[InstCombine] Signed saturation patterns
[llvm-core.git] / utils / TableGen / X86FoldTablesEmitter.cpp
blob2c15e35f234d4fa64424a2fcbea7793924c99041
1 //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting the memory fold tables of
10 // the X86 backend instructions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenTarget.h"
15 #include "X86RecognizableInstr.h"
16 #include "llvm/Support/FormattedStream.h"
17 #include "llvm/TableGen/Error.h"
18 #include "llvm/TableGen/TableGenBackend.h"
20 using namespace llvm;
22 namespace {
24 // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
25 // manual added entries.
26 enum UnfoldStrategy {
27 UNFOLD, // Allow unfolding
28 NO_UNFOLD, // Prevent unfolding
29 NO_STRATEGY // Make decision according to operands' sizes
32 // Represents an entry in the manual mapped instructions set.
33 struct ManualMapEntry {
34 const char *RegInstStr;
35 const char *MemInstStr;
36 UnfoldStrategy Strategy;
38 ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
39 UnfoldStrategy Strategy = NO_STRATEGY)
40 : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
43 class IsMatch;
45 // List of instructions requiring explicitly aligned memory.
46 const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
47 "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
49 // List of instructions NOT requiring explicit memory alignment.
50 const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
51 "PCMPESTRM", "PCMPESTRI",
52 "PCMPISTRM", "PCMPISTRI" };
54 // For manually mapping instructions that do not match by their encoding.
55 const ManualMapEntry ManualMapSet[] = {
56 { "ADD16ri_DB", "ADD16mi", NO_UNFOLD },
57 { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD },
58 { "ADD16rr_DB", "ADD16mr", NO_UNFOLD },
59 { "ADD32ri_DB", "ADD32mi", NO_UNFOLD },
60 { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD },
61 { "ADD32rr_DB", "ADD32mr", NO_UNFOLD },
62 { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD },
63 { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD },
64 { "ADD64rr_DB", "ADD64mr", NO_UNFOLD },
65 { "ADD8ri_DB", "ADD8mi", NO_UNFOLD },
66 { "ADD8rr_DB", "ADD8mr", NO_UNFOLD },
67 { "ADD16rr_DB", "ADD16rm", NO_UNFOLD },
68 { "ADD32rr_DB", "ADD32rm", NO_UNFOLD },
69 { "ADD64rr_DB", "ADD64rm", NO_UNFOLD },
70 { "ADD8rr_DB", "ADD8rm", NO_UNFOLD },
71 { "PUSH16r", "PUSH16rmm", UNFOLD },
72 { "PUSH32r", "PUSH32rmm", UNFOLD },
73 { "PUSH64r", "PUSH64rmm", UNFOLD },
74 { "TAILJMPr", "TAILJMPm", UNFOLD },
75 { "TAILJMPr64", "TAILJMPm64", UNFOLD },
76 { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD },
80 static bool isExplicitAlign(const CodeGenInstruction *Inst) {
81 return any_of(ExplicitAlign, [Inst](const char *InstStr) {
82 return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
83 });
86 static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
87 return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
88 return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
89 });
92 class X86FoldTablesEmitter {
93 RecordKeeper &Records;
94 CodeGenTarget Target;
96 // Represents an entry in the folding table
97 class X86FoldTableEntry {
98 const CodeGenInstruction *RegInst;
99 const CodeGenInstruction *MemInst;
101 public:
102 bool CannotUnfold = false;
103 bool IsLoad = false;
104 bool IsStore = false;
105 bool IsAligned = false;
106 unsigned int Alignment = 0;
108 X86FoldTableEntry(const CodeGenInstruction *RegInst,
109 const CodeGenInstruction *MemInst)
110 : RegInst(RegInst), MemInst(MemInst) {}
112 void print(formatted_raw_ostream &OS) const {
113 OS.indent(2);
114 OS << "{ X86::" << RegInst->TheDef->getName() << ",";
115 OS.PadToColumn(40);
116 OS << "X86::" << MemInst->TheDef->getName() << ",";
117 OS.PadToColumn(75);
119 if (IsLoad)
120 OS << "TB_FOLDED_LOAD | ";
121 if (IsStore)
122 OS << "TB_FOLDED_STORE | ";
123 if (CannotUnfold)
124 OS << "TB_NO_REVERSE | ";
125 if (IsAligned)
126 OS << "TB_ALIGN_" << Alignment << " | ";
128 OS << "0 },\n";
132 typedef std::vector<X86FoldTableEntry> FoldTable;
133 // std::vector for each folding table.
134 // Table2Addr - Holds instructions which their memory form performs load+store
135 // Table#i - Holds instructions which the their memory form perform a load OR
136 // a store, and their #i'th operand is folded.
137 FoldTable Table2Addr;
138 FoldTable Table0;
139 FoldTable Table1;
140 FoldTable Table2;
141 FoldTable Table3;
142 FoldTable Table4;
144 public:
145 X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
147 // run - Generate the 6 X86 memory fold tables.
148 void run(formatted_raw_ostream &OS);
150 private:
151 // Decides to which table to add the entry with the given instructions.
152 // S sets the strategy of adding the TB_NO_REVERSE flag.
153 void updateTables(const CodeGenInstruction *RegInstr,
154 const CodeGenInstruction *MemInstr,
155 const UnfoldStrategy S = NO_STRATEGY);
157 // Generates X86FoldTableEntry with the given instructions and fill it with
158 // the appropriate flags - then adds it to Table.
159 void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
160 const CodeGenInstruction *MemInstr,
161 const UnfoldStrategy S, const unsigned int FoldedInd);
163 // Print the given table as a static const C++ array of type
164 // X86MemoryFoldTableEntry.
165 void printTable(const FoldTable &Table, StringRef TableName,
166 formatted_raw_ostream &OS) {
167 OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
168 << "[] = {\n";
170 for (const X86FoldTableEntry &E : Table)
171 E.print(OS);
173 OS << "};\n\n";
177 // Return true if one of the instruction's operands is a RST register class
178 static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
179 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
180 return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
184 // Return true if one of the instruction's operands is a ptr_rc_tailcall
185 static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
186 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
187 return OpIn.Rec->getName() == "ptr_rc_tailcall";
191 // Calculates the integer value representing the BitsInit object
192 static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
193 assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");
195 uint64_t Value = 0;
196 for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
197 BitInit *Bit = cast<BitInit>(B->getBit(i));
198 Value |= uint64_t(Bit->getValue()) << i;
200 return Value;
203 // Returns true if the two given BitsInits represent the same integer value
204 static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
205 if (B1->getNumBits() != B2->getNumBits())
206 PrintFatalError("Comparing two BitsInits with different sizes!");
208 for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
209 BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
210 BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
211 if (Bit1->getValue() != Bit2->getValue())
212 return false;
214 return true;
217 // Return the size of the register operand
218 static inline unsigned int getRegOperandSize(const Record *RegRec) {
219 if (RegRec->isSubClassOf("RegisterOperand"))
220 RegRec = RegRec->getValueAsDef("RegClass");
221 if (RegRec->isSubClassOf("RegisterClass"))
222 return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
224 llvm_unreachable("Register operand's size not known!");
227 // Return the size of the memory operand
228 static inline unsigned int
229 getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
230 if (MemRec->isSubClassOf("Operand")) {
231 // Intrinsic memory instructions use ssmem/sdmem.
232 if (IntrinsicSensitive &&
233 (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
234 return 128;
236 StringRef Name =
237 MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
238 if (Name == "Mem8")
239 return 8;
240 if (Name == "Mem16")
241 return 16;
242 if (Name == "Mem32")
243 return 32;
244 if (Name == "Mem64")
245 return 64;
246 if (Name == "Mem80")
247 return 80;
248 if (Name == "Mem128")
249 return 128;
250 if (Name == "Mem256")
251 return 256;
252 if (Name == "Mem512")
253 return 512;
256 llvm_unreachable("Memory operand's size not known!");
259 // Return true if the instruction defined as a register flavor.
260 static inline bool hasRegisterFormat(const Record *Inst) {
261 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
262 uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
264 // Values from X86Local namespace defined in X86RecognizableInstr.cpp
265 return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
268 // Return true if the instruction defined as a memory flavor.
269 static inline bool hasMemoryFormat(const Record *Inst) {
270 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
271 uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
273 // Values from X86Local namespace defined in X86RecognizableInstr.cpp
274 return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
277 static inline bool isNOREXRegClass(const Record *Op) {
278 return Op->getName().find("_NOREX") != StringRef::npos;
281 static inline bool isRegisterOperand(const Record *Rec) {
282 return Rec->isSubClassOf("RegisterClass") ||
283 Rec->isSubClassOf("RegisterOperand") ||
284 Rec->isSubClassOf("PointerLikeRegClass");
287 static inline bool isMemoryOperand(const Record *Rec) {
288 return Rec->isSubClassOf("Operand") &&
289 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
292 static inline bool isImmediateOperand(const Record *Rec) {
293 return Rec->isSubClassOf("Operand") &&
294 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
297 // Get the alternative instruction pointed by "FoldGenRegForm" field.
298 static inline const CodeGenInstruction *
299 getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
300 const CodeGenTarget &Target) {
302 StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
303 Record *AltRegInstRec = Records.getDef(AltRegInstStr);
304 assert(AltRegInstRec &&
305 "Alternative register form instruction def not found");
306 CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
307 return &AltRegInst;
310 // Function object - Operator() returns true if the given VEX instruction
311 // matches the EVEX instruction of this object.
312 class IsMatch {
313 const CodeGenInstruction *MemInst;
315 public:
316 IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
317 : MemInst(Inst) {}
319 bool operator()(const CodeGenInstruction *RegInst) {
320 Record *MemRec = MemInst->TheDef;
321 Record *RegRec = RegInst->TheDef;
323 // Return false if one (at least) of the encoding fields of both
324 // instructions do not match.
325 if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
326 !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
327 MemRec->getValueAsBitsInit("Opcode")) ||
328 // VEX/EVEX fields
329 RegRec->getValueAsDef("OpPrefix") !=
330 MemRec->getValueAsDef("OpPrefix") ||
331 RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
332 RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
333 RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") ||
334 RegRec->getValueAsBit("hasVEX_4V") !=
335 MemRec->getValueAsBit("hasVEX_4V") ||
336 RegRec->getValueAsBit("hasEVEX_K") !=
337 MemRec->getValueAsBit("hasEVEX_K") ||
338 RegRec->getValueAsBit("hasEVEX_Z") !=
339 MemRec->getValueAsBit("hasEVEX_Z") ||
340 // EVEX_B means different things for memory and register forms.
341 RegRec->getValueAsBit("hasEVEX_B") != 0 ||
342 MemRec->getValueAsBit("hasEVEX_B") != 0 ||
343 RegRec->getValueAsBit("hasEVEX_RC") !=
344 MemRec->getValueAsBit("hasEVEX_RC") ||
345 RegRec->getValueAsBit("hasREX_WPrefix") !=
346 MemRec->getValueAsBit("hasREX_WPrefix") ||
347 RegRec->getValueAsBit("hasLockPrefix") !=
348 MemRec->getValueAsBit("hasLockPrefix") ||
349 RegRec->getValueAsBit("hasNoTrackPrefix") !=
350 MemRec->getValueAsBit("hasNoTrackPrefix") ||
351 RegRec->getValueAsBit("hasVEX_L") !=
352 MemRec->getValueAsBit("hasVEX_L") ||
353 RegRec->getValueAsBit("hasEVEX_L2") !=
354 MemRec->getValueAsBit("hasEVEX_L2") ||
355 RegRec->getValueAsBit("ignoresVEX_L") !=
356 MemRec->getValueAsBit("ignoresVEX_L") ||
357 RegRec->getValueAsBit("HasVEX_W") !=
358 MemRec->getValueAsBit("HasVEX_W") ||
359 RegRec->getValueAsBit("IgnoresVEX_W") !=
360 MemRec->getValueAsBit("IgnoresVEX_W") ||
361 RegRec->getValueAsBit("EVEX_W1_VEX_W0") !=
362 MemRec->getValueAsBit("EVEX_W1_VEX_W0") ||
363 // Instruction's format - The register form's "Form" field should be
364 // the opposite of the memory form's "Form" field.
365 !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
366 MemRec->getValueAsBitsInit("FormBits")) ||
367 RegRec->getValueAsBit("isAsmParserOnly") !=
368 MemRec->getValueAsBit("isAsmParserOnly"))
369 return false;
371 // Make sure the sizes of the operands of both instructions suit each other.
372 // This is needed for instructions with intrinsic version (_Int).
373 // Where the only difference is the size of the operands.
374 // For example: VUCOMISDZrm and Int_VUCOMISDrm
375 // Also for instructions that their EVEX version was upgraded to work with
376 // k-registers. For example VPCMPEQBrm (xmm output register) and
377 // VPCMPEQBZ128rm (k register output register).
378 bool ArgFolded = false;
379 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
380 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
381 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
382 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
384 // Instructions with one output in their memory form use the memory folded
385 // operand as source and destination (Read-Modify-Write).
386 unsigned RegStartIdx =
387 (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
389 for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
390 Record *MemOpRec = MemInst->Operands[i].Rec;
391 Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
393 if (MemOpRec == RegOpRec)
394 continue;
396 if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
397 if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
398 isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
399 return false;
400 } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
401 if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
402 return false;
403 } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
404 if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
405 return false;
406 } else {
407 // Only one operand can be folded.
408 if (ArgFolded)
409 return false;
411 assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
412 ArgFolded = true;
416 return true;
419 private:
420 // Return true of the 2 given forms are the opposite of each other.
421 bool areOppositeForms(const BitsInit *RegFormBits,
422 const BitsInit *MemFormBits) {
423 uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
424 uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
426 if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
427 (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
428 (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
429 (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
430 (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
431 (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
432 (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
433 (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
434 (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
435 (MemFormNum == X86Local::MRMXmCC && RegFormNum == X86Local::MRMXrCC) ||
436 (MemFormNum == X86Local::MRMDestMem &&
437 RegFormNum == X86Local::MRMDestReg) ||
438 (MemFormNum == X86Local::MRMSrcMem &&
439 RegFormNum == X86Local::MRMSrcReg) ||
440 (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
441 RegFormNum == X86Local::MRMSrcReg4VOp3) ||
442 (MemFormNum == X86Local::MRMSrcMemOp4 &&
443 RegFormNum == X86Local::MRMSrcRegOp4) ||
444 (MemFormNum == X86Local::MRMSrcMemCC &&
445 RegFormNum == X86Local::MRMSrcRegCC))
446 return true;
448 return false;
452 } // end anonymous namespace
454 void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
455 const CodeGenInstruction *RegInstr,
456 const CodeGenInstruction *MemInstr,
457 const UnfoldStrategy S,
458 const unsigned int FoldedInd) {
460 X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
461 Record *RegRec = RegInstr->TheDef;
462 Record *MemRec = MemInstr->TheDef;
464 // Only table0 entries should explicitly specify a load or store flag.
465 if (&Table == &Table0) {
466 unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
467 unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
468 // If the instruction writes to the folded operand, it will appear as an
469 // output in the register form instruction and as an input in the memory
470 // form instruction.
471 // If the instruction reads from the folded operand, it well appear as in
472 // input in both forms.
473 if (MemInOpsNum == RegInOpsNum)
474 Result.IsLoad = true;
475 else
476 Result.IsStore = true;
479 Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
480 Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
482 // Unfolding code generates a load/store instruction according to the size of
483 // the register in the register form instruction.
484 // If the register's size is greater than the memory's operand size, do not
485 // allow unfolding.
486 if (S == UNFOLD)
487 Result.CannotUnfold = false;
488 else if (S == NO_UNFOLD)
489 Result.CannotUnfold = true;
490 else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
491 Result.CannotUnfold = true; // S == NO_STRATEGY
493 uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
494 if (isExplicitAlign(RegInstr)) {
495 // The instruction require explicitly aligned memory.
496 BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
497 uint64_t Value = getValueFromBitsInit(VectSize);
498 Result.IsAligned = true;
499 Result.Alignment = Value;
500 } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
501 Enc != X86Local::EVEX) {
502 // Instructions with VEX encoding do not require alignment.
503 if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
504 // SSE packed vector instructions require a 16 byte alignment.
505 Result.IsAligned = true;
506 Result.Alignment = 16;
510 Table.push_back(Result);
513 void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
514 const CodeGenInstruction *MemInstr,
515 const UnfoldStrategy S) {
517 Record *RegRec = RegInstr->TheDef;
518 Record *MemRec = MemInstr->TheDef;
519 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
520 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
521 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
522 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
524 // Instructions which Read-Modify-Write should be added to Table2Addr.
525 if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
526 addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
527 return;
530 if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
531 // Load-Folding cases.
532 // If the i'th register form operand is a register and the i'th memory form
533 // operand is a memory operand, add instructions to Table#i.
534 for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
535 Record *RegOpRec = RegInstr->Operands[i].Rec;
536 Record *MemOpRec = MemInstr->Operands[i].Rec;
537 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
538 switch (i) {
539 case 0:
540 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
541 return;
542 case 1:
543 addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
544 return;
545 case 2:
546 addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
547 return;
548 case 3:
549 addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
550 return;
551 case 4:
552 addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
553 return;
557 } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
558 // Store-Folding cases.
559 // If the memory form instruction performs a store, the *output*
560 // register of the register form instructions disappear and instead a
561 // memory *input* operand appears in the memory form instruction.
562 // For example:
563 // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
564 // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
565 Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
566 Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
567 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
568 getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
569 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
572 return;
575 void X86FoldTablesEmitter::run(formatted_raw_ostream &OS) {
576 emitSourceFileHeader("X86 fold tables", OS);
578 // Holds all memory instructions
579 std::vector<const CodeGenInstruction *> MemInsts;
580 // Holds all register instructions - divided according to opcode.
581 std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
583 ArrayRef<const CodeGenInstruction *> NumberedInstructions =
584 Target.getInstructionsByEnumValue();
586 for (const CodeGenInstruction *Inst : NumberedInstructions) {
587 if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
588 continue;
590 const Record *Rec = Inst->TheDef;
592 // - Do not proceed if the instruction is marked as notMemoryFoldable.
593 // - Instructions including RST register class operands are not relevant
594 // for memory folding (for further details check the explanation in
595 // lib/Target/X86/X86InstrFPStack.td file).
596 // - Some instructions (listed in the manual map above) use the register
597 // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
598 // safe mapping of these instruction we manually map them and exclude
599 // them from the automation.
600 if (Rec->getValueAsBit("isMemoryFoldable") == false ||
601 hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
602 continue;
604 // Add all the memory form instructions to MemInsts, and all the register
605 // form instructions to RegInsts[Opc], where Opc in the opcode of each
606 // instructions. this helps reducing the runtime of the backend.
607 if (hasMemoryFormat(Rec))
608 MemInsts.push_back(Inst);
609 else if (hasRegisterFormat(Rec)) {
610 uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
611 RegInsts[Opc].push_back(Inst);
615 // For each memory form instruction, try to find its register form
616 // instruction.
617 for (const CodeGenInstruction *MemInst : MemInsts) {
618 uint8_t Opc =
619 getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
621 if (RegInsts.count(Opc) == 0)
622 continue;
624 // Two forms (memory & register) of the same instruction must have the same
625 // opcode. try matching only with register form instructions with the same
626 // opcode.
627 std::vector<const CodeGenInstruction *> &OpcRegInsts =
628 RegInsts.find(Opc)->second;
630 auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
631 if (Match != OpcRegInsts.end()) {
632 const CodeGenInstruction *RegInst = *Match;
633 // If the matched instruction has it's "FoldGenRegForm" set, map the
634 // memory form instruction to the register form instruction pointed by
635 // this field
636 if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
637 updateTables(RegInst, MemInst);
638 } else {
639 const CodeGenInstruction *AltRegInst =
640 getAltRegInst(RegInst, Records, Target);
641 updateTables(AltRegInst, MemInst);
643 OpcRegInsts.erase(Match);
647 // Add the manually mapped instructions listed above.
648 for (const ManualMapEntry &Entry : ManualMapSet) {
649 Record *RegInstIter = Records.getDef(Entry.RegInstStr);
650 Record *MemInstIter = Records.getDef(Entry.MemInstStr);
652 updateTables(&(Target.getInstruction(RegInstIter)),
653 &(Target.getInstruction(MemInstIter)), Entry.Strategy);
656 // Print all tables.
657 printTable(Table2Addr, "Table2Addr", OS);
658 printTable(Table0, "Table0", OS);
659 printTable(Table1, "Table1", OS);
660 printTable(Table2, "Table2", OS);
661 printTable(Table3, "Table3", OS);
662 printTable(Table4, "Table4", OS);
665 namespace llvm {
667 void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &o) {
668 formatted_raw_ostream OS(o);
669 X86FoldTablesEmitter(RK).run(OS);
671 } // namespace llvm