[InstCombine] Signed saturation patterns
[llvm-core.git] / utils / TableGen / DAGISelMatcherGen.cpp
blob49c09c7d195e24f54cdb064ed7dcd86ce1581c90
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "DAGISelMatcher.h"
10 #include "CodeGenDAGPatterns.h"
11 #include "CodeGenRegisters.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/TableGen/Error.h"
15 #include "llvm/TableGen/Record.h"
16 #include <utility>
17 using namespace llvm;
20 /// getRegisterValueType - Look up and return the ValueType of the specified
21 /// register. If the register is a member of multiple register classes which
22 /// have different associated types, return MVT::Other.
23 static MVT::SimpleValueType getRegisterValueType(Record *R,
24 const CodeGenTarget &T) {
25 bool FoundRC = false;
26 MVT::SimpleValueType VT = MVT::Other;
27 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29 for (const auto &RC : T.getRegBank().getRegClasses()) {
30 if (!RC.contains(Reg))
31 continue;
33 if (!FoundRC) {
34 FoundRC = true;
35 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
36 if (VVT.isSimple())
37 VT = VVT.getSimple().SimpleTy;
38 continue;
41 #ifndef NDEBUG
42 // If this occurs in multiple register classes, they all have to agree.
43 const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
44 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
45 "ValueType mismatch between register classes for this register");
46 #endif
48 return VT;
52 namespace {
53 class MatcherGen {
54 const PatternToMatch &Pattern;
55 const CodeGenDAGPatterns &CGP;
57 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
58 /// out with all of the types removed. This allows us to insert type checks
59 /// as we scan the tree.
60 TreePatternNodePtr PatWithNoTypes;
62 /// VariableMap - A map from variable names ('$dst') to the recorded operand
63 /// number that they were captured as. These are biased by 1 to make
64 /// insertion easier.
65 StringMap<unsigned> VariableMap;
67 /// This maintains the recorded operand number that OPC_CheckComplexPattern
68 /// drops each sub-operand into. We don't want to insert these into
69 /// VariableMap because that leads to identity checking if they are
70 /// encountered multiple times. Biased by 1 like VariableMap for
71 /// consistency.
72 StringMap<unsigned> NamedComplexPatternOperands;
74 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
75 /// the RecordedNodes array, this keeps track of which slot will be next to
76 /// record into.
77 unsigned NextRecordedOperandNo;
79 /// MatchedChainNodes - This maintains the position in the recorded nodes
80 /// array of all of the recorded input nodes that have chains.
81 SmallVector<unsigned, 2> MatchedChainNodes;
83 /// MatchedComplexPatterns - This maintains a list of all of the
84 /// ComplexPatterns that we need to check. The second element of each pair
85 /// is the recorded operand number of the input node.
86 SmallVector<std::pair<const TreePatternNode*,
87 unsigned>, 2> MatchedComplexPatterns;
89 /// PhysRegInputs - List list has an entry for each explicitly specified
90 /// physreg input to the pattern. The first elt is the Register node, the
91 /// second is the recorded slot number the input pattern match saved it in.
92 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
94 /// Matcher - This is the top level of the generated matcher, the result.
95 Matcher *TheMatcher;
97 /// CurPredicate - As we emit matcher nodes, this points to the latest check
98 /// which should have future checks stuck into its Next position.
99 Matcher *CurPredicate;
100 public:
101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
103 bool EmitMatcherCode(unsigned Variant);
104 void EmitResultCode();
106 Matcher *GetMatcher() const { return TheMatcher; }
107 private:
108 void AddMatcher(Matcher *NewNode);
109 void InferPossibleTypes(unsigned ForceMode);
111 // Matcher Generation.
112 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
113 unsigned ForceMode);
114 void EmitLeafMatchCode(const TreePatternNode *N);
115 void EmitOperatorMatchCode(const TreePatternNode *N,
116 TreePatternNode *NodeNoTypes,
117 unsigned ForceMode);
119 /// If this is the first time a node with unique identifier Name has been
120 /// seen, record it. Otherwise, emit a check to make sure this is the same
121 /// node. Returns true if this is the first encounter.
122 bool recordUniqueNode(ArrayRef<std::string> Names);
124 // Result Code Generation.
125 unsigned getNamedArgumentSlot(StringRef Name) {
126 unsigned VarMapEntry = VariableMap[Name];
127 assert(VarMapEntry != 0 &&
128 "Variable referenced but not defined and not caught earlier!");
129 return VarMapEntry-1;
132 void EmitResultOperand(const TreePatternNode *N,
133 SmallVectorImpl<unsigned> &ResultOps);
134 void EmitResultOfNamedOperand(const TreePatternNode *N,
135 SmallVectorImpl<unsigned> &ResultOps);
136 void EmitResultLeafAsOperand(const TreePatternNode *N,
137 SmallVectorImpl<unsigned> &ResultOps);
138 void EmitResultInstructionAsOperand(const TreePatternNode *N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
141 SmallVectorImpl<unsigned> &ResultOps);
144 } // end anonymous namespace
146 MatcherGen::MatcherGen(const PatternToMatch &pattern,
147 const CodeGenDAGPatterns &cgp)
148 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
149 TheMatcher(nullptr), CurPredicate(nullptr) {
150 // We need to produce the matcher tree for the patterns source pattern. To do
151 // this we need to match the structure as well as the types. To do the type
152 // matching, we want to figure out the fewest number of type checks we need to
153 // emit. For example, if there is only one integer type supported by a
154 // target, there should be no type comparisons at all for integer patterns!
156 // To figure out the fewest number of type checks needed, clone the pattern,
157 // remove the types, then perform type inference on the pattern as a whole.
158 // If there are unresolved types, emit an explicit check for those types,
159 // apply the type to the tree, then rerun type inference. Iterate until all
160 // types are resolved.
162 PatWithNoTypes = Pattern.getSrcPattern()->clone();
163 PatWithNoTypes->RemoveAllTypes();
165 // If there are types that are manifestly known, infer them.
166 InferPossibleTypes(Pattern.ForceMode);
169 /// InferPossibleTypes - As we emit the pattern, we end up generating type
170 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
171 /// want to propagate implied types as far throughout the tree as possible so
172 /// that we avoid doing redundant type checks. This does the type propagation.
173 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
174 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
175 // diagnostics, which we know are impossible at this point.
176 TreePattern &TP = *CGP.pf_begin()->second;
177 TP.getInfer().CodeGen = true;
178 TP.getInfer().ForceMode = ForceMode;
180 bool MadeChange = true;
181 while (MadeChange)
182 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183 true/*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189 if (CurPredicate)
190 CurPredicate->setNext(NewNode);
191 else
192 TheMatcher = NewNode;
193 CurPredicate = NewNode;
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203 assert(N->isLeaf() && "Not a leaf?");
205 // Direct match against an integer constant.
206 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207 // If this is the root of the dag we're matching, we emit a redundant opcode
208 // check to ensure that this gets folded into the normal top-level
209 // OpcodeSwitch.
210 if (N == Pattern.getSrcPattern()) {
211 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212 AddMatcher(new CheckOpcodeMatcher(NI));
215 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
218 // An UnsetInit represents a named node without any constraints.
219 if (isa<UnsetInit>(N->getLeafValue())) {
220 assert(N->hasName() && "Unnamed ? leaf");
221 return;
224 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225 if (!DI) {
226 errs() << "Unknown leaf kind: " << *N << "\n";
227 abort();
230 Record *LeafRec = DI->getDef();
232 // A ValueType leaf node can represent a register when named, or itself when
233 // unnamed.
234 if (LeafRec->isSubClassOf("ValueType")) {
235 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236 if (N->hasName())
237 return;
238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
242 if (// Handle register references. Nothing to do here, they always match.
243 LeafRec->isSubClassOf("RegisterClass") ||
244 LeafRec->isSubClassOf("RegisterOperand") ||
245 LeafRec->isSubClassOf("PointerLikeRegClass") ||
246 LeafRec->isSubClassOf("SubRegIndex") ||
247 // Place holder for SRCVALUE nodes. Nothing to do here.
248 LeafRec->getName() == "srcvalue")
249 return;
251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252 // record the register
253 if (LeafRec->isSubClassOf("Register")) {
254 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255 NextRecordedOperandNo));
256 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257 return;
260 if (LeafRec->isSubClassOf("CondCode"))
261 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263 if (LeafRec->isSubClassOf("ComplexPattern")) {
264 // We can't model ComplexPattern uses that don't have their name taken yet.
265 // The OPC_CheckComplexPattern operation implicitly records the results.
266 if (N->getName().empty()) {
267 std::string S;
268 raw_string_ostream OS(S);
269 OS << "We expect complex pattern uses to have names: " << *N;
270 PrintFatalError(OS.str());
273 // Remember this ComplexPattern so that we can emit it after all the other
274 // structural matches are done.
275 unsigned InputOperand = VariableMap[N->getName()] - 1;
276 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277 return;
280 if (LeafRec->getName() == "immAllOnesV") {
281 // If this is the root of the dag we're matching, we emit a redundant opcode
282 // check to ensure that this gets folded into the normal top-level
283 // OpcodeSwitch.
284 if (N == Pattern.getSrcPattern()) {
285 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
286 AddMatcher(new CheckOpcodeMatcher(NI));
288 return AddMatcher(new CheckImmAllOnesVMatcher());
290 if (LeafRec->getName() == "immAllZerosV") {
291 // If this is the root of the dag we're matching, we emit a redundant opcode
292 // check to ensure that this gets folded into the normal top-level
293 // OpcodeSwitch.
294 if (N == Pattern.getSrcPattern()) {
295 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
296 AddMatcher(new CheckOpcodeMatcher(NI));
298 return AddMatcher(new CheckImmAllZerosVMatcher());
301 errs() << "Unknown leaf kind: " << *N << "\n";
302 abort();
305 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
306 TreePatternNode *NodeNoTypes,
307 unsigned ForceMode) {
308 assert(!N->isLeaf() && "Not an operator?");
310 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
311 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
312 // "MY_PAT:op1:op2". We should already have validated that the uses are
313 // consistent.
314 std::string PatternName = N->getOperator()->getName();
315 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
316 PatternName += ":";
317 PatternName += N->getChild(i)->getName();
320 if (recordUniqueNode(PatternName)) {
321 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
322 MatchedComplexPatterns.push_back(NodeAndOpNum);
325 return;
328 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
330 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
331 // a constant without a predicate fn that has more than one bit set, handle
332 // this as a special case. This is usually for targets that have special
333 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
334 // handling stuff). Using these instructions is often far more efficient
335 // than materializing the constant. Unfortunately, both the instcombiner
336 // and the dag combiner can often infer that bits are dead, and thus drop
337 // them from the mask in the dag. For example, it might turn 'AND X, 255'
338 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
339 // to handle this.
340 if ((N->getOperator()->getName() == "and" ||
341 N->getOperator()->getName() == "or") &&
342 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
343 N->getPredicateCalls().empty()) {
344 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
345 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
346 // If this is at the root of the pattern, we emit a redundant
347 // CheckOpcode so that the following checks get factored properly under
348 // a single opcode check.
349 if (N == Pattern.getSrcPattern())
350 AddMatcher(new CheckOpcodeMatcher(CInfo));
352 // Emit the CheckAndImm/CheckOrImm node.
353 if (N->getOperator()->getName() == "and")
354 AddMatcher(new CheckAndImmMatcher(II->getValue()));
355 else
356 AddMatcher(new CheckOrImmMatcher(II->getValue()));
358 // Match the LHS of the AND as appropriate.
359 AddMatcher(new MoveChildMatcher(0));
360 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
361 AddMatcher(new MoveParentMatcher());
362 return;
367 // Check that the current opcode lines up.
368 AddMatcher(new CheckOpcodeMatcher(CInfo));
370 // If this node has memory references (i.e. is a load or store), tell the
371 // interpreter to capture them in the memref array.
372 if (N->NodeHasProperty(SDNPMemOperand, CGP))
373 AddMatcher(new RecordMemRefMatcher());
375 // If this node has a chain, then the chain is operand #0 is the SDNode, and
376 // the child numbers of the node are all offset by one.
377 unsigned OpNo = 0;
378 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
379 // Record the node and remember it in our chained nodes list.
380 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
381 "' chained node",
382 NextRecordedOperandNo));
383 // Remember all of the input chains our pattern will match.
384 MatchedChainNodes.push_back(NextRecordedOperandNo++);
386 // Don't look at the input chain when matching the tree pattern to the
387 // SDNode.
388 OpNo = 1;
390 // If this node is not the root and the subtree underneath it produces a
391 // chain, then the result of matching the node is also produce a chain.
392 // Beyond that, this means that we're also folding (at least) the root node
393 // into the node that produce the chain (for example, matching
394 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
395 // problematic, if the 'reg' node also uses the load (say, its chain).
396 // Graphically:
398 // [LD]
399 // ^ ^
400 // | \ DAG's like cheese.
401 // / |
402 // / [YY]
403 // | ^
404 // [XX]--/
406 // It would be invalid to fold XX and LD. In this case, folding the two
407 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
408 // To prevent this, we emit a dynamic check for legality before allowing
409 // this to be folded.
411 const TreePatternNode *Root = Pattern.getSrcPattern();
412 if (N != Root) { // Not the root of the pattern.
413 // If there is a node between the root and this node, then we definitely
414 // need to emit the check.
415 bool NeedCheck = !Root->hasChild(N);
417 // If it *is* an immediate child of the root, we can still need a check if
418 // the root SDNode has multiple inputs. For us, this means that it is an
419 // intrinsic, has multiple operands, or has other inputs like chain or
420 // glue).
421 if (!NeedCheck) {
422 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
423 NeedCheck =
424 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
425 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
426 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
427 PInfo.getNumOperands() > 1 ||
428 PInfo.hasProperty(SDNPHasChain) ||
429 PInfo.hasProperty(SDNPInGlue) ||
430 PInfo.hasProperty(SDNPOptInGlue);
433 if (NeedCheck)
434 AddMatcher(new CheckFoldableChainNodeMatcher());
438 // If this node has an output glue and isn't the root, remember it.
439 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
440 N != Pattern.getSrcPattern()) {
441 // TODO: This redundantly records nodes with both glues and chains.
443 // Record the node and remember it in our chained nodes list.
444 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
445 "' glue output node",
446 NextRecordedOperandNo));
449 // If this node is known to have an input glue or if it *might* have an input
450 // glue, capture it as the glue input of the pattern.
451 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
452 N->NodeHasProperty(SDNPInGlue, CGP))
453 AddMatcher(new CaptureGlueInputMatcher());
455 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
456 // Get the code suitable for matching this child. Move to the child, check
457 // it then move back to the parent.
458 AddMatcher(new MoveChildMatcher(OpNo));
459 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
460 AddMatcher(new MoveParentMatcher());
464 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
465 unsigned Entry = 0;
466 for (const std::string &Name : Names) {
467 unsigned &VarMapEntry = VariableMap[Name];
468 if (!Entry)
469 Entry = VarMapEntry;
470 assert(Entry == VarMapEntry);
473 bool NewRecord = false;
474 if (Entry == 0) {
475 // If it is a named node, we must emit a 'Record' opcode.
476 std::string WhatFor;
477 for (const std::string &Name : Names) {
478 if (!WhatFor.empty())
479 WhatFor += ',';
480 WhatFor += "$" + Name;
482 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
483 Entry = ++NextRecordedOperandNo;
484 NewRecord = true;
485 } else {
486 // If we get here, this is a second reference to a specific name. Since
487 // we already have checked that the first reference is valid, we don't
488 // have to recursively match it, just check that it's the same as the
489 // previously named thing.
490 AddMatcher(new CheckSameMatcher(Entry-1));
493 for (const std::string &Name : Names)
494 VariableMap[Name] = Entry;
496 return NewRecord;
499 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
500 TreePatternNode *NodeNoTypes,
501 unsigned ForceMode) {
502 // If N and NodeNoTypes don't agree on a type, then this is a case where we
503 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
504 // reinfer any correlated types.
505 SmallVector<unsigned, 2> ResultsToTypeCheck;
507 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
508 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
509 NodeNoTypes->setType(i, N->getExtType(i));
510 InferPossibleTypes(ForceMode);
511 ResultsToTypeCheck.push_back(i);
514 // If this node has a name associated with it, capture it in VariableMap. If
515 // we already saw this in the pattern, emit code to verify dagness.
516 SmallVector<std::string, 4> Names;
517 if (!N->getName().empty())
518 Names.push_back(N->getName());
520 for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
521 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
524 if (!Names.empty()) {
525 if (!recordUniqueNode(Names))
526 return;
529 if (N->isLeaf())
530 EmitLeafMatchCode(N);
531 else
532 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
534 // If there are node predicates for this node, generate their checks.
535 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
536 const TreePredicateCall &Pred = N->getPredicateCalls()[i];
537 SmallVector<unsigned, 4> Operands;
538 if (Pred.Fn.usesOperands()) {
539 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
540 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
541 std::string Name =
542 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
543 Operands.push_back(getNamedArgumentSlot(Name));
546 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
549 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
550 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
551 ResultsToTypeCheck[i]));
554 /// EmitMatcherCode - Generate the code that matches the predicate of this
555 /// pattern for the specified Variant. If the variant is invalid this returns
556 /// true and does not generate code, if it is valid, it returns false.
557 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
558 // If the root of the pattern is a ComplexPattern and if it is specified to
559 // match some number of root opcodes, these are considered to be our variants.
560 // Depending on which variant we're generating code for, emit the root opcode
561 // check.
562 if (const ComplexPattern *CP =
563 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
564 const std::vector<Record*> &OpNodes = CP->getRootNodes();
565 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
566 if (Variant >= OpNodes.size()) return true;
568 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
569 } else {
570 if (Variant != 0) return true;
573 // Emit the matcher for the pattern structure and types.
574 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
575 Pattern.ForceMode);
577 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
578 // feature is around, do the check).
579 if (!Pattern.getPredicateCheck().empty())
580 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
582 // Now that we've completed the structural type match, emit any ComplexPattern
583 // checks (e.g. addrmode matches). We emit this after the structural match
584 // because they are generally more expensive to evaluate and more difficult to
585 // factor.
586 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
587 auto N = MatchedComplexPatterns[i].first;
589 // Remember where the results of this match get stuck.
590 if (N->isLeaf()) {
591 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
592 } else {
593 unsigned CurOp = NextRecordedOperandNo;
594 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
595 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
596 CurOp += N->getChild(i)->getNumMIResults(CGP);
600 // Get the slot we recorded the value in from the name on the node.
601 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
603 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
605 // Emit a CheckComplexPat operation, which does the match (aborting if it
606 // fails) and pushes the matched operands onto the recorded nodes list.
607 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
608 N->getName(), NextRecordedOperandNo));
610 // Record the right number of operands.
611 NextRecordedOperandNo += CP.getNumOperands();
612 if (CP.hasProperty(SDNPHasChain)) {
613 // If the complex pattern has a chain, then we need to keep track of the
614 // fact that we just recorded a chain input. The chain input will be
615 // matched as the last operand of the predicate if it was successful.
616 ++NextRecordedOperandNo; // Chained node operand.
618 // It is the last operand recorded.
619 assert(NextRecordedOperandNo > 1 &&
620 "Should have recorded input/result chains at least!");
621 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
624 // TODO: Complex patterns can't have output glues, if they did, we'd want
625 // to record them.
628 return false;
632 //===----------------------------------------------------------------------===//
633 // Node Result Generation
634 //===----------------------------------------------------------------------===//
636 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
637 SmallVectorImpl<unsigned> &ResultOps){
638 assert(!N->getName().empty() && "Operand not named!");
640 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
641 // Complex operands have already been completely selected, just find the
642 // right slot ant add the arguments directly.
643 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
644 ResultOps.push_back(SlotNo - 1 + i);
646 return;
649 unsigned SlotNo = getNamedArgumentSlot(N->getName());
651 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
652 // version of the immediate so that it doesn't get selected due to some other
653 // node use.
654 if (!N->isLeaf()) {
655 StringRef OperatorName = N->getOperator()->getName();
656 if (OperatorName == "imm" || OperatorName == "fpimm") {
657 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
658 ResultOps.push_back(NextRecordedOperandNo++);
659 return;
663 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
664 ResultOps.push_back(SlotNo + i);
667 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
668 SmallVectorImpl<unsigned> &ResultOps) {
669 assert(N->isLeaf() && "Must be a leaf");
671 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
672 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
673 ResultOps.push_back(NextRecordedOperandNo++);
674 return;
677 // If this is an explicit register reference, handle it.
678 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
679 Record *Def = DI->getDef();
680 if (Def->isSubClassOf("Register")) {
681 const CodeGenRegister *Reg =
682 CGP.getTargetInfo().getRegBank().getReg(Def);
683 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
684 ResultOps.push_back(NextRecordedOperandNo++);
685 return;
688 if (Def->getName() == "zero_reg") {
689 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
690 ResultOps.push_back(NextRecordedOperandNo++);
691 return;
694 if (Def->getName() == "undef_tied_input") {
695 std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
696 std::array<unsigned, 0> InstOps;
697 auto IDOperandNo = NextRecordedOperandNo++;
698 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
699 ResultVTs, InstOps, false, false, false,
700 false, -1, IDOperandNo));
701 ResultOps.push_back(IDOperandNo);
702 return;
705 // Handle a reference to a register class. This is used
706 // in COPY_TO_SUBREG instructions.
707 if (Def->isSubClassOf("RegisterOperand"))
708 Def = Def->getValueAsDef("RegClass");
709 if (Def->isSubClassOf("RegisterClass")) {
710 std::string Value = getQualifiedName(Def) + "RegClassID";
711 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
712 ResultOps.push_back(NextRecordedOperandNo++);
713 return;
716 // Handle a subregister index. This is used for INSERT_SUBREG etc.
717 if (Def->isSubClassOf("SubRegIndex")) {
718 std::string Value = getQualifiedName(Def);
719 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
720 ResultOps.push_back(NextRecordedOperandNo++);
721 return;
725 errs() << "unhandled leaf node: \n";
726 N->dump();
729 static bool
730 mayInstNodeLoadOrStore(const TreePatternNode *N,
731 const CodeGenDAGPatterns &CGP) {
732 Record *Op = N->getOperator();
733 const CodeGenTarget &CGT = CGP.getTargetInfo();
734 CodeGenInstruction &II = CGT.getInstruction(Op);
735 return II.mayLoad || II.mayStore;
738 static unsigned
739 numNodesThatMayLoadOrStore(const TreePatternNode *N,
740 const CodeGenDAGPatterns &CGP) {
741 if (N->isLeaf())
742 return 0;
744 Record *OpRec = N->getOperator();
745 if (!OpRec->isSubClassOf("Instruction"))
746 return 0;
748 unsigned Count = 0;
749 if (mayInstNodeLoadOrStore(N, CGP))
750 ++Count;
752 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
753 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
755 return Count;
758 void MatcherGen::
759 EmitResultInstructionAsOperand(const TreePatternNode *N,
760 SmallVectorImpl<unsigned> &OutputOps) {
761 Record *Op = N->getOperator();
762 const CodeGenTarget &CGT = CGP.getTargetInfo();
763 CodeGenInstruction &II = CGT.getInstruction(Op);
764 const DAGInstruction &Inst = CGP.getInstruction(Op);
766 bool isRoot = N == Pattern.getDstPattern();
768 // TreeHasOutGlue - True if this tree has glue.
769 bool TreeHasInGlue = false, TreeHasOutGlue = false;
770 if (isRoot) {
771 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
772 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
773 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
775 // FIXME2: this is checking the entire pattern, not just the node in
776 // question, doing this just for the root seems like a total hack.
777 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
780 // NumResults - This is the number of results produced by the instruction in
781 // the "outs" list.
782 unsigned NumResults = Inst.getNumResults();
784 // Number of operands we know the output instruction must have. If it is
785 // variadic, we could have more operands.
786 unsigned NumFixedOperands = II.Operands.size();
788 SmallVector<unsigned, 8> InstOps;
790 // Loop over all of the fixed operands of the instruction pattern, emitting
791 // code to fill them all in. The node 'N' usually has number children equal to
792 // the number of input operands of the instruction. However, in cases where
793 // there are predicate operands for an instruction, we need to fill in the
794 // 'execute always' values. Match up the node operands to the instruction
795 // operands to do this.
796 unsigned ChildNo = 0;
798 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
799 // number of operands at the end of the list which have default values.
800 // Those can come from the pattern if it provides enough arguments, or be
801 // filled in with the default if the pattern hasn't provided them. But any
802 // operand with a default value _before_ the last mandatory one will be
803 // filled in with their defaults unconditionally.
804 unsigned NonOverridableOperands = NumFixedOperands;
805 while (NonOverridableOperands > NumResults &&
806 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
807 --NonOverridableOperands;
809 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
810 InstOpNo != e; ++InstOpNo) {
811 // Determine what to emit for this operand.
812 Record *OperandNode = II.Operands[InstOpNo].Rec;
813 if (CGP.operandHasDefault(OperandNode) &&
814 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
815 // This is a predicate or optional def operand which the pattern has not
816 // overridden, or which we aren't letting it override; emit the 'default
817 // ops' operands.
818 const DAGDefaultOperand &DefaultOp
819 = CGP.getDefaultOperand(OperandNode);
820 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
821 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
822 continue;
825 // Otherwise this is a normal operand or a predicate operand without
826 // 'execute always'; emit it.
828 // For operands with multiple sub-operands we may need to emit
829 // multiple child patterns to cover them all. However, ComplexPattern
830 // children may themselves emit multiple MI operands.
831 unsigned NumSubOps = 1;
832 if (OperandNode->isSubClassOf("Operand")) {
833 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
834 if (unsigned NumArgs = MIOpInfo->getNumArgs())
835 NumSubOps = NumArgs;
838 unsigned FinalNumOps = InstOps.size() + NumSubOps;
839 while (InstOps.size() < FinalNumOps) {
840 const TreePatternNode *Child = N->getChild(ChildNo);
841 unsigned BeforeAddingNumOps = InstOps.size();
842 EmitResultOperand(Child, InstOps);
843 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
845 // If the operand is an instruction and it produced multiple results, just
846 // take the first one.
847 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
848 InstOps.resize(BeforeAddingNumOps+1);
850 ++ChildNo;
854 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
855 // expand suboperands, use default operands, or other features determined from
856 // the CodeGenInstruction after the fixed operands, which were handled
857 // above. Emit the remaining instructions implicitly added by the use for
858 // variable_ops.
859 if (II.Operands.isVariadic) {
860 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
861 EmitResultOperand(N->getChild(I), InstOps);
864 // If this node has input glue or explicitly specified input physregs, we
865 // need to add chained and glued copyfromreg nodes and materialize the glue
866 // input.
867 if (isRoot && !PhysRegInputs.empty()) {
868 // Emit all of the CopyToReg nodes for the input physical registers. These
869 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
870 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
871 const CodeGenRegister *Reg =
872 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
873 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
874 Reg));
877 // Even if the node has no other glue inputs, the resultant node must be
878 // glued to the CopyFromReg nodes we just generated.
879 TreeHasInGlue = true;
882 // Result order: node results, chain, glue
884 // Determine the result types.
885 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
886 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
887 ResultVTs.push_back(N->getSimpleType(i));
889 // If this is the root instruction of a pattern that has physical registers in
890 // its result pattern, add output VTs for them. For example, X86 has:
891 // (set AL, (mul ...))
892 // This also handles implicit results like:
893 // (implicit EFLAGS)
894 if (isRoot && !Pattern.getDstRegs().empty()) {
895 // If the root came from an implicit def in the instruction handling stuff,
896 // don't re-add it.
897 Record *HandledReg = nullptr;
898 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
899 HandledReg = II.ImplicitDefs[0];
901 for (Record *Reg : Pattern.getDstRegs()) {
902 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
903 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
907 // If this is the root of the pattern and the pattern we're matching includes
908 // a node that is variadic, mark the generated node as variadic so that it
909 // gets the excess operands from the input DAG.
910 int NumFixedArityOperands = -1;
911 if (isRoot &&
912 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
913 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
915 // If this is the root node and multiple matched nodes in the input pattern
916 // have MemRefs in them, have the interpreter collect them and plop them onto
917 // this node. If there is just one node with MemRefs, leave them on that node
918 // even if it is not the root.
920 // FIXME3: This is actively incorrect for result patterns with multiple
921 // memory-referencing instructions.
922 bool PatternHasMemOperands =
923 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
925 bool NodeHasMemRefs = false;
926 if (PatternHasMemOperands) {
927 unsigned NumNodesThatLoadOrStore =
928 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
929 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
930 NumNodesThatLoadOrStore == 1;
931 NodeHasMemRefs =
932 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
933 NumNodesThatLoadOrStore != 1));
936 // Determine whether we need to attach a chain to this node.
937 bool NodeHasChain = false;
938 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
939 // For some instructions, we were able to infer from the pattern whether
940 // they should have a chain. Otherwise, attach the chain to the root.
942 // FIXME2: This is extremely dubious for several reasons, not the least of
943 // which it gives special status to instructions with patterns that Pat<>
944 // nodes can't duplicate.
945 if (II.hasChain_Inferred)
946 NodeHasChain = II.hasChain;
947 else
948 NodeHasChain = isRoot;
949 // Instructions which load and store from memory should have a chain,
950 // regardless of whether they happen to have a pattern saying so.
951 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
952 II.hasSideEffects)
953 NodeHasChain = true;
956 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
957 "Node has no result");
959 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
960 ResultVTs, InstOps,
961 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
962 NodeHasMemRefs, NumFixedArityOperands,
963 NextRecordedOperandNo));
965 // The non-chain and non-glue results of the newly emitted node get recorded.
966 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
967 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
968 OutputOps.push_back(NextRecordedOperandNo++);
972 void MatcherGen::
973 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
974 SmallVectorImpl<unsigned> &ResultOps) {
975 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
977 // Emit the operand.
978 SmallVector<unsigned, 8> InputOps;
980 // FIXME2: Could easily generalize this to support multiple inputs and outputs
981 // to the SDNodeXForm. For now we just support one input and one output like
982 // the old instruction selector.
983 assert(N->getNumChildren() == 1);
984 EmitResultOperand(N->getChild(0), InputOps);
986 // The input currently must have produced exactly one result.
987 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
989 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
990 ResultOps.push_back(NextRecordedOperandNo++);
993 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
994 SmallVectorImpl<unsigned> &ResultOps) {
995 // This is something selected from the pattern we matched.
996 if (!N->getName().empty())
997 return EmitResultOfNamedOperand(N, ResultOps);
999 if (N->isLeaf())
1000 return EmitResultLeafAsOperand(N, ResultOps);
1002 Record *OpRec = N->getOperator();
1003 if (OpRec->isSubClassOf("Instruction"))
1004 return EmitResultInstructionAsOperand(N, ResultOps);
1005 if (OpRec->isSubClassOf("SDNodeXForm"))
1006 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1007 errs() << "Unknown result node to emit code for: " << *N << '\n';
1008 PrintFatalError("Unknown node in result pattern!");
1011 void MatcherGen::EmitResultCode() {
1012 // Patterns that match nodes with (potentially multiple) chain inputs have to
1013 // merge them together into a token factor. This informs the generated code
1014 // what all the chained nodes are.
1015 if (!MatchedChainNodes.empty())
1016 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1018 // Codegen the root of the result pattern, capturing the resulting values.
1019 SmallVector<unsigned, 8> Ops;
1020 EmitResultOperand(Pattern.getDstPattern(), Ops);
1022 // At this point, we have however many values the result pattern produces.
1023 // However, the input pattern might not need all of these. If there are
1024 // excess values at the end (such as implicit defs of condition codes etc)
1025 // just lop them off. This doesn't need to worry about glue or chains, just
1026 // explicit results.
1028 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1030 // If the pattern also has (implicit) results, count them as well.
1031 if (!Pattern.getDstRegs().empty()) {
1032 // If the root came from an implicit def in the instruction handling stuff,
1033 // don't re-add it.
1034 Record *HandledReg = nullptr;
1035 const TreePatternNode *DstPat = Pattern.getDstPattern();
1036 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1037 const CodeGenTarget &CGT = CGP.getTargetInfo();
1038 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1040 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1041 HandledReg = II.ImplicitDefs[0];
1044 for (Record *Reg : Pattern.getDstRegs()) {
1045 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1046 ++NumSrcResults;
1050 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
1051 SmallVector<unsigned, 8> Results(Ops);
1053 // Apply result permutation.
1054 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1055 ++ResNo) {
1056 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1059 Results.resize(NumSrcResults);
1060 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1064 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1065 /// the specified variant. If the variant number is invalid, this returns null.
1066 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1067 unsigned Variant,
1068 const CodeGenDAGPatterns &CGP) {
1069 MatcherGen Gen(Pattern, CGP);
1071 // Generate the code for the matcher.
1072 if (Gen.EmitMatcherCode(Variant))
1073 return nullptr;
1075 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1076 // FIXME2: Split result code out to another table, and make the matcher end
1077 // with an "Emit <index>" command. This allows result generation stuff to be
1078 // shared and factored?
1080 // If the match succeeds, then we generate Pattern.
1081 Gen.EmitResultCode();
1083 // Unconditional match.
1084 return Gen.GetMatcher();