Revert "[Sanitizers] UBSan unreachable incompatible with ASan in the presence of...
[llvm-core.git] / lib / AsmParser / LLParser.cpp
blob855c5d2650032d9313eaf04b547273b64d658cea
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
54 using namespace llvm;
56 static std::string getTypeString(Type *T) {
57 std::string Result;
58 raw_string_ostream Tmp(Result);
59 Tmp << *T;
60 return Tmp.str();
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65 // Prime the lexer.
66 Lex.Lex();
68 if (Context.shouldDiscardValueNames())
69 return Error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
74 ValidateEndOfIndex();
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78 const SlotMapping *Slots) {
79 restoreParsingState(Slots);
80 Lex.Lex();
82 Type *Ty = nullptr;
83 if (ParseType(Ty) || parseConstantValue(Ty, C))
84 return true;
85 if (Lex.getKind() != lltok::Eof)
86 return Error(Lex.getLoc(), "expected end of string");
87 return false;
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91 const SlotMapping *Slots) {
92 restoreParsingState(Slots);
93 Lex.Lex();
95 Read = 0;
96 SMLoc Start = Lex.getLoc();
97 Ty = nullptr;
98 if (ParseType(Ty))
99 return true;
100 SMLoc End = Lex.getLoc();
101 Read = End.getPointer() - Start.getPointer();
103 return false;
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107 if (!Slots)
108 return;
109 NumberedVals = Slots->GlobalValues;
110 NumberedMetadata = Slots->MetadataNodes;
111 for (const auto &I : Slots->NamedTypes)
112 NamedTypes.insert(
113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114 for (const auto &I : Slots->Types)
115 NumberedTypes.insert(
116 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122 if (!M)
123 return false;
124 // Handle any function attribute group forward references.
125 for (const auto &RAG : ForwardRefAttrGroups) {
126 Value *V = RAG.first;
127 const std::vector<unsigned> &Attrs = RAG.second;
128 AttrBuilder B;
130 for (const auto &Attr : Attrs)
131 B.merge(NumberedAttrBuilders[Attr]);
133 if (Function *Fn = dyn_cast<Function>(V)) {
134 AttributeList AS = Fn->getAttributes();
135 AttrBuilder FnAttrs(AS.getFnAttributes());
136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138 FnAttrs.merge(B);
140 // If the alignment was parsed as an attribute, move to the alignment
141 // field.
142 if (FnAttrs.hasAlignmentAttr()) {
143 Fn->setAlignment(FnAttrs.getAlignment());
144 FnAttrs.removeAttribute(Attribute::Alignment);
147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148 AttributeSet::get(Context, FnAttrs));
149 Fn->setAttributes(AS);
150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151 AttributeList AS = CI->getAttributes();
152 AttrBuilder FnAttrs(AS.getFnAttributes());
153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154 FnAttrs.merge(B);
155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156 AttributeSet::get(Context, FnAttrs));
157 CI->setAttributes(AS);
158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159 AttributeList AS = II->getAttributes();
160 AttrBuilder FnAttrs(AS.getFnAttributes());
161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162 FnAttrs.merge(B);
163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164 AttributeSet::get(Context, FnAttrs));
165 II->setAttributes(AS);
166 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
167 AttrBuilder Attrs(GV->getAttributes());
168 Attrs.merge(B);
169 GV->setAttributes(AttributeSet::get(Context,Attrs));
170 } else {
171 llvm_unreachable("invalid object with forward attribute group reference");
175 // If there are entries in ForwardRefBlockAddresses at this point, the
176 // function was never defined.
177 if (!ForwardRefBlockAddresses.empty())
178 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
179 "expected function name in blockaddress");
181 for (const auto &NT : NumberedTypes)
182 if (NT.second.second.isValid())
183 return Error(NT.second.second,
184 "use of undefined type '%" + Twine(NT.first) + "'");
186 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
187 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
188 if (I->second.second.isValid())
189 return Error(I->second.second,
190 "use of undefined type named '" + I->getKey() + "'");
192 if (!ForwardRefComdats.empty())
193 return Error(ForwardRefComdats.begin()->second,
194 "use of undefined comdat '$" +
195 ForwardRefComdats.begin()->first + "'");
197 if (!ForwardRefVals.empty())
198 return Error(ForwardRefVals.begin()->second.second,
199 "use of undefined value '@" + ForwardRefVals.begin()->first +
200 "'");
202 if (!ForwardRefValIDs.empty())
203 return Error(ForwardRefValIDs.begin()->second.second,
204 "use of undefined value '@" +
205 Twine(ForwardRefValIDs.begin()->first) + "'");
207 if (!ForwardRefMDNodes.empty())
208 return Error(ForwardRefMDNodes.begin()->second.second,
209 "use of undefined metadata '!" +
210 Twine(ForwardRefMDNodes.begin()->first) + "'");
212 // Resolve metadata cycles.
213 for (auto &N : NumberedMetadata) {
214 if (N.second && !N.second->isResolved())
215 N.second->resolveCycles();
218 for (auto *Inst : InstsWithTBAATag) {
219 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
220 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
221 auto *UpgradedMD = UpgradeTBAANode(*MD);
222 if (MD != UpgradedMD)
223 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
226 // Look for intrinsic functions and CallInst that need to be upgraded
227 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
228 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230 // Some types could be renamed during loading if several modules are
231 // loaded in the same LLVMContext (LTO scenario). In this case we should
232 // remangle intrinsics names as well.
233 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
234 Function *F = &*FI++;
235 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
236 F->replaceAllUsesWith(Remangled.getValue());
237 F->eraseFromParent();
241 if (UpgradeDebugInfo)
242 llvm::UpgradeDebugInfo(*M);
244 UpgradeModuleFlags(*M);
245 UpgradeSectionAttributes(*M);
247 if (!Slots)
248 return false;
249 // Initialize the slot mapping.
250 // Because by this point we've parsed and validated everything, we can "steal"
251 // the mapping from LLParser as it doesn't need it anymore.
252 Slots->GlobalValues = std::move(NumberedVals);
253 Slots->MetadataNodes = std::move(NumberedMetadata);
254 for (const auto &I : NamedTypes)
255 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
256 for (const auto &I : NumberedTypes)
257 Slots->Types.insert(std::make_pair(I.first, I.second.first));
259 return false;
262 /// Do final validity and sanity checks at the end of the index.
263 bool LLParser::ValidateEndOfIndex() {
264 if (!Index)
265 return false;
267 if (!ForwardRefValueInfos.empty())
268 return Error(ForwardRefValueInfos.begin()->second.front().second,
269 "use of undefined summary '^" +
270 Twine(ForwardRefValueInfos.begin()->first) + "'");
272 if (!ForwardRefAliasees.empty())
273 return Error(ForwardRefAliasees.begin()->second.front().second,
274 "use of undefined summary '^" +
275 Twine(ForwardRefAliasees.begin()->first) + "'");
277 if (!ForwardRefTypeIds.empty())
278 return Error(ForwardRefTypeIds.begin()->second.front().second,
279 "use of undefined type id summary '^" +
280 Twine(ForwardRefTypeIds.begin()->first) + "'");
282 return false;
285 //===----------------------------------------------------------------------===//
286 // Top-Level Entities
287 //===----------------------------------------------------------------------===//
289 bool LLParser::ParseTopLevelEntities() {
290 // If there is no Module, then parse just the summary index entries.
291 if (!M) {
292 while (true) {
293 switch (Lex.getKind()) {
294 case lltok::Eof:
295 return false;
296 case lltok::SummaryID:
297 if (ParseSummaryEntry())
298 return true;
299 break;
300 case lltok::kw_source_filename:
301 if (ParseSourceFileName())
302 return true;
303 break;
304 default:
305 // Skip everything else
306 Lex.Lex();
310 while (true) {
311 switch (Lex.getKind()) {
312 default: return TokError("expected top-level entity");
313 case lltok::Eof: return false;
314 case lltok::kw_declare: if (ParseDeclare()) return true; break;
315 case lltok::kw_define: if (ParseDefine()) return true; break;
316 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
317 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
318 case lltok::kw_source_filename:
319 if (ParseSourceFileName())
320 return true;
321 break;
322 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
323 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
324 case lltok::LocalVar: if (ParseNamedType()) return true; break;
325 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
326 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
327 case lltok::ComdatVar: if (parseComdat()) return true; break;
328 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
329 case lltok::SummaryID:
330 if (ParseSummaryEntry())
331 return true;
332 break;
333 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
334 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
335 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
336 case lltok::kw_uselistorder_bb:
337 if (ParseUseListOrderBB())
338 return true;
339 break;
344 /// toplevelentity
345 /// ::= 'module' 'asm' STRINGCONSTANT
346 bool LLParser::ParseModuleAsm() {
347 assert(Lex.getKind() == lltok::kw_module);
348 Lex.Lex();
350 std::string AsmStr;
351 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
352 ParseStringConstant(AsmStr)) return true;
354 M->appendModuleInlineAsm(AsmStr);
355 return false;
358 /// toplevelentity
359 /// ::= 'target' 'triple' '=' STRINGCONSTANT
360 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
361 bool LLParser::ParseTargetDefinition() {
362 assert(Lex.getKind() == lltok::kw_target);
363 std::string Str;
364 switch (Lex.Lex()) {
365 default: return TokError("unknown target property");
366 case lltok::kw_triple:
367 Lex.Lex();
368 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
369 ParseStringConstant(Str))
370 return true;
371 M->setTargetTriple(Str);
372 return false;
373 case lltok::kw_datalayout:
374 Lex.Lex();
375 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
376 ParseStringConstant(Str))
377 return true;
378 if (DataLayoutStr.empty())
379 M->setDataLayout(Str);
380 return false;
384 /// toplevelentity
385 /// ::= 'source_filename' '=' STRINGCONSTANT
386 bool LLParser::ParseSourceFileName() {
387 assert(Lex.getKind() == lltok::kw_source_filename);
388 Lex.Lex();
389 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
390 ParseStringConstant(SourceFileName))
391 return true;
392 if (M)
393 M->setSourceFileName(SourceFileName);
394 return false;
397 /// toplevelentity
398 /// ::= 'deplibs' '=' '[' ']'
399 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
400 /// FIXME: Remove in 4.0. Currently parse, but ignore.
401 bool LLParser::ParseDepLibs() {
402 assert(Lex.getKind() == lltok::kw_deplibs);
403 Lex.Lex();
404 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
405 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
406 return true;
408 if (EatIfPresent(lltok::rsquare))
409 return false;
411 do {
412 std::string Str;
413 if (ParseStringConstant(Str)) return true;
414 } while (EatIfPresent(lltok::comma));
416 return ParseToken(lltok::rsquare, "expected ']' at end of list");
419 /// ParseUnnamedType:
420 /// ::= LocalVarID '=' 'type' type
421 bool LLParser::ParseUnnamedType() {
422 LocTy TypeLoc = Lex.getLoc();
423 unsigned TypeID = Lex.getUIntVal();
424 Lex.Lex(); // eat LocalVarID;
426 if (ParseToken(lltok::equal, "expected '=' after name") ||
427 ParseToken(lltok::kw_type, "expected 'type' after '='"))
428 return true;
430 Type *Result = nullptr;
431 if (ParseStructDefinition(TypeLoc, "",
432 NumberedTypes[TypeID], Result)) return true;
434 if (!isa<StructType>(Result)) {
435 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
436 if (Entry.first)
437 return Error(TypeLoc, "non-struct types may not be recursive");
438 Entry.first = Result;
439 Entry.second = SMLoc();
442 return false;
445 /// toplevelentity
446 /// ::= LocalVar '=' 'type' type
447 bool LLParser::ParseNamedType() {
448 std::string Name = Lex.getStrVal();
449 LocTy NameLoc = Lex.getLoc();
450 Lex.Lex(); // eat LocalVar.
452 if (ParseToken(lltok::equal, "expected '=' after name") ||
453 ParseToken(lltok::kw_type, "expected 'type' after name"))
454 return true;
456 Type *Result = nullptr;
457 if (ParseStructDefinition(NameLoc, Name,
458 NamedTypes[Name], Result)) return true;
460 if (!isa<StructType>(Result)) {
461 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
462 if (Entry.first)
463 return Error(NameLoc, "non-struct types may not be recursive");
464 Entry.first = Result;
465 Entry.second = SMLoc();
468 return false;
471 /// toplevelentity
472 /// ::= 'declare' FunctionHeader
473 bool LLParser::ParseDeclare() {
474 assert(Lex.getKind() == lltok::kw_declare);
475 Lex.Lex();
477 std::vector<std::pair<unsigned, MDNode *>> MDs;
478 while (Lex.getKind() == lltok::MetadataVar) {
479 unsigned MDK;
480 MDNode *N;
481 if (ParseMetadataAttachment(MDK, N))
482 return true;
483 MDs.push_back({MDK, N});
486 Function *F;
487 if (ParseFunctionHeader(F, false))
488 return true;
489 for (auto &MD : MDs)
490 F->addMetadata(MD.first, *MD.second);
491 return false;
494 /// toplevelentity
495 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
496 bool LLParser::ParseDefine() {
497 assert(Lex.getKind() == lltok::kw_define);
498 Lex.Lex();
500 Function *F;
501 return ParseFunctionHeader(F, true) ||
502 ParseOptionalFunctionMetadata(*F) ||
503 ParseFunctionBody(*F);
506 /// ParseGlobalType
507 /// ::= 'constant'
508 /// ::= 'global'
509 bool LLParser::ParseGlobalType(bool &IsConstant) {
510 if (Lex.getKind() == lltok::kw_constant)
511 IsConstant = true;
512 else if (Lex.getKind() == lltok::kw_global)
513 IsConstant = false;
514 else {
515 IsConstant = false;
516 return TokError("expected 'global' or 'constant'");
518 Lex.Lex();
519 return false;
522 bool LLParser::ParseOptionalUnnamedAddr(
523 GlobalVariable::UnnamedAddr &UnnamedAddr) {
524 if (EatIfPresent(lltok::kw_unnamed_addr))
525 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
526 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
527 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
528 else
529 UnnamedAddr = GlobalValue::UnnamedAddr::None;
530 return false;
533 /// ParseUnnamedGlobal:
534 /// OptionalVisibility (ALIAS | IFUNC) ...
535 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
536 /// OptionalDLLStorageClass
537 /// ... -> global variable
538 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
539 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
540 /// OptionalDLLStorageClass
541 /// ... -> global variable
542 bool LLParser::ParseUnnamedGlobal() {
543 unsigned VarID = NumberedVals.size();
544 std::string Name;
545 LocTy NameLoc = Lex.getLoc();
547 // Handle the GlobalID form.
548 if (Lex.getKind() == lltok::GlobalID) {
549 if (Lex.getUIntVal() != VarID)
550 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
551 Twine(VarID) + "'");
552 Lex.Lex(); // eat GlobalID;
554 if (ParseToken(lltok::equal, "expected '=' after name"))
555 return true;
558 bool HasLinkage;
559 unsigned Linkage, Visibility, DLLStorageClass;
560 bool DSOLocal;
561 GlobalVariable::ThreadLocalMode TLM;
562 GlobalVariable::UnnamedAddr UnnamedAddr;
563 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
564 DSOLocal) ||
565 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
566 return true;
568 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
569 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
570 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
573 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
576 /// ParseNamedGlobal:
577 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
578 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
579 /// OptionalVisibility OptionalDLLStorageClass
580 /// ... -> global variable
581 bool LLParser::ParseNamedGlobal() {
582 assert(Lex.getKind() == lltok::GlobalVar);
583 LocTy NameLoc = Lex.getLoc();
584 std::string Name = Lex.getStrVal();
585 Lex.Lex();
587 bool HasLinkage;
588 unsigned Linkage, Visibility, DLLStorageClass;
589 bool DSOLocal;
590 GlobalVariable::ThreadLocalMode TLM;
591 GlobalVariable::UnnamedAddr UnnamedAddr;
592 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
593 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
594 DSOLocal) ||
595 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
596 return true;
598 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
599 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
600 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
603 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
606 bool LLParser::parseComdat() {
607 assert(Lex.getKind() == lltok::ComdatVar);
608 std::string Name = Lex.getStrVal();
609 LocTy NameLoc = Lex.getLoc();
610 Lex.Lex();
612 if (ParseToken(lltok::equal, "expected '=' here"))
613 return true;
615 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
616 return TokError("expected comdat type");
618 Comdat::SelectionKind SK;
619 switch (Lex.getKind()) {
620 default:
621 return TokError("unknown selection kind");
622 case lltok::kw_any:
623 SK = Comdat::Any;
624 break;
625 case lltok::kw_exactmatch:
626 SK = Comdat::ExactMatch;
627 break;
628 case lltok::kw_largest:
629 SK = Comdat::Largest;
630 break;
631 case lltok::kw_noduplicates:
632 SK = Comdat::NoDuplicates;
633 break;
634 case lltok::kw_samesize:
635 SK = Comdat::SameSize;
636 break;
638 Lex.Lex();
640 // See if the comdat was forward referenced, if so, use the comdat.
641 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
642 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
643 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
644 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646 Comdat *C;
647 if (I != ComdatSymTab.end())
648 C = &I->second;
649 else
650 C = M->getOrInsertComdat(Name);
651 C->setSelectionKind(SK);
653 return false;
656 // MDString:
657 // ::= '!' STRINGCONSTANT
658 bool LLParser::ParseMDString(MDString *&Result) {
659 std::string Str;
660 if (ParseStringConstant(Str)) return true;
661 Result = MDString::get(Context, Str);
662 return false;
665 // MDNode:
666 // ::= '!' MDNodeNumber
667 bool LLParser::ParseMDNodeID(MDNode *&Result) {
668 // !{ ..., !42, ... }
669 LocTy IDLoc = Lex.getLoc();
670 unsigned MID = 0;
671 if (ParseUInt32(MID))
672 return true;
674 // If not a forward reference, just return it now.
675 if (NumberedMetadata.count(MID)) {
676 Result = NumberedMetadata[MID];
677 return false;
680 // Otherwise, create MDNode forward reference.
681 auto &FwdRef = ForwardRefMDNodes[MID];
682 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684 Result = FwdRef.first.get();
685 NumberedMetadata[MID].reset(Result);
686 return false;
689 /// ParseNamedMetadata:
690 /// !foo = !{ !1, !2 }
691 bool LLParser::ParseNamedMetadata() {
692 assert(Lex.getKind() == lltok::MetadataVar);
693 std::string Name = Lex.getStrVal();
694 Lex.Lex();
696 if (ParseToken(lltok::equal, "expected '=' here") ||
697 ParseToken(lltok::exclaim, "Expected '!' here") ||
698 ParseToken(lltok::lbrace, "Expected '{' here"))
699 return true;
701 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
702 if (Lex.getKind() != lltok::rbrace)
703 do {
704 MDNode *N = nullptr;
705 // Parse DIExpressions inline as a special case. They are still MDNodes,
706 // so they can still appear in named metadata. Remove this logic if they
707 // become plain Metadata.
708 if (Lex.getKind() == lltok::MetadataVar &&
709 Lex.getStrVal() == "DIExpression") {
710 if (ParseDIExpression(N, /*IsDistinct=*/false))
711 return true;
712 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
713 ParseMDNodeID(N)) {
714 return true;
716 NMD->addOperand(N);
717 } while (EatIfPresent(lltok::comma));
719 return ParseToken(lltok::rbrace, "expected end of metadata node");
722 /// ParseStandaloneMetadata:
723 /// !42 = !{...}
724 bool LLParser::ParseStandaloneMetadata() {
725 assert(Lex.getKind() == lltok::exclaim);
726 Lex.Lex();
727 unsigned MetadataID = 0;
729 MDNode *Init;
730 if (ParseUInt32(MetadataID) ||
731 ParseToken(lltok::equal, "expected '=' here"))
732 return true;
734 // Detect common error, from old metadata syntax.
735 if (Lex.getKind() == lltok::Type)
736 return TokError("unexpected type in metadata definition");
738 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
739 if (Lex.getKind() == lltok::MetadataVar) {
740 if (ParseSpecializedMDNode(Init, IsDistinct))
741 return true;
742 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
743 ParseMDTuple(Init, IsDistinct))
744 return true;
746 // See if this was forward referenced, if so, handle it.
747 auto FI = ForwardRefMDNodes.find(MetadataID);
748 if (FI != ForwardRefMDNodes.end()) {
749 FI->second.first->replaceAllUsesWith(Init);
750 ForwardRefMDNodes.erase(FI);
752 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
753 } else {
754 if (NumberedMetadata.count(MetadataID))
755 return TokError("Metadata id is already used");
756 NumberedMetadata[MetadataID].reset(Init);
759 return false;
762 // Skips a single module summary entry.
763 bool LLParser::SkipModuleSummaryEntry() {
764 // Each module summary entry consists of a tag for the entry
765 // type, followed by a colon, then the fields surrounded by nested sets of
766 // parentheses. The "tag:" looks like a Label. Once parsing support is
767 // in place we will look for the tokens corresponding to the expected tags.
768 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
769 Lex.getKind() != lltok::kw_typeid)
770 return TokError(
771 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
772 Lex.Lex();
773 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
774 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
775 return true;
776 // Now walk through the parenthesized entry, until the number of open
777 // parentheses goes back down to 0 (the first '(' was parsed above).
778 unsigned NumOpenParen = 1;
779 do {
780 switch (Lex.getKind()) {
781 case lltok::lparen:
782 NumOpenParen++;
783 break;
784 case lltok::rparen:
785 NumOpenParen--;
786 break;
787 case lltok::Eof:
788 return TokError("found end of file while parsing summary entry");
789 default:
790 // Skip everything in between parentheses.
791 break;
793 Lex.Lex();
794 } while (NumOpenParen > 0);
795 return false;
798 /// SummaryEntry
799 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
800 bool LLParser::ParseSummaryEntry() {
801 assert(Lex.getKind() == lltok::SummaryID);
802 unsigned SummaryID = Lex.getUIntVal();
804 // For summary entries, colons should be treated as distinct tokens,
805 // not an indication of the end of a label token.
806 Lex.setIgnoreColonInIdentifiers(true);
808 Lex.Lex();
809 if (ParseToken(lltok::equal, "expected '=' here"))
810 return true;
812 // If we don't have an index object, skip the summary entry.
813 if (!Index)
814 return SkipModuleSummaryEntry();
816 switch (Lex.getKind()) {
817 case lltok::kw_gv:
818 return ParseGVEntry(SummaryID);
819 case lltok::kw_module:
820 return ParseModuleEntry(SummaryID);
821 case lltok::kw_typeid:
822 return ParseTypeIdEntry(SummaryID);
823 break;
824 default:
825 return Error(Lex.getLoc(), "unexpected summary kind");
827 Lex.setIgnoreColonInIdentifiers(false);
828 return false;
831 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
832 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
833 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
836 // If there was an explicit dso_local, update GV. In the absence of an explicit
837 // dso_local we keep the default value.
838 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
839 if (DSOLocal)
840 GV.setDSOLocal(true);
843 /// parseIndirectSymbol:
844 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
845 /// OptionalVisibility OptionalDLLStorageClass
846 /// OptionalThreadLocal OptionalUnnamedAddr
847 // 'alias|ifunc' IndirectSymbol
849 /// IndirectSymbol
850 /// ::= TypeAndValue
852 /// Everything through OptionalUnnamedAddr has already been parsed.
854 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
855 unsigned L, unsigned Visibility,
856 unsigned DLLStorageClass, bool DSOLocal,
857 GlobalVariable::ThreadLocalMode TLM,
858 GlobalVariable::UnnamedAddr UnnamedAddr) {
859 bool IsAlias;
860 if (Lex.getKind() == lltok::kw_alias)
861 IsAlias = true;
862 else if (Lex.getKind() == lltok::kw_ifunc)
863 IsAlias = false;
864 else
865 llvm_unreachable("Not an alias or ifunc!");
866 Lex.Lex();
868 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
870 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
871 return Error(NameLoc, "invalid linkage type for alias");
873 if (!isValidVisibilityForLinkage(Visibility, L))
874 return Error(NameLoc,
875 "symbol with local linkage must have default visibility");
877 Type *Ty;
878 LocTy ExplicitTypeLoc = Lex.getLoc();
879 if (ParseType(Ty) ||
880 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
881 return true;
883 Constant *Aliasee;
884 LocTy AliaseeLoc = Lex.getLoc();
885 if (Lex.getKind() != lltok::kw_bitcast &&
886 Lex.getKind() != lltok::kw_getelementptr &&
887 Lex.getKind() != lltok::kw_addrspacecast &&
888 Lex.getKind() != lltok::kw_inttoptr) {
889 if (ParseGlobalTypeAndValue(Aliasee))
890 return true;
891 } else {
892 // The bitcast dest type is not present, it is implied by the dest type.
893 ValID ID;
894 if (ParseValID(ID))
895 return true;
896 if (ID.Kind != ValID::t_Constant)
897 return Error(AliaseeLoc, "invalid aliasee");
898 Aliasee = ID.ConstantVal;
901 Type *AliaseeType = Aliasee->getType();
902 auto *PTy = dyn_cast<PointerType>(AliaseeType);
903 if (!PTy)
904 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
905 unsigned AddrSpace = PTy->getAddressSpace();
907 if (IsAlias && Ty != PTy->getElementType())
908 return Error(
909 ExplicitTypeLoc,
910 "explicit pointee type doesn't match operand's pointee type");
912 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
913 return Error(
914 ExplicitTypeLoc,
915 "explicit pointee type should be a function type");
917 GlobalValue *GVal = nullptr;
919 // See if the alias was forward referenced, if so, prepare to replace the
920 // forward reference.
921 if (!Name.empty()) {
922 GVal = M->getNamedValue(Name);
923 if (GVal) {
924 if (!ForwardRefVals.erase(Name))
925 return Error(NameLoc, "redefinition of global '@" + Name + "'");
927 } else {
928 auto I = ForwardRefValIDs.find(NumberedVals.size());
929 if (I != ForwardRefValIDs.end()) {
930 GVal = I->second.first;
931 ForwardRefValIDs.erase(I);
935 // Okay, create the alias but do not insert it into the module yet.
936 std::unique_ptr<GlobalIndirectSymbol> GA;
937 if (IsAlias)
938 GA.reset(GlobalAlias::create(Ty, AddrSpace,
939 (GlobalValue::LinkageTypes)Linkage, Name,
940 Aliasee, /*Parent*/ nullptr));
941 else
942 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
943 (GlobalValue::LinkageTypes)Linkage, Name,
944 Aliasee, /*Parent*/ nullptr));
945 GA->setThreadLocalMode(TLM);
946 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
947 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
948 GA->setUnnamedAddr(UnnamedAddr);
949 maybeSetDSOLocal(DSOLocal, *GA);
951 if (Name.empty())
952 NumberedVals.push_back(GA.get());
954 if (GVal) {
955 // Verify that types agree.
956 if (GVal->getType() != GA->getType())
957 return Error(
958 ExplicitTypeLoc,
959 "forward reference and definition of alias have different types");
961 // If they agree, just RAUW the old value with the alias and remove the
962 // forward ref info.
963 GVal->replaceAllUsesWith(GA.get());
964 GVal->eraseFromParent();
967 // Insert into the module, we know its name won't collide now.
968 if (IsAlias)
969 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
970 else
971 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
972 assert(GA->getName() == Name && "Should not be a name conflict!");
974 // The module owns this now
975 GA.release();
977 return false;
980 /// ParseGlobal
981 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
982 /// OptionalVisibility OptionalDLLStorageClass
983 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
984 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
985 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
986 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
987 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
988 /// Const OptionalAttrs
990 /// Everything up to and including OptionalUnnamedAddr has been parsed
991 /// already.
993 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
994 unsigned Linkage, bool HasLinkage,
995 unsigned Visibility, unsigned DLLStorageClass,
996 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
997 GlobalVariable::UnnamedAddr UnnamedAddr) {
998 if (!isValidVisibilityForLinkage(Visibility, Linkage))
999 return Error(NameLoc,
1000 "symbol with local linkage must have default visibility");
1002 unsigned AddrSpace;
1003 bool IsConstant, IsExternallyInitialized;
1004 LocTy IsExternallyInitializedLoc;
1005 LocTy TyLoc;
1007 Type *Ty = nullptr;
1008 if (ParseOptionalAddrSpace(AddrSpace) ||
1009 ParseOptionalToken(lltok::kw_externally_initialized,
1010 IsExternallyInitialized,
1011 &IsExternallyInitializedLoc) ||
1012 ParseGlobalType(IsConstant) ||
1013 ParseType(Ty, TyLoc))
1014 return true;
1016 // If the linkage is specified and is external, then no initializer is
1017 // present.
1018 Constant *Init = nullptr;
1019 if (!HasLinkage ||
1020 !GlobalValue::isValidDeclarationLinkage(
1021 (GlobalValue::LinkageTypes)Linkage)) {
1022 if (ParseGlobalValue(Ty, Init))
1023 return true;
1026 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1027 return Error(TyLoc, "invalid type for global variable");
1029 GlobalValue *GVal = nullptr;
1031 // See if the global was forward referenced, if so, use the global.
1032 if (!Name.empty()) {
1033 GVal = M->getNamedValue(Name);
1034 if (GVal) {
1035 if (!ForwardRefVals.erase(Name))
1036 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038 } else {
1039 auto I = ForwardRefValIDs.find(NumberedVals.size());
1040 if (I != ForwardRefValIDs.end()) {
1041 GVal = I->second.first;
1042 ForwardRefValIDs.erase(I);
1046 GlobalVariable *GV;
1047 if (!GVal) {
1048 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1049 Name, nullptr, GlobalVariable::NotThreadLocal,
1050 AddrSpace);
1051 } else {
1052 if (GVal->getValueType() != Ty)
1053 return Error(TyLoc,
1054 "forward reference and definition of global have different types");
1056 GV = cast<GlobalVariable>(GVal);
1058 // Move the forward-reference to the correct spot in the module.
1059 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1062 if (Name.empty())
1063 NumberedVals.push_back(GV);
1065 // Set the parsed properties on the global.
1066 if (Init)
1067 GV->setInitializer(Init);
1068 GV->setConstant(IsConstant);
1069 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1070 maybeSetDSOLocal(DSOLocal, *GV);
1071 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1072 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1073 GV->setExternallyInitialized(IsExternallyInitialized);
1074 GV->setThreadLocalMode(TLM);
1075 GV->setUnnamedAddr(UnnamedAddr);
1077 // Parse attributes on the global.
1078 while (Lex.getKind() == lltok::comma) {
1079 Lex.Lex();
1081 if (Lex.getKind() == lltok::kw_section) {
1082 Lex.Lex();
1083 GV->setSection(Lex.getStrVal());
1084 if (ParseToken(lltok::StringConstant, "expected global section string"))
1085 return true;
1086 } else if (Lex.getKind() == lltok::kw_align) {
1087 unsigned Alignment;
1088 if (ParseOptionalAlignment(Alignment)) return true;
1089 GV->setAlignment(Alignment);
1090 } else if (Lex.getKind() == lltok::MetadataVar) {
1091 if (ParseGlobalObjectMetadataAttachment(*GV))
1092 return true;
1093 } else {
1094 Comdat *C;
1095 if (parseOptionalComdat(Name, C))
1096 return true;
1097 if (C)
1098 GV->setComdat(C);
1099 else
1100 return TokError("unknown global variable property!");
1104 AttrBuilder Attrs;
1105 LocTy BuiltinLoc;
1106 std::vector<unsigned> FwdRefAttrGrps;
1107 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1108 return true;
1109 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1110 GV->setAttributes(AttributeSet::get(Context, Attrs));
1111 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1114 return false;
1117 /// ParseUnnamedAttrGrp
1118 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1119 bool LLParser::ParseUnnamedAttrGrp() {
1120 assert(Lex.getKind() == lltok::kw_attributes);
1121 LocTy AttrGrpLoc = Lex.getLoc();
1122 Lex.Lex();
1124 if (Lex.getKind() != lltok::AttrGrpID)
1125 return TokError("expected attribute group id");
1127 unsigned VarID = Lex.getUIntVal();
1128 std::vector<unsigned> unused;
1129 LocTy BuiltinLoc;
1130 Lex.Lex();
1132 if (ParseToken(lltok::equal, "expected '=' here") ||
1133 ParseToken(lltok::lbrace, "expected '{' here") ||
1134 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1135 BuiltinLoc) ||
1136 ParseToken(lltok::rbrace, "expected end of attribute group"))
1137 return true;
1139 if (!NumberedAttrBuilders[VarID].hasAttributes())
1140 return Error(AttrGrpLoc, "attribute group has no attributes");
1142 return false;
1145 /// ParseFnAttributeValuePairs
1146 /// ::= <attr> | <attr> '=' <value>
1147 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1148 std::vector<unsigned> &FwdRefAttrGrps,
1149 bool inAttrGrp, LocTy &BuiltinLoc) {
1150 bool HaveError = false;
1152 B.clear();
1154 while (true) {
1155 lltok::Kind Token = Lex.getKind();
1156 if (Token == lltok::kw_builtin)
1157 BuiltinLoc = Lex.getLoc();
1158 switch (Token) {
1159 default:
1160 if (!inAttrGrp) return HaveError;
1161 return Error(Lex.getLoc(), "unterminated attribute group");
1162 case lltok::rbrace:
1163 // Finished.
1164 return false;
1166 case lltok::AttrGrpID: {
1167 // Allow a function to reference an attribute group:
1169 // define void @foo() #1 { ... }
1170 if (inAttrGrp)
1171 HaveError |=
1172 Error(Lex.getLoc(),
1173 "cannot have an attribute group reference in an attribute group");
1175 unsigned AttrGrpNum = Lex.getUIntVal();
1176 if (inAttrGrp) break;
1178 // Save the reference to the attribute group. We'll fill it in later.
1179 FwdRefAttrGrps.push_back(AttrGrpNum);
1180 break;
1182 // Target-dependent attributes:
1183 case lltok::StringConstant: {
1184 if (ParseStringAttribute(B))
1185 return true;
1186 continue;
1189 // Target-independent attributes:
1190 case lltok::kw_align: {
1191 // As a hack, we allow function alignment to be initially parsed as an
1192 // attribute on a function declaration/definition or added to an attribute
1193 // group and later moved to the alignment field.
1194 unsigned Alignment;
1195 if (inAttrGrp) {
1196 Lex.Lex();
1197 if (ParseToken(lltok::equal, "expected '=' here") ||
1198 ParseUInt32(Alignment))
1199 return true;
1200 } else {
1201 if (ParseOptionalAlignment(Alignment))
1202 return true;
1204 B.addAlignmentAttr(Alignment);
1205 continue;
1207 case lltok::kw_alignstack: {
1208 unsigned Alignment;
1209 if (inAttrGrp) {
1210 Lex.Lex();
1211 if (ParseToken(lltok::equal, "expected '=' here") ||
1212 ParseUInt32(Alignment))
1213 return true;
1214 } else {
1215 if (ParseOptionalStackAlignment(Alignment))
1216 return true;
1218 B.addStackAlignmentAttr(Alignment);
1219 continue;
1221 case lltok::kw_allocsize: {
1222 unsigned ElemSizeArg;
1223 Optional<unsigned> NumElemsArg;
1224 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1225 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1226 return true;
1227 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1228 continue;
1230 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1231 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1232 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1233 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1234 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1235 case lltok::kw_inaccessiblememonly:
1236 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1237 case lltok::kw_inaccessiblemem_or_argmemonly:
1238 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1239 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1240 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1241 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1242 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1243 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1244 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1245 case lltok::kw_noimplicitfloat:
1246 B.addAttribute(Attribute::NoImplicitFloat); break;
1247 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1248 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1249 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1250 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1251 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1252 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1253 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1254 case lltok::kw_optforfuzzing:
1255 B.addAttribute(Attribute::OptForFuzzing); break;
1256 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1257 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1258 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1259 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1260 case lltok::kw_returns_twice:
1261 B.addAttribute(Attribute::ReturnsTwice); break;
1262 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1263 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1264 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1265 case lltok::kw_sspstrong:
1266 B.addAttribute(Attribute::StackProtectStrong); break;
1267 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1268 case lltok::kw_shadowcallstack:
1269 B.addAttribute(Attribute::ShadowCallStack); break;
1270 case lltok::kw_sanitize_address:
1271 B.addAttribute(Attribute::SanitizeAddress); break;
1272 case lltok::kw_sanitize_hwaddress:
1273 B.addAttribute(Attribute::SanitizeHWAddress); break;
1274 case lltok::kw_sanitize_thread:
1275 B.addAttribute(Attribute::SanitizeThread); break;
1276 case lltok::kw_sanitize_memory:
1277 B.addAttribute(Attribute::SanitizeMemory); break;
1278 case lltok::kw_speculative_load_hardening:
1279 B.addAttribute(Attribute::SpeculativeLoadHardening);
1280 break;
1281 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1282 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1283 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1285 // Error handling.
1286 case lltok::kw_inreg:
1287 case lltok::kw_signext:
1288 case lltok::kw_zeroext:
1289 HaveError |=
1290 Error(Lex.getLoc(),
1291 "invalid use of attribute on a function");
1292 break;
1293 case lltok::kw_byval:
1294 case lltok::kw_dereferenceable:
1295 case lltok::kw_dereferenceable_or_null:
1296 case lltok::kw_inalloca:
1297 case lltok::kw_nest:
1298 case lltok::kw_noalias:
1299 case lltok::kw_nocapture:
1300 case lltok::kw_nonnull:
1301 case lltok::kw_returned:
1302 case lltok::kw_sret:
1303 case lltok::kw_swifterror:
1304 case lltok::kw_swiftself:
1305 HaveError |=
1306 Error(Lex.getLoc(),
1307 "invalid use of parameter-only attribute on a function");
1308 break;
1311 Lex.Lex();
1315 //===----------------------------------------------------------------------===//
1316 // GlobalValue Reference/Resolution Routines.
1317 //===----------------------------------------------------------------------===//
1319 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1320 const std::string &Name) {
1321 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1322 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1323 PTy->getAddressSpace(), Name, M);
1324 else
1325 return new GlobalVariable(*M, PTy->getElementType(), false,
1326 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1327 nullptr, GlobalVariable::NotThreadLocal,
1328 PTy->getAddressSpace());
1331 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1332 Value *Val, bool IsCall) {
1333 if (Val->getType() == Ty)
1334 return Val;
1335 // For calls we also accept variables in the program address space.
1336 Type *SuggestedTy = Ty;
1337 if (IsCall && isa<PointerType>(Ty)) {
1338 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1339 M->getDataLayout().getProgramAddressSpace());
1340 SuggestedTy = TyInProgAS;
1341 if (Val->getType() == TyInProgAS)
1342 return Val;
1344 if (Ty->isLabelTy())
1345 Error(Loc, "'" + Name + "' is not a basic block");
1346 else
1347 Error(Loc, "'" + Name + "' defined with type '" +
1348 getTypeString(Val->getType()) + "' but expected '" +
1349 getTypeString(SuggestedTy) + "'");
1350 return nullptr;
1353 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1354 /// forward reference record if needed. This can return null if the value
1355 /// exists but does not have the right type.
1356 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1357 LocTy Loc, bool IsCall) {
1358 PointerType *PTy = dyn_cast<PointerType>(Ty);
1359 if (!PTy) {
1360 Error(Loc, "global variable reference must have pointer type");
1361 return nullptr;
1364 // Look this name up in the normal function symbol table.
1365 GlobalValue *Val =
1366 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1368 // If this is a forward reference for the value, see if we already created a
1369 // forward ref record.
1370 if (!Val) {
1371 auto I = ForwardRefVals.find(Name);
1372 if (I != ForwardRefVals.end())
1373 Val = I->second.first;
1376 // If we have the value in the symbol table or fwd-ref table, return it.
1377 if (Val)
1378 return cast_or_null<GlobalValue>(
1379 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1381 // Otherwise, create a new forward reference for this value and remember it.
1382 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1383 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1384 return FwdVal;
1387 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1388 bool IsCall) {
1389 PointerType *PTy = dyn_cast<PointerType>(Ty);
1390 if (!PTy) {
1391 Error(Loc, "global variable reference must have pointer type");
1392 return nullptr;
1395 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1397 // If this is a forward reference for the value, see if we already created a
1398 // forward ref record.
1399 if (!Val) {
1400 auto I = ForwardRefValIDs.find(ID);
1401 if (I != ForwardRefValIDs.end())
1402 Val = I->second.first;
1405 // If we have the value in the symbol table or fwd-ref table, return it.
1406 if (Val)
1407 return cast_or_null<GlobalValue>(
1408 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1410 // Otherwise, create a new forward reference for this value and remember it.
1411 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1412 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1413 return FwdVal;
1416 //===----------------------------------------------------------------------===//
1417 // Comdat Reference/Resolution Routines.
1418 //===----------------------------------------------------------------------===//
1420 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1421 // Look this name up in the comdat symbol table.
1422 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1423 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1424 if (I != ComdatSymTab.end())
1425 return &I->second;
1427 // Otherwise, create a new forward reference for this value and remember it.
1428 Comdat *C = M->getOrInsertComdat(Name);
1429 ForwardRefComdats[Name] = Loc;
1430 return C;
1433 //===----------------------------------------------------------------------===//
1434 // Helper Routines.
1435 //===----------------------------------------------------------------------===//
1437 /// ParseToken - If the current token has the specified kind, eat it and return
1438 /// success. Otherwise, emit the specified error and return failure.
1439 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1440 if (Lex.getKind() != T)
1441 return TokError(ErrMsg);
1442 Lex.Lex();
1443 return false;
1446 /// ParseStringConstant
1447 /// ::= StringConstant
1448 bool LLParser::ParseStringConstant(std::string &Result) {
1449 if (Lex.getKind() != lltok::StringConstant)
1450 return TokError("expected string constant");
1451 Result = Lex.getStrVal();
1452 Lex.Lex();
1453 return false;
1456 /// ParseUInt32
1457 /// ::= uint32
1458 bool LLParser::ParseUInt32(uint32_t &Val) {
1459 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1460 return TokError("expected integer");
1461 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1462 if (Val64 != unsigned(Val64))
1463 return TokError("expected 32-bit integer (too large)");
1464 Val = Val64;
1465 Lex.Lex();
1466 return false;
1469 /// ParseUInt64
1470 /// ::= uint64
1471 bool LLParser::ParseUInt64(uint64_t &Val) {
1472 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1473 return TokError("expected integer");
1474 Val = Lex.getAPSIntVal().getLimitedValue();
1475 Lex.Lex();
1476 return false;
1479 /// ParseTLSModel
1480 /// := 'localdynamic'
1481 /// := 'initialexec'
1482 /// := 'localexec'
1483 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1484 switch (Lex.getKind()) {
1485 default:
1486 return TokError("expected localdynamic, initialexec or localexec");
1487 case lltok::kw_localdynamic:
1488 TLM = GlobalVariable::LocalDynamicTLSModel;
1489 break;
1490 case lltok::kw_initialexec:
1491 TLM = GlobalVariable::InitialExecTLSModel;
1492 break;
1493 case lltok::kw_localexec:
1494 TLM = GlobalVariable::LocalExecTLSModel;
1495 break;
1498 Lex.Lex();
1499 return false;
1502 /// ParseOptionalThreadLocal
1503 /// := /*empty*/
1504 /// := 'thread_local'
1505 /// := 'thread_local' '(' tlsmodel ')'
1506 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1507 TLM = GlobalVariable::NotThreadLocal;
1508 if (!EatIfPresent(lltok::kw_thread_local))
1509 return false;
1511 TLM = GlobalVariable::GeneralDynamicTLSModel;
1512 if (Lex.getKind() == lltok::lparen) {
1513 Lex.Lex();
1514 return ParseTLSModel(TLM) ||
1515 ParseToken(lltok::rparen, "expected ')' after thread local model");
1517 return false;
1520 /// ParseOptionalAddrSpace
1521 /// := /*empty*/
1522 /// := 'addrspace' '(' uint32 ')'
1523 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1524 AddrSpace = DefaultAS;
1525 if (!EatIfPresent(lltok::kw_addrspace))
1526 return false;
1527 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1528 ParseUInt32(AddrSpace) ||
1529 ParseToken(lltok::rparen, "expected ')' in address space");
1532 /// ParseStringAttribute
1533 /// := StringConstant
1534 /// := StringConstant '=' StringConstant
1535 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1536 std::string Attr = Lex.getStrVal();
1537 Lex.Lex();
1538 std::string Val;
1539 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1540 return true;
1541 B.addAttribute(Attr, Val);
1542 return false;
1545 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1546 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1547 bool HaveError = false;
1549 B.clear();
1551 while (true) {
1552 lltok::Kind Token = Lex.getKind();
1553 switch (Token) {
1554 default: // End of attributes.
1555 return HaveError;
1556 case lltok::StringConstant: {
1557 if (ParseStringAttribute(B))
1558 return true;
1559 continue;
1561 case lltok::kw_align: {
1562 unsigned Alignment;
1563 if (ParseOptionalAlignment(Alignment))
1564 return true;
1565 B.addAlignmentAttr(Alignment);
1566 continue;
1568 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1569 case lltok::kw_dereferenceable: {
1570 uint64_t Bytes;
1571 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1572 return true;
1573 B.addDereferenceableAttr(Bytes);
1574 continue;
1576 case lltok::kw_dereferenceable_or_null: {
1577 uint64_t Bytes;
1578 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1579 return true;
1580 B.addDereferenceableOrNullAttr(Bytes);
1581 continue;
1583 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1584 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1585 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1586 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1587 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1588 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1589 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1590 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1591 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1592 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1593 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1594 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1595 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1596 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1597 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1599 case lltok::kw_alignstack:
1600 case lltok::kw_alwaysinline:
1601 case lltok::kw_argmemonly:
1602 case lltok::kw_builtin:
1603 case lltok::kw_inlinehint:
1604 case lltok::kw_jumptable:
1605 case lltok::kw_minsize:
1606 case lltok::kw_naked:
1607 case lltok::kw_nobuiltin:
1608 case lltok::kw_noduplicate:
1609 case lltok::kw_noimplicitfloat:
1610 case lltok::kw_noinline:
1611 case lltok::kw_nonlazybind:
1612 case lltok::kw_noredzone:
1613 case lltok::kw_noreturn:
1614 case lltok::kw_nocf_check:
1615 case lltok::kw_nounwind:
1616 case lltok::kw_optforfuzzing:
1617 case lltok::kw_optnone:
1618 case lltok::kw_optsize:
1619 case lltok::kw_returns_twice:
1620 case lltok::kw_sanitize_address:
1621 case lltok::kw_sanitize_hwaddress:
1622 case lltok::kw_sanitize_memory:
1623 case lltok::kw_sanitize_thread:
1624 case lltok::kw_speculative_load_hardening:
1625 case lltok::kw_ssp:
1626 case lltok::kw_sspreq:
1627 case lltok::kw_sspstrong:
1628 case lltok::kw_safestack:
1629 case lltok::kw_shadowcallstack:
1630 case lltok::kw_strictfp:
1631 case lltok::kw_uwtable:
1632 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1633 break;
1636 Lex.Lex();
1640 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1641 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1642 bool HaveError = false;
1644 B.clear();
1646 while (true) {
1647 lltok::Kind Token = Lex.getKind();
1648 switch (Token) {
1649 default: // End of attributes.
1650 return HaveError;
1651 case lltok::StringConstant: {
1652 if (ParseStringAttribute(B))
1653 return true;
1654 continue;
1656 case lltok::kw_dereferenceable: {
1657 uint64_t Bytes;
1658 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1659 return true;
1660 B.addDereferenceableAttr(Bytes);
1661 continue;
1663 case lltok::kw_dereferenceable_or_null: {
1664 uint64_t Bytes;
1665 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1666 return true;
1667 B.addDereferenceableOrNullAttr(Bytes);
1668 continue;
1670 case lltok::kw_align: {
1671 unsigned Alignment;
1672 if (ParseOptionalAlignment(Alignment))
1673 return true;
1674 B.addAlignmentAttr(Alignment);
1675 continue;
1677 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1678 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1679 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1680 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1681 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1683 // Error handling.
1684 case lltok::kw_byval:
1685 case lltok::kw_inalloca:
1686 case lltok::kw_nest:
1687 case lltok::kw_nocapture:
1688 case lltok::kw_returned:
1689 case lltok::kw_sret:
1690 case lltok::kw_swifterror:
1691 case lltok::kw_swiftself:
1692 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1693 break;
1695 case lltok::kw_alignstack:
1696 case lltok::kw_alwaysinline:
1697 case lltok::kw_argmemonly:
1698 case lltok::kw_builtin:
1699 case lltok::kw_cold:
1700 case lltok::kw_inlinehint:
1701 case lltok::kw_jumptable:
1702 case lltok::kw_minsize:
1703 case lltok::kw_naked:
1704 case lltok::kw_nobuiltin:
1705 case lltok::kw_noduplicate:
1706 case lltok::kw_noimplicitfloat:
1707 case lltok::kw_noinline:
1708 case lltok::kw_nonlazybind:
1709 case lltok::kw_noredzone:
1710 case lltok::kw_noreturn:
1711 case lltok::kw_nocf_check:
1712 case lltok::kw_nounwind:
1713 case lltok::kw_optforfuzzing:
1714 case lltok::kw_optnone:
1715 case lltok::kw_optsize:
1716 case lltok::kw_returns_twice:
1717 case lltok::kw_sanitize_address:
1718 case lltok::kw_sanitize_hwaddress:
1719 case lltok::kw_sanitize_memory:
1720 case lltok::kw_sanitize_thread:
1721 case lltok::kw_speculative_load_hardening:
1722 case lltok::kw_ssp:
1723 case lltok::kw_sspreq:
1724 case lltok::kw_sspstrong:
1725 case lltok::kw_safestack:
1726 case lltok::kw_shadowcallstack:
1727 case lltok::kw_strictfp:
1728 case lltok::kw_uwtable:
1729 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1730 break;
1732 case lltok::kw_readnone:
1733 case lltok::kw_readonly:
1734 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1737 Lex.Lex();
1741 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1742 HasLinkage = true;
1743 switch (Kind) {
1744 default:
1745 HasLinkage = false;
1746 return GlobalValue::ExternalLinkage;
1747 case lltok::kw_private:
1748 return GlobalValue::PrivateLinkage;
1749 case lltok::kw_internal:
1750 return GlobalValue::InternalLinkage;
1751 case lltok::kw_weak:
1752 return GlobalValue::WeakAnyLinkage;
1753 case lltok::kw_weak_odr:
1754 return GlobalValue::WeakODRLinkage;
1755 case lltok::kw_linkonce:
1756 return GlobalValue::LinkOnceAnyLinkage;
1757 case lltok::kw_linkonce_odr:
1758 return GlobalValue::LinkOnceODRLinkage;
1759 case lltok::kw_available_externally:
1760 return GlobalValue::AvailableExternallyLinkage;
1761 case lltok::kw_appending:
1762 return GlobalValue::AppendingLinkage;
1763 case lltok::kw_common:
1764 return GlobalValue::CommonLinkage;
1765 case lltok::kw_extern_weak:
1766 return GlobalValue::ExternalWeakLinkage;
1767 case lltok::kw_external:
1768 return GlobalValue::ExternalLinkage;
1772 /// ParseOptionalLinkage
1773 /// ::= /*empty*/
1774 /// ::= 'private'
1775 /// ::= 'internal'
1776 /// ::= 'weak'
1777 /// ::= 'weak_odr'
1778 /// ::= 'linkonce'
1779 /// ::= 'linkonce_odr'
1780 /// ::= 'available_externally'
1781 /// ::= 'appending'
1782 /// ::= 'common'
1783 /// ::= 'extern_weak'
1784 /// ::= 'external'
1785 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1786 unsigned &Visibility,
1787 unsigned &DLLStorageClass,
1788 bool &DSOLocal) {
1789 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1790 if (HasLinkage)
1791 Lex.Lex();
1792 ParseOptionalDSOLocal(DSOLocal);
1793 ParseOptionalVisibility(Visibility);
1794 ParseOptionalDLLStorageClass(DLLStorageClass);
1796 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1797 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1800 return false;
1803 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1804 switch (Lex.getKind()) {
1805 default:
1806 DSOLocal = false;
1807 break;
1808 case lltok::kw_dso_local:
1809 DSOLocal = true;
1810 Lex.Lex();
1811 break;
1812 case lltok::kw_dso_preemptable:
1813 DSOLocal = false;
1814 Lex.Lex();
1815 break;
1819 /// ParseOptionalVisibility
1820 /// ::= /*empty*/
1821 /// ::= 'default'
1822 /// ::= 'hidden'
1823 /// ::= 'protected'
1825 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1826 switch (Lex.getKind()) {
1827 default:
1828 Res = GlobalValue::DefaultVisibility;
1829 return;
1830 case lltok::kw_default:
1831 Res = GlobalValue::DefaultVisibility;
1832 break;
1833 case lltok::kw_hidden:
1834 Res = GlobalValue::HiddenVisibility;
1835 break;
1836 case lltok::kw_protected:
1837 Res = GlobalValue::ProtectedVisibility;
1838 break;
1840 Lex.Lex();
1843 /// ParseOptionalDLLStorageClass
1844 /// ::= /*empty*/
1845 /// ::= 'dllimport'
1846 /// ::= 'dllexport'
1848 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1849 switch (Lex.getKind()) {
1850 default:
1851 Res = GlobalValue::DefaultStorageClass;
1852 return;
1853 case lltok::kw_dllimport:
1854 Res = GlobalValue::DLLImportStorageClass;
1855 break;
1856 case lltok::kw_dllexport:
1857 Res = GlobalValue::DLLExportStorageClass;
1858 break;
1860 Lex.Lex();
1863 /// ParseOptionalCallingConv
1864 /// ::= /*empty*/
1865 /// ::= 'ccc'
1866 /// ::= 'fastcc'
1867 /// ::= 'intel_ocl_bicc'
1868 /// ::= 'coldcc'
1869 /// ::= 'x86_stdcallcc'
1870 /// ::= 'x86_fastcallcc'
1871 /// ::= 'x86_thiscallcc'
1872 /// ::= 'x86_vectorcallcc'
1873 /// ::= 'arm_apcscc'
1874 /// ::= 'arm_aapcscc'
1875 /// ::= 'arm_aapcs_vfpcc'
1876 /// ::= 'aarch64_vector_pcs'
1877 /// ::= 'msp430_intrcc'
1878 /// ::= 'avr_intrcc'
1879 /// ::= 'avr_signalcc'
1880 /// ::= 'ptx_kernel'
1881 /// ::= 'ptx_device'
1882 /// ::= 'spir_func'
1883 /// ::= 'spir_kernel'
1884 /// ::= 'x86_64_sysvcc'
1885 /// ::= 'win64cc'
1886 /// ::= 'webkit_jscc'
1887 /// ::= 'anyregcc'
1888 /// ::= 'preserve_mostcc'
1889 /// ::= 'preserve_allcc'
1890 /// ::= 'ghccc'
1891 /// ::= 'swiftcc'
1892 /// ::= 'x86_intrcc'
1893 /// ::= 'hhvmcc'
1894 /// ::= 'hhvm_ccc'
1895 /// ::= 'cxx_fast_tlscc'
1896 /// ::= 'amdgpu_vs'
1897 /// ::= 'amdgpu_ls'
1898 /// ::= 'amdgpu_hs'
1899 /// ::= 'amdgpu_es'
1900 /// ::= 'amdgpu_gs'
1901 /// ::= 'amdgpu_ps'
1902 /// ::= 'amdgpu_cs'
1903 /// ::= 'amdgpu_kernel'
1904 /// ::= 'cc' UINT
1906 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1907 switch (Lex.getKind()) {
1908 default: CC = CallingConv::C; return false;
1909 case lltok::kw_ccc: CC = CallingConv::C; break;
1910 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1911 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1912 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1913 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1914 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1915 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1916 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1917 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1918 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1919 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1920 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1921 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1922 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1923 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1924 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1925 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1926 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1927 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1928 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1929 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1930 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1931 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1932 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1933 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1934 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1935 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1936 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1937 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1938 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1939 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1940 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1941 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1942 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1943 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1944 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1945 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1946 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1947 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1948 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
1949 case lltok::kw_cc: {
1950 Lex.Lex();
1951 return ParseUInt32(CC);
1955 Lex.Lex();
1956 return false;
1959 /// ParseMetadataAttachment
1960 /// ::= !dbg !42
1961 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1962 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1964 std::string Name = Lex.getStrVal();
1965 Kind = M->getMDKindID(Name);
1966 Lex.Lex();
1968 return ParseMDNode(MD);
1971 /// ParseInstructionMetadata
1972 /// ::= !dbg !42 (',' !dbg !57)*
1973 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1974 do {
1975 if (Lex.getKind() != lltok::MetadataVar)
1976 return TokError("expected metadata after comma");
1978 unsigned MDK;
1979 MDNode *N;
1980 if (ParseMetadataAttachment(MDK, N))
1981 return true;
1983 Inst.setMetadata(MDK, N);
1984 if (MDK == LLVMContext::MD_tbaa)
1985 InstsWithTBAATag.push_back(&Inst);
1987 // If this is the end of the list, we're done.
1988 } while (EatIfPresent(lltok::comma));
1989 return false;
1992 /// ParseGlobalObjectMetadataAttachment
1993 /// ::= !dbg !57
1994 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1995 unsigned MDK;
1996 MDNode *N;
1997 if (ParseMetadataAttachment(MDK, N))
1998 return true;
2000 GO.addMetadata(MDK, *N);
2001 return false;
2004 /// ParseOptionalFunctionMetadata
2005 /// ::= (!dbg !57)*
2006 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2007 while (Lex.getKind() == lltok::MetadataVar)
2008 if (ParseGlobalObjectMetadataAttachment(F))
2009 return true;
2010 return false;
2013 /// ParseOptionalAlignment
2014 /// ::= /* empty */
2015 /// ::= 'align' 4
2016 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2017 Alignment = 0;
2018 if (!EatIfPresent(lltok::kw_align))
2019 return false;
2020 LocTy AlignLoc = Lex.getLoc();
2021 if (ParseUInt32(Alignment)) return true;
2022 if (!isPowerOf2_32(Alignment))
2023 return Error(AlignLoc, "alignment is not a power of two");
2024 if (Alignment > Value::MaximumAlignment)
2025 return Error(AlignLoc, "huge alignments are not supported yet");
2026 return false;
2029 /// ParseOptionalDerefAttrBytes
2030 /// ::= /* empty */
2031 /// ::= AttrKind '(' 4 ')'
2033 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2034 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2035 uint64_t &Bytes) {
2036 assert((AttrKind == lltok::kw_dereferenceable ||
2037 AttrKind == lltok::kw_dereferenceable_or_null) &&
2038 "contract!");
2040 Bytes = 0;
2041 if (!EatIfPresent(AttrKind))
2042 return false;
2043 LocTy ParenLoc = Lex.getLoc();
2044 if (!EatIfPresent(lltok::lparen))
2045 return Error(ParenLoc, "expected '('");
2046 LocTy DerefLoc = Lex.getLoc();
2047 if (ParseUInt64(Bytes)) return true;
2048 ParenLoc = Lex.getLoc();
2049 if (!EatIfPresent(lltok::rparen))
2050 return Error(ParenLoc, "expected ')'");
2051 if (!Bytes)
2052 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2053 return false;
2056 /// ParseOptionalCommaAlign
2057 /// ::=
2058 /// ::= ',' align 4
2060 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2061 /// end.
2062 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2063 bool &AteExtraComma) {
2064 AteExtraComma = false;
2065 while (EatIfPresent(lltok::comma)) {
2066 // Metadata at the end is an early exit.
2067 if (Lex.getKind() == lltok::MetadataVar) {
2068 AteExtraComma = true;
2069 return false;
2072 if (Lex.getKind() != lltok::kw_align)
2073 return Error(Lex.getLoc(), "expected metadata or 'align'");
2075 if (ParseOptionalAlignment(Alignment)) return true;
2078 return false;
2081 /// ParseOptionalCommaAddrSpace
2082 /// ::=
2083 /// ::= ',' addrspace(1)
2085 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2086 /// end.
2087 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2088 LocTy &Loc,
2089 bool &AteExtraComma) {
2090 AteExtraComma = false;
2091 while (EatIfPresent(lltok::comma)) {
2092 // Metadata at the end is an early exit.
2093 if (Lex.getKind() == lltok::MetadataVar) {
2094 AteExtraComma = true;
2095 return false;
2098 Loc = Lex.getLoc();
2099 if (Lex.getKind() != lltok::kw_addrspace)
2100 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2102 if (ParseOptionalAddrSpace(AddrSpace))
2103 return true;
2106 return false;
2109 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2110 Optional<unsigned> &HowManyArg) {
2111 Lex.Lex();
2113 auto StartParen = Lex.getLoc();
2114 if (!EatIfPresent(lltok::lparen))
2115 return Error(StartParen, "expected '('");
2117 if (ParseUInt32(BaseSizeArg))
2118 return true;
2120 if (EatIfPresent(lltok::comma)) {
2121 auto HowManyAt = Lex.getLoc();
2122 unsigned HowMany;
2123 if (ParseUInt32(HowMany))
2124 return true;
2125 if (HowMany == BaseSizeArg)
2126 return Error(HowManyAt,
2127 "'allocsize' indices can't refer to the same parameter");
2128 HowManyArg = HowMany;
2129 } else
2130 HowManyArg = None;
2132 auto EndParen = Lex.getLoc();
2133 if (!EatIfPresent(lltok::rparen))
2134 return Error(EndParen, "expected ')'");
2135 return false;
2138 /// ParseScopeAndOrdering
2139 /// if isAtomic: ::= SyncScope? AtomicOrdering
2140 /// else: ::=
2142 /// This sets Scope and Ordering to the parsed values.
2143 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2144 AtomicOrdering &Ordering) {
2145 if (!isAtomic)
2146 return false;
2148 return ParseScope(SSID) || ParseOrdering(Ordering);
2151 /// ParseScope
2152 /// ::= syncscope("singlethread" | "<target scope>")?
2154 /// This sets synchronization scope ID to the ID of the parsed value.
2155 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2156 SSID = SyncScope::System;
2157 if (EatIfPresent(lltok::kw_syncscope)) {
2158 auto StartParenAt = Lex.getLoc();
2159 if (!EatIfPresent(lltok::lparen))
2160 return Error(StartParenAt, "Expected '(' in syncscope");
2162 std::string SSN;
2163 auto SSNAt = Lex.getLoc();
2164 if (ParseStringConstant(SSN))
2165 return Error(SSNAt, "Expected synchronization scope name");
2167 auto EndParenAt = Lex.getLoc();
2168 if (!EatIfPresent(lltok::rparen))
2169 return Error(EndParenAt, "Expected ')' in syncscope");
2171 SSID = Context.getOrInsertSyncScopeID(SSN);
2174 return false;
2177 /// ParseOrdering
2178 /// ::= AtomicOrdering
2180 /// This sets Ordering to the parsed value.
2181 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2182 switch (Lex.getKind()) {
2183 default: return TokError("Expected ordering on atomic instruction");
2184 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2185 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2186 // Not specified yet:
2187 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2188 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2189 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2190 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2191 case lltok::kw_seq_cst:
2192 Ordering = AtomicOrdering::SequentiallyConsistent;
2193 break;
2195 Lex.Lex();
2196 return false;
2199 /// ParseOptionalStackAlignment
2200 /// ::= /* empty */
2201 /// ::= 'alignstack' '(' 4 ')'
2202 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2203 Alignment = 0;
2204 if (!EatIfPresent(lltok::kw_alignstack))
2205 return false;
2206 LocTy ParenLoc = Lex.getLoc();
2207 if (!EatIfPresent(lltok::lparen))
2208 return Error(ParenLoc, "expected '('");
2209 LocTy AlignLoc = Lex.getLoc();
2210 if (ParseUInt32(Alignment)) return true;
2211 ParenLoc = Lex.getLoc();
2212 if (!EatIfPresent(lltok::rparen))
2213 return Error(ParenLoc, "expected ')'");
2214 if (!isPowerOf2_32(Alignment))
2215 return Error(AlignLoc, "stack alignment is not a power of two");
2216 return false;
2219 /// ParseIndexList - This parses the index list for an insert/extractvalue
2220 /// instruction. This sets AteExtraComma in the case where we eat an extra
2221 /// comma at the end of the line and find that it is followed by metadata.
2222 /// Clients that don't allow metadata can call the version of this function that
2223 /// only takes one argument.
2225 /// ParseIndexList
2226 /// ::= (',' uint32)+
2228 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2229 bool &AteExtraComma) {
2230 AteExtraComma = false;
2232 if (Lex.getKind() != lltok::comma)
2233 return TokError("expected ',' as start of index list");
2235 while (EatIfPresent(lltok::comma)) {
2236 if (Lex.getKind() == lltok::MetadataVar) {
2237 if (Indices.empty()) return TokError("expected index");
2238 AteExtraComma = true;
2239 return false;
2241 unsigned Idx = 0;
2242 if (ParseUInt32(Idx)) return true;
2243 Indices.push_back(Idx);
2246 return false;
2249 //===----------------------------------------------------------------------===//
2250 // Type Parsing.
2251 //===----------------------------------------------------------------------===//
2253 /// ParseType - Parse a type.
2254 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2255 SMLoc TypeLoc = Lex.getLoc();
2256 switch (Lex.getKind()) {
2257 default:
2258 return TokError(Msg);
2259 case lltok::Type:
2260 // Type ::= 'float' | 'void' (etc)
2261 Result = Lex.getTyVal();
2262 Lex.Lex();
2263 break;
2264 case lltok::lbrace:
2265 // Type ::= StructType
2266 if (ParseAnonStructType(Result, false))
2267 return true;
2268 break;
2269 case lltok::lsquare:
2270 // Type ::= '[' ... ']'
2271 Lex.Lex(); // eat the lsquare.
2272 if (ParseArrayVectorType(Result, false))
2273 return true;
2274 break;
2275 case lltok::less: // Either vector or packed struct.
2276 // Type ::= '<' ... '>'
2277 Lex.Lex();
2278 if (Lex.getKind() == lltok::lbrace) {
2279 if (ParseAnonStructType(Result, true) ||
2280 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2281 return true;
2282 } else if (ParseArrayVectorType(Result, true))
2283 return true;
2284 break;
2285 case lltok::LocalVar: {
2286 // Type ::= %foo
2287 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2289 // If the type hasn't been defined yet, create a forward definition and
2290 // remember where that forward def'n was seen (in case it never is defined).
2291 if (!Entry.first) {
2292 Entry.first = StructType::create(Context, Lex.getStrVal());
2293 Entry.second = Lex.getLoc();
2295 Result = Entry.first;
2296 Lex.Lex();
2297 break;
2300 case lltok::LocalVarID: {
2301 // Type ::= %4
2302 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2304 // If the type hasn't been defined yet, create a forward definition and
2305 // remember where that forward def'n was seen (in case it never is defined).
2306 if (!Entry.first) {
2307 Entry.first = StructType::create(Context);
2308 Entry.second = Lex.getLoc();
2310 Result = Entry.first;
2311 Lex.Lex();
2312 break;
2316 // Parse the type suffixes.
2317 while (true) {
2318 switch (Lex.getKind()) {
2319 // End of type.
2320 default:
2321 if (!AllowVoid && Result->isVoidTy())
2322 return Error(TypeLoc, "void type only allowed for function results");
2323 return false;
2325 // Type ::= Type '*'
2326 case lltok::star:
2327 if (Result->isLabelTy())
2328 return TokError("basic block pointers are invalid");
2329 if (Result->isVoidTy())
2330 return TokError("pointers to void are invalid - use i8* instead");
2331 if (!PointerType::isValidElementType(Result))
2332 return TokError("pointer to this type is invalid");
2333 Result = PointerType::getUnqual(Result);
2334 Lex.Lex();
2335 break;
2337 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2338 case lltok::kw_addrspace: {
2339 if (Result->isLabelTy())
2340 return TokError("basic block pointers are invalid");
2341 if (Result->isVoidTy())
2342 return TokError("pointers to void are invalid; use i8* instead");
2343 if (!PointerType::isValidElementType(Result))
2344 return TokError("pointer to this type is invalid");
2345 unsigned AddrSpace;
2346 if (ParseOptionalAddrSpace(AddrSpace) ||
2347 ParseToken(lltok::star, "expected '*' in address space"))
2348 return true;
2350 Result = PointerType::get(Result, AddrSpace);
2351 break;
2354 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2355 case lltok::lparen:
2356 if (ParseFunctionType(Result))
2357 return true;
2358 break;
2363 /// ParseParameterList
2364 /// ::= '(' ')'
2365 /// ::= '(' Arg (',' Arg)* ')'
2366 /// Arg
2367 /// ::= Type OptionalAttributes Value OptionalAttributes
2368 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2369 PerFunctionState &PFS, bool IsMustTailCall,
2370 bool InVarArgsFunc) {
2371 if (ParseToken(lltok::lparen, "expected '(' in call"))
2372 return true;
2374 while (Lex.getKind() != lltok::rparen) {
2375 // If this isn't the first argument, we need a comma.
2376 if (!ArgList.empty() &&
2377 ParseToken(lltok::comma, "expected ',' in argument list"))
2378 return true;
2380 // Parse an ellipsis if this is a musttail call in a variadic function.
2381 if (Lex.getKind() == lltok::dotdotdot) {
2382 const char *Msg = "unexpected ellipsis in argument list for ";
2383 if (!IsMustTailCall)
2384 return TokError(Twine(Msg) + "non-musttail call");
2385 if (!InVarArgsFunc)
2386 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2387 Lex.Lex(); // Lex the '...', it is purely for readability.
2388 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2391 // Parse the argument.
2392 LocTy ArgLoc;
2393 Type *ArgTy = nullptr;
2394 AttrBuilder ArgAttrs;
2395 Value *V;
2396 if (ParseType(ArgTy, ArgLoc))
2397 return true;
2399 if (ArgTy->isMetadataTy()) {
2400 if (ParseMetadataAsValue(V, PFS))
2401 return true;
2402 } else {
2403 // Otherwise, handle normal operands.
2404 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2405 return true;
2407 ArgList.push_back(ParamInfo(
2408 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2411 if (IsMustTailCall && InVarArgsFunc)
2412 return TokError("expected '...' at end of argument list for musttail call "
2413 "in varargs function");
2415 Lex.Lex(); // Lex the ')'.
2416 return false;
2419 /// ParseOptionalOperandBundles
2420 /// ::= /*empty*/
2421 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2423 /// OperandBundle
2424 /// ::= bundle-tag '(' ')'
2425 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2427 /// bundle-tag ::= String Constant
2428 bool LLParser::ParseOptionalOperandBundles(
2429 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2430 LocTy BeginLoc = Lex.getLoc();
2431 if (!EatIfPresent(lltok::lsquare))
2432 return false;
2434 while (Lex.getKind() != lltok::rsquare) {
2435 // If this isn't the first operand bundle, we need a comma.
2436 if (!BundleList.empty() &&
2437 ParseToken(lltok::comma, "expected ',' in input list"))
2438 return true;
2440 std::string Tag;
2441 if (ParseStringConstant(Tag))
2442 return true;
2444 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2445 return true;
2447 std::vector<Value *> Inputs;
2448 while (Lex.getKind() != lltok::rparen) {
2449 // If this isn't the first input, we need a comma.
2450 if (!Inputs.empty() &&
2451 ParseToken(lltok::comma, "expected ',' in input list"))
2452 return true;
2454 Type *Ty = nullptr;
2455 Value *Input = nullptr;
2456 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2457 return true;
2458 Inputs.push_back(Input);
2461 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2463 Lex.Lex(); // Lex the ')'.
2466 if (BundleList.empty())
2467 return Error(BeginLoc, "operand bundle set must not be empty");
2469 Lex.Lex(); // Lex the ']'.
2470 return false;
2473 /// ParseArgumentList - Parse the argument list for a function type or function
2474 /// prototype.
2475 /// ::= '(' ArgTypeListI ')'
2476 /// ArgTypeListI
2477 /// ::= /*empty*/
2478 /// ::= '...'
2479 /// ::= ArgTypeList ',' '...'
2480 /// ::= ArgType (',' ArgType)*
2482 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2483 bool &isVarArg){
2484 isVarArg = false;
2485 assert(Lex.getKind() == lltok::lparen);
2486 Lex.Lex(); // eat the (.
2488 if (Lex.getKind() == lltok::rparen) {
2489 // empty
2490 } else if (Lex.getKind() == lltok::dotdotdot) {
2491 isVarArg = true;
2492 Lex.Lex();
2493 } else {
2494 LocTy TypeLoc = Lex.getLoc();
2495 Type *ArgTy = nullptr;
2496 AttrBuilder Attrs;
2497 std::string Name;
2499 if (ParseType(ArgTy) ||
2500 ParseOptionalParamAttrs(Attrs)) return true;
2502 if (ArgTy->isVoidTy())
2503 return Error(TypeLoc, "argument can not have void type");
2505 if (Lex.getKind() == lltok::LocalVar) {
2506 Name = Lex.getStrVal();
2507 Lex.Lex();
2510 if (!FunctionType::isValidArgumentType(ArgTy))
2511 return Error(TypeLoc, "invalid type for function argument");
2513 ArgList.emplace_back(TypeLoc, ArgTy,
2514 AttributeSet::get(ArgTy->getContext(), Attrs),
2515 std::move(Name));
2517 while (EatIfPresent(lltok::comma)) {
2518 // Handle ... at end of arg list.
2519 if (EatIfPresent(lltok::dotdotdot)) {
2520 isVarArg = true;
2521 break;
2524 // Otherwise must be an argument type.
2525 TypeLoc = Lex.getLoc();
2526 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2528 if (ArgTy->isVoidTy())
2529 return Error(TypeLoc, "argument can not have void type");
2531 if (Lex.getKind() == lltok::LocalVar) {
2532 Name = Lex.getStrVal();
2533 Lex.Lex();
2534 } else {
2535 Name = "";
2538 if (!ArgTy->isFirstClassType())
2539 return Error(TypeLoc, "invalid type for function argument");
2541 ArgList.emplace_back(TypeLoc, ArgTy,
2542 AttributeSet::get(ArgTy->getContext(), Attrs),
2543 std::move(Name));
2547 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2550 /// ParseFunctionType
2551 /// ::= Type ArgumentList OptionalAttrs
2552 bool LLParser::ParseFunctionType(Type *&Result) {
2553 assert(Lex.getKind() == lltok::lparen);
2555 if (!FunctionType::isValidReturnType(Result))
2556 return TokError("invalid function return type");
2558 SmallVector<ArgInfo, 8> ArgList;
2559 bool isVarArg;
2560 if (ParseArgumentList(ArgList, isVarArg))
2561 return true;
2563 // Reject names on the arguments lists.
2564 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2565 if (!ArgList[i].Name.empty())
2566 return Error(ArgList[i].Loc, "argument name invalid in function type");
2567 if (ArgList[i].Attrs.hasAttributes())
2568 return Error(ArgList[i].Loc,
2569 "argument attributes invalid in function type");
2572 SmallVector<Type*, 16> ArgListTy;
2573 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2574 ArgListTy.push_back(ArgList[i].Ty);
2576 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2577 return false;
2580 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2581 /// other structs.
2582 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2583 SmallVector<Type*, 8> Elts;
2584 if (ParseStructBody(Elts)) return true;
2586 Result = StructType::get(Context, Elts, Packed);
2587 return false;
2590 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2591 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2592 std::pair<Type*, LocTy> &Entry,
2593 Type *&ResultTy) {
2594 // If the type was already defined, diagnose the redefinition.
2595 if (Entry.first && !Entry.second.isValid())
2596 return Error(TypeLoc, "redefinition of type");
2598 // If we have opaque, just return without filling in the definition for the
2599 // struct. This counts as a definition as far as the .ll file goes.
2600 if (EatIfPresent(lltok::kw_opaque)) {
2601 // This type is being defined, so clear the location to indicate this.
2602 Entry.second = SMLoc();
2604 // If this type number has never been uttered, create it.
2605 if (!Entry.first)
2606 Entry.first = StructType::create(Context, Name);
2607 ResultTy = Entry.first;
2608 return false;
2611 // If the type starts with '<', then it is either a packed struct or a vector.
2612 bool isPacked = EatIfPresent(lltok::less);
2614 // If we don't have a struct, then we have a random type alias, which we
2615 // accept for compatibility with old files. These types are not allowed to be
2616 // forward referenced and not allowed to be recursive.
2617 if (Lex.getKind() != lltok::lbrace) {
2618 if (Entry.first)
2619 return Error(TypeLoc, "forward references to non-struct type");
2621 ResultTy = nullptr;
2622 if (isPacked)
2623 return ParseArrayVectorType(ResultTy, true);
2624 return ParseType(ResultTy);
2627 // This type is being defined, so clear the location to indicate this.
2628 Entry.second = SMLoc();
2630 // If this type number has never been uttered, create it.
2631 if (!Entry.first)
2632 Entry.first = StructType::create(Context, Name);
2634 StructType *STy = cast<StructType>(Entry.first);
2636 SmallVector<Type*, 8> Body;
2637 if (ParseStructBody(Body) ||
2638 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2639 return true;
2641 STy->setBody(Body, isPacked);
2642 ResultTy = STy;
2643 return false;
2646 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2647 /// StructType
2648 /// ::= '{' '}'
2649 /// ::= '{' Type (',' Type)* '}'
2650 /// ::= '<' '{' '}' '>'
2651 /// ::= '<' '{' Type (',' Type)* '}' '>'
2652 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2653 assert(Lex.getKind() == lltok::lbrace);
2654 Lex.Lex(); // Consume the '{'
2656 // Handle the empty struct.
2657 if (EatIfPresent(lltok::rbrace))
2658 return false;
2660 LocTy EltTyLoc = Lex.getLoc();
2661 Type *Ty = nullptr;
2662 if (ParseType(Ty)) return true;
2663 Body.push_back(Ty);
2665 if (!StructType::isValidElementType(Ty))
2666 return Error(EltTyLoc, "invalid element type for struct");
2668 while (EatIfPresent(lltok::comma)) {
2669 EltTyLoc = Lex.getLoc();
2670 if (ParseType(Ty)) return true;
2672 if (!StructType::isValidElementType(Ty))
2673 return Error(EltTyLoc, "invalid element type for struct");
2675 Body.push_back(Ty);
2678 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2681 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2682 /// token has already been consumed.
2683 /// Type
2684 /// ::= '[' APSINTVAL 'x' Types ']'
2685 /// ::= '<' APSINTVAL 'x' Types '>'
2686 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2687 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2688 Lex.getAPSIntVal().getBitWidth() > 64)
2689 return TokError("expected number in address space");
2691 LocTy SizeLoc = Lex.getLoc();
2692 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2693 Lex.Lex();
2695 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2696 return true;
2698 LocTy TypeLoc = Lex.getLoc();
2699 Type *EltTy = nullptr;
2700 if (ParseType(EltTy)) return true;
2702 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2703 "expected end of sequential type"))
2704 return true;
2706 if (isVector) {
2707 if (Size == 0)
2708 return Error(SizeLoc, "zero element vector is illegal");
2709 if ((unsigned)Size != Size)
2710 return Error(SizeLoc, "size too large for vector");
2711 if (!VectorType::isValidElementType(EltTy))
2712 return Error(TypeLoc, "invalid vector element type");
2713 Result = VectorType::get(EltTy, unsigned(Size));
2714 } else {
2715 if (!ArrayType::isValidElementType(EltTy))
2716 return Error(TypeLoc, "invalid array element type");
2717 Result = ArrayType::get(EltTy, Size);
2719 return false;
2722 //===----------------------------------------------------------------------===//
2723 // Function Semantic Analysis.
2724 //===----------------------------------------------------------------------===//
2726 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2727 int functionNumber)
2728 : P(p), F(f), FunctionNumber(functionNumber) {
2730 // Insert unnamed arguments into the NumberedVals list.
2731 for (Argument &A : F.args())
2732 if (!A.hasName())
2733 NumberedVals.push_back(&A);
2736 LLParser::PerFunctionState::~PerFunctionState() {
2737 // If there were any forward referenced non-basicblock values, delete them.
2739 for (const auto &P : ForwardRefVals) {
2740 if (isa<BasicBlock>(P.second.first))
2741 continue;
2742 P.second.first->replaceAllUsesWith(
2743 UndefValue::get(P.second.first->getType()));
2744 P.second.first->deleteValue();
2747 for (const auto &P : ForwardRefValIDs) {
2748 if (isa<BasicBlock>(P.second.first))
2749 continue;
2750 P.second.first->replaceAllUsesWith(
2751 UndefValue::get(P.second.first->getType()));
2752 P.second.first->deleteValue();
2756 bool LLParser::PerFunctionState::FinishFunction() {
2757 if (!ForwardRefVals.empty())
2758 return P.Error(ForwardRefVals.begin()->second.second,
2759 "use of undefined value '%" + ForwardRefVals.begin()->first +
2760 "'");
2761 if (!ForwardRefValIDs.empty())
2762 return P.Error(ForwardRefValIDs.begin()->second.second,
2763 "use of undefined value '%" +
2764 Twine(ForwardRefValIDs.begin()->first) + "'");
2765 return false;
2768 /// GetVal - Get a value with the specified name or ID, creating a
2769 /// forward reference record if needed. This can return null if the value
2770 /// exists but does not have the right type.
2771 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2772 LocTy Loc, bool IsCall) {
2773 // Look this name up in the normal function symbol table.
2774 Value *Val = F.getValueSymbolTable()->lookup(Name);
2776 // If this is a forward reference for the value, see if we already created a
2777 // forward ref record.
2778 if (!Val) {
2779 auto I = ForwardRefVals.find(Name);
2780 if (I != ForwardRefVals.end())
2781 Val = I->second.first;
2784 // If we have the value in the symbol table or fwd-ref table, return it.
2785 if (Val)
2786 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2788 // Don't make placeholders with invalid type.
2789 if (!Ty->isFirstClassType()) {
2790 P.Error(Loc, "invalid use of a non-first-class type");
2791 return nullptr;
2794 // Otherwise, create a new forward reference for this value and remember it.
2795 Value *FwdVal;
2796 if (Ty->isLabelTy()) {
2797 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2798 } else {
2799 FwdVal = new Argument(Ty, Name);
2802 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2803 return FwdVal;
2806 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2807 bool IsCall) {
2808 // Look this name up in the normal function symbol table.
2809 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2811 // If this is a forward reference for the value, see if we already created a
2812 // forward ref record.
2813 if (!Val) {
2814 auto I = ForwardRefValIDs.find(ID);
2815 if (I != ForwardRefValIDs.end())
2816 Val = I->second.first;
2819 // If we have the value in the symbol table or fwd-ref table, return it.
2820 if (Val)
2821 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2823 if (!Ty->isFirstClassType()) {
2824 P.Error(Loc, "invalid use of a non-first-class type");
2825 return nullptr;
2828 // Otherwise, create a new forward reference for this value and remember it.
2829 Value *FwdVal;
2830 if (Ty->isLabelTy()) {
2831 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2832 } else {
2833 FwdVal = new Argument(Ty);
2836 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2837 return FwdVal;
2840 /// SetInstName - After an instruction is parsed and inserted into its
2841 /// basic block, this installs its name.
2842 bool LLParser::PerFunctionState::SetInstName(int NameID,
2843 const std::string &NameStr,
2844 LocTy NameLoc, Instruction *Inst) {
2845 // If this instruction has void type, it cannot have a name or ID specified.
2846 if (Inst->getType()->isVoidTy()) {
2847 if (NameID != -1 || !NameStr.empty())
2848 return P.Error(NameLoc, "instructions returning void cannot have a name");
2849 return false;
2852 // If this was a numbered instruction, verify that the instruction is the
2853 // expected value and resolve any forward references.
2854 if (NameStr.empty()) {
2855 // If neither a name nor an ID was specified, just use the next ID.
2856 if (NameID == -1)
2857 NameID = NumberedVals.size();
2859 if (unsigned(NameID) != NumberedVals.size())
2860 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2861 Twine(NumberedVals.size()) + "'");
2863 auto FI = ForwardRefValIDs.find(NameID);
2864 if (FI != ForwardRefValIDs.end()) {
2865 Value *Sentinel = FI->second.first;
2866 if (Sentinel->getType() != Inst->getType())
2867 return P.Error(NameLoc, "instruction forward referenced with type '" +
2868 getTypeString(FI->second.first->getType()) + "'");
2870 Sentinel->replaceAllUsesWith(Inst);
2871 Sentinel->deleteValue();
2872 ForwardRefValIDs.erase(FI);
2875 NumberedVals.push_back(Inst);
2876 return false;
2879 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2880 auto FI = ForwardRefVals.find(NameStr);
2881 if (FI != ForwardRefVals.end()) {
2882 Value *Sentinel = FI->second.first;
2883 if (Sentinel->getType() != Inst->getType())
2884 return P.Error(NameLoc, "instruction forward referenced with type '" +
2885 getTypeString(FI->second.first->getType()) + "'");
2887 Sentinel->replaceAllUsesWith(Inst);
2888 Sentinel->deleteValue();
2889 ForwardRefVals.erase(FI);
2892 // Set the name on the instruction.
2893 Inst->setName(NameStr);
2895 if (Inst->getName() != NameStr)
2896 return P.Error(NameLoc, "multiple definition of local value named '" +
2897 NameStr + "'");
2898 return false;
2901 /// GetBB - Get a basic block with the specified name or ID, creating a
2902 /// forward reference record if needed.
2903 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2904 LocTy Loc) {
2905 return dyn_cast_or_null<BasicBlock>(
2906 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2909 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2910 return dyn_cast_or_null<BasicBlock>(
2911 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2914 /// DefineBB - Define the specified basic block, which is either named or
2915 /// unnamed. If there is an error, this returns null otherwise it returns
2916 /// the block being defined.
2917 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2918 LocTy Loc) {
2919 BasicBlock *BB;
2920 if (Name.empty())
2921 BB = GetBB(NumberedVals.size(), Loc);
2922 else
2923 BB = GetBB(Name, Loc);
2924 if (!BB) return nullptr; // Already diagnosed error.
2926 // Move the block to the end of the function. Forward ref'd blocks are
2927 // inserted wherever they happen to be referenced.
2928 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2930 // Remove the block from forward ref sets.
2931 if (Name.empty()) {
2932 ForwardRefValIDs.erase(NumberedVals.size());
2933 NumberedVals.push_back(BB);
2934 } else {
2935 // BB forward references are already in the function symbol table.
2936 ForwardRefVals.erase(Name);
2939 return BB;
2942 //===----------------------------------------------------------------------===//
2943 // Constants.
2944 //===----------------------------------------------------------------------===//
2946 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2947 /// type implied. For example, if we parse "4" we don't know what integer type
2948 /// it has. The value will later be combined with its type and checked for
2949 /// sanity. PFS is used to convert function-local operands of metadata (since
2950 /// metadata operands are not just parsed here but also converted to values).
2951 /// PFS can be null when we are not parsing metadata values inside a function.
2952 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2953 ID.Loc = Lex.getLoc();
2954 switch (Lex.getKind()) {
2955 default: return TokError("expected value token");
2956 case lltok::GlobalID: // @42
2957 ID.UIntVal = Lex.getUIntVal();
2958 ID.Kind = ValID::t_GlobalID;
2959 break;
2960 case lltok::GlobalVar: // @foo
2961 ID.StrVal = Lex.getStrVal();
2962 ID.Kind = ValID::t_GlobalName;
2963 break;
2964 case lltok::LocalVarID: // %42
2965 ID.UIntVal = Lex.getUIntVal();
2966 ID.Kind = ValID::t_LocalID;
2967 break;
2968 case lltok::LocalVar: // %foo
2969 ID.StrVal = Lex.getStrVal();
2970 ID.Kind = ValID::t_LocalName;
2971 break;
2972 case lltok::APSInt:
2973 ID.APSIntVal = Lex.getAPSIntVal();
2974 ID.Kind = ValID::t_APSInt;
2975 break;
2976 case lltok::APFloat:
2977 ID.APFloatVal = Lex.getAPFloatVal();
2978 ID.Kind = ValID::t_APFloat;
2979 break;
2980 case lltok::kw_true:
2981 ID.ConstantVal = ConstantInt::getTrue(Context);
2982 ID.Kind = ValID::t_Constant;
2983 break;
2984 case lltok::kw_false:
2985 ID.ConstantVal = ConstantInt::getFalse(Context);
2986 ID.Kind = ValID::t_Constant;
2987 break;
2988 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2989 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2990 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2991 case lltok::kw_none: ID.Kind = ValID::t_None; break;
2993 case lltok::lbrace: {
2994 // ValID ::= '{' ConstVector '}'
2995 Lex.Lex();
2996 SmallVector<Constant*, 16> Elts;
2997 if (ParseGlobalValueVector(Elts) ||
2998 ParseToken(lltok::rbrace, "expected end of struct constant"))
2999 return true;
3001 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3002 ID.UIntVal = Elts.size();
3003 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3004 Elts.size() * sizeof(Elts[0]));
3005 ID.Kind = ValID::t_ConstantStruct;
3006 return false;
3008 case lltok::less: {
3009 // ValID ::= '<' ConstVector '>' --> Vector.
3010 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3011 Lex.Lex();
3012 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3014 SmallVector<Constant*, 16> Elts;
3015 LocTy FirstEltLoc = Lex.getLoc();
3016 if (ParseGlobalValueVector(Elts) ||
3017 (isPackedStruct &&
3018 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3019 ParseToken(lltok::greater, "expected end of constant"))
3020 return true;
3022 if (isPackedStruct) {
3023 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3024 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3025 Elts.size() * sizeof(Elts[0]));
3026 ID.UIntVal = Elts.size();
3027 ID.Kind = ValID::t_PackedConstantStruct;
3028 return false;
3031 if (Elts.empty())
3032 return Error(ID.Loc, "constant vector must not be empty");
3034 if (!Elts[0]->getType()->isIntegerTy() &&
3035 !Elts[0]->getType()->isFloatingPointTy() &&
3036 !Elts[0]->getType()->isPointerTy())
3037 return Error(FirstEltLoc,
3038 "vector elements must have integer, pointer or floating point type");
3040 // Verify that all the vector elements have the same type.
3041 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3042 if (Elts[i]->getType() != Elts[0]->getType())
3043 return Error(FirstEltLoc,
3044 "vector element #" + Twine(i) +
3045 " is not of type '" + getTypeString(Elts[0]->getType()));
3047 ID.ConstantVal = ConstantVector::get(Elts);
3048 ID.Kind = ValID::t_Constant;
3049 return false;
3051 case lltok::lsquare: { // Array Constant
3052 Lex.Lex();
3053 SmallVector<Constant*, 16> Elts;
3054 LocTy FirstEltLoc = Lex.getLoc();
3055 if (ParseGlobalValueVector(Elts) ||
3056 ParseToken(lltok::rsquare, "expected end of array constant"))
3057 return true;
3059 // Handle empty element.
3060 if (Elts.empty()) {
3061 // Use undef instead of an array because it's inconvenient to determine
3062 // the element type at this point, there being no elements to examine.
3063 ID.Kind = ValID::t_EmptyArray;
3064 return false;
3067 if (!Elts[0]->getType()->isFirstClassType())
3068 return Error(FirstEltLoc, "invalid array element type: " +
3069 getTypeString(Elts[0]->getType()));
3071 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3073 // Verify all elements are correct type!
3074 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3075 if (Elts[i]->getType() != Elts[0]->getType())
3076 return Error(FirstEltLoc,
3077 "array element #" + Twine(i) +
3078 " is not of type '" + getTypeString(Elts[0]->getType()));
3081 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3082 ID.Kind = ValID::t_Constant;
3083 return false;
3085 case lltok::kw_c: // c "foo"
3086 Lex.Lex();
3087 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3088 false);
3089 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3090 ID.Kind = ValID::t_Constant;
3091 return false;
3093 case lltok::kw_asm: {
3094 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3095 // STRINGCONSTANT
3096 bool HasSideEffect, AlignStack, AsmDialect;
3097 Lex.Lex();
3098 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3099 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3100 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3101 ParseStringConstant(ID.StrVal) ||
3102 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3103 ParseToken(lltok::StringConstant, "expected constraint string"))
3104 return true;
3105 ID.StrVal2 = Lex.getStrVal();
3106 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3107 (unsigned(AsmDialect)<<2);
3108 ID.Kind = ValID::t_InlineAsm;
3109 return false;
3112 case lltok::kw_blockaddress: {
3113 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3114 Lex.Lex();
3116 ValID Fn, Label;
3118 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3119 ParseValID(Fn) ||
3120 ParseToken(lltok::comma, "expected comma in block address expression")||
3121 ParseValID(Label) ||
3122 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3123 return true;
3125 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3126 return Error(Fn.Loc, "expected function name in blockaddress");
3127 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3128 return Error(Label.Loc, "expected basic block name in blockaddress");
3130 // Try to find the function (but skip it if it's forward-referenced).
3131 GlobalValue *GV = nullptr;
3132 if (Fn.Kind == ValID::t_GlobalID) {
3133 if (Fn.UIntVal < NumberedVals.size())
3134 GV = NumberedVals[Fn.UIntVal];
3135 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3136 GV = M->getNamedValue(Fn.StrVal);
3138 Function *F = nullptr;
3139 if (GV) {
3140 // Confirm that it's actually a function with a definition.
3141 if (!isa<Function>(GV))
3142 return Error(Fn.Loc, "expected function name in blockaddress");
3143 F = cast<Function>(GV);
3144 if (F->isDeclaration())
3145 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3148 if (!F) {
3149 // Make a global variable as a placeholder for this reference.
3150 GlobalValue *&FwdRef =
3151 ForwardRefBlockAddresses.insert(std::make_pair(
3152 std::move(Fn),
3153 std::map<ValID, GlobalValue *>()))
3154 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3155 .first->second;
3156 if (!FwdRef)
3157 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3158 GlobalValue::InternalLinkage, nullptr, "");
3159 ID.ConstantVal = FwdRef;
3160 ID.Kind = ValID::t_Constant;
3161 return false;
3164 // We found the function; now find the basic block. Don't use PFS, since we
3165 // might be inside a constant expression.
3166 BasicBlock *BB;
3167 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3168 if (Label.Kind == ValID::t_LocalID)
3169 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3170 else
3171 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3172 if (!BB)
3173 return Error(Label.Loc, "referenced value is not a basic block");
3174 } else {
3175 if (Label.Kind == ValID::t_LocalID)
3176 return Error(Label.Loc, "cannot take address of numeric label after "
3177 "the function is defined");
3178 BB = dyn_cast_or_null<BasicBlock>(
3179 F->getValueSymbolTable()->lookup(Label.StrVal));
3180 if (!BB)
3181 return Error(Label.Loc, "referenced value is not a basic block");
3184 ID.ConstantVal = BlockAddress::get(F, BB);
3185 ID.Kind = ValID::t_Constant;
3186 return false;
3189 case lltok::kw_trunc:
3190 case lltok::kw_zext:
3191 case lltok::kw_sext:
3192 case lltok::kw_fptrunc:
3193 case lltok::kw_fpext:
3194 case lltok::kw_bitcast:
3195 case lltok::kw_addrspacecast:
3196 case lltok::kw_uitofp:
3197 case lltok::kw_sitofp:
3198 case lltok::kw_fptoui:
3199 case lltok::kw_fptosi:
3200 case lltok::kw_inttoptr:
3201 case lltok::kw_ptrtoint: {
3202 unsigned Opc = Lex.getUIntVal();
3203 Type *DestTy = nullptr;
3204 Constant *SrcVal;
3205 Lex.Lex();
3206 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3207 ParseGlobalTypeAndValue(SrcVal) ||
3208 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3209 ParseType(DestTy) ||
3210 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3211 return true;
3212 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3213 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3214 getTypeString(SrcVal->getType()) + "' to '" +
3215 getTypeString(DestTy) + "'");
3216 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3217 SrcVal, DestTy);
3218 ID.Kind = ValID::t_Constant;
3219 return false;
3221 case lltok::kw_extractvalue: {
3222 Lex.Lex();
3223 Constant *Val;
3224 SmallVector<unsigned, 4> Indices;
3225 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3226 ParseGlobalTypeAndValue(Val) ||
3227 ParseIndexList(Indices) ||
3228 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3229 return true;
3231 if (!Val->getType()->isAggregateType())
3232 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3233 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3234 return Error(ID.Loc, "invalid indices for extractvalue");
3235 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3236 ID.Kind = ValID::t_Constant;
3237 return false;
3239 case lltok::kw_insertvalue: {
3240 Lex.Lex();
3241 Constant *Val0, *Val1;
3242 SmallVector<unsigned, 4> Indices;
3243 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3244 ParseGlobalTypeAndValue(Val0) ||
3245 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3246 ParseGlobalTypeAndValue(Val1) ||
3247 ParseIndexList(Indices) ||
3248 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3249 return true;
3250 if (!Val0->getType()->isAggregateType())
3251 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3252 Type *IndexedType =
3253 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3254 if (!IndexedType)
3255 return Error(ID.Loc, "invalid indices for insertvalue");
3256 if (IndexedType != Val1->getType())
3257 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3258 getTypeString(Val1->getType()) +
3259 "' instead of '" + getTypeString(IndexedType) +
3260 "'");
3261 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3262 ID.Kind = ValID::t_Constant;
3263 return false;
3265 case lltok::kw_icmp:
3266 case lltok::kw_fcmp: {
3267 unsigned PredVal, Opc = Lex.getUIntVal();
3268 Constant *Val0, *Val1;
3269 Lex.Lex();
3270 if (ParseCmpPredicate(PredVal, Opc) ||
3271 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3272 ParseGlobalTypeAndValue(Val0) ||
3273 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3274 ParseGlobalTypeAndValue(Val1) ||
3275 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3276 return true;
3278 if (Val0->getType() != Val1->getType())
3279 return Error(ID.Loc, "compare operands must have the same type");
3281 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3283 if (Opc == Instruction::FCmp) {
3284 if (!Val0->getType()->isFPOrFPVectorTy())
3285 return Error(ID.Loc, "fcmp requires floating point operands");
3286 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3287 } else {
3288 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3289 if (!Val0->getType()->isIntOrIntVectorTy() &&
3290 !Val0->getType()->isPtrOrPtrVectorTy())
3291 return Error(ID.Loc, "icmp requires pointer or integer operands");
3292 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3294 ID.Kind = ValID::t_Constant;
3295 return false;
3298 // Unary Operators.
3299 case lltok::kw_fneg: {
3300 unsigned Opc = Lex.getUIntVal();
3301 Constant *Val;
3302 Lex.Lex();
3303 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3304 ParseGlobalTypeAndValue(Val) ||
3305 ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3306 return true;
3308 // Check that the type is valid for the operator.
3309 switch (Opc) {
3310 case Instruction::FNeg:
3311 if (!Val->getType()->isFPOrFPVectorTy())
3312 return Error(ID.Loc, "constexpr requires fp operands");
3313 break;
3314 default: llvm_unreachable("Unknown unary operator!");
3316 unsigned Flags = 0;
3317 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3318 ID.ConstantVal = C;
3319 ID.Kind = ValID::t_Constant;
3320 return false;
3322 // Binary Operators.
3323 case lltok::kw_add:
3324 case lltok::kw_fadd:
3325 case lltok::kw_sub:
3326 case lltok::kw_fsub:
3327 case lltok::kw_mul:
3328 case lltok::kw_fmul:
3329 case lltok::kw_udiv:
3330 case lltok::kw_sdiv:
3331 case lltok::kw_fdiv:
3332 case lltok::kw_urem:
3333 case lltok::kw_srem:
3334 case lltok::kw_frem:
3335 case lltok::kw_shl:
3336 case lltok::kw_lshr:
3337 case lltok::kw_ashr: {
3338 bool NUW = false;
3339 bool NSW = false;
3340 bool Exact = false;
3341 unsigned Opc = Lex.getUIntVal();
3342 Constant *Val0, *Val1;
3343 Lex.Lex();
3344 LocTy ModifierLoc = Lex.getLoc();
3345 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3346 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3347 if (EatIfPresent(lltok::kw_nuw))
3348 NUW = true;
3349 if (EatIfPresent(lltok::kw_nsw)) {
3350 NSW = true;
3351 if (EatIfPresent(lltok::kw_nuw))
3352 NUW = true;
3354 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3355 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3356 if (EatIfPresent(lltok::kw_exact))
3357 Exact = true;
3359 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3360 ParseGlobalTypeAndValue(Val0) ||
3361 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3362 ParseGlobalTypeAndValue(Val1) ||
3363 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3364 return true;
3365 if (Val0->getType() != Val1->getType())
3366 return Error(ID.Loc, "operands of constexpr must have same type");
3367 if (!Val0->getType()->isIntOrIntVectorTy()) {
3368 if (NUW)
3369 return Error(ModifierLoc, "nuw only applies to integer operations");
3370 if (NSW)
3371 return Error(ModifierLoc, "nsw only applies to integer operations");
3373 // Check that the type is valid for the operator.
3374 switch (Opc) {
3375 case Instruction::Add:
3376 case Instruction::Sub:
3377 case Instruction::Mul:
3378 case Instruction::UDiv:
3379 case Instruction::SDiv:
3380 case Instruction::URem:
3381 case Instruction::SRem:
3382 case Instruction::Shl:
3383 case Instruction::AShr:
3384 case Instruction::LShr:
3385 if (!Val0->getType()->isIntOrIntVectorTy())
3386 return Error(ID.Loc, "constexpr requires integer operands");
3387 break;
3388 case Instruction::FAdd:
3389 case Instruction::FSub:
3390 case Instruction::FMul:
3391 case Instruction::FDiv:
3392 case Instruction::FRem:
3393 if (!Val0->getType()->isFPOrFPVectorTy())
3394 return Error(ID.Loc, "constexpr requires fp operands");
3395 break;
3396 default: llvm_unreachable("Unknown binary operator!");
3398 unsigned Flags = 0;
3399 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3400 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3401 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3402 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3403 ID.ConstantVal = C;
3404 ID.Kind = ValID::t_Constant;
3405 return false;
3408 // Logical Operations
3409 case lltok::kw_and:
3410 case lltok::kw_or:
3411 case lltok::kw_xor: {
3412 unsigned Opc = Lex.getUIntVal();
3413 Constant *Val0, *Val1;
3414 Lex.Lex();
3415 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3416 ParseGlobalTypeAndValue(Val0) ||
3417 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3418 ParseGlobalTypeAndValue(Val1) ||
3419 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3420 return true;
3421 if (Val0->getType() != Val1->getType())
3422 return Error(ID.Loc, "operands of constexpr must have same type");
3423 if (!Val0->getType()->isIntOrIntVectorTy())
3424 return Error(ID.Loc,
3425 "constexpr requires integer or integer vector operands");
3426 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3427 ID.Kind = ValID::t_Constant;
3428 return false;
3431 case lltok::kw_getelementptr:
3432 case lltok::kw_shufflevector:
3433 case lltok::kw_insertelement:
3434 case lltok::kw_extractelement:
3435 case lltok::kw_select: {
3436 unsigned Opc = Lex.getUIntVal();
3437 SmallVector<Constant*, 16> Elts;
3438 bool InBounds = false;
3439 Type *Ty;
3440 Lex.Lex();
3442 if (Opc == Instruction::GetElementPtr)
3443 InBounds = EatIfPresent(lltok::kw_inbounds);
3445 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3446 return true;
3448 LocTy ExplicitTypeLoc = Lex.getLoc();
3449 if (Opc == Instruction::GetElementPtr) {
3450 if (ParseType(Ty) ||
3451 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3452 return true;
3455 Optional<unsigned> InRangeOp;
3456 if (ParseGlobalValueVector(
3457 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3458 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3459 return true;
3461 if (Opc == Instruction::GetElementPtr) {
3462 if (Elts.size() == 0 ||
3463 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3464 return Error(ID.Loc, "base of getelementptr must be a pointer");
3466 Type *BaseType = Elts[0]->getType();
3467 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3468 if (Ty != BasePointerType->getElementType())
3469 return Error(
3470 ExplicitTypeLoc,
3471 "explicit pointee type doesn't match operand's pointee type");
3473 unsigned GEPWidth =
3474 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3476 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3477 for (Constant *Val : Indices) {
3478 Type *ValTy = Val->getType();
3479 if (!ValTy->isIntOrIntVectorTy())
3480 return Error(ID.Loc, "getelementptr index must be an integer");
3481 if (ValTy->isVectorTy()) {
3482 unsigned ValNumEl = ValTy->getVectorNumElements();
3483 if (GEPWidth && (ValNumEl != GEPWidth))
3484 return Error(
3485 ID.Loc,
3486 "getelementptr vector index has a wrong number of elements");
3487 // GEPWidth may have been unknown because the base is a scalar,
3488 // but it is known now.
3489 GEPWidth = ValNumEl;
3493 SmallPtrSet<Type*, 4> Visited;
3494 if (!Indices.empty() && !Ty->isSized(&Visited))
3495 return Error(ID.Loc, "base element of getelementptr must be sized");
3497 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3498 return Error(ID.Loc, "invalid getelementptr indices");
3500 if (InRangeOp) {
3501 if (*InRangeOp == 0)
3502 return Error(ID.Loc,
3503 "inrange keyword may not appear on pointer operand");
3504 --*InRangeOp;
3507 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3508 InBounds, InRangeOp);
3509 } else if (Opc == Instruction::Select) {
3510 if (Elts.size() != 3)
3511 return Error(ID.Loc, "expected three operands to select");
3512 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3513 Elts[2]))
3514 return Error(ID.Loc, Reason);
3515 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3516 } else if (Opc == Instruction::ShuffleVector) {
3517 if (Elts.size() != 3)
3518 return Error(ID.Loc, "expected three operands to shufflevector");
3519 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3520 return Error(ID.Loc, "invalid operands to shufflevector");
3521 ID.ConstantVal =
3522 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3523 } else if (Opc == Instruction::ExtractElement) {
3524 if (Elts.size() != 2)
3525 return Error(ID.Loc, "expected two operands to extractelement");
3526 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3527 return Error(ID.Loc, "invalid extractelement operands");
3528 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3529 } else {
3530 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3531 if (Elts.size() != 3)
3532 return Error(ID.Loc, "expected three operands to insertelement");
3533 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3534 return Error(ID.Loc, "invalid insertelement operands");
3535 ID.ConstantVal =
3536 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3539 ID.Kind = ValID::t_Constant;
3540 return false;
3544 Lex.Lex();
3545 return false;
3548 /// ParseGlobalValue - Parse a global value with the specified type.
3549 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3550 C = nullptr;
3551 ValID ID;
3552 Value *V = nullptr;
3553 bool Parsed = ParseValID(ID) ||
3554 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3555 if (V && !(C = dyn_cast<Constant>(V)))
3556 return Error(ID.Loc, "global values must be constants");
3557 return Parsed;
3560 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3561 Type *Ty = nullptr;
3562 return ParseType(Ty) ||
3563 ParseGlobalValue(Ty, V);
3566 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3567 C = nullptr;
3569 LocTy KwLoc = Lex.getLoc();
3570 if (!EatIfPresent(lltok::kw_comdat))
3571 return false;
3573 if (EatIfPresent(lltok::lparen)) {
3574 if (Lex.getKind() != lltok::ComdatVar)
3575 return TokError("expected comdat variable");
3576 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3577 Lex.Lex();
3578 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3579 return true;
3580 } else {
3581 if (GlobalName.empty())
3582 return TokError("comdat cannot be unnamed");
3583 C = getComdat(GlobalName, KwLoc);
3586 return false;
3589 /// ParseGlobalValueVector
3590 /// ::= /*empty*/
3591 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3592 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3593 Optional<unsigned> *InRangeOp) {
3594 // Empty list.
3595 if (Lex.getKind() == lltok::rbrace ||
3596 Lex.getKind() == lltok::rsquare ||
3597 Lex.getKind() == lltok::greater ||
3598 Lex.getKind() == lltok::rparen)
3599 return false;
3601 do {
3602 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3603 *InRangeOp = Elts.size();
3605 Constant *C;
3606 if (ParseGlobalTypeAndValue(C)) return true;
3607 Elts.push_back(C);
3608 } while (EatIfPresent(lltok::comma));
3610 return false;
3613 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3614 SmallVector<Metadata *, 16> Elts;
3615 if (ParseMDNodeVector(Elts))
3616 return true;
3618 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3619 return false;
3622 /// MDNode:
3623 /// ::= !{ ... }
3624 /// ::= !7
3625 /// ::= !DILocation(...)
3626 bool LLParser::ParseMDNode(MDNode *&N) {
3627 if (Lex.getKind() == lltok::MetadataVar)
3628 return ParseSpecializedMDNode(N);
3630 return ParseToken(lltok::exclaim, "expected '!' here") ||
3631 ParseMDNodeTail(N);
3634 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3635 // !{ ... }
3636 if (Lex.getKind() == lltok::lbrace)
3637 return ParseMDTuple(N);
3639 // !42
3640 return ParseMDNodeID(N);
3643 namespace {
3645 /// Structure to represent an optional metadata field.
3646 template <class FieldTy> struct MDFieldImpl {
3647 typedef MDFieldImpl ImplTy;
3648 FieldTy Val;
3649 bool Seen;
3651 void assign(FieldTy Val) {
3652 Seen = true;
3653 this->Val = std::move(Val);
3656 explicit MDFieldImpl(FieldTy Default)
3657 : Val(std::move(Default)), Seen(false) {}
3660 /// Structure to represent an optional metadata field that
3661 /// can be of either type (A or B) and encapsulates the
3662 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3663 /// to reimplement the specifics for representing each Field.
3664 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3665 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3666 FieldTypeA A;
3667 FieldTypeB B;
3668 bool Seen;
3670 enum {
3671 IsInvalid = 0,
3672 IsTypeA = 1,
3673 IsTypeB = 2
3674 } WhatIs;
3676 void assign(FieldTypeA A) {
3677 Seen = true;
3678 this->A = std::move(A);
3679 WhatIs = IsTypeA;
3682 void assign(FieldTypeB B) {
3683 Seen = true;
3684 this->B = std::move(B);
3685 WhatIs = IsTypeB;
3688 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3689 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3690 WhatIs(IsInvalid) {}
3693 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3694 uint64_t Max;
3696 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3697 : ImplTy(Default), Max(Max) {}
3700 struct LineField : public MDUnsignedField {
3701 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3704 struct ColumnField : public MDUnsignedField {
3705 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3708 struct DwarfTagField : public MDUnsignedField {
3709 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3710 DwarfTagField(dwarf::Tag DefaultTag)
3711 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3714 struct DwarfMacinfoTypeField : public MDUnsignedField {
3715 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3716 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3717 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3720 struct DwarfAttEncodingField : public MDUnsignedField {
3721 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3724 struct DwarfVirtualityField : public MDUnsignedField {
3725 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3728 struct DwarfLangField : public MDUnsignedField {
3729 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3732 struct DwarfCCField : public MDUnsignedField {
3733 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3736 struct EmissionKindField : public MDUnsignedField {
3737 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3740 struct NameTableKindField : public MDUnsignedField {
3741 NameTableKindField()
3742 : MDUnsignedField(
3743 0, (unsigned)
3744 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3747 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3748 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3751 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3752 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3755 struct MDSignedField : public MDFieldImpl<int64_t> {
3756 int64_t Min;
3757 int64_t Max;
3759 MDSignedField(int64_t Default = 0)
3760 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3761 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3762 : ImplTy(Default), Min(Min), Max(Max) {}
3765 struct MDBoolField : public MDFieldImpl<bool> {
3766 MDBoolField(bool Default = false) : ImplTy(Default) {}
3769 struct MDField : public MDFieldImpl<Metadata *> {
3770 bool AllowNull;
3772 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3775 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3776 MDConstant() : ImplTy(nullptr) {}
3779 struct MDStringField : public MDFieldImpl<MDString *> {
3780 bool AllowEmpty;
3781 MDStringField(bool AllowEmpty = true)
3782 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3785 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3786 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3789 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3790 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3793 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3794 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3795 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3797 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3798 bool AllowNull = true)
3799 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3801 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3802 bool isMDField() const { return WhatIs == IsTypeB; }
3803 int64_t getMDSignedValue() const {
3804 assert(isMDSignedField() && "Wrong field type");
3805 return A.Val;
3807 Metadata *getMDFieldValue() const {
3808 assert(isMDField() && "Wrong field type");
3809 return B.Val;
3813 struct MDSignedOrUnsignedField
3814 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3815 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3817 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3818 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3819 int64_t getMDSignedValue() const {
3820 assert(isMDSignedField() && "Wrong field type");
3821 return A.Val;
3823 uint64_t getMDUnsignedValue() const {
3824 assert(isMDUnsignedField() && "Wrong field type");
3825 return B.Val;
3829 } // end anonymous namespace
3831 namespace llvm {
3833 template <>
3834 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3835 MDUnsignedField &Result) {
3836 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3837 return TokError("expected unsigned integer");
3839 auto &U = Lex.getAPSIntVal();
3840 if (U.ugt(Result.Max))
3841 return TokError("value for '" + Name + "' too large, limit is " +
3842 Twine(Result.Max));
3843 Result.assign(U.getZExtValue());
3844 assert(Result.Val <= Result.Max && "Expected value in range");
3845 Lex.Lex();
3846 return false;
3849 template <>
3850 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3851 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3853 template <>
3854 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3855 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3858 template <>
3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3860 if (Lex.getKind() == lltok::APSInt)
3861 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3863 if (Lex.getKind() != lltok::DwarfTag)
3864 return TokError("expected DWARF tag");
3866 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3867 if (Tag == dwarf::DW_TAG_invalid)
3868 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3869 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3871 Result.assign(Tag);
3872 Lex.Lex();
3873 return false;
3876 template <>
3877 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3878 DwarfMacinfoTypeField &Result) {
3879 if (Lex.getKind() == lltok::APSInt)
3880 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3882 if (Lex.getKind() != lltok::DwarfMacinfo)
3883 return TokError("expected DWARF macinfo type");
3885 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3886 if (Macinfo == dwarf::DW_MACINFO_invalid)
3887 return TokError(
3888 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3889 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3891 Result.assign(Macinfo);
3892 Lex.Lex();
3893 return false;
3896 template <>
3897 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3898 DwarfVirtualityField &Result) {
3899 if (Lex.getKind() == lltok::APSInt)
3900 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3902 if (Lex.getKind() != lltok::DwarfVirtuality)
3903 return TokError("expected DWARF virtuality code");
3905 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3906 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3907 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3908 Lex.getStrVal() + "'");
3909 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3910 Result.assign(Virtuality);
3911 Lex.Lex();
3912 return false;
3915 template <>
3916 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3917 if (Lex.getKind() == lltok::APSInt)
3918 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3920 if (Lex.getKind() != lltok::DwarfLang)
3921 return TokError("expected DWARF language");
3923 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3924 if (!Lang)
3925 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3926 "'");
3927 assert(Lang <= Result.Max && "Expected valid DWARF language");
3928 Result.assign(Lang);
3929 Lex.Lex();
3930 return false;
3933 template <>
3934 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3935 if (Lex.getKind() == lltok::APSInt)
3936 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3938 if (Lex.getKind() != lltok::DwarfCC)
3939 return TokError("expected DWARF calling convention");
3941 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3942 if (!CC)
3943 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3944 "'");
3945 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3946 Result.assign(CC);
3947 Lex.Lex();
3948 return false;
3951 template <>
3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3953 if (Lex.getKind() == lltok::APSInt)
3954 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3956 if (Lex.getKind() != lltok::EmissionKind)
3957 return TokError("expected emission kind");
3959 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3960 if (!Kind)
3961 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3962 "'");
3963 assert(*Kind <= Result.Max && "Expected valid emission kind");
3964 Result.assign(*Kind);
3965 Lex.Lex();
3966 return false;
3969 template <>
3970 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3971 NameTableKindField &Result) {
3972 if (Lex.getKind() == lltok::APSInt)
3973 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3975 if (Lex.getKind() != lltok::NameTableKind)
3976 return TokError("expected nameTable kind");
3978 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3979 if (!Kind)
3980 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3981 "'");
3982 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3983 Result.assign((unsigned)*Kind);
3984 Lex.Lex();
3985 return false;
3988 template <>
3989 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3990 DwarfAttEncodingField &Result) {
3991 if (Lex.getKind() == lltok::APSInt)
3992 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3994 if (Lex.getKind() != lltok::DwarfAttEncoding)
3995 return TokError("expected DWARF type attribute encoding");
3997 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3998 if (!Encoding)
3999 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4000 Lex.getStrVal() + "'");
4001 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4002 Result.assign(Encoding);
4003 Lex.Lex();
4004 return false;
4007 /// DIFlagField
4008 /// ::= uint32
4009 /// ::= DIFlagVector
4010 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4011 template <>
4012 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4014 // Parser for a single flag.
4015 auto parseFlag = [&](DINode::DIFlags &Val) {
4016 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4017 uint32_t TempVal = static_cast<uint32_t>(Val);
4018 bool Res = ParseUInt32(TempVal);
4019 Val = static_cast<DINode::DIFlags>(TempVal);
4020 return Res;
4023 if (Lex.getKind() != lltok::DIFlag)
4024 return TokError("expected debug info flag");
4026 Val = DINode::getFlag(Lex.getStrVal());
4027 if (!Val)
4028 return TokError(Twine("invalid debug info flag flag '") +
4029 Lex.getStrVal() + "'");
4030 Lex.Lex();
4031 return false;
4034 // Parse the flags and combine them together.
4035 DINode::DIFlags Combined = DINode::FlagZero;
4036 do {
4037 DINode::DIFlags Val;
4038 if (parseFlag(Val))
4039 return true;
4040 Combined |= Val;
4041 } while (EatIfPresent(lltok::bar));
4043 Result.assign(Combined);
4044 return false;
4047 /// DISPFlagField
4048 /// ::= uint32
4049 /// ::= DISPFlagVector
4050 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4051 template <>
4052 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4054 // Parser for a single flag.
4055 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4056 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4057 uint32_t TempVal = static_cast<uint32_t>(Val);
4058 bool Res = ParseUInt32(TempVal);
4059 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4060 return Res;
4063 if (Lex.getKind() != lltok::DISPFlag)
4064 return TokError("expected debug info flag");
4066 Val = DISubprogram::getFlag(Lex.getStrVal());
4067 if (!Val)
4068 return TokError(Twine("invalid subprogram debug info flag '") +
4069 Lex.getStrVal() + "'");
4070 Lex.Lex();
4071 return false;
4074 // Parse the flags and combine them together.
4075 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4076 do {
4077 DISubprogram::DISPFlags Val;
4078 if (parseFlag(Val))
4079 return true;
4080 Combined |= Val;
4081 } while (EatIfPresent(lltok::bar));
4083 Result.assign(Combined);
4084 return false;
4087 template <>
4088 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4089 MDSignedField &Result) {
4090 if (Lex.getKind() != lltok::APSInt)
4091 return TokError("expected signed integer");
4093 auto &S = Lex.getAPSIntVal();
4094 if (S < Result.Min)
4095 return TokError("value for '" + Name + "' too small, limit is " +
4096 Twine(Result.Min));
4097 if (S > Result.Max)
4098 return TokError("value for '" + Name + "' too large, limit is " +
4099 Twine(Result.Max));
4100 Result.assign(S.getExtValue());
4101 assert(Result.Val >= Result.Min && "Expected value in range");
4102 assert(Result.Val <= Result.Max && "Expected value in range");
4103 Lex.Lex();
4104 return false;
4107 template <>
4108 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4109 switch (Lex.getKind()) {
4110 default:
4111 return TokError("expected 'true' or 'false'");
4112 case lltok::kw_true:
4113 Result.assign(true);
4114 break;
4115 case lltok::kw_false:
4116 Result.assign(false);
4117 break;
4119 Lex.Lex();
4120 return false;
4123 template <>
4124 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4125 if (Lex.getKind() == lltok::kw_null) {
4126 if (!Result.AllowNull)
4127 return TokError("'" + Name + "' cannot be null");
4128 Lex.Lex();
4129 Result.assign(nullptr);
4130 return false;
4133 Metadata *MD;
4134 if (ParseMetadata(MD, nullptr))
4135 return true;
4137 Result.assign(MD);
4138 return false;
4141 template <>
4142 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4143 MDSignedOrMDField &Result) {
4144 // Try to parse a signed int.
4145 if (Lex.getKind() == lltok::APSInt) {
4146 MDSignedField Res = Result.A;
4147 if (!ParseMDField(Loc, Name, Res)) {
4148 Result.assign(Res);
4149 return false;
4151 return true;
4154 // Otherwise, try to parse as an MDField.
4155 MDField Res = Result.B;
4156 if (!ParseMDField(Loc, Name, Res)) {
4157 Result.assign(Res);
4158 return false;
4161 return true;
4164 template <>
4165 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4166 MDSignedOrUnsignedField &Result) {
4167 if (Lex.getKind() != lltok::APSInt)
4168 return false;
4170 if (Lex.getAPSIntVal().isSigned()) {
4171 MDSignedField Res = Result.A;
4172 if (ParseMDField(Loc, Name, Res))
4173 return true;
4174 Result.assign(Res);
4175 return false;
4178 MDUnsignedField Res = Result.B;
4179 if (ParseMDField(Loc, Name, Res))
4180 return true;
4181 Result.assign(Res);
4182 return false;
4185 template <>
4186 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4187 LocTy ValueLoc = Lex.getLoc();
4188 std::string S;
4189 if (ParseStringConstant(S))
4190 return true;
4192 if (!Result.AllowEmpty && S.empty())
4193 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4195 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4196 return false;
4199 template <>
4200 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4201 SmallVector<Metadata *, 4> MDs;
4202 if (ParseMDNodeVector(MDs))
4203 return true;
4205 Result.assign(std::move(MDs));
4206 return false;
4209 template <>
4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4211 ChecksumKindField &Result) {
4212 Optional<DIFile::ChecksumKind> CSKind =
4213 DIFile::getChecksumKind(Lex.getStrVal());
4215 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4216 return TokError(
4217 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4219 Result.assign(*CSKind);
4220 Lex.Lex();
4221 return false;
4224 } // end namespace llvm
4226 template <class ParserTy>
4227 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4228 do {
4229 if (Lex.getKind() != lltok::LabelStr)
4230 return TokError("expected field label here");
4232 if (parseField())
4233 return true;
4234 } while (EatIfPresent(lltok::comma));
4236 return false;
4239 template <class ParserTy>
4240 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4241 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4242 Lex.Lex();
4244 if (ParseToken(lltok::lparen, "expected '(' here"))
4245 return true;
4246 if (Lex.getKind() != lltok::rparen)
4247 if (ParseMDFieldsImplBody(parseField))
4248 return true;
4250 ClosingLoc = Lex.getLoc();
4251 return ParseToken(lltok::rparen, "expected ')' here");
4254 template <class FieldTy>
4255 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4256 if (Result.Seen)
4257 return TokError("field '" + Name + "' cannot be specified more than once");
4259 LocTy Loc = Lex.getLoc();
4260 Lex.Lex();
4261 return ParseMDField(Loc, Name, Result);
4264 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4265 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4267 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4268 if (Lex.getStrVal() == #CLASS) \
4269 return Parse##CLASS(N, IsDistinct);
4270 #include "llvm/IR/Metadata.def"
4272 return TokError("expected metadata type");
4275 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4276 #define NOP_FIELD(NAME, TYPE, INIT)
4277 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4278 if (!NAME.Seen) \
4279 return Error(ClosingLoc, "missing required field '" #NAME "'");
4280 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4281 if (Lex.getStrVal() == #NAME) \
4282 return ParseMDField(#NAME, NAME);
4283 #define PARSE_MD_FIELDS() \
4284 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4285 do { \
4286 LocTy ClosingLoc; \
4287 if (ParseMDFieldsImpl([&]() -> bool { \
4288 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4289 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4290 }, ClosingLoc)) \
4291 return true; \
4292 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4293 } while (false)
4294 #define GET_OR_DISTINCT(CLASS, ARGS) \
4295 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4297 /// ParseDILocationFields:
4298 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4299 /// isImplicitCode: true)
4300 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4301 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4302 OPTIONAL(line, LineField, ); \
4303 OPTIONAL(column, ColumnField, ); \
4304 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4305 OPTIONAL(inlinedAt, MDField, ); \
4306 OPTIONAL(isImplicitCode, MDBoolField, (false));
4307 PARSE_MD_FIELDS();
4308 #undef VISIT_MD_FIELDS
4310 Result =
4311 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4312 inlinedAt.Val, isImplicitCode.Val));
4313 return false;
4316 /// ParseGenericDINode:
4317 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4318 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4319 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4320 REQUIRED(tag, DwarfTagField, ); \
4321 OPTIONAL(header, MDStringField, ); \
4322 OPTIONAL(operands, MDFieldList, );
4323 PARSE_MD_FIELDS();
4324 #undef VISIT_MD_FIELDS
4326 Result = GET_OR_DISTINCT(GenericDINode,
4327 (Context, tag.Val, header.Val, operands.Val));
4328 return false;
4331 /// ParseDISubrange:
4332 /// ::= !DISubrange(count: 30, lowerBound: 2)
4333 /// ::= !DISubrange(count: !node, lowerBound: 2)
4334 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4336 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4337 OPTIONAL(lowerBound, MDSignedField, );
4338 PARSE_MD_FIELDS();
4339 #undef VISIT_MD_FIELDS
4341 if (count.isMDSignedField())
4342 Result = GET_OR_DISTINCT(
4343 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4344 else if (count.isMDField())
4345 Result = GET_OR_DISTINCT(
4346 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4347 else
4348 return true;
4350 return false;
4353 /// ParseDIEnumerator:
4354 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4355 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4356 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4357 REQUIRED(name, MDStringField, ); \
4358 REQUIRED(value, MDSignedOrUnsignedField, ); \
4359 OPTIONAL(isUnsigned, MDBoolField, (false));
4360 PARSE_MD_FIELDS();
4361 #undef VISIT_MD_FIELDS
4363 if (isUnsigned.Val && value.isMDSignedField())
4364 return TokError("unsigned enumerator with negative value");
4366 int64_t Value = value.isMDSignedField()
4367 ? value.getMDSignedValue()
4368 : static_cast<int64_t>(value.getMDUnsignedValue());
4369 Result =
4370 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4372 return false;
4375 /// ParseDIBasicType:
4376 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4377 /// encoding: DW_ATE_encoding, flags: 0)
4378 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4379 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4380 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4381 OPTIONAL(name, MDStringField, ); \
4382 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4383 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4384 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4385 OPTIONAL(flags, DIFlagField, );
4386 PARSE_MD_FIELDS();
4387 #undef VISIT_MD_FIELDS
4389 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4390 align.Val, encoding.Val, flags.Val));
4391 return false;
4394 /// ParseDIDerivedType:
4395 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4396 /// line: 7, scope: !1, baseType: !2, size: 32,
4397 /// align: 32, offset: 0, flags: 0, extraData: !3,
4398 /// dwarfAddressSpace: 3)
4399 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4401 REQUIRED(tag, DwarfTagField, ); \
4402 OPTIONAL(name, MDStringField, ); \
4403 OPTIONAL(file, MDField, ); \
4404 OPTIONAL(line, LineField, ); \
4405 OPTIONAL(scope, MDField, ); \
4406 REQUIRED(baseType, MDField, ); \
4407 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4408 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4409 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4410 OPTIONAL(flags, DIFlagField, ); \
4411 OPTIONAL(extraData, MDField, ); \
4412 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4413 PARSE_MD_FIELDS();
4414 #undef VISIT_MD_FIELDS
4416 Optional<unsigned> DWARFAddressSpace;
4417 if (dwarfAddressSpace.Val != UINT32_MAX)
4418 DWARFAddressSpace = dwarfAddressSpace.Val;
4420 Result = GET_OR_DISTINCT(DIDerivedType,
4421 (Context, tag.Val, name.Val, file.Val, line.Val,
4422 scope.Val, baseType.Val, size.Val, align.Val,
4423 offset.Val, DWARFAddressSpace, flags.Val,
4424 extraData.Val));
4425 return false;
4428 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4429 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4430 REQUIRED(tag, DwarfTagField, ); \
4431 OPTIONAL(name, MDStringField, ); \
4432 OPTIONAL(file, MDField, ); \
4433 OPTIONAL(line, LineField, ); \
4434 OPTIONAL(scope, MDField, ); \
4435 OPTIONAL(baseType, MDField, ); \
4436 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4437 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4438 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4439 OPTIONAL(flags, DIFlagField, ); \
4440 OPTIONAL(elements, MDField, ); \
4441 OPTIONAL(runtimeLang, DwarfLangField, ); \
4442 OPTIONAL(vtableHolder, MDField, ); \
4443 OPTIONAL(templateParams, MDField, ); \
4444 OPTIONAL(identifier, MDStringField, ); \
4445 OPTIONAL(discriminator, MDField, );
4446 PARSE_MD_FIELDS();
4447 #undef VISIT_MD_FIELDS
4449 // If this has an identifier try to build an ODR type.
4450 if (identifier.Val)
4451 if (auto *CT = DICompositeType::buildODRType(
4452 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4453 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4454 elements.Val, runtimeLang.Val, vtableHolder.Val,
4455 templateParams.Val, discriminator.Val)) {
4456 Result = CT;
4457 return false;
4460 // Create a new node, and save it in the context if it belongs in the type
4461 // map.
4462 Result = GET_OR_DISTINCT(
4463 DICompositeType,
4464 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4465 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4466 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4467 discriminator.Val));
4468 return false;
4471 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4472 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4473 OPTIONAL(flags, DIFlagField, ); \
4474 OPTIONAL(cc, DwarfCCField, ); \
4475 REQUIRED(types, MDField, );
4476 PARSE_MD_FIELDS();
4477 #undef VISIT_MD_FIELDS
4479 Result = GET_OR_DISTINCT(DISubroutineType,
4480 (Context, flags.Val, cc.Val, types.Val));
4481 return false;
4484 /// ParseDIFileType:
4485 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4486 /// checksumkind: CSK_MD5,
4487 /// checksum: "000102030405060708090a0b0c0d0e0f",
4488 /// source: "source file contents")
4489 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4490 // The default constructed value for checksumkind is required, but will never
4491 // be used, as the parser checks if the field was actually Seen before using
4492 // the Val.
4493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4494 REQUIRED(filename, MDStringField, ); \
4495 REQUIRED(directory, MDStringField, ); \
4496 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4497 OPTIONAL(checksum, MDStringField, ); \
4498 OPTIONAL(source, MDStringField, );
4499 PARSE_MD_FIELDS();
4500 #undef VISIT_MD_FIELDS
4502 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4503 if (checksumkind.Seen && checksum.Seen)
4504 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4505 else if (checksumkind.Seen || checksum.Seen)
4506 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4508 Optional<MDString *> OptSource;
4509 if (source.Seen)
4510 OptSource = source.Val;
4511 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4512 OptChecksum, OptSource));
4513 return false;
4516 /// ParseDICompileUnit:
4517 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4518 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4519 /// splitDebugFilename: "abc.debug",
4520 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4521 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4522 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4523 if (!IsDistinct)
4524 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4526 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4527 REQUIRED(language, DwarfLangField, ); \
4528 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4529 OPTIONAL(producer, MDStringField, ); \
4530 OPTIONAL(isOptimized, MDBoolField, ); \
4531 OPTIONAL(flags, MDStringField, ); \
4532 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4533 OPTIONAL(splitDebugFilename, MDStringField, ); \
4534 OPTIONAL(emissionKind, EmissionKindField, ); \
4535 OPTIONAL(enums, MDField, ); \
4536 OPTIONAL(retainedTypes, MDField, ); \
4537 OPTIONAL(globals, MDField, ); \
4538 OPTIONAL(imports, MDField, ); \
4539 OPTIONAL(macros, MDField, ); \
4540 OPTIONAL(dwoId, MDUnsignedField, ); \
4541 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4542 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4543 OPTIONAL(nameTableKind, NameTableKindField, ); \
4544 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4545 PARSE_MD_FIELDS();
4546 #undef VISIT_MD_FIELDS
4548 Result = DICompileUnit::getDistinct(
4549 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4550 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4551 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4552 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4553 debugBaseAddress.Val);
4554 return false;
4557 /// ParseDISubprogram:
4558 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4559 /// file: !1, line: 7, type: !2, isLocal: false,
4560 /// isDefinition: true, scopeLine: 8, containingType: !3,
4561 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4562 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4563 /// spFlags: 10, isOptimized: false, templateParams: !4,
4564 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4565 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4566 auto Loc = Lex.getLoc();
4567 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4568 OPTIONAL(scope, MDField, ); \
4569 OPTIONAL(name, MDStringField, ); \
4570 OPTIONAL(linkageName, MDStringField, ); \
4571 OPTIONAL(file, MDField, ); \
4572 OPTIONAL(line, LineField, ); \
4573 OPTIONAL(type, MDField, ); \
4574 OPTIONAL(isLocal, MDBoolField, ); \
4575 OPTIONAL(isDefinition, MDBoolField, (true)); \
4576 OPTIONAL(scopeLine, LineField, ); \
4577 OPTIONAL(containingType, MDField, ); \
4578 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4579 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4580 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4581 OPTIONAL(flags, DIFlagField, ); \
4582 OPTIONAL(spFlags, DISPFlagField, ); \
4583 OPTIONAL(isOptimized, MDBoolField, ); \
4584 OPTIONAL(unit, MDField, ); \
4585 OPTIONAL(templateParams, MDField, ); \
4586 OPTIONAL(declaration, MDField, ); \
4587 OPTIONAL(retainedNodes, MDField, ); \
4588 OPTIONAL(thrownTypes, MDField, );
4589 PARSE_MD_FIELDS();
4590 #undef VISIT_MD_FIELDS
4592 // An explicit spFlags field takes precedence over individual fields in
4593 // older IR versions.
4594 DISubprogram::DISPFlags SPFlags =
4595 spFlags.Seen ? spFlags.Val
4596 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4597 isOptimized.Val, virtuality.Val);
4598 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4599 return Lex.Error(
4600 Loc,
4601 "missing 'distinct', required for !DISubprogram that is a Definition");
4602 Result = GET_OR_DISTINCT(
4603 DISubprogram,
4604 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4605 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4606 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4607 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4608 return false;
4611 /// ParseDILexicalBlock:
4612 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4613 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4615 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4616 OPTIONAL(file, MDField, ); \
4617 OPTIONAL(line, LineField, ); \
4618 OPTIONAL(column, ColumnField, );
4619 PARSE_MD_FIELDS();
4620 #undef VISIT_MD_FIELDS
4622 Result = GET_OR_DISTINCT(
4623 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4624 return false;
4627 /// ParseDILexicalBlockFile:
4628 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4629 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4631 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4632 OPTIONAL(file, MDField, ); \
4633 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4634 PARSE_MD_FIELDS();
4635 #undef VISIT_MD_FIELDS
4637 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4638 (Context, scope.Val, file.Val, discriminator.Val));
4639 return false;
4642 /// ParseDINamespace:
4643 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4644 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4646 REQUIRED(scope, MDField, ); \
4647 OPTIONAL(name, MDStringField, ); \
4648 OPTIONAL(exportSymbols, MDBoolField, );
4649 PARSE_MD_FIELDS();
4650 #undef VISIT_MD_FIELDS
4652 Result = GET_OR_DISTINCT(DINamespace,
4653 (Context, scope.Val, name.Val, exportSymbols.Val));
4654 return false;
4657 /// ParseDIMacro:
4658 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4659 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4661 REQUIRED(type, DwarfMacinfoTypeField, ); \
4662 OPTIONAL(line, LineField, ); \
4663 REQUIRED(name, MDStringField, ); \
4664 OPTIONAL(value, MDStringField, );
4665 PARSE_MD_FIELDS();
4666 #undef VISIT_MD_FIELDS
4668 Result = GET_OR_DISTINCT(DIMacro,
4669 (Context, type.Val, line.Val, name.Val, value.Val));
4670 return false;
4673 /// ParseDIMacroFile:
4674 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4675 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4677 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4678 OPTIONAL(line, LineField, ); \
4679 REQUIRED(file, MDField, ); \
4680 OPTIONAL(nodes, MDField, );
4681 PARSE_MD_FIELDS();
4682 #undef VISIT_MD_FIELDS
4684 Result = GET_OR_DISTINCT(DIMacroFile,
4685 (Context, type.Val, line.Val, file.Val, nodes.Val));
4686 return false;
4689 /// ParseDIModule:
4690 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4691 /// includePath: "/usr/include", isysroot: "/")
4692 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4693 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4694 REQUIRED(scope, MDField, ); \
4695 REQUIRED(name, MDStringField, ); \
4696 OPTIONAL(configMacros, MDStringField, ); \
4697 OPTIONAL(includePath, MDStringField, ); \
4698 OPTIONAL(isysroot, MDStringField, );
4699 PARSE_MD_FIELDS();
4700 #undef VISIT_MD_FIELDS
4702 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4703 configMacros.Val, includePath.Val, isysroot.Val));
4704 return false;
4707 /// ParseDITemplateTypeParameter:
4708 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4709 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4710 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4711 OPTIONAL(name, MDStringField, ); \
4712 REQUIRED(type, MDField, );
4713 PARSE_MD_FIELDS();
4714 #undef VISIT_MD_FIELDS
4716 Result =
4717 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4718 return false;
4721 /// ParseDITemplateValueParameter:
4722 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4723 /// name: "V", type: !1, value: i32 7)
4724 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4726 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4727 OPTIONAL(name, MDStringField, ); \
4728 OPTIONAL(type, MDField, ); \
4729 REQUIRED(value, MDField, );
4730 PARSE_MD_FIELDS();
4731 #undef VISIT_MD_FIELDS
4733 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4734 (Context, tag.Val, name.Val, type.Val, value.Val));
4735 return false;
4738 /// ParseDIGlobalVariable:
4739 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4740 /// file: !1, line: 7, type: !2, isLocal: false,
4741 /// isDefinition: true, templateParams: !3,
4742 /// declaration: !4, align: 8)
4743 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4744 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4745 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4746 OPTIONAL(scope, MDField, ); \
4747 OPTIONAL(linkageName, MDStringField, ); \
4748 OPTIONAL(file, MDField, ); \
4749 OPTIONAL(line, LineField, ); \
4750 OPTIONAL(type, MDField, ); \
4751 OPTIONAL(isLocal, MDBoolField, ); \
4752 OPTIONAL(isDefinition, MDBoolField, (true)); \
4753 OPTIONAL(templateParams, MDField, ); \
4754 OPTIONAL(declaration, MDField, ); \
4755 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4756 PARSE_MD_FIELDS();
4757 #undef VISIT_MD_FIELDS
4759 Result =
4760 GET_OR_DISTINCT(DIGlobalVariable,
4761 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4762 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4763 declaration.Val, templateParams.Val, align.Val));
4764 return false;
4767 /// ParseDILocalVariable:
4768 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4769 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4770 /// align: 8)
4771 /// ::= !DILocalVariable(scope: !0, name: "foo",
4772 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4773 /// align: 8)
4774 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4775 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4776 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4777 OPTIONAL(name, MDStringField, ); \
4778 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4779 OPTIONAL(file, MDField, ); \
4780 OPTIONAL(line, LineField, ); \
4781 OPTIONAL(type, MDField, ); \
4782 OPTIONAL(flags, DIFlagField, ); \
4783 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4784 PARSE_MD_FIELDS();
4785 #undef VISIT_MD_FIELDS
4787 Result = GET_OR_DISTINCT(DILocalVariable,
4788 (Context, scope.Val, name.Val, file.Val, line.Val,
4789 type.Val, arg.Val, flags.Val, align.Val));
4790 return false;
4793 /// ParseDILabel:
4794 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4795 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4797 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4798 REQUIRED(name, MDStringField, ); \
4799 REQUIRED(file, MDField, ); \
4800 REQUIRED(line, LineField, );
4801 PARSE_MD_FIELDS();
4802 #undef VISIT_MD_FIELDS
4804 Result = GET_OR_DISTINCT(DILabel,
4805 (Context, scope.Val, name.Val, file.Val, line.Val));
4806 return false;
4809 /// ParseDIExpression:
4810 /// ::= !DIExpression(0, 7, -1)
4811 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4812 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4813 Lex.Lex();
4815 if (ParseToken(lltok::lparen, "expected '(' here"))
4816 return true;
4818 SmallVector<uint64_t, 8> Elements;
4819 if (Lex.getKind() != lltok::rparen)
4820 do {
4821 if (Lex.getKind() == lltok::DwarfOp) {
4822 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4823 Lex.Lex();
4824 Elements.push_back(Op);
4825 continue;
4827 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4830 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4831 return TokError("expected unsigned integer");
4833 auto &U = Lex.getAPSIntVal();
4834 if (U.ugt(UINT64_MAX))
4835 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4836 Elements.push_back(U.getZExtValue());
4837 Lex.Lex();
4838 } while (EatIfPresent(lltok::comma));
4840 if (ParseToken(lltok::rparen, "expected ')' here"))
4841 return true;
4843 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4844 return false;
4847 /// ParseDIGlobalVariableExpression:
4848 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4849 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4850 bool IsDistinct) {
4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4852 REQUIRED(var, MDField, ); \
4853 REQUIRED(expr, MDField, );
4854 PARSE_MD_FIELDS();
4855 #undef VISIT_MD_FIELDS
4857 Result =
4858 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4859 return false;
4862 /// ParseDIObjCProperty:
4863 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4864 /// getter: "getFoo", attributes: 7, type: !2)
4865 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4867 OPTIONAL(name, MDStringField, ); \
4868 OPTIONAL(file, MDField, ); \
4869 OPTIONAL(line, LineField, ); \
4870 OPTIONAL(setter, MDStringField, ); \
4871 OPTIONAL(getter, MDStringField, ); \
4872 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4873 OPTIONAL(type, MDField, );
4874 PARSE_MD_FIELDS();
4875 #undef VISIT_MD_FIELDS
4877 Result = GET_OR_DISTINCT(DIObjCProperty,
4878 (Context, name.Val, file.Val, line.Val, setter.Val,
4879 getter.Val, attributes.Val, type.Val));
4880 return false;
4883 /// ParseDIImportedEntity:
4884 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4885 /// line: 7, name: "foo")
4886 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4888 REQUIRED(tag, DwarfTagField, ); \
4889 REQUIRED(scope, MDField, ); \
4890 OPTIONAL(entity, MDField, ); \
4891 OPTIONAL(file, MDField, ); \
4892 OPTIONAL(line, LineField, ); \
4893 OPTIONAL(name, MDStringField, );
4894 PARSE_MD_FIELDS();
4895 #undef VISIT_MD_FIELDS
4897 Result = GET_OR_DISTINCT(
4898 DIImportedEntity,
4899 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4900 return false;
4903 #undef PARSE_MD_FIELD
4904 #undef NOP_FIELD
4905 #undef REQUIRE_FIELD
4906 #undef DECLARE_FIELD
4908 /// ParseMetadataAsValue
4909 /// ::= metadata i32 %local
4910 /// ::= metadata i32 @global
4911 /// ::= metadata i32 7
4912 /// ::= metadata !0
4913 /// ::= metadata !{...}
4914 /// ::= metadata !"string"
4915 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4916 // Note: the type 'metadata' has already been parsed.
4917 Metadata *MD;
4918 if (ParseMetadata(MD, &PFS))
4919 return true;
4921 V = MetadataAsValue::get(Context, MD);
4922 return false;
4925 /// ParseValueAsMetadata
4926 /// ::= i32 %local
4927 /// ::= i32 @global
4928 /// ::= i32 7
4929 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4930 PerFunctionState *PFS) {
4931 Type *Ty;
4932 LocTy Loc;
4933 if (ParseType(Ty, TypeMsg, Loc))
4934 return true;
4935 if (Ty->isMetadataTy())
4936 return Error(Loc, "invalid metadata-value-metadata roundtrip");
4938 Value *V;
4939 if (ParseValue(Ty, V, PFS))
4940 return true;
4942 MD = ValueAsMetadata::get(V);
4943 return false;
4946 /// ParseMetadata
4947 /// ::= i32 %local
4948 /// ::= i32 @global
4949 /// ::= i32 7
4950 /// ::= !42
4951 /// ::= !{...}
4952 /// ::= !"string"
4953 /// ::= !DILocation(...)
4954 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4955 if (Lex.getKind() == lltok::MetadataVar) {
4956 MDNode *N;
4957 if (ParseSpecializedMDNode(N))
4958 return true;
4959 MD = N;
4960 return false;
4963 // ValueAsMetadata:
4964 // <type> <value>
4965 if (Lex.getKind() != lltok::exclaim)
4966 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4968 // '!'.
4969 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4970 Lex.Lex();
4972 // MDString:
4973 // ::= '!' STRINGCONSTANT
4974 if (Lex.getKind() == lltok::StringConstant) {
4975 MDString *S;
4976 if (ParseMDString(S))
4977 return true;
4978 MD = S;
4979 return false;
4982 // MDNode:
4983 // !{ ... }
4984 // !7
4985 MDNode *N;
4986 if (ParseMDNodeTail(N))
4987 return true;
4988 MD = N;
4989 return false;
4992 //===----------------------------------------------------------------------===//
4993 // Function Parsing.
4994 //===----------------------------------------------------------------------===//
4996 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4997 PerFunctionState *PFS, bool IsCall) {
4998 if (Ty->isFunctionTy())
4999 return Error(ID.Loc, "functions are not values, refer to them as pointers");
5001 switch (ID.Kind) {
5002 case ValID::t_LocalID:
5003 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5004 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5005 return V == nullptr;
5006 case ValID::t_LocalName:
5007 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5008 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5009 return V == nullptr;
5010 case ValID::t_InlineAsm: {
5011 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5012 return Error(ID.Loc, "invalid type for inline asm constraint string");
5013 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5014 (ID.UIntVal >> 1) & 1,
5015 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5016 return false;
5018 case ValID::t_GlobalName:
5019 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5020 return V == nullptr;
5021 case ValID::t_GlobalID:
5022 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5023 return V == nullptr;
5024 case ValID::t_APSInt:
5025 if (!Ty->isIntegerTy())
5026 return Error(ID.Loc, "integer constant must have integer type");
5027 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5028 V = ConstantInt::get(Context, ID.APSIntVal);
5029 return false;
5030 case ValID::t_APFloat:
5031 if (!Ty->isFloatingPointTy() ||
5032 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5033 return Error(ID.Loc, "floating point constant invalid for type");
5035 // The lexer has no type info, so builds all half, float, and double FP
5036 // constants as double. Fix this here. Long double does not need this.
5037 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5038 bool Ignored;
5039 if (Ty->isHalfTy())
5040 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5041 &Ignored);
5042 else if (Ty->isFloatTy())
5043 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5044 &Ignored);
5046 V = ConstantFP::get(Context, ID.APFloatVal);
5048 if (V->getType() != Ty)
5049 return Error(ID.Loc, "floating point constant does not have type '" +
5050 getTypeString(Ty) + "'");
5052 return false;
5053 case ValID::t_Null:
5054 if (!Ty->isPointerTy())
5055 return Error(ID.Loc, "null must be a pointer type");
5056 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5057 return false;
5058 case ValID::t_Undef:
5059 // FIXME: LabelTy should not be a first-class type.
5060 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5061 return Error(ID.Loc, "invalid type for undef constant");
5062 V = UndefValue::get(Ty);
5063 return false;
5064 case ValID::t_EmptyArray:
5065 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5066 return Error(ID.Loc, "invalid empty array initializer");
5067 V = UndefValue::get(Ty);
5068 return false;
5069 case ValID::t_Zero:
5070 // FIXME: LabelTy should not be a first-class type.
5071 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5072 return Error(ID.Loc, "invalid type for null constant");
5073 V = Constant::getNullValue(Ty);
5074 return false;
5075 case ValID::t_None:
5076 if (!Ty->isTokenTy())
5077 return Error(ID.Loc, "invalid type for none constant");
5078 V = Constant::getNullValue(Ty);
5079 return false;
5080 case ValID::t_Constant:
5081 if (ID.ConstantVal->getType() != Ty)
5082 return Error(ID.Loc, "constant expression type mismatch");
5084 V = ID.ConstantVal;
5085 return false;
5086 case ValID::t_ConstantStruct:
5087 case ValID::t_PackedConstantStruct:
5088 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5089 if (ST->getNumElements() != ID.UIntVal)
5090 return Error(ID.Loc,
5091 "initializer with struct type has wrong # elements");
5092 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5093 return Error(ID.Loc, "packed'ness of initializer and type don't match");
5095 // Verify that the elements are compatible with the structtype.
5096 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5097 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5098 return Error(ID.Loc, "element " + Twine(i) +
5099 " of struct initializer doesn't match struct element type");
5101 V = ConstantStruct::get(
5102 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5103 } else
5104 return Error(ID.Loc, "constant expression type mismatch");
5105 return false;
5107 llvm_unreachable("Invalid ValID");
5110 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5111 C = nullptr;
5112 ValID ID;
5113 auto Loc = Lex.getLoc();
5114 if (ParseValID(ID, /*PFS=*/nullptr))
5115 return true;
5116 switch (ID.Kind) {
5117 case ValID::t_APSInt:
5118 case ValID::t_APFloat:
5119 case ValID::t_Undef:
5120 case ValID::t_Constant:
5121 case ValID::t_ConstantStruct:
5122 case ValID::t_PackedConstantStruct: {
5123 Value *V;
5124 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5125 return true;
5126 assert(isa<Constant>(V) && "Expected a constant value");
5127 C = cast<Constant>(V);
5128 return false;
5130 case ValID::t_Null:
5131 C = Constant::getNullValue(Ty);
5132 return false;
5133 default:
5134 return Error(Loc, "expected a constant value");
5138 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5139 V = nullptr;
5140 ValID ID;
5141 return ParseValID(ID, PFS) ||
5142 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5145 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5146 Type *Ty = nullptr;
5147 return ParseType(Ty) ||
5148 ParseValue(Ty, V, PFS);
5151 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5152 PerFunctionState &PFS) {
5153 Value *V;
5154 Loc = Lex.getLoc();
5155 if (ParseTypeAndValue(V, PFS)) return true;
5156 if (!isa<BasicBlock>(V))
5157 return Error(Loc, "expected a basic block");
5158 BB = cast<BasicBlock>(V);
5159 return false;
5162 /// FunctionHeader
5163 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5164 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5165 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5166 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5167 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5168 // Parse the linkage.
5169 LocTy LinkageLoc = Lex.getLoc();
5170 unsigned Linkage;
5171 unsigned Visibility;
5172 unsigned DLLStorageClass;
5173 bool DSOLocal;
5174 AttrBuilder RetAttrs;
5175 unsigned CC;
5176 bool HasLinkage;
5177 Type *RetType = nullptr;
5178 LocTy RetTypeLoc = Lex.getLoc();
5179 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5180 DSOLocal) ||
5181 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5182 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5183 return true;
5185 // Verify that the linkage is ok.
5186 switch ((GlobalValue::LinkageTypes)Linkage) {
5187 case GlobalValue::ExternalLinkage:
5188 break; // always ok.
5189 case GlobalValue::ExternalWeakLinkage:
5190 if (isDefine)
5191 return Error(LinkageLoc, "invalid linkage for function definition");
5192 break;
5193 case GlobalValue::PrivateLinkage:
5194 case GlobalValue::InternalLinkage:
5195 case GlobalValue::AvailableExternallyLinkage:
5196 case GlobalValue::LinkOnceAnyLinkage:
5197 case GlobalValue::LinkOnceODRLinkage:
5198 case GlobalValue::WeakAnyLinkage:
5199 case GlobalValue::WeakODRLinkage:
5200 if (!isDefine)
5201 return Error(LinkageLoc, "invalid linkage for function declaration");
5202 break;
5203 case GlobalValue::AppendingLinkage:
5204 case GlobalValue::CommonLinkage:
5205 return Error(LinkageLoc, "invalid function linkage type");
5208 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5209 return Error(LinkageLoc,
5210 "symbol with local linkage must have default visibility");
5212 if (!FunctionType::isValidReturnType(RetType))
5213 return Error(RetTypeLoc, "invalid function return type");
5215 LocTy NameLoc = Lex.getLoc();
5217 std::string FunctionName;
5218 if (Lex.getKind() == lltok::GlobalVar) {
5219 FunctionName = Lex.getStrVal();
5220 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5221 unsigned NameID = Lex.getUIntVal();
5223 if (NameID != NumberedVals.size())
5224 return TokError("function expected to be numbered '%" +
5225 Twine(NumberedVals.size()) + "'");
5226 } else {
5227 return TokError("expected function name");
5230 Lex.Lex();
5232 if (Lex.getKind() != lltok::lparen)
5233 return TokError("expected '(' in function argument list");
5235 SmallVector<ArgInfo, 8> ArgList;
5236 bool isVarArg;
5237 AttrBuilder FuncAttrs;
5238 std::vector<unsigned> FwdRefAttrGrps;
5239 LocTy BuiltinLoc;
5240 std::string Section;
5241 unsigned Alignment;
5242 std::string GC;
5243 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5244 unsigned AddrSpace = 0;
5245 Constant *Prefix = nullptr;
5246 Constant *Prologue = nullptr;
5247 Constant *PersonalityFn = nullptr;
5248 Comdat *C;
5250 if (ParseArgumentList(ArgList, isVarArg) ||
5251 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5252 ParseOptionalProgramAddrSpace(AddrSpace) ||
5253 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5254 BuiltinLoc) ||
5255 (EatIfPresent(lltok::kw_section) &&
5256 ParseStringConstant(Section)) ||
5257 parseOptionalComdat(FunctionName, C) ||
5258 ParseOptionalAlignment(Alignment) ||
5259 (EatIfPresent(lltok::kw_gc) &&
5260 ParseStringConstant(GC)) ||
5261 (EatIfPresent(lltok::kw_prefix) &&
5262 ParseGlobalTypeAndValue(Prefix)) ||
5263 (EatIfPresent(lltok::kw_prologue) &&
5264 ParseGlobalTypeAndValue(Prologue)) ||
5265 (EatIfPresent(lltok::kw_personality) &&
5266 ParseGlobalTypeAndValue(PersonalityFn)))
5267 return true;
5269 if (FuncAttrs.contains(Attribute::Builtin))
5270 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5272 // If the alignment was parsed as an attribute, move to the alignment field.
5273 if (FuncAttrs.hasAlignmentAttr()) {
5274 Alignment = FuncAttrs.getAlignment();
5275 FuncAttrs.removeAttribute(Attribute::Alignment);
5278 // Okay, if we got here, the function is syntactically valid. Convert types
5279 // and do semantic checks.
5280 std::vector<Type*> ParamTypeList;
5281 SmallVector<AttributeSet, 8> Attrs;
5283 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5284 ParamTypeList.push_back(ArgList[i].Ty);
5285 Attrs.push_back(ArgList[i].Attrs);
5288 AttributeList PAL =
5289 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5290 AttributeSet::get(Context, RetAttrs), Attrs);
5292 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5293 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5295 FunctionType *FT =
5296 FunctionType::get(RetType, ParamTypeList, isVarArg);
5297 PointerType *PFT = PointerType::get(FT, AddrSpace);
5299 Fn = nullptr;
5300 if (!FunctionName.empty()) {
5301 // If this was a definition of a forward reference, remove the definition
5302 // from the forward reference table and fill in the forward ref.
5303 auto FRVI = ForwardRefVals.find(FunctionName);
5304 if (FRVI != ForwardRefVals.end()) {
5305 Fn = M->getFunction(FunctionName);
5306 if (!Fn)
5307 return Error(FRVI->second.second, "invalid forward reference to "
5308 "function as global value!");
5309 if (Fn->getType() != PFT)
5310 return Error(FRVI->second.second, "invalid forward reference to "
5311 "function '" + FunctionName + "' with wrong type: "
5312 "expected '" + getTypeString(PFT) + "' but was '" +
5313 getTypeString(Fn->getType()) + "'");
5314 ForwardRefVals.erase(FRVI);
5315 } else if ((Fn = M->getFunction(FunctionName))) {
5316 // Reject redefinitions.
5317 return Error(NameLoc, "invalid redefinition of function '" +
5318 FunctionName + "'");
5319 } else if (M->getNamedValue(FunctionName)) {
5320 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5323 } else {
5324 // If this is a definition of a forward referenced function, make sure the
5325 // types agree.
5326 auto I = ForwardRefValIDs.find(NumberedVals.size());
5327 if (I != ForwardRefValIDs.end()) {
5328 Fn = cast<Function>(I->second.first);
5329 if (Fn->getType() != PFT)
5330 return Error(NameLoc, "type of definition and forward reference of '@" +
5331 Twine(NumberedVals.size()) + "' disagree: "
5332 "expected '" + getTypeString(PFT) + "' but was '" +
5333 getTypeString(Fn->getType()) + "'");
5334 ForwardRefValIDs.erase(I);
5338 if (!Fn)
5339 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5340 FunctionName, M);
5341 else // Move the forward-reference to the correct spot in the module.
5342 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5344 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5346 if (FunctionName.empty())
5347 NumberedVals.push_back(Fn);
5349 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5350 maybeSetDSOLocal(DSOLocal, *Fn);
5351 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5352 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5353 Fn->setCallingConv(CC);
5354 Fn->setAttributes(PAL);
5355 Fn->setUnnamedAddr(UnnamedAddr);
5356 Fn->setAlignment(Alignment);
5357 Fn->setSection(Section);
5358 Fn->setComdat(C);
5359 Fn->setPersonalityFn(PersonalityFn);
5360 if (!GC.empty()) Fn->setGC(GC);
5361 Fn->setPrefixData(Prefix);
5362 Fn->setPrologueData(Prologue);
5363 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5365 // Add all of the arguments we parsed to the function.
5366 Function::arg_iterator ArgIt = Fn->arg_begin();
5367 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5368 // If the argument has a name, insert it into the argument symbol table.
5369 if (ArgList[i].Name.empty()) continue;
5371 // Set the name, if it conflicted, it will be auto-renamed.
5372 ArgIt->setName(ArgList[i].Name);
5374 if (ArgIt->getName() != ArgList[i].Name)
5375 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5376 ArgList[i].Name + "'");
5379 if (isDefine)
5380 return false;
5382 // Check the declaration has no block address forward references.
5383 ValID ID;
5384 if (FunctionName.empty()) {
5385 ID.Kind = ValID::t_GlobalID;
5386 ID.UIntVal = NumberedVals.size() - 1;
5387 } else {
5388 ID.Kind = ValID::t_GlobalName;
5389 ID.StrVal = FunctionName;
5391 auto Blocks = ForwardRefBlockAddresses.find(ID);
5392 if (Blocks != ForwardRefBlockAddresses.end())
5393 return Error(Blocks->first.Loc,
5394 "cannot take blockaddress inside a declaration");
5395 return false;
5398 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5399 ValID ID;
5400 if (FunctionNumber == -1) {
5401 ID.Kind = ValID::t_GlobalName;
5402 ID.StrVal = F.getName();
5403 } else {
5404 ID.Kind = ValID::t_GlobalID;
5405 ID.UIntVal = FunctionNumber;
5408 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5409 if (Blocks == P.ForwardRefBlockAddresses.end())
5410 return false;
5412 for (const auto &I : Blocks->second) {
5413 const ValID &BBID = I.first;
5414 GlobalValue *GV = I.second;
5416 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5417 "Expected local id or name");
5418 BasicBlock *BB;
5419 if (BBID.Kind == ValID::t_LocalName)
5420 BB = GetBB(BBID.StrVal, BBID.Loc);
5421 else
5422 BB = GetBB(BBID.UIntVal, BBID.Loc);
5423 if (!BB)
5424 return P.Error(BBID.Loc, "referenced value is not a basic block");
5426 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5427 GV->eraseFromParent();
5430 P.ForwardRefBlockAddresses.erase(Blocks);
5431 return false;
5434 /// ParseFunctionBody
5435 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5436 bool LLParser::ParseFunctionBody(Function &Fn) {
5437 if (Lex.getKind() != lltok::lbrace)
5438 return TokError("expected '{' in function body");
5439 Lex.Lex(); // eat the {.
5441 int FunctionNumber = -1;
5442 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5444 PerFunctionState PFS(*this, Fn, FunctionNumber);
5446 // Resolve block addresses and allow basic blocks to be forward-declared
5447 // within this function.
5448 if (PFS.resolveForwardRefBlockAddresses())
5449 return true;
5450 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5452 // We need at least one basic block.
5453 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5454 return TokError("function body requires at least one basic block");
5456 while (Lex.getKind() != lltok::rbrace &&
5457 Lex.getKind() != lltok::kw_uselistorder)
5458 if (ParseBasicBlock(PFS)) return true;
5460 while (Lex.getKind() != lltok::rbrace)
5461 if (ParseUseListOrder(&PFS))
5462 return true;
5464 // Eat the }.
5465 Lex.Lex();
5467 // Verify function is ok.
5468 return PFS.FinishFunction();
5471 /// ParseBasicBlock
5472 /// ::= LabelStr? Instruction*
5473 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5474 // If this basic block starts out with a name, remember it.
5475 std::string Name;
5476 LocTy NameLoc = Lex.getLoc();
5477 if (Lex.getKind() == lltok::LabelStr) {
5478 Name = Lex.getStrVal();
5479 Lex.Lex();
5482 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5483 if (!BB)
5484 return Error(NameLoc,
5485 "unable to create block named '" + Name + "'");
5487 std::string NameStr;
5489 // Parse the instructions in this block until we get a terminator.
5490 Instruction *Inst;
5491 do {
5492 // This instruction may have three possibilities for a name: a) none
5493 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5494 LocTy NameLoc = Lex.getLoc();
5495 int NameID = -1;
5496 NameStr = "";
5498 if (Lex.getKind() == lltok::LocalVarID) {
5499 NameID = Lex.getUIntVal();
5500 Lex.Lex();
5501 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5502 return true;
5503 } else if (Lex.getKind() == lltok::LocalVar) {
5504 NameStr = Lex.getStrVal();
5505 Lex.Lex();
5506 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5507 return true;
5510 switch (ParseInstruction(Inst, BB, PFS)) {
5511 default: llvm_unreachable("Unknown ParseInstruction result!");
5512 case InstError: return true;
5513 case InstNormal:
5514 BB->getInstList().push_back(Inst);
5516 // With a normal result, we check to see if the instruction is followed by
5517 // a comma and metadata.
5518 if (EatIfPresent(lltok::comma))
5519 if (ParseInstructionMetadata(*Inst))
5520 return true;
5521 break;
5522 case InstExtraComma:
5523 BB->getInstList().push_back(Inst);
5525 // If the instruction parser ate an extra comma at the end of it, it
5526 // *must* be followed by metadata.
5527 if (ParseInstructionMetadata(*Inst))
5528 return true;
5529 break;
5532 // Set the name on the instruction.
5533 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5534 } while (!Inst->isTerminator());
5536 return false;
5539 //===----------------------------------------------------------------------===//
5540 // Instruction Parsing.
5541 //===----------------------------------------------------------------------===//
5543 /// ParseInstruction - Parse one of the many different instructions.
5545 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5546 PerFunctionState &PFS) {
5547 lltok::Kind Token = Lex.getKind();
5548 if (Token == lltok::Eof)
5549 return TokError("found end of file when expecting more instructions");
5550 LocTy Loc = Lex.getLoc();
5551 unsigned KeywordVal = Lex.getUIntVal();
5552 Lex.Lex(); // Eat the keyword.
5554 switch (Token) {
5555 default: return Error(Loc, "expected instruction opcode");
5556 // Terminator Instructions.
5557 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5558 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5559 case lltok::kw_br: return ParseBr(Inst, PFS);
5560 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5561 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5562 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5563 case lltok::kw_resume: return ParseResume(Inst, PFS);
5564 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5565 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5566 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5567 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5568 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5569 // Unary Operators.
5570 case lltok::kw_fneg: {
5571 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5572 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5573 if (Res != 0)
5574 return Res;
5575 if (FMF.any())
5576 Inst->setFastMathFlags(FMF);
5577 return false;
5579 // Binary Operators.
5580 case lltok::kw_add:
5581 case lltok::kw_sub:
5582 case lltok::kw_mul:
5583 case lltok::kw_shl: {
5584 bool NUW = EatIfPresent(lltok::kw_nuw);
5585 bool NSW = EatIfPresent(lltok::kw_nsw);
5586 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5588 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5590 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5591 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5592 return false;
5594 case lltok::kw_fadd:
5595 case lltok::kw_fsub:
5596 case lltok::kw_fmul:
5597 case lltok::kw_fdiv:
5598 case lltok::kw_frem: {
5599 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5600 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5601 if (Res != 0)
5602 return Res;
5603 if (FMF.any())
5604 Inst->setFastMathFlags(FMF);
5605 return 0;
5608 case lltok::kw_sdiv:
5609 case lltok::kw_udiv:
5610 case lltok::kw_lshr:
5611 case lltok::kw_ashr: {
5612 bool Exact = EatIfPresent(lltok::kw_exact);
5614 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5615 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5616 return false;
5619 case lltok::kw_urem:
5620 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5621 case lltok::kw_and:
5622 case lltok::kw_or:
5623 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5624 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5625 case lltok::kw_fcmp: {
5626 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5627 int Res = ParseCompare(Inst, PFS, KeywordVal);
5628 if (Res != 0)
5629 return Res;
5630 if (FMF.any())
5631 Inst->setFastMathFlags(FMF);
5632 return 0;
5635 // Casts.
5636 case lltok::kw_trunc:
5637 case lltok::kw_zext:
5638 case lltok::kw_sext:
5639 case lltok::kw_fptrunc:
5640 case lltok::kw_fpext:
5641 case lltok::kw_bitcast:
5642 case lltok::kw_addrspacecast:
5643 case lltok::kw_uitofp:
5644 case lltok::kw_sitofp:
5645 case lltok::kw_fptoui:
5646 case lltok::kw_fptosi:
5647 case lltok::kw_inttoptr:
5648 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5649 // Other.
5650 case lltok::kw_select: return ParseSelect(Inst, PFS);
5651 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5652 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5653 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5654 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5655 case lltok::kw_phi: return ParsePHI(Inst, PFS);
5656 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5657 // Call.
5658 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5659 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5660 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5661 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5662 // Memory.
5663 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5664 case lltok::kw_load: return ParseLoad(Inst, PFS);
5665 case lltok::kw_store: return ParseStore(Inst, PFS);
5666 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5667 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5668 case lltok::kw_fence: return ParseFence(Inst, PFS);
5669 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5670 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5671 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5675 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5676 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5677 if (Opc == Instruction::FCmp) {
5678 switch (Lex.getKind()) {
5679 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5680 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5681 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5682 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5683 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5684 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5685 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5686 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5687 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5688 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5689 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5690 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5691 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5692 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5693 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5694 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5695 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5697 } else {
5698 switch (Lex.getKind()) {
5699 default: return TokError("expected icmp predicate (e.g. 'eq')");
5700 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5701 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5702 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5703 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5704 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5705 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5706 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5707 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5708 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5709 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5712 Lex.Lex();
5713 return false;
5716 //===----------------------------------------------------------------------===//
5717 // Terminator Instructions.
5718 //===----------------------------------------------------------------------===//
5720 /// ParseRet - Parse a return instruction.
5721 /// ::= 'ret' void (',' !dbg, !1)*
5722 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5723 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5724 PerFunctionState &PFS) {
5725 SMLoc TypeLoc = Lex.getLoc();
5726 Type *Ty = nullptr;
5727 if (ParseType(Ty, true /*void allowed*/)) return true;
5729 Type *ResType = PFS.getFunction().getReturnType();
5731 if (Ty->isVoidTy()) {
5732 if (!ResType->isVoidTy())
5733 return Error(TypeLoc, "value doesn't match function result type '" +
5734 getTypeString(ResType) + "'");
5736 Inst = ReturnInst::Create(Context);
5737 return false;
5740 Value *RV;
5741 if (ParseValue(Ty, RV, PFS)) return true;
5743 if (ResType != RV->getType())
5744 return Error(TypeLoc, "value doesn't match function result type '" +
5745 getTypeString(ResType) + "'");
5747 Inst = ReturnInst::Create(Context, RV);
5748 return false;
5751 /// ParseBr
5752 /// ::= 'br' TypeAndValue
5753 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5754 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5755 LocTy Loc, Loc2;
5756 Value *Op0;
5757 BasicBlock *Op1, *Op2;
5758 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5760 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5761 Inst = BranchInst::Create(BB);
5762 return false;
5765 if (Op0->getType() != Type::getInt1Ty(Context))
5766 return Error(Loc, "branch condition must have 'i1' type");
5768 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5769 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5770 ParseToken(lltok::comma, "expected ',' after true destination") ||
5771 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5772 return true;
5774 Inst = BranchInst::Create(Op1, Op2, Op0);
5775 return false;
5778 /// ParseSwitch
5779 /// Instruction
5780 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5781 /// JumpTable
5782 /// ::= (TypeAndValue ',' TypeAndValue)*
5783 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5784 LocTy CondLoc, BBLoc;
5785 Value *Cond;
5786 BasicBlock *DefaultBB;
5787 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5788 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5789 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5790 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5791 return true;
5793 if (!Cond->getType()->isIntegerTy())
5794 return Error(CondLoc, "switch condition must have integer type");
5796 // Parse the jump table pairs.
5797 SmallPtrSet<Value*, 32> SeenCases;
5798 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5799 while (Lex.getKind() != lltok::rsquare) {
5800 Value *Constant;
5801 BasicBlock *DestBB;
5803 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5804 ParseToken(lltok::comma, "expected ',' after case value") ||
5805 ParseTypeAndBasicBlock(DestBB, PFS))
5806 return true;
5808 if (!SeenCases.insert(Constant).second)
5809 return Error(CondLoc, "duplicate case value in switch");
5810 if (!isa<ConstantInt>(Constant))
5811 return Error(CondLoc, "case value is not a constant integer");
5813 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5816 Lex.Lex(); // Eat the ']'.
5818 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5819 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5820 SI->addCase(Table[i].first, Table[i].second);
5821 Inst = SI;
5822 return false;
5825 /// ParseIndirectBr
5826 /// Instruction
5827 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5828 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5829 LocTy AddrLoc;
5830 Value *Address;
5831 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5832 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5833 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5834 return true;
5836 if (!Address->getType()->isPointerTy())
5837 return Error(AddrLoc, "indirectbr address must have pointer type");
5839 // Parse the destination list.
5840 SmallVector<BasicBlock*, 16> DestList;
5842 if (Lex.getKind() != lltok::rsquare) {
5843 BasicBlock *DestBB;
5844 if (ParseTypeAndBasicBlock(DestBB, PFS))
5845 return true;
5846 DestList.push_back(DestBB);
5848 while (EatIfPresent(lltok::comma)) {
5849 if (ParseTypeAndBasicBlock(DestBB, PFS))
5850 return true;
5851 DestList.push_back(DestBB);
5855 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5856 return true;
5858 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5859 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5860 IBI->addDestination(DestList[i]);
5861 Inst = IBI;
5862 return false;
5865 /// ParseInvoke
5866 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5867 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5868 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5869 LocTy CallLoc = Lex.getLoc();
5870 AttrBuilder RetAttrs, FnAttrs;
5871 std::vector<unsigned> FwdRefAttrGrps;
5872 LocTy NoBuiltinLoc;
5873 unsigned CC;
5874 unsigned InvokeAddrSpace;
5875 Type *RetType = nullptr;
5876 LocTy RetTypeLoc;
5877 ValID CalleeID;
5878 SmallVector<ParamInfo, 16> ArgList;
5879 SmallVector<OperandBundleDef, 2> BundleList;
5881 BasicBlock *NormalBB, *UnwindBB;
5882 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5883 ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5884 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5885 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5886 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5887 NoBuiltinLoc) ||
5888 ParseOptionalOperandBundles(BundleList, PFS) ||
5889 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5890 ParseTypeAndBasicBlock(NormalBB, PFS) ||
5891 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5892 ParseTypeAndBasicBlock(UnwindBB, PFS))
5893 return true;
5895 // If RetType is a non-function pointer type, then this is the short syntax
5896 // for the call, which means that RetType is just the return type. Infer the
5897 // rest of the function argument types from the arguments that are present.
5898 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5899 if (!Ty) {
5900 // Pull out the types of all of the arguments...
5901 std::vector<Type*> ParamTypes;
5902 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5903 ParamTypes.push_back(ArgList[i].V->getType());
5905 if (!FunctionType::isValidReturnType(RetType))
5906 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5908 Ty = FunctionType::get(RetType, ParamTypes, false);
5911 CalleeID.FTy = Ty;
5913 // Look up the callee.
5914 Value *Callee;
5915 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5916 Callee, &PFS, /*IsCall=*/true))
5917 return true;
5919 // Set up the Attribute for the function.
5920 SmallVector<Value *, 8> Args;
5921 SmallVector<AttributeSet, 8> ArgAttrs;
5923 // Loop through FunctionType's arguments and ensure they are specified
5924 // correctly. Also, gather any parameter attributes.
5925 FunctionType::param_iterator I = Ty->param_begin();
5926 FunctionType::param_iterator E = Ty->param_end();
5927 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5928 Type *ExpectedTy = nullptr;
5929 if (I != E) {
5930 ExpectedTy = *I++;
5931 } else if (!Ty->isVarArg()) {
5932 return Error(ArgList[i].Loc, "too many arguments specified");
5935 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5936 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5937 getTypeString(ExpectedTy) + "'");
5938 Args.push_back(ArgList[i].V);
5939 ArgAttrs.push_back(ArgList[i].Attrs);
5942 if (I != E)
5943 return Error(CallLoc, "not enough parameters specified for call");
5945 if (FnAttrs.hasAlignmentAttr())
5946 return Error(CallLoc, "invoke instructions may not have an alignment");
5948 // Finish off the Attribute and check them
5949 AttributeList PAL =
5950 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5951 AttributeSet::get(Context, RetAttrs), ArgAttrs);
5953 InvokeInst *II =
5954 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5955 II->setCallingConv(CC);
5956 II->setAttributes(PAL);
5957 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5958 Inst = II;
5959 return false;
5962 /// ParseResume
5963 /// ::= 'resume' TypeAndValue
5964 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5965 Value *Exn; LocTy ExnLoc;
5966 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5967 return true;
5969 ResumeInst *RI = ResumeInst::Create(Exn);
5970 Inst = RI;
5971 return false;
5974 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5975 PerFunctionState &PFS) {
5976 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5977 return true;
5979 while (Lex.getKind() != lltok::rsquare) {
5980 // If this isn't the first argument, we need a comma.
5981 if (!Args.empty() &&
5982 ParseToken(lltok::comma, "expected ',' in argument list"))
5983 return true;
5985 // Parse the argument.
5986 LocTy ArgLoc;
5987 Type *ArgTy = nullptr;
5988 if (ParseType(ArgTy, ArgLoc))
5989 return true;
5991 Value *V;
5992 if (ArgTy->isMetadataTy()) {
5993 if (ParseMetadataAsValue(V, PFS))
5994 return true;
5995 } else {
5996 if (ParseValue(ArgTy, V, PFS))
5997 return true;
5999 Args.push_back(V);
6002 Lex.Lex(); // Lex the ']'.
6003 return false;
6006 /// ParseCleanupRet
6007 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6008 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6009 Value *CleanupPad = nullptr;
6011 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6012 return true;
6014 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6015 return true;
6017 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6018 return true;
6020 BasicBlock *UnwindBB = nullptr;
6021 if (Lex.getKind() == lltok::kw_to) {
6022 Lex.Lex();
6023 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6024 return true;
6025 } else {
6026 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6027 return true;
6031 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6032 return false;
6035 /// ParseCatchRet
6036 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6037 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6038 Value *CatchPad = nullptr;
6040 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6041 return true;
6043 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6044 return true;
6046 BasicBlock *BB;
6047 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6048 ParseTypeAndBasicBlock(BB, PFS))
6049 return true;
6051 Inst = CatchReturnInst::Create(CatchPad, BB);
6052 return false;
6055 /// ParseCatchSwitch
6056 /// ::= 'catchswitch' within Parent
6057 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6058 Value *ParentPad;
6060 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6061 return true;
6063 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6064 Lex.getKind() != lltok::LocalVarID)
6065 return TokError("expected scope value for catchswitch");
6067 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6068 return true;
6070 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6071 return true;
6073 SmallVector<BasicBlock *, 32> Table;
6074 do {
6075 BasicBlock *DestBB;
6076 if (ParseTypeAndBasicBlock(DestBB, PFS))
6077 return true;
6078 Table.push_back(DestBB);
6079 } while (EatIfPresent(lltok::comma));
6081 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6082 return true;
6084 if (ParseToken(lltok::kw_unwind,
6085 "expected 'unwind' after catchswitch scope"))
6086 return true;
6088 BasicBlock *UnwindBB = nullptr;
6089 if (EatIfPresent(lltok::kw_to)) {
6090 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6091 return true;
6092 } else {
6093 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6094 return true;
6097 auto *CatchSwitch =
6098 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6099 for (BasicBlock *DestBB : Table)
6100 CatchSwitch->addHandler(DestBB);
6101 Inst = CatchSwitch;
6102 return false;
6105 /// ParseCatchPad
6106 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6107 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6108 Value *CatchSwitch = nullptr;
6110 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6111 return true;
6113 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6114 return TokError("expected scope value for catchpad");
6116 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6117 return true;
6119 SmallVector<Value *, 8> Args;
6120 if (ParseExceptionArgs(Args, PFS))
6121 return true;
6123 Inst = CatchPadInst::Create(CatchSwitch, Args);
6124 return false;
6127 /// ParseCleanupPad
6128 /// ::= 'cleanuppad' within Parent ParamList
6129 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6130 Value *ParentPad = nullptr;
6132 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6133 return true;
6135 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6136 Lex.getKind() != lltok::LocalVarID)
6137 return TokError("expected scope value for cleanuppad");
6139 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6140 return true;
6142 SmallVector<Value *, 8> Args;
6143 if (ParseExceptionArgs(Args, PFS))
6144 return true;
6146 Inst = CleanupPadInst::Create(ParentPad, Args);
6147 return false;
6150 //===----------------------------------------------------------------------===//
6151 // Unary Operators.
6152 //===----------------------------------------------------------------------===//
6154 /// ParseUnaryOp
6155 /// ::= UnaryOp TypeAndValue ',' Value
6157 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
6158 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6159 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6160 unsigned Opc, unsigned OperandType) {
6161 LocTy Loc; Value *LHS;
6162 if (ParseTypeAndValue(LHS, Loc, PFS))
6163 return true;
6165 bool Valid;
6166 switch (OperandType) {
6167 default: llvm_unreachable("Unknown operand type!");
6168 case 0: // int or FP.
6169 Valid = LHS->getType()->isIntOrIntVectorTy() ||
6170 LHS->getType()->isFPOrFPVectorTy();
6171 break;
6172 case 1:
6173 Valid = LHS->getType()->isIntOrIntVectorTy();
6174 break;
6175 case 2:
6176 Valid = LHS->getType()->isFPOrFPVectorTy();
6177 break;
6180 if (!Valid)
6181 return Error(Loc, "invalid operand type for instruction");
6183 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6184 return false;
6187 //===----------------------------------------------------------------------===//
6188 // Binary Operators.
6189 //===----------------------------------------------------------------------===//
6191 /// ParseArithmetic
6192 /// ::= ArithmeticOps TypeAndValue ',' Value
6194 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
6195 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6196 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6197 unsigned Opc, unsigned OperandType) {
6198 LocTy Loc; Value *LHS, *RHS;
6199 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6200 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6201 ParseValue(LHS->getType(), RHS, PFS))
6202 return true;
6204 bool Valid;
6205 switch (OperandType) {
6206 default: llvm_unreachable("Unknown operand type!");
6207 case 0: // int or FP.
6208 Valid = LHS->getType()->isIntOrIntVectorTy() ||
6209 LHS->getType()->isFPOrFPVectorTy();
6210 break;
6211 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6212 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6215 if (!Valid)
6216 return Error(Loc, "invalid operand type for instruction");
6218 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6219 return false;
6222 /// ParseLogical
6223 /// ::= ArithmeticOps TypeAndValue ',' Value {
6224 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6225 unsigned Opc) {
6226 LocTy Loc; Value *LHS, *RHS;
6227 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6228 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6229 ParseValue(LHS->getType(), RHS, PFS))
6230 return true;
6232 if (!LHS->getType()->isIntOrIntVectorTy())
6233 return Error(Loc,"instruction requires integer or integer vector operands");
6235 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6236 return false;
6239 /// ParseCompare
6240 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6241 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6242 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6243 unsigned Opc) {
6244 // Parse the integer/fp comparison predicate.
6245 LocTy Loc;
6246 unsigned Pred;
6247 Value *LHS, *RHS;
6248 if (ParseCmpPredicate(Pred, Opc) ||
6249 ParseTypeAndValue(LHS, Loc, PFS) ||
6250 ParseToken(lltok::comma, "expected ',' after compare value") ||
6251 ParseValue(LHS->getType(), RHS, PFS))
6252 return true;
6254 if (Opc == Instruction::FCmp) {
6255 if (!LHS->getType()->isFPOrFPVectorTy())
6256 return Error(Loc, "fcmp requires floating point operands");
6257 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6258 } else {
6259 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6260 if (!LHS->getType()->isIntOrIntVectorTy() &&
6261 !LHS->getType()->isPtrOrPtrVectorTy())
6262 return Error(Loc, "icmp requires integer operands");
6263 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6265 return false;
6268 //===----------------------------------------------------------------------===//
6269 // Other Instructions.
6270 //===----------------------------------------------------------------------===//
6273 /// ParseCast
6274 /// ::= CastOpc TypeAndValue 'to' Type
6275 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6276 unsigned Opc) {
6277 LocTy Loc;
6278 Value *Op;
6279 Type *DestTy = nullptr;
6280 if (ParseTypeAndValue(Op, Loc, PFS) ||
6281 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6282 ParseType(DestTy))
6283 return true;
6285 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6286 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6287 return Error(Loc, "invalid cast opcode for cast from '" +
6288 getTypeString(Op->getType()) + "' to '" +
6289 getTypeString(DestTy) + "'");
6291 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6292 return false;
6295 /// ParseSelect
6296 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6297 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6298 LocTy Loc;
6299 Value *Op0, *Op1, *Op2;
6300 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6301 ParseToken(lltok::comma, "expected ',' after select condition") ||
6302 ParseTypeAndValue(Op1, PFS) ||
6303 ParseToken(lltok::comma, "expected ',' after select value") ||
6304 ParseTypeAndValue(Op2, PFS))
6305 return true;
6307 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6308 return Error(Loc, Reason);
6310 Inst = SelectInst::Create(Op0, Op1, Op2);
6311 return false;
6314 /// ParseVA_Arg
6315 /// ::= 'va_arg' TypeAndValue ',' Type
6316 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6317 Value *Op;
6318 Type *EltTy = nullptr;
6319 LocTy TypeLoc;
6320 if (ParseTypeAndValue(Op, PFS) ||
6321 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6322 ParseType(EltTy, TypeLoc))
6323 return true;
6325 if (!EltTy->isFirstClassType())
6326 return Error(TypeLoc, "va_arg requires operand with first class type");
6328 Inst = new VAArgInst(Op, EltTy);
6329 return false;
6332 /// ParseExtractElement
6333 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6334 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6335 LocTy Loc;
6336 Value *Op0, *Op1;
6337 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6338 ParseToken(lltok::comma, "expected ',' after extract value") ||
6339 ParseTypeAndValue(Op1, PFS))
6340 return true;
6342 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6343 return Error(Loc, "invalid extractelement operands");
6345 Inst = ExtractElementInst::Create(Op0, Op1);
6346 return false;
6349 /// ParseInsertElement
6350 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6351 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6352 LocTy Loc;
6353 Value *Op0, *Op1, *Op2;
6354 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6355 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6356 ParseTypeAndValue(Op1, PFS) ||
6357 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6358 ParseTypeAndValue(Op2, PFS))
6359 return true;
6361 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6362 return Error(Loc, "invalid insertelement operands");
6364 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6365 return false;
6368 /// ParseShuffleVector
6369 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6370 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6371 LocTy Loc;
6372 Value *Op0, *Op1, *Op2;
6373 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6374 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6375 ParseTypeAndValue(Op1, PFS) ||
6376 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6377 ParseTypeAndValue(Op2, PFS))
6378 return true;
6380 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6381 return Error(Loc, "invalid shufflevector operands");
6383 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6384 return false;
6387 /// ParsePHI
6388 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6389 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6390 Type *Ty = nullptr; LocTy TypeLoc;
6391 Value *Op0, *Op1;
6393 if (ParseType(Ty, TypeLoc) ||
6394 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6395 ParseValue(Ty, Op0, PFS) ||
6396 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6397 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6398 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6399 return true;
6401 bool AteExtraComma = false;
6402 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6404 while (true) {
6405 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6407 if (!EatIfPresent(lltok::comma))
6408 break;
6410 if (Lex.getKind() == lltok::MetadataVar) {
6411 AteExtraComma = true;
6412 break;
6415 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6416 ParseValue(Ty, Op0, PFS) ||
6417 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6418 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6419 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6420 return true;
6423 if (!Ty->isFirstClassType())
6424 return Error(TypeLoc, "phi node must have first class type");
6426 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6427 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6428 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6429 Inst = PN;
6430 return AteExtraComma ? InstExtraComma : InstNormal;
6433 /// ParseLandingPad
6434 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6435 /// Clause
6436 /// ::= 'catch' TypeAndValue
6437 /// ::= 'filter'
6438 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6439 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6440 Type *Ty = nullptr; LocTy TyLoc;
6442 if (ParseType(Ty, TyLoc))
6443 return true;
6445 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6446 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6448 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6449 LandingPadInst::ClauseType CT;
6450 if (EatIfPresent(lltok::kw_catch))
6451 CT = LandingPadInst::Catch;
6452 else if (EatIfPresent(lltok::kw_filter))
6453 CT = LandingPadInst::Filter;
6454 else
6455 return TokError("expected 'catch' or 'filter' clause type");
6457 Value *V;
6458 LocTy VLoc;
6459 if (ParseTypeAndValue(V, VLoc, PFS))
6460 return true;
6462 // A 'catch' type expects a non-array constant. A filter clause expects an
6463 // array constant.
6464 if (CT == LandingPadInst::Catch) {
6465 if (isa<ArrayType>(V->getType()))
6466 Error(VLoc, "'catch' clause has an invalid type");
6467 } else {
6468 if (!isa<ArrayType>(V->getType()))
6469 Error(VLoc, "'filter' clause has an invalid type");
6472 Constant *CV = dyn_cast<Constant>(V);
6473 if (!CV)
6474 return Error(VLoc, "clause argument must be a constant");
6475 LP->addClause(CV);
6478 Inst = LP.release();
6479 return false;
6482 /// ParseCall
6483 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6484 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6485 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6486 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6487 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6488 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6489 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6490 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6491 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6492 CallInst::TailCallKind TCK) {
6493 AttrBuilder RetAttrs, FnAttrs;
6494 std::vector<unsigned> FwdRefAttrGrps;
6495 LocTy BuiltinLoc;
6496 unsigned CallAddrSpace;
6497 unsigned CC;
6498 Type *RetType = nullptr;
6499 LocTy RetTypeLoc;
6500 ValID CalleeID;
6501 SmallVector<ParamInfo, 16> ArgList;
6502 SmallVector<OperandBundleDef, 2> BundleList;
6503 LocTy CallLoc = Lex.getLoc();
6505 if (TCK != CallInst::TCK_None &&
6506 ParseToken(lltok::kw_call,
6507 "expected 'tail call', 'musttail call', or 'notail call'"))
6508 return true;
6510 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6512 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6513 ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6514 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6515 ParseValID(CalleeID) ||
6516 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6517 PFS.getFunction().isVarArg()) ||
6518 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6519 ParseOptionalOperandBundles(BundleList, PFS))
6520 return true;
6522 if (FMF.any() && !RetType->isFPOrFPVectorTy())
6523 return Error(CallLoc, "fast-math-flags specified for call without "
6524 "floating-point scalar or vector return type");
6526 // If RetType is a non-function pointer type, then this is the short syntax
6527 // for the call, which means that RetType is just the return type. Infer the
6528 // rest of the function argument types from the arguments that are present.
6529 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6530 if (!Ty) {
6531 // Pull out the types of all of the arguments...
6532 std::vector<Type*> ParamTypes;
6533 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6534 ParamTypes.push_back(ArgList[i].V->getType());
6536 if (!FunctionType::isValidReturnType(RetType))
6537 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6539 Ty = FunctionType::get(RetType, ParamTypes, false);
6542 CalleeID.FTy = Ty;
6544 // Look up the callee.
6545 Value *Callee;
6546 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6547 &PFS, /*IsCall=*/true))
6548 return true;
6550 // Set up the Attribute for the function.
6551 SmallVector<AttributeSet, 8> Attrs;
6553 SmallVector<Value*, 8> Args;
6555 // Loop through FunctionType's arguments and ensure they are specified
6556 // correctly. Also, gather any parameter attributes.
6557 FunctionType::param_iterator I = Ty->param_begin();
6558 FunctionType::param_iterator E = Ty->param_end();
6559 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6560 Type *ExpectedTy = nullptr;
6561 if (I != E) {
6562 ExpectedTy = *I++;
6563 } else if (!Ty->isVarArg()) {
6564 return Error(ArgList[i].Loc, "too many arguments specified");
6567 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6568 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6569 getTypeString(ExpectedTy) + "'");
6570 Args.push_back(ArgList[i].V);
6571 Attrs.push_back(ArgList[i].Attrs);
6574 if (I != E)
6575 return Error(CallLoc, "not enough parameters specified for call");
6577 if (FnAttrs.hasAlignmentAttr())
6578 return Error(CallLoc, "call instructions may not have an alignment");
6580 // Finish off the Attribute and check them
6581 AttributeList PAL =
6582 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6583 AttributeSet::get(Context, RetAttrs), Attrs);
6585 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6586 CI->setTailCallKind(TCK);
6587 CI->setCallingConv(CC);
6588 if (FMF.any())
6589 CI->setFastMathFlags(FMF);
6590 CI->setAttributes(PAL);
6591 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6592 Inst = CI;
6593 return false;
6596 //===----------------------------------------------------------------------===//
6597 // Memory Instructions.
6598 //===----------------------------------------------------------------------===//
6600 /// ParseAlloc
6601 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6602 /// (',' 'align' i32)? (',', 'addrspace(n))?
6603 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6604 Value *Size = nullptr;
6605 LocTy SizeLoc, TyLoc, ASLoc;
6606 unsigned Alignment = 0;
6607 unsigned AddrSpace = 0;
6608 Type *Ty = nullptr;
6610 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6611 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6613 if (ParseType(Ty, TyLoc)) return true;
6615 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6616 return Error(TyLoc, "invalid type for alloca");
6618 bool AteExtraComma = false;
6619 if (EatIfPresent(lltok::comma)) {
6620 if (Lex.getKind() == lltok::kw_align) {
6621 if (ParseOptionalAlignment(Alignment))
6622 return true;
6623 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6624 return true;
6625 } else if (Lex.getKind() == lltok::kw_addrspace) {
6626 ASLoc = Lex.getLoc();
6627 if (ParseOptionalAddrSpace(AddrSpace))
6628 return true;
6629 } else if (Lex.getKind() == lltok::MetadataVar) {
6630 AteExtraComma = true;
6631 } else {
6632 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6633 return true;
6634 if (EatIfPresent(lltok::comma)) {
6635 if (Lex.getKind() == lltok::kw_align) {
6636 if (ParseOptionalAlignment(Alignment))
6637 return true;
6638 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6639 return true;
6640 } else if (Lex.getKind() == lltok::kw_addrspace) {
6641 ASLoc = Lex.getLoc();
6642 if (ParseOptionalAddrSpace(AddrSpace))
6643 return true;
6644 } else if (Lex.getKind() == lltok::MetadataVar) {
6645 AteExtraComma = true;
6651 if (Size && !Size->getType()->isIntegerTy())
6652 return Error(SizeLoc, "element count must have integer type");
6654 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6655 AI->setUsedWithInAlloca(IsInAlloca);
6656 AI->setSwiftError(IsSwiftError);
6657 Inst = AI;
6658 return AteExtraComma ? InstExtraComma : InstNormal;
6661 /// ParseLoad
6662 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6663 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6664 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6665 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6666 Value *Val; LocTy Loc;
6667 unsigned Alignment = 0;
6668 bool AteExtraComma = false;
6669 bool isAtomic = false;
6670 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6671 SyncScope::ID SSID = SyncScope::System;
6673 if (Lex.getKind() == lltok::kw_atomic) {
6674 isAtomic = true;
6675 Lex.Lex();
6678 bool isVolatile = false;
6679 if (Lex.getKind() == lltok::kw_volatile) {
6680 isVolatile = true;
6681 Lex.Lex();
6684 Type *Ty;
6685 LocTy ExplicitTypeLoc = Lex.getLoc();
6686 if (ParseType(Ty) ||
6687 ParseToken(lltok::comma, "expected comma after load's type") ||
6688 ParseTypeAndValue(Val, Loc, PFS) ||
6689 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6690 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6691 return true;
6693 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6694 return Error(Loc, "load operand must be a pointer to a first class type");
6695 if (isAtomic && !Alignment)
6696 return Error(Loc, "atomic load must have explicit non-zero alignment");
6697 if (Ordering == AtomicOrdering::Release ||
6698 Ordering == AtomicOrdering::AcquireRelease)
6699 return Error(Loc, "atomic load cannot use Release ordering");
6701 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6702 return Error(ExplicitTypeLoc,
6703 "explicit pointee type doesn't match operand's pointee type");
6705 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6706 return AteExtraComma ? InstExtraComma : InstNormal;
6709 /// ParseStore
6711 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6712 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6713 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6714 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6715 Value *Val, *Ptr; LocTy Loc, PtrLoc;
6716 unsigned Alignment = 0;
6717 bool AteExtraComma = false;
6718 bool isAtomic = false;
6719 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6720 SyncScope::ID SSID = SyncScope::System;
6722 if (Lex.getKind() == lltok::kw_atomic) {
6723 isAtomic = true;
6724 Lex.Lex();
6727 bool isVolatile = false;
6728 if (Lex.getKind() == lltok::kw_volatile) {
6729 isVolatile = true;
6730 Lex.Lex();
6733 if (ParseTypeAndValue(Val, Loc, PFS) ||
6734 ParseToken(lltok::comma, "expected ',' after store operand") ||
6735 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6736 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6737 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6738 return true;
6740 if (!Ptr->getType()->isPointerTy())
6741 return Error(PtrLoc, "store operand must be a pointer");
6742 if (!Val->getType()->isFirstClassType())
6743 return Error(Loc, "store operand must be a first class value");
6744 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6745 return Error(Loc, "stored value and pointer type do not match");
6746 if (isAtomic && !Alignment)
6747 return Error(Loc, "atomic store must have explicit non-zero alignment");
6748 if (Ordering == AtomicOrdering::Acquire ||
6749 Ordering == AtomicOrdering::AcquireRelease)
6750 return Error(Loc, "atomic store cannot use Acquire ordering");
6752 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6753 return AteExtraComma ? InstExtraComma : InstNormal;
6756 /// ParseCmpXchg
6757 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6758 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6759 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6760 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6761 bool AteExtraComma = false;
6762 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6763 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6764 SyncScope::ID SSID = SyncScope::System;
6765 bool isVolatile = false;
6766 bool isWeak = false;
6768 if (EatIfPresent(lltok::kw_weak))
6769 isWeak = true;
6771 if (EatIfPresent(lltok::kw_volatile))
6772 isVolatile = true;
6774 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6775 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6776 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6777 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6778 ParseTypeAndValue(New, NewLoc, PFS) ||
6779 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6780 ParseOrdering(FailureOrdering))
6781 return true;
6783 if (SuccessOrdering == AtomicOrdering::Unordered ||
6784 FailureOrdering == AtomicOrdering::Unordered)
6785 return TokError("cmpxchg cannot be unordered");
6786 if (isStrongerThan(FailureOrdering, SuccessOrdering))
6787 return TokError("cmpxchg failure argument shall be no stronger than the "
6788 "success argument");
6789 if (FailureOrdering == AtomicOrdering::Release ||
6790 FailureOrdering == AtomicOrdering::AcquireRelease)
6791 return TokError(
6792 "cmpxchg failure ordering cannot include release semantics");
6793 if (!Ptr->getType()->isPointerTy())
6794 return Error(PtrLoc, "cmpxchg operand must be a pointer");
6795 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6796 return Error(CmpLoc, "compare value and pointer type do not match");
6797 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6798 return Error(NewLoc, "new value and pointer type do not match");
6799 if (!New->getType()->isFirstClassType())
6800 return Error(NewLoc, "cmpxchg operand must be a first class value");
6801 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6802 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6803 CXI->setVolatile(isVolatile);
6804 CXI->setWeak(isWeak);
6805 Inst = CXI;
6806 return AteExtraComma ? InstExtraComma : InstNormal;
6809 /// ParseAtomicRMW
6810 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6811 /// 'singlethread'? AtomicOrdering
6812 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6813 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6814 bool AteExtraComma = false;
6815 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6816 SyncScope::ID SSID = SyncScope::System;
6817 bool isVolatile = false;
6818 bool IsFP = false;
6819 AtomicRMWInst::BinOp Operation;
6821 if (EatIfPresent(lltok::kw_volatile))
6822 isVolatile = true;
6824 switch (Lex.getKind()) {
6825 default: return TokError("expected binary operation in atomicrmw");
6826 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6827 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6828 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6829 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6830 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6831 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6832 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6833 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6834 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6835 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6836 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6837 case lltok::kw_fadd:
6838 Operation = AtomicRMWInst::FAdd;
6839 IsFP = true;
6840 break;
6841 case lltok::kw_fsub:
6842 Operation = AtomicRMWInst::FSub;
6843 IsFP = true;
6844 break;
6846 Lex.Lex(); // Eat the operation.
6848 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6849 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6850 ParseTypeAndValue(Val, ValLoc, PFS) ||
6851 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6852 return true;
6854 if (Ordering == AtomicOrdering::Unordered)
6855 return TokError("atomicrmw cannot be unordered");
6856 if (!Ptr->getType()->isPointerTy())
6857 return Error(PtrLoc, "atomicrmw operand must be a pointer");
6858 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6859 return Error(ValLoc, "atomicrmw value and pointer type do not match");
6861 if (Operation == AtomicRMWInst::Xchg) {
6862 if (!Val->getType()->isIntegerTy() &&
6863 !Val->getType()->isFloatingPointTy()) {
6864 return Error(ValLoc, "atomicrmw " +
6865 AtomicRMWInst::getOperationName(Operation) +
6866 " operand must be an integer or floating point type");
6868 } else if (IsFP) {
6869 if (!Val->getType()->isFloatingPointTy()) {
6870 return Error(ValLoc, "atomicrmw " +
6871 AtomicRMWInst::getOperationName(Operation) +
6872 " operand must be a floating point type");
6874 } else {
6875 if (!Val->getType()->isIntegerTy()) {
6876 return Error(ValLoc, "atomicrmw " +
6877 AtomicRMWInst::getOperationName(Operation) +
6878 " operand must be an integer");
6882 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6883 if (Size < 8 || (Size & (Size - 1)))
6884 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6885 " integer");
6887 AtomicRMWInst *RMWI =
6888 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6889 RMWI->setVolatile(isVolatile);
6890 Inst = RMWI;
6891 return AteExtraComma ? InstExtraComma : InstNormal;
6894 /// ParseFence
6895 /// ::= 'fence' 'singlethread'? AtomicOrdering
6896 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6897 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6898 SyncScope::ID SSID = SyncScope::System;
6899 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6900 return true;
6902 if (Ordering == AtomicOrdering::Unordered)
6903 return TokError("fence cannot be unordered");
6904 if (Ordering == AtomicOrdering::Monotonic)
6905 return TokError("fence cannot be monotonic");
6907 Inst = new FenceInst(Context, Ordering, SSID);
6908 return InstNormal;
6911 /// ParseGetElementPtr
6912 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6913 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6914 Value *Ptr = nullptr;
6915 Value *Val = nullptr;
6916 LocTy Loc, EltLoc;
6918 bool InBounds = EatIfPresent(lltok::kw_inbounds);
6920 Type *Ty = nullptr;
6921 LocTy ExplicitTypeLoc = Lex.getLoc();
6922 if (ParseType(Ty) ||
6923 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6924 ParseTypeAndValue(Ptr, Loc, PFS))
6925 return true;
6927 Type *BaseType = Ptr->getType();
6928 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6929 if (!BasePointerType)
6930 return Error(Loc, "base of getelementptr must be a pointer");
6932 if (Ty != BasePointerType->getElementType())
6933 return Error(ExplicitTypeLoc,
6934 "explicit pointee type doesn't match operand's pointee type");
6936 SmallVector<Value*, 16> Indices;
6937 bool AteExtraComma = false;
6938 // GEP returns a vector of pointers if at least one of parameters is a vector.
6939 // All vector parameters should have the same vector width.
6940 unsigned GEPWidth = BaseType->isVectorTy() ?
6941 BaseType->getVectorNumElements() : 0;
6943 while (EatIfPresent(lltok::comma)) {
6944 if (Lex.getKind() == lltok::MetadataVar) {
6945 AteExtraComma = true;
6946 break;
6948 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6949 if (!Val->getType()->isIntOrIntVectorTy())
6950 return Error(EltLoc, "getelementptr index must be an integer");
6952 if (Val->getType()->isVectorTy()) {
6953 unsigned ValNumEl = Val->getType()->getVectorNumElements();
6954 if (GEPWidth && GEPWidth != ValNumEl)
6955 return Error(EltLoc,
6956 "getelementptr vector index has a wrong number of elements");
6957 GEPWidth = ValNumEl;
6959 Indices.push_back(Val);
6962 SmallPtrSet<Type*, 4> Visited;
6963 if (!Indices.empty() && !Ty->isSized(&Visited))
6964 return Error(Loc, "base element of getelementptr must be sized");
6966 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6967 return Error(Loc, "invalid getelementptr indices");
6968 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6969 if (InBounds)
6970 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6971 return AteExtraComma ? InstExtraComma : InstNormal;
6974 /// ParseExtractValue
6975 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
6976 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6977 Value *Val; LocTy Loc;
6978 SmallVector<unsigned, 4> Indices;
6979 bool AteExtraComma;
6980 if (ParseTypeAndValue(Val, Loc, PFS) ||
6981 ParseIndexList(Indices, AteExtraComma))
6982 return true;
6984 if (!Val->getType()->isAggregateType())
6985 return Error(Loc, "extractvalue operand must be aggregate type");
6987 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6988 return Error(Loc, "invalid indices for extractvalue");
6989 Inst = ExtractValueInst::Create(Val, Indices);
6990 return AteExtraComma ? InstExtraComma : InstNormal;
6993 /// ParseInsertValue
6994 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6995 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6996 Value *Val0, *Val1; LocTy Loc0, Loc1;
6997 SmallVector<unsigned, 4> Indices;
6998 bool AteExtraComma;
6999 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7000 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7001 ParseTypeAndValue(Val1, Loc1, PFS) ||
7002 ParseIndexList(Indices, AteExtraComma))
7003 return true;
7005 if (!Val0->getType()->isAggregateType())
7006 return Error(Loc0, "insertvalue operand must be aggregate type");
7008 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7009 if (!IndexedType)
7010 return Error(Loc0, "invalid indices for insertvalue");
7011 if (IndexedType != Val1->getType())
7012 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7013 getTypeString(Val1->getType()) + "' instead of '" +
7014 getTypeString(IndexedType) + "'");
7015 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7016 return AteExtraComma ? InstExtraComma : InstNormal;
7019 //===----------------------------------------------------------------------===//
7020 // Embedded metadata.
7021 //===----------------------------------------------------------------------===//
7023 /// ParseMDNodeVector
7024 /// ::= { Element (',' Element)* }
7025 /// Element
7026 /// ::= 'null' | TypeAndValue
7027 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7028 if (ParseToken(lltok::lbrace, "expected '{' here"))
7029 return true;
7031 // Check for an empty list.
7032 if (EatIfPresent(lltok::rbrace))
7033 return false;
7035 do {
7036 // Null is a special case since it is typeless.
7037 if (EatIfPresent(lltok::kw_null)) {
7038 Elts.push_back(nullptr);
7039 continue;
7042 Metadata *MD;
7043 if (ParseMetadata(MD, nullptr))
7044 return true;
7045 Elts.push_back(MD);
7046 } while (EatIfPresent(lltok::comma));
7048 return ParseToken(lltok::rbrace, "expected end of metadata node");
7051 //===----------------------------------------------------------------------===//
7052 // Use-list order directives.
7053 //===----------------------------------------------------------------------===//
7054 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7055 SMLoc Loc) {
7056 if (V->use_empty())
7057 return Error(Loc, "value has no uses");
7059 unsigned NumUses = 0;
7060 SmallDenseMap<const Use *, unsigned, 16> Order;
7061 for (const Use &U : V->uses()) {
7062 if (++NumUses > Indexes.size())
7063 break;
7064 Order[&U] = Indexes[NumUses - 1];
7066 if (NumUses < 2)
7067 return Error(Loc, "value only has one use");
7068 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7069 return Error(Loc,
7070 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7072 V->sortUseList([&](const Use &L, const Use &R) {
7073 return Order.lookup(&L) < Order.lookup(&R);
7075 return false;
7078 /// ParseUseListOrderIndexes
7079 /// ::= '{' uint32 (',' uint32)+ '}'
7080 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7081 SMLoc Loc = Lex.getLoc();
7082 if (ParseToken(lltok::lbrace, "expected '{' here"))
7083 return true;
7084 if (Lex.getKind() == lltok::rbrace)
7085 return Lex.Error("expected non-empty list of uselistorder indexes");
7087 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7088 // indexes should be distinct numbers in the range [0, size-1], and should
7089 // not be in order.
7090 unsigned Offset = 0;
7091 unsigned Max = 0;
7092 bool IsOrdered = true;
7093 assert(Indexes.empty() && "Expected empty order vector");
7094 do {
7095 unsigned Index;
7096 if (ParseUInt32(Index))
7097 return true;
7099 // Update consistency checks.
7100 Offset += Index - Indexes.size();
7101 Max = std::max(Max, Index);
7102 IsOrdered &= Index == Indexes.size();
7104 Indexes.push_back(Index);
7105 } while (EatIfPresent(lltok::comma));
7107 if (ParseToken(lltok::rbrace, "expected '}' here"))
7108 return true;
7110 if (Indexes.size() < 2)
7111 return Error(Loc, "expected >= 2 uselistorder indexes");
7112 if (Offset != 0 || Max >= Indexes.size())
7113 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7114 if (IsOrdered)
7115 return Error(Loc, "expected uselistorder indexes to change the order");
7117 return false;
7120 /// ParseUseListOrder
7121 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7122 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7123 SMLoc Loc = Lex.getLoc();
7124 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7125 return true;
7127 Value *V;
7128 SmallVector<unsigned, 16> Indexes;
7129 if (ParseTypeAndValue(V, PFS) ||
7130 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7131 ParseUseListOrderIndexes(Indexes))
7132 return true;
7134 return sortUseListOrder(V, Indexes, Loc);
7137 /// ParseUseListOrderBB
7138 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7139 bool LLParser::ParseUseListOrderBB() {
7140 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7141 SMLoc Loc = Lex.getLoc();
7142 Lex.Lex();
7144 ValID Fn, Label;
7145 SmallVector<unsigned, 16> Indexes;
7146 if (ParseValID(Fn) ||
7147 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7148 ParseValID(Label) ||
7149 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7150 ParseUseListOrderIndexes(Indexes))
7151 return true;
7153 // Check the function.
7154 GlobalValue *GV;
7155 if (Fn.Kind == ValID::t_GlobalName)
7156 GV = M->getNamedValue(Fn.StrVal);
7157 else if (Fn.Kind == ValID::t_GlobalID)
7158 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7159 else
7160 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7161 if (!GV)
7162 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7163 auto *F = dyn_cast<Function>(GV);
7164 if (!F)
7165 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7166 if (F->isDeclaration())
7167 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7169 // Check the basic block.
7170 if (Label.Kind == ValID::t_LocalID)
7171 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7172 if (Label.Kind != ValID::t_LocalName)
7173 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7174 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7175 if (!V)
7176 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7177 if (!isa<BasicBlock>(V))
7178 return Error(Label.Loc, "expected basic block in uselistorder_bb");
7180 return sortUseListOrder(V, Indexes, Loc);
7183 /// ModuleEntry
7184 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7185 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7186 bool LLParser::ParseModuleEntry(unsigned ID) {
7187 assert(Lex.getKind() == lltok::kw_module);
7188 Lex.Lex();
7190 std::string Path;
7191 if (ParseToken(lltok::colon, "expected ':' here") ||
7192 ParseToken(lltok::lparen, "expected '(' here") ||
7193 ParseToken(lltok::kw_path, "expected 'path' here") ||
7194 ParseToken(lltok::colon, "expected ':' here") ||
7195 ParseStringConstant(Path) ||
7196 ParseToken(lltok::comma, "expected ',' here") ||
7197 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7198 ParseToken(lltok::colon, "expected ':' here") ||
7199 ParseToken(lltok::lparen, "expected '(' here"))
7200 return true;
7202 ModuleHash Hash;
7203 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7204 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7205 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7206 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7207 ParseUInt32(Hash[4]))
7208 return true;
7210 if (ParseToken(lltok::rparen, "expected ')' here") ||
7211 ParseToken(lltok::rparen, "expected ')' here"))
7212 return true;
7214 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7215 ModuleIdMap[ID] = ModuleEntry->first();
7217 return false;
7220 /// TypeIdEntry
7221 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7222 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7223 assert(Lex.getKind() == lltok::kw_typeid);
7224 Lex.Lex();
7226 std::string Name;
7227 if (ParseToken(lltok::colon, "expected ':' here") ||
7228 ParseToken(lltok::lparen, "expected '(' here") ||
7229 ParseToken(lltok::kw_name, "expected 'name' here") ||
7230 ParseToken(lltok::colon, "expected ':' here") ||
7231 ParseStringConstant(Name))
7232 return true;
7234 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7235 if (ParseToken(lltok::comma, "expected ',' here") ||
7236 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7237 return true;
7239 // Check if this ID was forward referenced, and if so, update the
7240 // corresponding GUIDs.
7241 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7242 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7243 for (auto TIDRef : FwdRefTIDs->second) {
7244 assert(!*TIDRef.first &&
7245 "Forward referenced type id GUID expected to be 0");
7246 *TIDRef.first = GlobalValue::getGUID(Name);
7248 ForwardRefTypeIds.erase(FwdRefTIDs);
7251 return false;
7254 /// TypeIdSummary
7255 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7256 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7257 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7258 ParseToken(lltok::colon, "expected ':' here") ||
7259 ParseToken(lltok::lparen, "expected '(' here") ||
7260 ParseTypeTestResolution(TIS.TTRes))
7261 return true;
7263 if (EatIfPresent(lltok::comma)) {
7264 // Expect optional wpdResolutions field
7265 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7266 return true;
7269 if (ParseToken(lltok::rparen, "expected ')' here"))
7270 return true;
7272 return false;
7275 /// TypeTestResolution
7276 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7277 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7278 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7279 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7280 /// [',' 'inlinesBits' ':' UInt64]? ')'
7281 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7282 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7283 ParseToken(lltok::colon, "expected ':' here") ||
7284 ParseToken(lltok::lparen, "expected '(' here") ||
7285 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7286 ParseToken(lltok::colon, "expected ':' here"))
7287 return true;
7289 switch (Lex.getKind()) {
7290 case lltok::kw_unsat:
7291 TTRes.TheKind = TypeTestResolution::Unsat;
7292 break;
7293 case lltok::kw_byteArray:
7294 TTRes.TheKind = TypeTestResolution::ByteArray;
7295 break;
7296 case lltok::kw_inline:
7297 TTRes.TheKind = TypeTestResolution::Inline;
7298 break;
7299 case lltok::kw_single:
7300 TTRes.TheKind = TypeTestResolution::Single;
7301 break;
7302 case lltok::kw_allOnes:
7303 TTRes.TheKind = TypeTestResolution::AllOnes;
7304 break;
7305 default:
7306 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7308 Lex.Lex();
7310 if (ParseToken(lltok::comma, "expected ',' here") ||
7311 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7312 ParseToken(lltok::colon, "expected ':' here") ||
7313 ParseUInt32(TTRes.SizeM1BitWidth))
7314 return true;
7316 // Parse optional fields
7317 while (EatIfPresent(lltok::comma)) {
7318 switch (Lex.getKind()) {
7319 case lltok::kw_alignLog2:
7320 Lex.Lex();
7321 if (ParseToken(lltok::colon, "expected ':'") ||
7322 ParseUInt64(TTRes.AlignLog2))
7323 return true;
7324 break;
7325 case lltok::kw_sizeM1:
7326 Lex.Lex();
7327 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7328 return true;
7329 break;
7330 case lltok::kw_bitMask: {
7331 unsigned Val;
7332 Lex.Lex();
7333 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7334 return true;
7335 assert(Val <= 0xff);
7336 TTRes.BitMask = (uint8_t)Val;
7337 break;
7339 case lltok::kw_inlineBits:
7340 Lex.Lex();
7341 if (ParseToken(lltok::colon, "expected ':'") ||
7342 ParseUInt64(TTRes.InlineBits))
7343 return true;
7344 break;
7345 default:
7346 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7350 if (ParseToken(lltok::rparen, "expected ')' here"))
7351 return true;
7353 return false;
7356 /// OptionalWpdResolutions
7357 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7358 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7359 bool LLParser::ParseOptionalWpdResolutions(
7360 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7361 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7362 ParseToken(lltok::colon, "expected ':' here") ||
7363 ParseToken(lltok::lparen, "expected '(' here"))
7364 return true;
7366 do {
7367 uint64_t Offset;
7368 WholeProgramDevirtResolution WPDRes;
7369 if (ParseToken(lltok::lparen, "expected '(' here") ||
7370 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7371 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7372 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7373 ParseToken(lltok::rparen, "expected ')' here"))
7374 return true;
7375 WPDResMap[Offset] = WPDRes;
7376 } while (EatIfPresent(lltok::comma));
7378 if (ParseToken(lltok::rparen, "expected ')' here"))
7379 return true;
7381 return false;
7384 /// WpdRes
7385 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7386 /// [',' OptionalResByArg]? ')'
7387 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7388 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7389 /// [',' OptionalResByArg]? ')'
7390 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7391 /// [',' OptionalResByArg]? ')'
7392 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7393 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7394 ParseToken(lltok::colon, "expected ':' here") ||
7395 ParseToken(lltok::lparen, "expected '(' here") ||
7396 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7397 ParseToken(lltok::colon, "expected ':' here"))
7398 return true;
7400 switch (Lex.getKind()) {
7401 case lltok::kw_indir:
7402 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7403 break;
7404 case lltok::kw_singleImpl:
7405 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7406 break;
7407 case lltok::kw_branchFunnel:
7408 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7409 break;
7410 default:
7411 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7413 Lex.Lex();
7415 // Parse optional fields
7416 while (EatIfPresent(lltok::comma)) {
7417 switch (Lex.getKind()) {
7418 case lltok::kw_singleImplName:
7419 Lex.Lex();
7420 if (ParseToken(lltok::colon, "expected ':' here") ||
7421 ParseStringConstant(WPDRes.SingleImplName))
7422 return true;
7423 break;
7424 case lltok::kw_resByArg:
7425 if (ParseOptionalResByArg(WPDRes.ResByArg))
7426 return true;
7427 break;
7428 default:
7429 return Error(Lex.getLoc(),
7430 "expected optional WholeProgramDevirtResolution field");
7434 if (ParseToken(lltok::rparen, "expected ')' here"))
7435 return true;
7437 return false;
7440 /// OptionalResByArg
7441 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7442 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7443 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7444 /// 'virtualConstProp' )
7445 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7446 /// [',' 'bit' ':' UInt32]? ')'
7447 bool LLParser::ParseOptionalResByArg(
7448 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7449 &ResByArg) {
7450 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7451 ParseToken(lltok::colon, "expected ':' here") ||
7452 ParseToken(lltok::lparen, "expected '(' here"))
7453 return true;
7455 do {
7456 std::vector<uint64_t> Args;
7457 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7458 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7459 ParseToken(lltok::colon, "expected ':' here") ||
7460 ParseToken(lltok::lparen, "expected '(' here") ||
7461 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7462 ParseToken(lltok::colon, "expected ':' here"))
7463 return true;
7465 WholeProgramDevirtResolution::ByArg ByArg;
7466 switch (Lex.getKind()) {
7467 case lltok::kw_indir:
7468 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7469 break;
7470 case lltok::kw_uniformRetVal:
7471 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7472 break;
7473 case lltok::kw_uniqueRetVal:
7474 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7475 break;
7476 case lltok::kw_virtualConstProp:
7477 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7478 break;
7479 default:
7480 return Error(Lex.getLoc(),
7481 "unexpected WholeProgramDevirtResolution::ByArg kind");
7483 Lex.Lex();
7485 // Parse optional fields
7486 while (EatIfPresent(lltok::comma)) {
7487 switch (Lex.getKind()) {
7488 case lltok::kw_info:
7489 Lex.Lex();
7490 if (ParseToken(lltok::colon, "expected ':' here") ||
7491 ParseUInt64(ByArg.Info))
7492 return true;
7493 break;
7494 case lltok::kw_byte:
7495 Lex.Lex();
7496 if (ParseToken(lltok::colon, "expected ':' here") ||
7497 ParseUInt32(ByArg.Byte))
7498 return true;
7499 break;
7500 case lltok::kw_bit:
7501 Lex.Lex();
7502 if (ParseToken(lltok::colon, "expected ':' here") ||
7503 ParseUInt32(ByArg.Bit))
7504 return true;
7505 break;
7506 default:
7507 return Error(Lex.getLoc(),
7508 "expected optional whole program devirt field");
7512 if (ParseToken(lltok::rparen, "expected ')' here"))
7513 return true;
7515 ResByArg[Args] = ByArg;
7516 } while (EatIfPresent(lltok::comma));
7518 if (ParseToken(lltok::rparen, "expected ')' here"))
7519 return true;
7521 return false;
7524 /// OptionalResByArg
7525 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7526 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7527 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7528 ParseToken(lltok::colon, "expected ':' here") ||
7529 ParseToken(lltok::lparen, "expected '(' here"))
7530 return true;
7532 do {
7533 uint64_t Val;
7534 if (ParseUInt64(Val))
7535 return true;
7536 Args.push_back(Val);
7537 } while (EatIfPresent(lltok::comma));
7539 if (ParseToken(lltok::rparen, "expected ')' here"))
7540 return true;
7542 return false;
7545 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7547 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7548 bool ReadOnly = Fwd->isReadOnly();
7549 *Fwd = Resolved;
7550 if (ReadOnly)
7551 Fwd->setReadOnly();
7554 /// Stores the given Name/GUID and associated summary into the Index.
7555 /// Also updates any forward references to the associated entry ID.
7556 void LLParser::AddGlobalValueToIndex(
7557 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7558 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7559 // First create the ValueInfo utilizing the Name or GUID.
7560 ValueInfo VI;
7561 if (GUID != 0) {
7562 assert(Name.empty());
7563 VI = Index->getOrInsertValueInfo(GUID);
7564 } else {
7565 assert(!Name.empty());
7566 if (M) {
7567 auto *GV = M->getNamedValue(Name);
7568 assert(GV);
7569 VI = Index->getOrInsertValueInfo(GV);
7570 } else {
7571 assert(
7572 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7573 "Need a source_filename to compute GUID for local");
7574 GUID = GlobalValue::getGUID(
7575 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7576 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7580 // Add the summary if one was provided.
7581 if (Summary)
7582 Index->addGlobalValueSummary(VI, std::move(Summary));
7584 // Resolve forward references from calls/refs
7585 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7586 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7587 for (auto VIRef : FwdRefVIs->second) {
7588 assert(VIRef.first->getRef() == FwdVIRef &&
7589 "Forward referenced ValueInfo expected to be empty");
7590 resolveFwdRef(VIRef.first, VI);
7592 ForwardRefValueInfos.erase(FwdRefVIs);
7595 // Resolve forward references from aliases
7596 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7597 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7598 for (auto AliaseeRef : FwdRefAliasees->second) {
7599 assert(!AliaseeRef.first->hasAliasee() &&
7600 "Forward referencing alias already has aliasee");
7601 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7603 ForwardRefAliasees.erase(FwdRefAliasees);
7606 // Save the associated ValueInfo for use in later references by ID.
7607 if (ID == NumberedValueInfos.size())
7608 NumberedValueInfos.push_back(VI);
7609 else {
7610 // Handle non-continuous numbers (to make test simplification easier).
7611 if (ID > NumberedValueInfos.size())
7612 NumberedValueInfos.resize(ID + 1);
7613 NumberedValueInfos[ID] = VI;
7617 /// ParseGVEntry
7618 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7619 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7620 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7621 bool LLParser::ParseGVEntry(unsigned ID) {
7622 assert(Lex.getKind() == lltok::kw_gv);
7623 Lex.Lex();
7625 if (ParseToken(lltok::colon, "expected ':' here") ||
7626 ParseToken(lltok::lparen, "expected '(' here"))
7627 return true;
7629 std::string Name;
7630 GlobalValue::GUID GUID = 0;
7631 switch (Lex.getKind()) {
7632 case lltok::kw_name:
7633 Lex.Lex();
7634 if (ParseToken(lltok::colon, "expected ':' here") ||
7635 ParseStringConstant(Name))
7636 return true;
7637 // Can't create GUID/ValueInfo until we have the linkage.
7638 break;
7639 case lltok::kw_guid:
7640 Lex.Lex();
7641 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7642 return true;
7643 break;
7644 default:
7645 return Error(Lex.getLoc(), "expected name or guid tag");
7648 if (!EatIfPresent(lltok::comma)) {
7649 // No summaries. Wrap up.
7650 if (ParseToken(lltok::rparen, "expected ')' here"))
7651 return true;
7652 // This was created for a call to an external or indirect target.
7653 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7654 // created for indirect calls with VP. A Name with no GUID came from
7655 // an external definition. We pass ExternalLinkage since that is only
7656 // used when the GUID must be computed from Name, and in that case
7657 // the symbol must have external linkage.
7658 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7659 nullptr);
7660 return false;
7663 // Have a list of summaries
7664 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7665 ParseToken(lltok::colon, "expected ':' here"))
7666 return true;
7668 do {
7669 if (ParseToken(lltok::lparen, "expected '(' here"))
7670 return true;
7671 switch (Lex.getKind()) {
7672 case lltok::kw_function:
7673 if (ParseFunctionSummary(Name, GUID, ID))
7674 return true;
7675 break;
7676 case lltok::kw_variable:
7677 if (ParseVariableSummary(Name, GUID, ID))
7678 return true;
7679 break;
7680 case lltok::kw_alias:
7681 if (ParseAliasSummary(Name, GUID, ID))
7682 return true;
7683 break;
7684 default:
7685 return Error(Lex.getLoc(), "expected summary type");
7687 if (ParseToken(lltok::rparen, "expected ')' here"))
7688 return true;
7689 } while (EatIfPresent(lltok::comma));
7691 if (ParseToken(lltok::rparen, "expected ')' here"))
7692 return true;
7694 return false;
7697 /// FunctionSummary
7698 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7699 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7700 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7701 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7702 unsigned ID) {
7703 assert(Lex.getKind() == lltok::kw_function);
7704 Lex.Lex();
7706 StringRef ModulePath;
7707 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7708 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7709 /*Live=*/false, /*IsLocal=*/false);
7710 unsigned InstCount;
7711 std::vector<FunctionSummary::EdgeTy> Calls;
7712 FunctionSummary::TypeIdInfo TypeIdInfo;
7713 std::vector<ValueInfo> Refs;
7714 // Default is all-zeros (conservative values).
7715 FunctionSummary::FFlags FFlags = {};
7716 if (ParseToken(lltok::colon, "expected ':' here") ||
7717 ParseToken(lltok::lparen, "expected '(' here") ||
7718 ParseModuleReference(ModulePath) ||
7719 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7720 ParseToken(lltok::comma, "expected ',' here") ||
7721 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7722 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7723 return true;
7725 // Parse optional fields
7726 while (EatIfPresent(lltok::comma)) {
7727 switch (Lex.getKind()) {
7728 case lltok::kw_funcFlags:
7729 if (ParseOptionalFFlags(FFlags))
7730 return true;
7731 break;
7732 case lltok::kw_calls:
7733 if (ParseOptionalCalls(Calls))
7734 return true;
7735 break;
7736 case lltok::kw_typeIdInfo:
7737 if (ParseOptionalTypeIdInfo(TypeIdInfo))
7738 return true;
7739 break;
7740 case lltok::kw_refs:
7741 if (ParseOptionalRefs(Refs))
7742 return true;
7743 break;
7744 default:
7745 return Error(Lex.getLoc(), "expected optional function summary field");
7749 if (ParseToken(lltok::rparen, "expected ')' here"))
7750 return true;
7752 auto FS = llvm::make_unique<FunctionSummary>(
7753 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7754 std::move(Calls), std::move(TypeIdInfo.TypeTests),
7755 std::move(TypeIdInfo.TypeTestAssumeVCalls),
7756 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7757 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7758 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7760 FS->setModulePath(ModulePath);
7762 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7763 ID, std::move(FS));
7765 return false;
7768 /// VariableSummary
7769 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7770 /// [',' OptionalRefs]? ')'
7771 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7772 unsigned ID) {
7773 assert(Lex.getKind() == lltok::kw_variable);
7774 Lex.Lex();
7776 StringRef ModulePath;
7777 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7778 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7779 /*Live=*/false, /*IsLocal=*/false);
7780 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7781 std::vector<ValueInfo> Refs;
7782 if (ParseToken(lltok::colon, "expected ':' here") ||
7783 ParseToken(lltok::lparen, "expected '(' here") ||
7784 ParseModuleReference(ModulePath) ||
7785 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7786 ParseToken(lltok::comma, "expected ',' here") ||
7787 ParseGVarFlags(GVarFlags))
7788 return true;
7790 // Parse optional refs field
7791 if (EatIfPresent(lltok::comma)) {
7792 if (ParseOptionalRefs(Refs))
7793 return true;
7796 if (ParseToken(lltok::rparen, "expected ')' here"))
7797 return true;
7799 auto GS =
7800 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7802 GS->setModulePath(ModulePath);
7804 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7805 ID, std::move(GS));
7807 return false;
7810 /// AliasSummary
7811 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7812 /// 'aliasee' ':' GVReference ')'
7813 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7814 unsigned ID) {
7815 assert(Lex.getKind() == lltok::kw_alias);
7816 LocTy Loc = Lex.getLoc();
7817 Lex.Lex();
7819 StringRef ModulePath;
7820 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7821 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7822 /*Live=*/false, /*IsLocal=*/false);
7823 if (ParseToken(lltok::colon, "expected ':' here") ||
7824 ParseToken(lltok::lparen, "expected '(' here") ||
7825 ParseModuleReference(ModulePath) ||
7826 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7827 ParseToken(lltok::comma, "expected ',' here") ||
7828 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7829 ParseToken(lltok::colon, "expected ':' here"))
7830 return true;
7832 ValueInfo AliaseeVI;
7833 unsigned GVId;
7834 if (ParseGVReference(AliaseeVI, GVId))
7835 return true;
7837 if (ParseToken(lltok::rparen, "expected ')' here"))
7838 return true;
7840 auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7842 AS->setModulePath(ModulePath);
7844 // Record forward reference if the aliasee is not parsed yet.
7845 if (AliaseeVI.getRef() == FwdVIRef) {
7846 auto FwdRef = ForwardRefAliasees.insert(
7847 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7848 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7849 } else
7850 AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7852 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7853 ID, std::move(AS));
7855 return false;
7858 /// Flag
7859 /// ::= [0|1]
7860 bool LLParser::ParseFlag(unsigned &Val) {
7861 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7862 return TokError("expected integer");
7863 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7864 Lex.Lex();
7865 return false;
7868 /// OptionalFFlags
7869 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7870 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7871 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
7872 /// [',' 'noInline' ':' Flag]? ')'
7873 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
7874 assert(Lex.getKind() == lltok::kw_funcFlags);
7875 Lex.Lex();
7877 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
7878 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
7879 return true;
7881 do {
7882 unsigned Val;
7883 switch (Lex.getKind()) {
7884 case lltok::kw_readNone:
7885 Lex.Lex();
7886 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7887 return true;
7888 FFlags.ReadNone = Val;
7889 break;
7890 case lltok::kw_readOnly:
7891 Lex.Lex();
7892 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7893 return true;
7894 FFlags.ReadOnly = Val;
7895 break;
7896 case lltok::kw_noRecurse:
7897 Lex.Lex();
7898 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7899 return true;
7900 FFlags.NoRecurse = Val;
7901 break;
7902 case lltok::kw_returnDoesNotAlias:
7903 Lex.Lex();
7904 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7905 return true;
7906 FFlags.ReturnDoesNotAlias = Val;
7907 break;
7908 case lltok::kw_noInline:
7909 Lex.Lex();
7910 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7911 return true;
7912 FFlags.NoInline = Val;
7913 break;
7914 default:
7915 return Error(Lex.getLoc(), "expected function flag type");
7917 } while (EatIfPresent(lltok::comma));
7919 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
7920 return true;
7922 return false;
7925 /// OptionalCalls
7926 /// := 'calls' ':' '(' Call [',' Call]* ')'
7927 /// Call ::= '(' 'callee' ':' GVReference
7928 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
7929 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
7930 assert(Lex.getKind() == lltok::kw_calls);
7931 Lex.Lex();
7933 if (ParseToken(lltok::colon, "expected ':' in calls") |
7934 ParseToken(lltok::lparen, "expected '(' in calls"))
7935 return true;
7937 IdToIndexMapType IdToIndexMap;
7938 // Parse each call edge
7939 do {
7940 ValueInfo VI;
7941 if (ParseToken(lltok::lparen, "expected '(' in call") ||
7942 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
7943 ParseToken(lltok::colon, "expected ':'"))
7944 return true;
7946 LocTy Loc = Lex.getLoc();
7947 unsigned GVId;
7948 if (ParseGVReference(VI, GVId))
7949 return true;
7951 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7952 unsigned RelBF = 0;
7953 if (EatIfPresent(lltok::comma)) {
7954 // Expect either hotness or relbf
7955 if (EatIfPresent(lltok::kw_hotness)) {
7956 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
7957 return true;
7958 } else {
7959 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
7960 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
7961 return true;
7964 // Keep track of the Call array index needing a forward reference.
7965 // We will save the location of the ValueInfo needing an update, but
7966 // can only do so once the std::vector is finalized.
7967 if (VI.getRef() == FwdVIRef)
7968 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
7969 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
7971 if (ParseToken(lltok::rparen, "expected ')' in call"))
7972 return true;
7973 } while (EatIfPresent(lltok::comma));
7975 // Now that the Calls vector is finalized, it is safe to save the locations
7976 // of any forward GV references that need updating later.
7977 for (auto I : IdToIndexMap) {
7978 for (auto P : I.second) {
7979 assert(Calls[P.first].first.getRef() == FwdVIRef &&
7980 "Forward referenced ValueInfo expected to be empty");
7981 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7982 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7983 FwdRef.first->second.push_back(
7984 std::make_pair(&Calls[P.first].first, P.second));
7988 if (ParseToken(lltok::rparen, "expected ')' in calls"))
7989 return true;
7991 return false;
7994 /// Hotness
7995 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
7996 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
7997 switch (Lex.getKind()) {
7998 case lltok::kw_unknown:
7999 Hotness = CalleeInfo::HotnessType::Unknown;
8000 break;
8001 case lltok::kw_cold:
8002 Hotness = CalleeInfo::HotnessType::Cold;
8003 break;
8004 case lltok::kw_none:
8005 Hotness = CalleeInfo::HotnessType::None;
8006 break;
8007 case lltok::kw_hot:
8008 Hotness = CalleeInfo::HotnessType::Hot;
8009 break;
8010 case lltok::kw_critical:
8011 Hotness = CalleeInfo::HotnessType::Critical;
8012 break;
8013 default:
8014 return Error(Lex.getLoc(), "invalid call edge hotness");
8016 Lex.Lex();
8017 return false;
8020 /// OptionalRefs
8021 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8022 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8023 assert(Lex.getKind() == lltok::kw_refs);
8024 Lex.Lex();
8026 if (ParseToken(lltok::colon, "expected ':' in refs") |
8027 ParseToken(lltok::lparen, "expected '(' in refs"))
8028 return true;
8030 struct ValueContext {
8031 ValueInfo VI;
8032 unsigned GVId;
8033 LocTy Loc;
8035 std::vector<ValueContext> VContexts;
8036 // Parse each ref edge
8037 do {
8038 ValueContext VC;
8039 VC.Loc = Lex.getLoc();
8040 if (ParseGVReference(VC.VI, VC.GVId))
8041 return true;
8042 VContexts.push_back(VC);
8043 } while (EatIfPresent(lltok::comma));
8045 // Sort value contexts so that ones with readonly ValueInfo are at the end
8046 // of VContexts vector. This is needed to match immutableRefCount() behavior.
8047 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8048 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8051 IdToIndexMapType IdToIndexMap;
8052 for (auto &VC : VContexts) {
8053 // Keep track of the Refs array index needing a forward reference.
8054 // We will save the location of the ValueInfo needing an update, but
8055 // can only do so once the std::vector is finalized.
8056 if (VC.VI.getRef() == FwdVIRef)
8057 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8058 Refs.push_back(VC.VI);
8061 // Now that the Refs vector is finalized, it is safe to save the locations
8062 // of any forward GV references that need updating later.
8063 for (auto I : IdToIndexMap) {
8064 for (auto P : I.second) {
8065 assert(Refs[P.first].getRef() == FwdVIRef &&
8066 "Forward referenced ValueInfo expected to be empty");
8067 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8068 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8069 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8073 if (ParseToken(lltok::rparen, "expected ')' in refs"))
8074 return true;
8076 return false;
8079 /// OptionalTypeIdInfo
8080 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8081 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8082 /// [',' TypeCheckedLoadConstVCalls]? ')'
8083 bool LLParser::ParseOptionalTypeIdInfo(
8084 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8085 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8086 Lex.Lex();
8088 if (ParseToken(lltok::colon, "expected ':' here") ||
8089 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8090 return true;
8092 do {
8093 switch (Lex.getKind()) {
8094 case lltok::kw_typeTests:
8095 if (ParseTypeTests(TypeIdInfo.TypeTests))
8096 return true;
8097 break;
8098 case lltok::kw_typeTestAssumeVCalls:
8099 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8100 TypeIdInfo.TypeTestAssumeVCalls))
8101 return true;
8102 break;
8103 case lltok::kw_typeCheckedLoadVCalls:
8104 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8105 TypeIdInfo.TypeCheckedLoadVCalls))
8106 return true;
8107 break;
8108 case lltok::kw_typeTestAssumeConstVCalls:
8109 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8110 TypeIdInfo.TypeTestAssumeConstVCalls))
8111 return true;
8112 break;
8113 case lltok::kw_typeCheckedLoadConstVCalls:
8114 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8115 TypeIdInfo.TypeCheckedLoadConstVCalls))
8116 return true;
8117 break;
8118 default:
8119 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8121 } while (EatIfPresent(lltok::comma));
8123 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8124 return true;
8126 return false;
8129 /// TypeTests
8130 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8131 /// [',' (SummaryID | UInt64)]* ')'
8132 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8133 assert(Lex.getKind() == lltok::kw_typeTests);
8134 Lex.Lex();
8136 if (ParseToken(lltok::colon, "expected ':' here") ||
8137 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8138 return true;
8140 IdToIndexMapType IdToIndexMap;
8141 do {
8142 GlobalValue::GUID GUID = 0;
8143 if (Lex.getKind() == lltok::SummaryID) {
8144 unsigned ID = Lex.getUIntVal();
8145 LocTy Loc = Lex.getLoc();
8146 // Keep track of the TypeTests array index needing a forward reference.
8147 // We will save the location of the GUID needing an update, but
8148 // can only do so once the std::vector is finalized.
8149 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8150 Lex.Lex();
8151 } else if (ParseUInt64(GUID))
8152 return true;
8153 TypeTests.push_back(GUID);
8154 } while (EatIfPresent(lltok::comma));
8156 // Now that the TypeTests vector is finalized, it is safe to save the
8157 // locations of any forward GV references that need updating later.
8158 for (auto I : IdToIndexMap) {
8159 for (auto P : I.second) {
8160 assert(TypeTests[P.first] == 0 &&
8161 "Forward referenced type id GUID expected to be 0");
8162 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8163 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8164 FwdRef.first->second.push_back(
8165 std::make_pair(&TypeTests[P.first], P.second));
8169 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8170 return true;
8172 return false;
8175 /// VFuncIdList
8176 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8177 bool LLParser::ParseVFuncIdList(
8178 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8179 assert(Lex.getKind() == Kind);
8180 Lex.Lex();
8182 if (ParseToken(lltok::colon, "expected ':' here") ||
8183 ParseToken(lltok::lparen, "expected '(' here"))
8184 return true;
8186 IdToIndexMapType IdToIndexMap;
8187 do {
8188 FunctionSummary::VFuncId VFuncId;
8189 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8190 return true;
8191 VFuncIdList.push_back(VFuncId);
8192 } while (EatIfPresent(lltok::comma));
8194 if (ParseToken(lltok::rparen, "expected ')' here"))
8195 return true;
8197 // Now that the VFuncIdList vector is finalized, it is safe to save the
8198 // locations of any forward GV references that need updating later.
8199 for (auto I : IdToIndexMap) {
8200 for (auto P : I.second) {
8201 assert(VFuncIdList[P.first].GUID == 0 &&
8202 "Forward referenced type id GUID expected to be 0");
8203 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8204 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8205 FwdRef.first->second.push_back(
8206 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8210 return false;
8213 /// ConstVCallList
8214 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8215 bool LLParser::ParseConstVCallList(
8216 lltok::Kind Kind,
8217 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8218 assert(Lex.getKind() == Kind);
8219 Lex.Lex();
8221 if (ParseToken(lltok::colon, "expected ':' here") ||
8222 ParseToken(lltok::lparen, "expected '(' here"))
8223 return true;
8225 IdToIndexMapType IdToIndexMap;
8226 do {
8227 FunctionSummary::ConstVCall ConstVCall;
8228 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8229 return true;
8230 ConstVCallList.push_back(ConstVCall);
8231 } while (EatIfPresent(lltok::comma));
8233 if (ParseToken(lltok::rparen, "expected ')' here"))
8234 return true;
8236 // Now that the ConstVCallList vector is finalized, it is safe to save the
8237 // locations of any forward GV references that need updating later.
8238 for (auto I : IdToIndexMap) {
8239 for (auto P : I.second) {
8240 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8241 "Forward referenced type id GUID expected to be 0");
8242 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8243 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8244 FwdRef.first->second.push_back(
8245 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8249 return false;
8252 /// ConstVCall
8253 /// ::= '(' VFuncId ',' Args ')'
8254 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8255 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8256 if (ParseToken(lltok::lparen, "expected '(' here") ||
8257 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8258 return true;
8260 if (EatIfPresent(lltok::comma))
8261 if (ParseArgs(ConstVCall.Args))
8262 return true;
8264 if (ParseToken(lltok::rparen, "expected ')' here"))
8265 return true;
8267 return false;
8270 /// VFuncId
8271 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8272 /// 'offset' ':' UInt64 ')'
8273 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8274 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8275 assert(Lex.getKind() == lltok::kw_vFuncId);
8276 Lex.Lex();
8278 if (ParseToken(lltok::colon, "expected ':' here") ||
8279 ParseToken(lltok::lparen, "expected '(' here"))
8280 return true;
8282 if (Lex.getKind() == lltok::SummaryID) {
8283 VFuncId.GUID = 0;
8284 unsigned ID = Lex.getUIntVal();
8285 LocTy Loc = Lex.getLoc();
8286 // Keep track of the array index needing a forward reference.
8287 // We will save the location of the GUID needing an update, but
8288 // can only do so once the caller's std::vector is finalized.
8289 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8290 Lex.Lex();
8291 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8292 ParseToken(lltok::colon, "expected ':' here") ||
8293 ParseUInt64(VFuncId.GUID))
8294 return true;
8296 if (ParseToken(lltok::comma, "expected ',' here") ||
8297 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8298 ParseToken(lltok::colon, "expected ':' here") ||
8299 ParseUInt64(VFuncId.Offset) ||
8300 ParseToken(lltok::rparen, "expected ')' here"))
8301 return true;
8303 return false;
8306 /// GVFlags
8307 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8308 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8309 /// 'dsoLocal' ':' Flag ')'
8310 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8311 assert(Lex.getKind() == lltok::kw_flags);
8312 Lex.Lex();
8314 bool HasLinkage;
8315 if (ParseToken(lltok::colon, "expected ':' here") ||
8316 ParseToken(lltok::lparen, "expected '(' here") ||
8317 ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8318 ParseToken(lltok::colon, "expected ':' here"))
8319 return true;
8321 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8322 assert(HasLinkage && "Linkage not optional in summary entry");
8323 Lex.Lex();
8325 unsigned Flag;
8326 if (ParseToken(lltok::comma, "expected ',' here") ||
8327 ParseToken(lltok::kw_notEligibleToImport,
8328 "expected 'notEligibleToImport' here") ||
8329 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8330 return true;
8331 GVFlags.NotEligibleToImport = Flag;
8333 if (ParseToken(lltok::comma, "expected ',' here") ||
8334 ParseToken(lltok::kw_live, "expected 'live' here") ||
8335 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8336 return true;
8337 GVFlags.Live = Flag;
8339 if (ParseToken(lltok::comma, "expected ',' here") ||
8340 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8341 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8342 return true;
8343 GVFlags.DSOLocal = Flag;
8345 if (ParseToken(lltok::rparen, "expected ')' here"))
8346 return true;
8348 return false;
8351 /// GVarFlags
8352 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8353 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8354 assert(Lex.getKind() == lltok::kw_varFlags);
8355 Lex.Lex();
8357 unsigned Flag;
8358 if (ParseToken(lltok::colon, "expected ':' here") ||
8359 ParseToken(lltok::lparen, "expected '(' here") ||
8360 ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8361 ParseToken(lltok::colon, "expected ':' here"))
8362 return true;
8364 ParseFlag(Flag);
8365 GVarFlags.ReadOnly = Flag;
8367 if (ParseToken(lltok::rparen, "expected ')' here"))
8368 return true;
8369 return false;
8372 /// ModuleReference
8373 /// ::= 'module' ':' UInt
8374 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8375 // Parse module id.
8376 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8377 ParseToken(lltok::colon, "expected ':' here") ||
8378 ParseToken(lltok::SummaryID, "expected module ID"))
8379 return true;
8381 unsigned ModuleID = Lex.getUIntVal();
8382 auto I = ModuleIdMap.find(ModuleID);
8383 // We should have already parsed all module IDs
8384 assert(I != ModuleIdMap.end());
8385 ModulePath = I->second;
8386 return false;
8389 /// GVReference
8390 /// ::= SummaryID
8391 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8392 bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8393 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8394 return true;
8396 GVId = Lex.getUIntVal();
8397 // Check if we already have a VI for this GV
8398 if (GVId < NumberedValueInfos.size()) {
8399 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8400 VI = NumberedValueInfos[GVId];
8401 } else
8402 // We will create a forward reference to the stored location.
8403 VI = ValueInfo(false, FwdVIRef);
8405 if (ReadOnly)
8406 VI.setReadOnly();
8407 return false;