 if (MaxBitWidth >= TreeRootIT->getBitWidth())
5174 return;
5176 // If we can truncate the root, we must collect additional values that might
5177 // be demoted as a result. That is, those seeded by truncations we will
5178 // modify.
5179 while (!Roots.empty())
5180 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5182 // Finally, map the values we can demote to the maximum bit with we computed.
5183 for (auto *Scalar : ToDemote)
5184 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5187 namespace {
5189 /// The SLPVectorizer Pass.
5190 struct SLPVectorizer : public FunctionPass {
5191 SLPVectorizerPass Impl;
5193 /// Pass identification, replacement for typeid
5194 static char ID;
5196 explicit SLPVectorizer() : FunctionPass(ID) {
5197 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5200 bool doInitialization(Module &M) override {
5201 return false;
5204 bool runOnFunction(Function &F) override {
5205 if (skipFunction(F))
5206 return false;
5208 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5209 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5210 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5211 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5212 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5213 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5214 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5215 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5216 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5217 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5219 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5222 void getAnalysisUsage(AnalysisUsage &AU) const override {
5223 FunctionPass::getAnalysisUsage(AU);
5224 AU.addRequired<AssumptionCacheTracker>();
5225 AU.addRequired<ScalarEvolutionWrapperPass>();
5226 AU.addRequired<AAResultsWrapperPass>();
5227 AU.addRequired<TargetTransformInfoWrapperPass>();
5228 AU.addRequired<LoopInfoWrapperPass>();
5229 AU.addRequired<DominatorTreeWrapperPass>();
5230 AU.addRequired<DemandedBitsWrapperPass>();
5231 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5232 AU.addPreserved<LoopInfoWrapperPass>();
5233 AU.addPreserved<DominatorTreeWrapperPass>();
5234 AU.addPreserved<AAResultsWrapperPass>();
5235 AU.addPreserved<GlobalsAAWrapperPass>();
5236 AU.setPreservesCFG();
5240 } // end anonymous namespace
5242 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5243 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5244 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5245 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5246 auto *AA = &AM.getResult<AAManager>(F);
5247 auto *LI = &AM.getResult<LoopAnalysis>(F);
5248 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5249 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5250 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5251 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5253 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5254 if (!Changed)
5255 return PreservedAnalyses::all();
5257 PreservedAnalyses PA;
5258 PA.preserveSet<CFGAnalyses>();
5259 PA.preserve<AAManager>();
5260 PA.preserve<GlobalsAA>();
5261 return PA;
5264 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5265 TargetTransformInfo *TTI_,
5266 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5267 LoopInfo *LI_, DominatorTree *DT_,
5268 AssumptionCache *AC_, DemandedBits *DB_,
5269 OptimizationRemarkEmitter *ORE_) {
5270 SE = SE_;
5271 TTI = TTI_;
5272 TLI = TLI_;
5273 AA = AA_;
5274 LI = LI_;
5275 DT = DT_;
5276 AC = AC_;
5277 DB = DB_;
5278 DL = &F.getParent()->getDataLayout();
5280 Stores.clear();
5281 GEPs.clear();
5282 bool Changed = false;
5284 // If the target claims to have no vector registers don't attempt
5285 // vectorization.
5286 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5287 return false;
5289 // Don't vectorize when the attribute NoImplicitFloat is used.
5290 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5291 return false;
5293 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5295 // Use the bottom up slp vectorizer to construct chains that start with
5296 // store instructions.
5297 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5299 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5300 // delete instructions.
5302 // Scan the blocks in the function in post order.
5303 for (auto BB : post_order(&F.getEntryBlock())) {
5304 collectSeedInstructions(BB);
5306 // Vectorize trees that end at stores.
5307 if (!Stores.empty()) {
5308 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5309 << " underlying objects.\n");
5310 Changed |= vectorizeStoreChains(R);
5313 // Vectorize trees that end at reductions.
5314 Changed |= vectorizeChainsInBlock(BB, R);
5316 // Vectorize the index computations of getelementptr instructions. This
5317 // is primarily intended to catch gather-like idioms ending at
5318 // non-consecutive loads.
5319 if (!GEPs.empty()) {
5320 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5321 << " underlying objects.\n");
5322 Changed |= vectorizeGEPIndices(BB, R);
5326 if (Changed) {
5327 R.optimizeGatherSequence();
5328 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5329 LLVM_DEBUG(verifyFunction(F));
5331 return Changed;
5334 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5335 unsigned VecRegSize) {
5336 const unsigned ChainLen = Chain.size();
5337 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
5338 << "\n");
5339 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5340 const unsigned VF = VecRegSize / Sz;
5342 if (!isPowerOf2_32(Sz) || VF < 2)
5343 return false;
5345 bool Changed = false;
5346 // Look for profitable vectorizable trees at all offsets, starting at zero.
5347 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
5349 ArrayRef<Value *> Operands = Chain.slice(i, VF);
5350 // Check that a previous iteration of this loop did not delete the Value.
5351 if (llvm::any_of(Operands, [&R](Value *V) {
5352 auto *I = dyn_cast<Instruction>(V);
5353 return I && R.isDeleted(I);
5355 continue;
5357 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
5358 << "\n");
5360 R.buildTree(Operands);
5361 if (R.isTreeTinyAndNotFullyVectorizable())
5362 continue;
5364 R.computeMinimumValueSizes();
5366 int Cost = R.getTreeCost();
5368 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
5369 << "\n");
5370 if (Cost < -SLPCostThreshold) {
5371 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5373 using namespace ore;
5375 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5376 cast<StoreInst>(Chain[i]))
5377 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5378 << " and with tree size "
5379 << NV("TreeSize", R.getTreeSize()));
5381 R.vectorizeTree();
5383 // Move to the next bundle.
5384 i += VF - 1;
5385 Changed = true;
5389 return Changed;
5392 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5393 BoUpSLP &R) {
5394 SetVector<StoreInst *> Heads;
5395 SmallDenseSet<StoreInst *> Tails;
5396 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
5398 // We may run into multiple chains that merge into a single chain. We mark the
5399 // stores that we vectorized so that we don't visit the same store twice.
5400 BoUpSLP::ValueSet VectorizedStores;
5401 bool Changed = false;
5403 auto &&FindConsecutiveAccess =
5404 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
5405 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5406 return false;
5408 Tails.insert(Stores[Idx]);
5409 Heads.insert(Stores[K]);
5410 ConsecutiveChain[Stores[K]] = Stores[Idx];
5411 return true;
5414 // Do a quadratic search on all of the given stores in reverse order and find
5415 // all of the pairs of stores that follow each other.
5416 int E = Stores.size();
5417 for (int Idx = E - 1; Idx >= 0; --Idx) {
5418 // If a store has multiple consecutive store candidates, search according
5419 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5420 // This is because usually pairing with immediate succeeding or preceding
5421 // candidate create the best chance to find slp vectorization opportunity.
5422 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
5423 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5424 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5425 break;
5428 // For stores that start but don't end a link in the chain:
5429 for (auto *SI : llvm::reverse(Heads)) {
5430 if (Tails.count(SI))
5431 continue;
5433 // We found a store instr that starts a chain. Now follow the chain and try
5434 // to vectorize it.
5435 BoUpSLP::ValueList Operands;
5436 StoreInst *I = SI;
5437 // Collect the chain into a list.
5438 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
5439 Operands.push_back(I);
5440 // Move to the next value in the chain.
5441 I = ConsecutiveChain[I];
5444 // FIXME: Is division-by-2 the correct step? Should we assert that the
5445 // register size is a power-of-2?
5446 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
5447 Size /= 2) {
5448 if (vectorizeStoreChain(Operands, R, Size)) {
5449 // Mark the vectorized stores so that we don't vectorize them again.
5450 VectorizedStores.insert(Operands.begin(), Operands.end());
5451 Changed = true;
5452 break;
5457 return Changed;
5460 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5461 // Initialize the collections. We will make a single pass over the block.
5462 Stores.clear();
5463 GEPs.clear();
5465 // Visit the store and getelementptr instructions in BB and organize them in
5466 // Stores and GEPs according to the underlying objects of their pointer
5467 // operands.
5468 for (Instruction &I : *BB) {
5469 // Ignore store instructions that are volatile or have a pointer operand
5470 // that doesn't point to a scalar type.
5471 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5472 if (!SI->isSimple())
5473 continue;
5474 if (!isValidElementType(SI->getValueOperand()->getType()))
5475 continue;
5476 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5479 // Ignore getelementptr instructions that have more than one index, a
5480 // constant index, or a pointer operand that doesn't point to a scalar
5481 // type.
5482 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5483 auto Idx = GEP->idx_begin()->get();
5484 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5485 continue;
5486 if (!isValidElementType(Idx->getType()))
5487 continue;
5488 if (GEP->getType()->isVectorTy())
5489 continue;
5490 GEPs[GEP->getPointerOperand()].push_back(GEP);
5495 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5496 if (!A || !B)
5497 return false;
5498 Value *VL[] = { A, B };
5499 return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5502 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5503 int UserCost, bool AllowReorder) {
5504 if (VL.size() < 2)
5505 return false;
5507 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5508 << VL.size() << ".\n");
5510 // Check that all of the parts are scalar instructions of the same type,
5511 // we permit an alternate opcode via InstructionsState.
5512 InstructionsState S = getSameOpcode(VL);
5513 if (!S.getOpcode())
5514 return false;
5516 Instruction *I0 = cast<Instruction>(S.OpValue);
5517 unsigned Sz = R.getVectorElementSize(I0);
5518 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5519 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5520 if (MaxVF < 2) {
5521 R.getORE()->emit([&]() {
5522 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5523 << "Cannot SLP vectorize list: vectorization factor "
5524 << "less than 2 is not supported";
5526 return false;
5529 for (Value *V : VL) {
5530 Type *Ty = V->getType();
5531 if (!isValidElementType(Ty)) {
5532 // NOTE: the following will give user internal llvm type name, which may
5533 // not be useful.
5534 R.getORE()->emit([&]() {
5535 std::string type_str;
5536 llvm::raw_string_ostream rso(type_str);
5537 Ty->print(rso);
5538 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5539 << "Cannot SLP vectorize list: type "
5540 << rso.str() + " is unsupported by vectorizer";
5542 return false;
5546 bool Changed = false;
5547 bool CandidateFound = false;
5548 int MinCost = SLPCostThreshold;
5550 unsigned NextInst = 0, MaxInst = VL.size();
5551 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5552 // No actual vectorization should happen, if number of parts is the same as
5553 // provided vectorization factor (i.e. the scalar type is used for vector
5554 // code during codegen).
5555 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5556 if (TTI->getNumberOfParts(VecTy) == VF)
5557 continue;
5558 for (unsigned I = NextInst; I < MaxInst; ++I) {
5559 unsigned OpsWidth = 0;
5561 if (I + VF > MaxInst)
5562 OpsWidth = MaxInst - I;
5563 else
5564 OpsWidth = VF;
5566 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5567 break;
5569 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5570 // Check that a previous iteration of this loop did not delete the Value.
5571 if (llvm::any_of(Ops, [&R](Value *V) {
5572 auto *I = dyn_cast<Instruction>(V);
5573 return I && R.isDeleted(I);
5575 continue;
5577 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5578 << "\n");
5580 R.buildTree(Ops);
5581 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5582 // TODO: check if we can allow reordering for more cases.
5583 if (AllowReorder && Order) {
5584 // TODO: reorder tree nodes without tree rebuilding.
5585 // Conceptually, there is nothing actually preventing us from trying to
5586 // reorder a larger list. In fact, we do exactly this when vectorizing
5587 // reductions. However, at this point, we only expect to get here when
5588 // there are exactly two operations.
5589 assert(Ops.size() == 2);
5590 Value *ReorderedOps[] = {Ops[1], Ops[0]};
5591 R.buildTree(ReorderedOps, None);
5593 if (R.isTreeTinyAndNotFullyVectorizable())
5594 continue;
5596 R.computeMinimumValueSizes();
5597 int Cost = R.getTreeCost() - UserCost;
5598 CandidateFound = true;
5599 MinCost = std::min(MinCost, Cost);
5601 if (Cost < -SLPCostThreshold) {
5602 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5603 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5604 cast<Instruction>(Ops[0]))
5605 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5606 << " and with tree size "
5607 << ore::NV("TreeSize", R.getTreeSize()));
5609 R.vectorizeTree();
5610 // Move to the next bundle.
5611 I += VF - 1;
5612 NextInst = I + 1;
5613 Changed = true;
5618 if (!Changed && CandidateFound) {
5619 R.getORE()->emit([&]() {
5620 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5621 << "List vectorization was possible but not beneficial with cost "
5622 << ore::NV("Cost", MinCost) << " >= "
5623 << ore::NV("Treshold", -SLPCostThreshold);
5625 } else if (!Changed) {
5626 R.getORE()->emit([&]() {
5627 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5628 << "Cannot SLP vectorize list: vectorization was impossible"
5629 << " with available vectorization factors";
5632 return Changed;
5635 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5636 if (!I)
5637 return false;
5639 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
5640 return false;
5642 Value *P = I->getParent();
5644 // Vectorize in current basic block only.
5645 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5646 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5647 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5648 return false;
5650 // Try to vectorize V.
5651 if (tryToVectorizePair(Op0, Op1, R))
5652 return true;
5654 auto *A = dyn_cast<BinaryOperator>(Op0);
5655 auto *B = dyn_cast<BinaryOperator>(Op1);
5656 // Try to skip B.
5657 if (B && B->hasOneUse()) {
5658 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5659 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5660 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5661 return true;
5662 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5663 return true;
5666 // Try to skip A.
5667 if (A && A->hasOneUse()) {
5668 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5669 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5670 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5671 return true;
5672 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5673 return true;
5675 return false;
5678 /// Generate a shuffle mask to be used in a reduction tree.
5680 /// \param VecLen The length of the vector to be reduced.
5681 /// \param NumEltsToRdx The number of elements that should be reduced in the
5682 /// vector.
5683 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5684 /// reduction. A pairwise reduction will generate a mask of
5685 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
5686 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5687 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5688 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5689 bool IsPairwise, bool IsLeft,
5690 IRBuilder<> &Builder) {
5691 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
5693 SmallVector<Constant *, 32> ShuffleMask(
5694 VecLen, UndefValue::get(Builder.getInt32Ty()));
5696 if (IsPairwise)
5697 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5698 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5699 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5700 else
5701 // Move the upper half of the vector to the lower half.
5702 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5703 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5705 return ConstantVector::get(ShuffleMask);
5708 namespace {
5710 /// Model horizontal reductions.
5712 /// A horizontal reduction is a tree of reduction operations (currently add and
5713 /// fadd) that has operations that can be put into a vector as its leaf.
5714 /// For example, this tree:
5716 /// mul mul mul mul
5717 /// \ / \ /
5718 /// + +
5719 /// \ /
5720 /// +
5721 /// This tree has "mul" as its reduced values and "+" as its reduction
5722 /// operations. A reduction might be feeding into a store or a binary operation
5723 /// feeding a phi.
5724 /// ...
5725 /// \ /
5726 /// +
5727 /// |
5728 /// phi +=
5730 /// Or:
5731 /// ...
5732 /// \ /
5733 /// +
5734 /// |
5735 /// *p =
5737 class HorizontalReduction {
5738 using ReductionOpsType = SmallVector<Value *, 16>;
5739 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5740 ReductionOpsListType ReductionOps;
5741 SmallVector<Value *, 32> ReducedVals;
5742 // Use map vector to make stable output.
5743 MapVector<Instruction *, Value *> ExtraArgs;
5745 /// Kind of the reduction data.
5746 enum ReductionKind {
5747 RK_None, /// Not a reduction.
5748 RK_Arithmetic, /// Binary reduction data.
5749 RK_Min, /// Minimum reduction data.
5750 RK_UMin, /// Unsigned minimum reduction data.
5751 RK_Max, /// Maximum reduction data.
5752 RK_UMax, /// Unsigned maximum reduction data.
5755 /// Contains info about operation, like its opcode, left and right operands.
5756 class OperationData {
5757 /// Opcode of the instruction.
5758 unsigned Opcode = 0;
5760 /// Left operand of the reduction operation.
5761 Value *LHS = nullptr;
5763 /// Right operand of the reduction operation.
5764 Value *RHS = nullptr;
5766 /// Kind of the reduction operation.
5767 ReductionKind Kind = RK_None;
5769 /// True if float point min/max reduction has no NaNs.
5770 bool NoNaN = false;
5772 /// Checks if the reduction operation can be vectorized.
5773 bool isVectorizable() const {
5774 return LHS && RHS &&
5775 // We currently only support add/mul/logical && min/max reductions.
5776 ((Kind == RK_Arithmetic &&
5777 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5778 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5779 Opcode == Instruction::And || Opcode == Instruction::Or ||
5780 Opcode == Instruction::Xor)) ||
5781 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5782 (Kind == RK_Min || Kind == RK_Max)) ||
5783 (Opcode == Instruction::ICmp &&
5784 (Kind == RK_UMin || Kind == RK_UMax)));
5787 /// Creates reduction operation with the current opcode.
5788 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5789 assert(isVectorizable() &&
5790 "Expected add|fadd or min/max reduction operation.");
5791 Value *Cmp = nullptr;
5792 switch (Kind) {
5793 case RK_Arithmetic:
5794 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5795 Name);
5796 case RK_Min:
5797 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5798 : Builder.CreateFCmpOLT(LHS, RHS);
5799 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5800 case RK_Max:
5801 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5802 : Builder.CreateFCmpOGT(LHS, RHS);
5803 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5804 case RK_UMin:
5805 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5806 Cmp = Builder.CreateICmpULT(LHS, RHS);
5807 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5808 case RK_UMax:
5809 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5810 Cmp = Builder.CreateICmpUGT(LHS, RHS);
5811 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5812 case RK_None:
5813 break;
5815 llvm_unreachable("Unknown reduction operation.");
5818 public:
5819 explicit OperationData() = default;
5821 /// Construction for reduced values. They are identified by opcode only and
5822 /// don't have associated LHS/RHS values.
5823 explicit OperationData(Value *V) {
5824 if (auto *I = dyn_cast<Instruction>(V))
5825 Opcode = I->getOpcode();
5828 /// Constructor for reduction operations with opcode and its left and
5829 /// right operands.
5830 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5831 bool NoNaN = false)
5832 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5833 assert(Kind != RK_None && "One of the reduction operations is expected.");
5836 explicit operator bool() const { return Opcode; }
5838 /// Get the index of the first operand.
5839 unsigned getFirstOperandIndex() const {
5840 assert(!!*this && "The opcode is not set.");
5841 switch (Kind) {
5842 case RK_Min:
5843 case RK_UMin:
5844 case RK_Max:
5845 case RK_UMax:
5846 return 1;
5847 case RK_Arithmetic:
5848 case RK_None:
5849 break;
5851 return 0;
5854 /// Total number of operands in the reduction operation.
5855 unsigned getNumberOfOperands() const {
5856 assert(Kind != RK_None && !!*this && LHS && RHS &&
5857 "Expected reduction operation.");
5858 switch (Kind) {
5859 case RK_Arithmetic:
5860 return 2;
5861 case RK_Min:
5862 case RK_UMin:
5863 case RK_Max:
5864 case RK_UMax:
5865 return 3;
5866 case RK_None:
5867 break;
5869 llvm_unreachable("Reduction kind is not set");
5872 /// Checks if the operation has the same parent as \p P.
5873 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5874 assert(Kind != RK_None && !!*this && LHS && RHS &&
5875 "Expected reduction operation.");
5876 if (!IsRedOp)
5877 return I->getParent() == P;
5878 switch (Kind) {
5879 case RK_Arithmetic:
5880 // Arithmetic reduction operation must be used once only.
5881 return I->getParent() == P;
5882 case RK_Min:
5883 case RK_UMin:
5884 case RK_Max:
5885 case RK_UMax: {
5886 // SelectInst must be used twice while the condition op must have single
5887 // use only.
5888 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5889 return I->getParent() == P && Cmp && Cmp->getParent() == P;
5891 case RK_None:
5892 break;
5894 llvm_unreachable("Reduction kind is not set");
5896 /// Expected number of uses for reduction operations/reduced values.
5897 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5898 assert(Kind != RK_None && !!*this && LHS && RHS &&
5899 "Expected reduction operation.");
5900 switch (Kind) {
5901 case RK_Arithmetic:
5902 return I->hasOneUse();
5903 case RK_Min:
5904 case RK_UMin:
5905 case RK_Max:
5906 case RK_UMax:
5907 return I->hasNUses(2) &&
5908 (!IsReductionOp ||
5909 cast<SelectInst>(I)->getCondition()->hasOneUse());
5910 case RK_None:
5911 break;
5913 llvm_unreachable("Reduction kind is not set");
5916 /// Initializes the list of reduction operations.
5917 void initReductionOps(ReductionOpsListType &ReductionOps) {
5918 assert(Kind != RK_None && !!*this && LHS && RHS &&
5919 "Expected reduction operation.");
5920 switch (Kind) {
5921 case RK_Arithmetic:
5922 ReductionOps.assign(1, ReductionOpsType());
5923 break;
5924 case RK_Min:
5925 case RK_UMin:
5926 case RK_Max:
5927 case RK_UMax:
5928 ReductionOps.assign(2, ReductionOpsType());
5929 break;
5930 case RK_None:
5931 llvm_unreachable("Reduction kind is not set");
5934 /// Add all reduction operations for the reduction instruction \p I.
5935 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5936 assert(Kind != RK_None && !!*this && LHS && RHS &&
5937 "Expected reduction operation.");
5938 switch (Kind) {
5939 case RK_Arithmetic:
5940 ReductionOps[0].emplace_back(I);
5941 break;
5942 case RK_Min:
5943 case RK_UMin:
5944 case RK_Max:
5945 case RK_UMax:
5946 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5947 ReductionOps[1].emplace_back(I);
5948 break;
5949 case RK_None:
5950 llvm_unreachable("Reduction kind is not set");
5954 /// Checks if instruction is associative and can be vectorized.
5955 bool isAssociative(Instruction *I) const {
5956 assert(Kind != RK_None && *this && LHS && RHS &&
5957 "Expected reduction operation.");
5958 switch (Kind) {
5959 case RK_Arithmetic:
5960 return I->isAssociative();
5961 case RK_Min:
5962 case RK_Max:
5963 return Opcode == Instruction::ICmp ||
5964 cast<Instruction>(I->getOperand(0))->isFast();
5965 case RK_UMin:
5966 case RK_UMax:
5967 assert(Opcode == Instruction::ICmp &&
5968 "Only integer compare operation is expected.");
5969 return true;
5970 case RK_None:
5971 break;
5973 llvm_unreachable("Reduction kind is not set");
5976 /// Checks if the reduction operation can be vectorized.
5977 bool isVectorizable(Instruction *I) const {
5978 return isVectorizable() && isAssociative(I);
5981 /// Checks if two operation data are both a reduction op or both a reduced
5982 /// value.
5983 bool operator==(const OperationData &OD) {
5984 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5985 "One of the comparing operations is incorrect.");
5986 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5988 bool operator!=(const OperationData &OD) { return !(*this == OD); }
5989 void clear() {
5990 Opcode = 0;
5991 LHS = nullptr;
5992 RHS = nullptr;
5993 Kind = RK_None;
5994 NoNaN = false;
5997 /// Get the opcode of the reduction operation.
5998 unsigned getOpcode() const {
5999 assert(isVectorizable() && "Expected vectorizable operation.");
6000 return Opcode;
6003 /// Get kind of reduction data.
6004 ReductionKind getKind() const { return Kind; }
6005 Value *getLHS() const { return LHS; }
6006 Value *getRHS() const { return RHS; }
6007 Type *getConditionType() const {
6008 switch (Kind) {
6009 case RK_Arithmetic:
6010 return nullptr;
6011 case RK_Min:
6012 case RK_Max:
6013 case RK_UMin:
6014 case RK_UMax:
6015 return CmpInst::makeCmpResultType(LHS->getType());
6016 case RK_None:
6017 break;
6019 llvm_unreachable("Reduction kind is not set");
6022 /// Creates reduction operation with the current opcode with the IR flags
6023 /// from \p ReductionOps.
6024 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6025 const ReductionOpsListType &ReductionOps) const {
6026 assert(isVectorizable() &&
6027 "Expected add|fadd or min/max reduction operation.");
6028 auto *Op = createOp(Builder, Name);
6029 switch (Kind) {
6030 case RK_Arithmetic:
6031 propagateIRFlags(Op, ReductionOps[0]);
6032 return Op;
6033 case RK_Min:
6034 case RK_Max:
6035 case RK_UMin:
6036 case RK_UMax:
6037 if (auto *SI = dyn_cast<SelectInst>(Op))
6038 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6039 propagateIRFlags(Op, ReductionOps[1]);
6040 return Op;
6041 case RK_None:
6042 break;
6044 llvm_unreachable("Unknown reduction operation.");
6046 /// Creates reduction operation with the current opcode with the IR flags
6047 /// from \p I.
6048 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6049 Instruction *I) const {
6050 assert(isVectorizable() &&
6051 "Expected add|fadd or min/max reduction operation.");
6052 auto *Op = createOp(Builder, Name);
6053 switch (Kind) {
6054 case RK_Arithmetic:
6055 propagateIRFlags(Op, I);
6056 return Op;
6057 case RK_Min:
6058 case RK_Max:
6059 case RK_UMin:
6060 case RK_UMax:
6061 if (auto *SI = dyn_cast<SelectInst>(Op)) {
6062 propagateIRFlags(SI->getCondition(),
6063 cast<SelectInst>(I)->getCondition());
6065 propagateIRFlags(Op, I);
6066 return Op;
6067 case RK_None:
6068 break;
6070 llvm_unreachable("Unknown reduction operation.");
6073 TargetTransformInfo::ReductionFlags getFlags() const {
6074 TargetTransformInfo::ReductionFlags Flags;
6075 Flags.NoNaN = NoNaN;
6076 switch (Kind) {
6077 case RK_Arithmetic:
6078 break;
6079 case RK_Min:
6080 Flags.IsSigned = Opcode == Instruction::ICmp;
6081 Flags.IsMaxOp = false;
6082 break;
6083 case RK_Max:
6084 Flags.IsSigned = Opcode == Instruction::ICmp;
6085 Flags.IsMaxOp = true;
6086 break;
6087 case RK_UMin:
6088 Flags.IsSigned = false;
6089 Flags.IsMaxOp = false;
6090 break;
6091 case RK_UMax:
6092 Flags.IsSigned = false;
6093 Flags.IsMaxOp = true;
6094 break;
6095 case RK_None:
6096 llvm_unreachable("Reduction kind is not set");
6098 return Flags;
6102 WeakTrackingVH ReductionRoot;
6104 /// The operation data of the reduction operation.
6105 OperationData ReductionData;
6107 /// The operation data of the values we perform a reduction on.
6108 OperationData ReducedValueData;
6110 /// Should we model this reduction as a pairwise reduction tree or a tree that
6111 /// splits the vector in halves and adds those halves.
6112 bool IsPairwiseReduction = false;
6114 /// Checks if the ParentStackElem.first should be marked as a reduction
6115 /// operation with an extra argument or as extra argument itself.
6116 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6117 Value *ExtraArg) {
6118 if (ExtraArgs.count(ParentStackElem.first)) {
6119 ExtraArgs[ParentStackElem.first] = nullptr;
6120 // We ran into something like:
6121 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6122 // The whole ParentStackElem.first should be considered as an extra value
6123 // in this case.
6124 // Do not perform analysis of remaining operands of ParentStackElem.first
6125 // instruction, this whole instruction is an extra argument.
6126 ParentStackElem.second = ParentStackElem.first->getNumOperands();
6127 } else {
6128 // We ran into something like:
6129 // ParentStackElem.first += ... + ExtraArg + ...
6130 ExtraArgs[ParentStackElem.first] = ExtraArg;
6134 static OperationData getOperationData(Value *V) {
6135 if (!V)
6136 return OperationData();
6138 Value *LHS;
6139 Value *RHS;
6140 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6141 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6142 RK_Arithmetic);
6144 if (auto *Select = dyn_cast<SelectInst>(V)) {
6145 // Look for a min/max pattern.
6146 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6147 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6148 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6149 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6150 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6151 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6152 return OperationData(
6153 Instruction::FCmp, LHS, RHS, RK_Min,
6154 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6155 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6156 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6157 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6158 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6159 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6160 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6161 return OperationData(
6162 Instruction::FCmp, LHS, RHS, RK_Max,
6163 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6164 } else {
6165 // Try harder: look for min/max pattern based on instructions producing
6166 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6167 // During the intermediate stages of SLP, it's very common to have
6168 // pattern like this (since optimizeGatherSequence is run only once
6169 // at the end):
6170 // %1 = extractelement <2 x i32> %a, i32 0
6171 // %2 = extractelement <2 x i32> %a, i32 1
6172 // %cond = icmp sgt i32 %1, %2
6173 // %3 = extractelement <2 x i32> %a, i32 0
6174 // %4 = extractelement <2 x i32> %a, i32 1
6175 // %select = select i1 %cond, i32 %3, i32 %4
6176 CmpInst::Predicate Pred;
6177 Instruction *L1;
6178 Instruction *L2;
6180 LHS = Select->getTrueValue();
6181 RHS = Select->getFalseValue();
6182 Value *Cond = Select->getCondition();
6184 // TODO: Support inverse predicates.
6185 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6186 if (!isa<ExtractElementInst>(RHS) ||
6187 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6188 return OperationData(V);
6189 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6190 if (!isa<ExtractElementInst>(LHS) ||
6191 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6192 return OperationData(V);
6193 } else {
6194 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6195 return OperationData(V);
6196 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6197 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6198 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6199 return OperationData(V);
6201 switch (Pred) {
6202 default:
6203 return OperationData(V);
6205 case CmpInst::ICMP_ULT:
6206 case CmpInst::ICMP_ULE:
6207 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6209 case CmpInst::ICMP_SLT:
6210 case CmpInst::ICMP_SLE:
6211 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6213 case CmpInst::FCMP_OLT:
6214 case CmpInst::FCMP_OLE:
6215 case CmpInst::FCMP_ULT:
6216 case CmpInst::FCMP_ULE:
6217 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6218 cast<Instruction>(Cond)->hasNoNaNs());
6220 case CmpInst::ICMP_UGT:
6221 case CmpInst::ICMP_UGE:
6222 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6224 case CmpInst::ICMP_SGT:
6225 case CmpInst::ICMP_SGE:
6226 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6228 case CmpInst::FCMP_OGT:
6229 case CmpInst::FCMP_OGE:
6230 case CmpInst::FCMP_UGT:
6231 case CmpInst::FCMP_UGE:
6232 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6233 cast<Instruction>(Cond)->hasNoNaNs());
6237 return OperationData(V);
6240 public:
6241 HorizontalReduction() = default;
6243 /// Try to find a reduction tree.
6244 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6245 assert((!Phi || is_contained(Phi->operands(), B)) &&
6246 "Thi phi needs to use the binary operator");
6248 ReductionData = getOperationData(B);
6250 // We could have a initial reductions that is not an add.
6251 // r *= v1 + v2 + v3 + v4
6252 // In such a case start looking for a tree rooted in the first '+'.
6253 if (Phi) {
6254 if (ReductionData.getLHS() == Phi) {
6255 Phi = nullptr;
6256 B = dyn_cast<Instruction>(ReductionData.getRHS());
6257 ReductionData = getOperationData(B);
6258 } else if (ReductionData.getRHS() == Phi) {
6259 Phi = nullptr;
6260 B = dyn_cast<Instruction>(ReductionData.getLHS());
6261 ReductionData = getOperationData(B);
6265 if (!ReductionData.isVectorizable(B))
6266 return false;
6268 Type *Ty = B->getType();
6269 if (!isValidElementType(Ty))
6270 return false;
6271 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6272 return false;
6274 ReducedValueData.clear();
6275 ReductionRoot = B;
6277 // Post order traverse the reduction tree starting at B. We only handle true
6278 // trees containing only binary operators.
6279 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6280 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6281 ReductionData.initReductionOps(ReductionOps);
6282 while (!Stack.empty()) {
6283 Instruction *TreeN = Stack.back().first;
6284 unsigned EdgeToVist = Stack.back().second++;
6285 OperationData OpData = getOperationData(TreeN);
6286 bool IsReducedValue = OpData != ReductionData;
6288 // Postorder vist.
6289 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6290 if (IsReducedValue)
6291 ReducedVals.push_back(TreeN);
6292 else {
6293 auto I = ExtraArgs.find(TreeN);
6294 if (I != ExtraArgs.end() && !I->second) {
6295 // Check if TreeN is an extra argument of its parent operation.
6296 if (Stack.size() <= 1) {
6297 // TreeN can't be an extra argument as it is a root reduction
6298 // operation.
6299 return false;
6301 // Yes, TreeN is an extra argument, do not add it to a list of
6302 // reduction operations.
6303 // Stack[Stack.size() - 2] always points to the parent operation.
6304 markExtraArg(Stack[Stack.size() - 2], TreeN);
6305 ExtraArgs.erase(TreeN);
6306 } else
6307 ReductionData.addReductionOps(TreeN, ReductionOps);
6309 // Retract.
6310 Stack.pop_back();
6311 continue;
6314 // Visit left or right.
6315 Value *NextV = TreeN->getOperand(EdgeToVist);
6316 if (NextV != Phi) {
6317 auto *I = dyn_cast<Instruction>(NextV);
6318 OpData = getOperationData(I);
6319 // Continue analysis if the next operand is a reduction operation or
6320 // (possibly) a reduced value. If the reduced value opcode is not set,
6321 // the first met operation != reduction operation is considered as the
6322 // reduced value class.
6323 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6324 OpData == ReductionData)) {
6325 const bool IsReductionOperation = OpData == ReductionData;
6326 // Only handle trees in the current basic block.
6327 if (!ReductionData.hasSameParent(I, B->getParent(),
6328 IsReductionOperation)) {
6329 // I is an extra argument for TreeN (its parent operation).
6330 markExtraArg(Stack.back(), I);
6331 continue;
6334 // Each tree node needs to have minimal number of users except for the
6335 // ultimate reduction.
6336 if (!ReductionData.hasRequiredNumberOfUses(I,
6337 OpData == ReductionData) &&
6338 I != B) {
6339 // I is an extra argument for TreeN (its parent operation).
6340 markExtraArg(Stack.back(), I);
6341 continue;
6344 if (IsReductionOperation) {
6345 // We need to be able to reassociate the reduction operations.
6346 if (!OpData.isAssociative(I)) {
6347 // I is an extra argument for TreeN (its parent operation).
6348 markExtraArg(Stack.back(), I);
6349 continue;
6351 } else if (ReducedValueData &&
6352 ReducedValueData != OpData) {
6353 // Make sure that the opcodes of the operations that we are going to
6354 // reduce match.
6355 // I is an extra argument for TreeN (its parent operation).
6356 markExtraArg(Stack.back(), I);
6357 continue;
6358 } else if (!ReducedValueData)
6359 ReducedValueData = OpData;
6361 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6362 continue;
6365 // NextV is an extra argument for TreeN (its parent operation).
6366 markExtraArg(Stack.back(), NextV);
6368 return true;
6371 /// Attempt to vectorize the tree found by
6372 /// matchAssociativeReduction.
6373 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6374 if (ReducedVals.empty())
6375 return false;
6377 // If there is a sufficient number of reduction values, reduce
6378 // to a nearby power-of-2. Can safely generate oversized
6379 // vectors and rely on the backend to split them to legal sizes.
6380 unsigned NumReducedVals = ReducedVals.size();
6381 if (NumReducedVals < 4)
6382 return false;
6384 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6386 Value *VectorizedTree = nullptr;
6388 // FIXME: Fast-math-flags should be set based on the instructions in the
6389 // reduction (not all of 'fast' are required).
6390 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6391 FastMathFlags Unsafe;
6392 Unsafe.setFast();
6393 Builder.setFastMathFlags(Unsafe);
6394 unsigned i = 0;
6396 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6397 // The same extra argument may be used several time, so log each attempt
6398 // to use it.
6399 for (auto &Pair : ExtraArgs) {
6400 assert(Pair.first && "DebugLoc must be set.");
6401 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6403 // The reduction root is used as the insertion point for new instructions,
6404 // so set it as externally used to prevent it from being deleted.
6405 ExternallyUsedValues[ReductionRoot];
6406 SmallVector<Value *, 16> IgnoreList;
6407 for (auto &V : ReductionOps)
6408 IgnoreList.append(V.begin(), V.end());
6409 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6410 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6411 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6412 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6413 // TODO: Handle orders of size less than number of elements in the vector.
6414 if (Order && Order->size() == VL.size()) {
6415 // TODO: reorder tree nodes without tree rebuilding.
6416 SmallVector<Value *, 4> ReorderedOps(VL.size());
6417 llvm::transform(*Order, ReorderedOps.begin(),
6418 [VL](const unsigned Idx) { return VL[Idx]; });
6419 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6421 if (V.isTreeTinyAndNotFullyVectorizable())
6422 break;
6423 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6424 break;
6426 V.computeMinimumValueSizes();
6428 // Estimate cost.
6429 int TreeCost = V.getTreeCost();
6430 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6431 int Cost = TreeCost + ReductionCost;
6432 if (Cost >= -SLPCostThreshold) {
6433 V.getORE()->emit([&]() {
6434 return OptimizationRemarkMissed(
6435 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6436 << "Vectorizing horizontal reduction is possible"
6437 << "but not beneficial with cost "
6438 << ore::NV("Cost", Cost) << " and threshold "
6439 << ore::NV("Threshold", -SLPCostThreshold);
6441 break;
6444 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6445 << Cost << ". (HorRdx)\n");
6446 V.getORE()->emit([&]() {
6447 return OptimizationRemark(
6448 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6449 << "Vectorized horizontal reduction with cost "
6450 << ore::NV("Cost", Cost) << " and with tree size "
6451 << ore::NV("TreeSize", V.getTreeSize());
6454 // Vectorize a tree.
6455 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6456 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6458 // Emit a reduction.
6459 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
6460 Value *ReducedSubTree =
6461 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6462 if (VectorizedTree) {
6463 Builder.SetCurrentDebugLocation(Loc);
6464 OperationData VectReductionData(ReductionData.getOpcode(),
6465 VectorizedTree, ReducedSubTree,
6466 ReductionData.getKind());
6467 VectorizedTree =
6468 VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6469 } else
6470 VectorizedTree = ReducedSubTree;
6471 i += ReduxWidth;
6472 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6475 if (VectorizedTree) {
6476 // Finish the reduction.
6477 for (; i < NumReducedVals; ++i) {
6478 auto *I = cast<Instruction>(ReducedVals[i]);
6479 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6480 OperationData VectReductionData(ReductionData.getOpcode(),
6481 VectorizedTree, I,
6482 ReductionData.getKind());
6483 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6485 for (auto &Pair : ExternallyUsedValues) {
6486 // Add each externally used value to the final reduction.
6487 for (auto *I : Pair.second) {
6488 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6489 OperationData VectReductionData(ReductionData.getOpcode(),
6490 VectorizedTree, Pair.first,
6491 ReductionData.getKind());
6492 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6495 // Update users.
6496 ReductionRoot->replaceAllUsesWith(VectorizedTree);
6497 // Mark all scalar reduction ops for deletion, they are replaced by the
6498 // vector reductions.
6499 V.eraseInstructions(IgnoreList);
6501 return VectorizedTree != nullptr;
6504 unsigned numReductionValues() const {
6505 return ReducedVals.size();
6508 private:
6509 /// Calculate the cost of a reduction.
6510 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6511 unsigned ReduxWidth) {
6512 Type *ScalarTy = FirstReducedVal->getType();
6513 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6515 int PairwiseRdxCost;
6516 int SplittingRdxCost;
6517 switch (ReductionData.getKind()) {
6518 case RK_Arithmetic:
6519 PairwiseRdxCost =
6520 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6521 /*IsPairwiseForm=*/true);
6522 SplittingRdxCost =
6523 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6524 /*IsPairwiseForm=*/false);
6525 break;
6526 case RK_Min:
6527 case RK_Max:
6528 case RK_UMin:
6529 case RK_UMax: {
6530 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6531 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6532 ReductionData.getKind() == RK_UMax;
6533 PairwiseRdxCost =
6534 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6535 /*IsPairwiseForm=*/true, IsUnsigned);
6536 SplittingRdxCost =
6537 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6538 /*IsPairwiseForm=*/false, IsUnsigned);
6539 break;
6541 case RK_None:
6542 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6545 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6546 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6548 int ScalarReduxCost = 0;
6549 switch (ReductionData.getKind()) {
6550 case RK_Arithmetic:
6551 ScalarReduxCost =
6552 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6553 break;
6554 case RK_Min:
6555 case RK_Max:
6556 case RK_UMin:
6557 case RK_UMax:
6558 ScalarReduxCost =
6559 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6560 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6561 CmpInst::makeCmpResultType(ScalarTy));
6562 break;
6563 case RK_None:
6564 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6566 ScalarReduxCost *= (ReduxWidth - 1);
6568 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6569 << " for reduction that starts with " << *FirstReducedVal
6570 << " (It is a "
6571 << (IsPairwiseReduction ? "pairwise" : "splitting")
6572 << " reduction)\n");
6574 return VecReduxCost - ScalarReduxCost;
6577 /// Emit a horizontal reduction of the vectorized value.
6578 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6579 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6580 assert(VectorizedValue && "Need to have a vectorized tree node");
6581 assert(isPowerOf2_32(ReduxWidth) &&
6582 "We only handle power-of-two reductions for now");
6584 if (!IsPairwiseReduction) {
6585 // FIXME: The builder should use an FMF guard. It should not be hard-coded
6586 // to 'fast'.
6587 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6588 return createSimpleTargetReduction(
6589 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6590 ReductionData.getFlags(), ReductionOps.back());
6593 Value *TmpVec = VectorizedValue;
6594 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6595 Value *LeftMask =
6596 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6597 Value *RightMask =
6598 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6600 Value *LeftShuf = Builder.CreateShuffleVector(
6601 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6602 Value *RightShuf = Builder.CreateShuffleVector(
6603 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6604 "rdx.shuf.r");
6605 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6606 RightShuf, ReductionData.getKind());
6607 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6610 // The result is in the first element of the vector.
6611 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6615 } // end anonymous namespace
6617 /// Recognize construction of vectors like
6618 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
6619 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
6620 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
6621 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
6622 /// starting from the last insertelement instruction.
6624 /// Returns true if it matches
6625 static bool findBuildVector(InsertElementInst *LastInsertElem,
6626 TargetTransformInfo *TTI,
6627 SmallVectorImpl<Value *> &BuildVectorOpds,
6628 int &UserCost) {
6629 UserCost = 0;
6630 Value *V = nullptr;
6631 do {
6632 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
6633 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6634 LastInsertElem->getType(),
6635 CI->getZExtValue());
6637 BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
6638 V = LastInsertElem->getOperand(0);
6639 if (isa<UndefValue>(V))
6640 break;
6641 LastInsertElem = dyn_cast<InsertElementInst>(V);
6642 if (!LastInsertElem || !LastInsertElem->hasOneUse())
6643 return false;
6644 } while (true);
6645 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6646 return true;
6649 /// Like findBuildVector, but looks for construction of aggregate.
6651 /// \return true if it matches.
6652 static bool findBuildAggregate(InsertValueInst *IV,
6653 SmallVectorImpl<Value *> &BuildVectorOpds) {
6654 do {
6655 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
6656 Value *V = IV->getAggregateOperand();
6657 if (isa<UndefValue>(V))
6658 break;
6659 IV = dyn_cast<InsertValueInst>(V);
6660 if (!IV || !IV->hasOneUse())
6661 return false;
6662 } while (true);
6663 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6664 return true;
6667 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6668 return V->getType() < V2->getType();
6671 /// Try and get a reduction value from a phi node.
6673 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6674 /// if they come from either \p ParentBB or a containing loop latch.
6676 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6677 /// if not possible.
6678 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6679 BasicBlock *ParentBB, LoopInfo *LI) {
6680 // There are situations where the reduction value is not dominated by the
6681 // reduction phi. Vectorizing such cases has been reported to cause
6682 // miscompiles. See PR25787.
6683 auto DominatedReduxValue = [&](Value *R) {
6684 return isa<Instruction>(R) &&
6685 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6688 Value *Rdx = nullptr;
6690 // Return the incoming value if it comes from the same BB as the phi node.
6691 if (P->getIncomingBlock(0) == ParentBB) {
6692 Rdx = P->getIncomingValue(0);
6693 } else if (P->getIncomingBlock(1) == ParentBB) {
6694 Rdx = P->getIncomingValue(1);
6697 if (Rdx && DominatedReduxValue(Rdx))
6698 return Rdx;
6700 // Otherwise, check whether we have a loop latch to look at.
6701 Loop *BBL = LI->getLoopFor(ParentBB);
6702 if (!BBL)
6703 return nullptr;
6704 BasicBlock *BBLatch = BBL->getLoopLatch();
6705 if (!BBLatch)
6706 return nullptr;
6708 // There is a loop latch, return the incoming value if it comes from
6709 // that. This reduction pattern occasionally turns up.
6710 if (P->getIncomingBlock(0) == BBLatch) {
6711 Rdx = P->getIncomingValue(0);
6712 } else if (P->getIncomingBlock(1) == BBLatch) {
6713 Rdx = P->getIncomingValue(1);
6716 if (Rdx && DominatedReduxValue(Rdx))
6717 return Rdx;
6719 return nullptr;
6722 /// Attempt to reduce a horizontal reduction.
6723 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6724 /// with reduction operators \a Root (or one of its operands) in a basic block
6725 /// \a BB, then check if it can be done. If horizontal reduction is not found
6726 /// and root instruction is a binary operation, vectorization of the operands is
6727 /// attempted.
6728 /// \returns true if a horizontal reduction was matched and reduced or operands
6729 /// of one of the binary instruction were vectorized.
6730 /// \returns false if a horizontal reduction was not matched (or not possible)
6731 /// or no vectorization of any binary operation feeding \a Root instruction was
6732 /// performed.
6733 static bool tryToVectorizeHorReductionOrInstOperands(
6734 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6735 TargetTransformInfo *TTI,
6736 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6737 if (!ShouldVectorizeHor)
6738 return false;
6740 if (!Root)
6741 return false;
6743 if (Root->getParent() != BB || isa<PHINode>(Root))
6744 return false;
6745 // Start analysis starting from Root instruction. If horizontal reduction is
6746 // found, try to vectorize it. If it is not a horizontal reduction or
6747 // vectorization is not possible or not effective, and currently analyzed
6748 // instruction is a binary operation, try to vectorize the operands, using
6749 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6750 // the same procedure considering each operand as a possible root of the
6751 // horizontal reduction.
6752 // Interrupt the process if the Root instruction itself was vectorized or all
6753 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6754 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
6755 SmallPtrSet<Value *, 8> VisitedInstrs;
6756 bool Res = false;
6757 while (!Stack.empty()) {
6758 Instruction *Inst;
6759 unsigned Level;
6760 std::tie(Inst, Level) = Stack.pop_back_val();
6761 auto *BI = dyn_cast<BinaryOperator>(Inst);
6762 auto *SI = dyn_cast<SelectInst>(Inst);
6763 if (BI || SI) {
6764 HorizontalReduction HorRdx;
6765 if (HorRdx.matchAssociativeReduction(P, Inst)) {
6766 if (HorRdx.tryToReduce(R, TTI)) {
6767 Res = true;
6768 // Set P to nullptr to avoid re-analysis of phi node in
6769 // matchAssociativeReduction function unless this is the root node.
6770 P = nullptr;
6771 continue;
6774 if (P && BI) {
6775 Inst = dyn_cast<Instruction>(BI->getOperand(0));
6776 if (Inst == P)
6777 Inst = dyn_cast<Instruction>(BI->getOperand(1));
6778 if (!Inst) {
6779 // Set P to nullptr to avoid re-analysis of phi node in
6780 // matchAssociativeReduction function unless this is the root node.
6781 P = nullptr;
6782 continue;
6786 // Set P to nullptr to avoid re-analysis of phi node in
6787 // matchAssociativeReduction function unless this is the root node.
6788 P = nullptr;
6789 if (Vectorize(Inst, R)) {
6790 Res = true;
6791 continue;
6794 // Try to vectorize operands.
6795 // Continue analysis for the instruction from the same basic block only to
6796 // save compile time.
6797 if (++Level < RecursionMaxDepth)
6798 for (auto *Op : Inst->operand_values())
6799 if (VisitedInstrs.insert(Op).second)
6800 if (auto *I = dyn_cast<Instruction>(Op))
6801 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
6802 Stack.emplace_back(I, Level);
6804 return Res;
6807 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6808 BasicBlock *BB, BoUpSLP &R,
6809 TargetTransformInfo *TTI) {
6810 if (!V)
6811 return false;
6812 auto *I = dyn_cast<Instruction>(V);
6813 if (!I)
6814 return false;
6816 if (!isa<BinaryOperator>(I))
6817 P = nullptr;
6818 // Try to match and vectorize a horizontal reduction.
6819 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6820 return tryToVectorize(I, R);
6822 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6823 ExtraVectorization);
6826 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6827 BasicBlock *BB, BoUpSLP &R) {
6828 const DataLayout &DL = BB->getModule()->getDataLayout();
6829 if (!R.canMapToVector(IVI->getType(), DL))
6830 return false;
6832 SmallVector<Value *, 16> BuildVectorOpds;
6833 if (!findBuildAggregate(IVI, BuildVectorOpds))
6834 return false;
6836 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
6837 // Aggregate value is unlikely to be processed in vector register, we need to
6838 // extract scalars into scalar registers, so NeedExtraction is set true.
6839 return tryToVectorizeList(BuildVectorOpds, R);
6842 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6843 BasicBlock *BB, BoUpSLP &R) {
6844 int UserCost;
6845 SmallVector<Value *, 16> BuildVectorOpds;
6846 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6847 (llvm::all_of(BuildVectorOpds,
6848 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6849 isShuffle(BuildVectorOpds)))
6850 return false;
6852 // Vectorize starting with the build vector operands ignoring the BuildVector
6853 // instructions for the purpose of scheduling and user extraction.
6854 return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6857 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6858 BoUpSLP &R) {
6859 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6860 return true;
6862 bool OpsChanged = false;
6863 for (int Idx = 0; Idx < 2; ++Idx) {
6864 OpsChanged |=
6865 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6867 return OpsChanged;
6870 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6871 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6872 bool OpsChanged = false;
6873 for (auto *I : reverse(Instructions)) {
6874 if (R.isDeleted(I))
6875 continue;
6876 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6877 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6878 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6879 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6880 else if (auto *CI = dyn_cast<CmpInst>(I))
6881 OpsChanged |= vectorizeCmpInst(CI, BB, R);
6883 Instructions.clear();
6884 return OpsChanged;
6887 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6888 bool Changed = false;
6889 SmallVector<Value *, 4> Incoming;
6890 SmallPtrSet<Value *, 16> VisitedInstrs;
6892 bool HaveVectorizedPhiNodes = true;
6893 while (HaveVectorizedPhiNodes) {
6894 HaveVectorizedPhiNodes = false;
6896 // Collect the incoming values from the PHIs.
6897 Incoming.clear();
6898 for (Instruction &I : *BB) {
6899 PHINode *P = dyn_cast<PHINode>(&I);
6900 if (!P)
6901 break;
6903 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
6904 Incoming.push_back(P);
6907 // Sort by type.
6908 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
6910 // Try to vectorize elements base on their type.
6911 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6912 E = Incoming.end();
6913 IncIt != E;) {
6915 // Look for the next elements with the same type.
6916 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6917 while (SameTypeIt != E &&
6918 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6919 VisitedInstrs.insert(*SameTypeIt);
6920 ++SameTypeIt;
6923 // Try to vectorize them.
6924 unsigned NumElts = (SameTypeIt - IncIt);
6925 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6926 << NumElts << ")\n");
6927 // The order in which the phi nodes appear in the program does not matter.
6928 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6929 // is done when there are exactly two elements since tryToVectorizeList
6930 // asserts that there are only two values when AllowReorder is true.
6931 bool AllowReorder = NumElts == 2;
6932 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6933 /*UserCost=*/0, AllowReorder)) {
6934 // Success start over because instructions might have been changed.
6935 HaveVectorizedPhiNodes = true;
6936 Changed = true;
6937 break;
6940 // Start over at the next instruction of a different type (or the end).
6941 IncIt = SameTypeIt;
6945 VisitedInstrs.clear();
6947 SmallVector<Instruction *, 8> PostProcessInstructions;
6948 SmallDenseSet<Instruction *, 4> KeyNodes;
6949 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
6950 // Skip instructions marked for the deletion.
6951 if (R.isDeleted(&*it))
6952 continue;
6953 // We may go through BB multiple times so skip the one we have checked.
6954 if (!VisitedInstrs.insert(&*it).second) {
6955 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6956 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6957 // We would like to start over since some instructions are deleted
6958 // and the iterator may become invalid value.
6959 Changed = true;
6960 it = BB->begin();
6961 e = BB->end();
6963 continue;
6966 if (isa<DbgInfoIntrinsic>(it))
6967 continue;
6969 // Try to vectorize reductions that use PHINodes.
6970 if (PHINode *P = dyn_cast<PHINode>(it)) {
6971 // Check that the PHI is a reduction PHI.
6972 if (P->getNumIncomingValues() != 2)
6973 return Changed;
6975 // Try to match and vectorize a horizontal reduction.
6976 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6977 TTI)) {
6978 Changed = true;
6979 it = BB->begin();
6980 e = BB->end();
6981 continue;
6983 continue;
6986 // Ran into an instruction without users, like terminator, or function call
6987 // with ignored return value, store. Ignore unused instructions (basing on
6988 // instruction type, except for CallInst and InvokeInst).
6989 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6990 isa<InvokeInst>(it))) {
6991 KeyNodes.insert(&*it);
6992 bool OpsChanged = false;
6993 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6994 for (auto *V : it->operand_values()) {
6995 // Try to match and vectorize a horizontal reduction.
6996 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6999 // Start vectorization of post-process list of instructions from the
7000 // top-tree instructions to try to vectorize as many instructions as
7001 // possible.
7002 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7003 if (OpsChanged) {
7004 // We would like to start over since some instructions are deleted
7005 // and the iterator may become invalid value.
7006 Changed = true;
7007 it = BB->begin();
7008 e = BB->end();
7009 continue;
7013 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7014 isa<InsertValueInst>(it))
7015 PostProcessInstructions.push_back(&*it);
7018 return Changed;
7021 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7022 auto Changed = false;
7023 for (auto &Entry : GEPs) {
7024 // If the getelementptr list has fewer than two elements, there's nothing
7025 // to do.
7026 if (Entry.second.size() < 2)
7027 continue;
7029 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7030 << Entry.second.size() << ".\n");
7032 // Process the GEP list in chunks suitable for the target's supported
7033 // vector size. If a vector register can't hold 1 element, we are done.
7034 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7035 unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
7036 if (MaxVecRegSize < EltSize)
7037 continue;
7039 unsigned MaxElts = MaxVecRegSize / EltSize;
7040 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7041 auto Len = std::min<unsigned>(BE - BI, MaxElts);
7042 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7044 // Initialize a set a candidate getelementptrs. Note that we use a
7045 // SetVector here to preserve program order. If the index computations
7046 // are vectorizable and begin with loads, we want to minimize the chance
7047 // of having to reorder them later.
7048 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7050 // Some of the candidates may have already been vectorized after we
7051 // initially collected them. If so, they are marked as deleted, so remove
7052 // them from the set of candidates.
7053 Candidates.remove_if(
7054 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7056 // Remove from the set of candidates all pairs of getelementptrs with
7057 // constant differences. Such getelementptrs are likely not good
7058 // candidates for vectorization in a bottom-up phase since one can be
7059 // computed from the other. We also ensure all candidate getelementptr
7060 // indices are unique.
7061 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7062 auto *GEPI = GEPList[I];
7063 if (!Candidates.count(GEPI))
7064 continue;
7065 auto *SCEVI = SE->getSCEV(GEPList[I]);
7066 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7067 auto *GEPJ = GEPList[J];
7068 auto *SCEVJ = SE->getSCEV(GEPList[J]);
7069 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7070 Candidates.remove(GEPI);
7071 Candidates.remove(GEPJ);
7072 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7073 Candidates.remove(GEPJ);
7078 // We break out of the above computation as soon as we know there are
7079 // fewer than two candidates remaining.
7080 if (Candidates.size() < 2)
7081 continue;
7083 // Add the single, non-constant index of each candidate to the bundle. We
7084 // ensured the indices met these constraints when we originally collected
7085 // the getelementptrs.
7086 SmallVector<Value *, 16> Bundle(Candidates.size());
7087 auto BundleIndex = 0u;
7088 for (auto *V : Candidates) {
7089 auto *GEP = cast<GetElementPtrInst>(V);
7090 auto *GEPIdx = GEP->idx_begin()->get();
7091 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7092 Bundle[BundleIndex++] = GEPIdx;
7095 // Try and vectorize the indices. We are currently only interested in
7096 // gather-like cases of the form:
7098 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7100 // where the loads of "a", the loads of "b", and the subtractions can be
7101 // performed in parallel. It's likely that detecting this pattern in a
7102 // bottom-up phase will be simpler and less costly than building a
7103 // full-blown top-down phase beginning at the consecutive loads.
7104 Changed |= tryToVectorizeList(Bundle, R);
7107 return Changed;
7110 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7111 bool Changed = false;
7112 // Attempt to sort and vectorize each of the store-groups.
7113 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7114 ++it) {
7115 if (it->second.size() < 2)
7116 continue;
7118 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7119 << it->second.size() << ".\n");
7121 // Process the stores in chunks of 16.
7122 // TODO: The limit of 16 inhibits greater vectorization factors.
7123 // For example, AVX2 supports v32i8. Increasing this limit, however,
7124 // may cause a significant compile-time increase.
7125 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
7126 unsigned Len = std::min<unsigned>(CE - CI, 16);
7127 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
7130 return Changed;
7133 char SLPVectorizer::ID = 0;
7135 static const char lv_name[] = "SLP Vectorizer";
7137 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7139 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7140 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7141 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7142 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7143 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7144 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7145 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7147 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }