1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitCodes.h"
28 #include "llvm/Bitcode/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
84 static cl::opt
<unsigned>
85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden
, cl::init(25),
86 cl::desc("Number of metadatas above which we emit an index "
87 "to enable lazy-loading"));
89 cl::opt
<bool> WriteRelBFToSummary(
90 "write-relbf-to-summary", cl::Hidden
, cl::init(false),
91 cl::desc("Write relative block frequency to function summary "));
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold
;
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
100 // VALUE_SYMTAB_BLOCK abbrev id's.
101 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
104 VST_BBENTRY_6_ABBREV
,
106 // CONSTANTS_BLOCK abbrev id's.
107 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
108 CONSTANTS_INTEGER_ABBREV
,
109 CONSTANTS_CE_CAST_Abbrev
,
110 CONSTANTS_NULL_Abbrev
,
112 // FUNCTION_BLOCK abbrev id's.
113 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
114 FUNCTION_INST_UNOP_ABBREV
,
115 FUNCTION_INST_UNOP_FLAGS_ABBREV
,
116 FUNCTION_INST_BINOP_ABBREV
,
117 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
118 FUNCTION_INST_CAST_ABBREV
,
119 FUNCTION_INST_RET_VOID_ABBREV
,
120 FUNCTION_INST_RET_VAL_ABBREV
,
121 FUNCTION_INST_UNREACHABLE_ABBREV
,
122 FUNCTION_INST_GEP_ABBREV
,
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
127 class BitcodeWriterBase
{
129 /// The stream created and owned by the client.
130 BitstreamWriter
&Stream
;
132 StringTableBuilder
&StrtabBuilder
;
135 /// Constructs a BitcodeWriterBase object that writes to the provided
137 BitcodeWriterBase(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
)
138 : Stream(Stream
), StrtabBuilder(StrtabBuilder
) {}
141 void writeBitcodeHeader();
142 void writeModuleVersion();
145 void BitcodeWriterBase::writeModuleVersion() {
146 // VERSION: [version#]
147 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, ArrayRef
<uint64_t>{2});
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase
: public BitcodeWriterBase
{
154 /// The Module to write to bitcode.
157 /// Enumerates ids for all values in the module.
160 /// Optional per-module index to write for ThinLTO.
161 const ModuleSummaryIndex
*Index
;
163 /// Map that holds the correspondence between GUIDs in the summary index,
164 /// that came from indirect call profiles, and a value id generated by this
165 /// class to use in the VST and summary block records.
166 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
168 /// Tracks the last value id recorded in the GUIDToValueMap.
169 unsigned GlobalValueId
;
171 /// Saves the offset of the VSTOffset record that must eventually be
172 /// backpatched with the offset of the actual VST.
173 uint64_t VSTOffsetPlaceholder
= 0;
176 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177 /// writing to the provided \p Buffer.
178 ModuleBitcodeWriterBase(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
179 BitstreamWriter
&Stream
,
180 bool ShouldPreserveUseListOrder
,
181 const ModuleSummaryIndex
*Index
)
182 : BitcodeWriterBase(Stream
, StrtabBuilder
), M(M
),
183 VE(M
, ShouldPreserveUseListOrder
), Index(Index
) {
184 // Assign ValueIds to any callee values in the index that came from
185 // indirect call profiles and were recorded as a GUID not a Value*
186 // (which would have been assigned an ID by the ValueEnumerator).
187 // The starting ValueId is just after the number of values in the
188 // ValueEnumerator, so that they can be emitted in the VST.
189 GlobalValueId
= VE
.getValues().size();
192 for (const auto &GUIDSummaryLists
: *Index
)
193 // Examine all summaries for this GUID.
194 for (auto &Summary
: GUIDSummaryLists
.second
.SummaryList
)
195 if (auto FS
= dyn_cast
<FunctionSummary
>(Summary
.get()))
196 // For each call in the function summary, see if the call
197 // is to a GUID (which means it is for an indirect call,
198 // otherwise we would have a Value for it). If so, synthesize
200 for (auto &CallEdge
: FS
->calls())
201 if (!CallEdge
.first
.haveGVs() || !CallEdge
.first
.getValue())
202 assignValueId(CallEdge
.first
.getGUID());
206 void writePerModuleGlobalValueSummary();
209 void writePerModuleFunctionSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
210 GlobalValueSummary
*Summary
,
212 unsigned FSCallsAbbrev
,
213 unsigned FSCallsProfileAbbrev
,
215 void writeModuleLevelReferences(const GlobalVariable
&V
,
216 SmallVector
<uint64_t, 64> &NameVals
,
217 unsigned FSModRefsAbbrev
);
219 void assignValueId(GlobalValue::GUID ValGUID
) {
220 GUIDToValueIdMap
[ValGUID
] = ++GlobalValueId
;
223 unsigned getValueId(GlobalValue::GUID ValGUID
) {
224 const auto &VMI
= GUIDToValueIdMap
.find(ValGUID
);
225 // Expect that any GUID value had a value Id assigned by an
226 // earlier call to assignValueId.
227 assert(VMI
!= GUIDToValueIdMap
.end() &&
228 "GUID does not have assigned value Id");
232 // Helper to get the valueId for the type of value recorded in VI.
233 unsigned getValueId(ValueInfo VI
) {
234 if (!VI
.haveGVs() || !VI
.getValue())
235 return getValueId(VI
.getGUID());
236 return VE
.getValueID(VI
.getValue());
239 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
242 /// Class to manage the bitcode writing for a module.
243 class ModuleBitcodeWriter
: public ModuleBitcodeWriterBase
{
244 /// Pointer to the buffer allocated by caller for bitcode writing.
245 const SmallVectorImpl
<char> &Buffer
;
247 /// True if a module hash record should be written.
250 /// If non-null, when GenerateHash is true, the resulting hash is written
256 /// The start bit of the identification block.
257 uint64_t BitcodeStartBit
;
260 /// Constructs a ModuleBitcodeWriter object for the given Module,
261 /// writing to the provided \p Buffer.
262 ModuleBitcodeWriter(const Module
&M
, SmallVectorImpl
<char> &Buffer
,
263 StringTableBuilder
&StrtabBuilder
,
264 BitstreamWriter
&Stream
, bool ShouldPreserveUseListOrder
,
265 const ModuleSummaryIndex
*Index
, bool GenerateHash
,
266 ModuleHash
*ModHash
= nullptr)
267 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
268 ShouldPreserveUseListOrder
, Index
),
269 Buffer(Buffer
), GenerateHash(GenerateHash
), ModHash(ModHash
),
270 BitcodeStartBit(Stream
.GetCurrentBitNo()) {}
272 /// Emit the current module to the bitstream.
276 uint64_t bitcodeStartBit() { return BitcodeStartBit
; }
278 size_t addToStrtab(StringRef Str
);
280 void writeAttributeGroupTable();
281 void writeAttributeTable();
282 void writeTypeTable();
284 void writeValueSymbolTableForwardDecl();
285 void writeModuleInfo();
286 void writeValueAsMetadata(const ValueAsMetadata
*MD
,
287 SmallVectorImpl
<uint64_t> &Record
);
288 void writeMDTuple(const MDTuple
*N
, SmallVectorImpl
<uint64_t> &Record
,
290 unsigned createDILocationAbbrev();
291 void writeDILocation(const DILocation
*N
, SmallVectorImpl
<uint64_t> &Record
,
293 unsigned createGenericDINodeAbbrev();
294 void writeGenericDINode(const GenericDINode
*N
,
295 SmallVectorImpl
<uint64_t> &Record
, unsigned &Abbrev
);
296 void writeDISubrange(const DISubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
298 void writeDIEnumerator(const DIEnumerator
*N
,
299 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
300 void writeDIBasicType(const DIBasicType
*N
, SmallVectorImpl
<uint64_t> &Record
,
302 void writeDIDerivedType(const DIDerivedType
*N
,
303 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
304 void writeDICompositeType(const DICompositeType
*N
,
305 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
306 void writeDISubroutineType(const DISubroutineType
*N
,
307 SmallVectorImpl
<uint64_t> &Record
,
309 void writeDIFile(const DIFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
311 void writeDICompileUnit(const DICompileUnit
*N
,
312 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
313 void writeDISubprogram(const DISubprogram
*N
,
314 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
315 void writeDILexicalBlock(const DILexicalBlock
*N
,
316 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
317 void writeDILexicalBlockFile(const DILexicalBlockFile
*N
,
318 SmallVectorImpl
<uint64_t> &Record
,
320 void writeDINamespace(const DINamespace
*N
, SmallVectorImpl
<uint64_t> &Record
,
322 void writeDIMacro(const DIMacro
*N
, SmallVectorImpl
<uint64_t> &Record
,
324 void writeDIMacroFile(const DIMacroFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
326 void writeDIModule(const DIModule
*N
, SmallVectorImpl
<uint64_t> &Record
,
328 void writeDITemplateTypeParameter(const DITemplateTypeParameter
*N
,
329 SmallVectorImpl
<uint64_t> &Record
,
331 void writeDITemplateValueParameter(const DITemplateValueParameter
*N
,
332 SmallVectorImpl
<uint64_t> &Record
,
334 void writeDIGlobalVariable(const DIGlobalVariable
*N
,
335 SmallVectorImpl
<uint64_t> &Record
,
337 void writeDILocalVariable(const DILocalVariable
*N
,
338 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
339 void writeDILabel(const DILabel
*N
,
340 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
341 void writeDIExpression(const DIExpression
*N
,
342 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
343 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression
*N
,
344 SmallVectorImpl
<uint64_t> &Record
,
346 void writeDIObjCProperty(const DIObjCProperty
*N
,
347 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
348 void writeDIImportedEntity(const DIImportedEntity
*N
,
349 SmallVectorImpl
<uint64_t> &Record
,
351 unsigned createNamedMetadataAbbrev();
352 void writeNamedMetadata(SmallVectorImpl
<uint64_t> &Record
);
353 unsigned createMetadataStringsAbbrev();
354 void writeMetadataStrings(ArrayRef
<const Metadata
*> Strings
,
355 SmallVectorImpl
<uint64_t> &Record
);
356 void writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
357 SmallVectorImpl
<uint64_t> &Record
,
358 std::vector
<unsigned> *MDAbbrevs
= nullptr,
359 std::vector
<uint64_t> *IndexPos
= nullptr);
360 void writeModuleMetadata();
361 void writeFunctionMetadata(const Function
&F
);
362 void writeFunctionMetadataAttachment(const Function
&F
);
363 void writeGlobalVariableMetadataAttachment(const GlobalVariable
&GV
);
364 void pushGlobalMetadataAttachment(SmallVectorImpl
<uint64_t> &Record
,
365 const GlobalObject
&GO
);
366 void writeModuleMetadataKinds();
367 void writeOperandBundleTags();
368 void writeSyncScopeNames();
369 void writeConstants(unsigned FirstVal
, unsigned LastVal
, bool isGlobal
);
370 void writeModuleConstants();
371 bool pushValueAndType(const Value
*V
, unsigned InstID
,
372 SmallVectorImpl
<unsigned> &Vals
);
373 void writeOperandBundles(ImmutableCallSite CS
, unsigned InstID
);
374 void pushValue(const Value
*V
, unsigned InstID
,
375 SmallVectorImpl
<unsigned> &Vals
);
376 void pushValueSigned(const Value
*V
, unsigned InstID
,
377 SmallVectorImpl
<uint64_t> &Vals
);
378 void writeInstruction(const Instruction
&I
, unsigned InstID
,
379 SmallVectorImpl
<unsigned> &Vals
);
380 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable
&VST
);
381 void writeGlobalValueSymbolTable(
382 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
383 void writeUseList(UseListOrder
&&Order
);
384 void writeUseListBlock(const Function
*F
);
386 writeFunction(const Function
&F
,
387 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
388 void writeBlockInfo();
389 void writeModuleHash(size_t BlockStartPos
);
391 unsigned getEncodedSyncScopeID(SyncScope::ID SSID
) {
392 return unsigned(SSID
);
396 /// Class to manage the bitcode writing for a combined index.
397 class IndexBitcodeWriter
: public BitcodeWriterBase
{
398 /// The combined index to write to bitcode.
399 const ModuleSummaryIndex
&Index
;
401 /// When writing a subset of the index for distributed backends, client
402 /// provides a map of modules to the corresponding GUIDs/summaries to write.
403 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
;
405 /// Map that holds the correspondence between the GUID used in the combined
406 /// index and a value id generated by this class to use in references.
407 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
409 /// Tracks the last value id recorded in the GUIDToValueMap.
410 unsigned GlobalValueId
= 0;
413 /// Constructs a IndexBitcodeWriter object for the given combined index,
414 /// writing to the provided \p Buffer. When writing a subset of the index
415 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
416 IndexBitcodeWriter(BitstreamWriter
&Stream
, StringTableBuilder
&StrtabBuilder
,
417 const ModuleSummaryIndex
&Index
,
418 const std::map
<std::string
, GVSummaryMapTy
>
419 *ModuleToSummariesForIndex
= nullptr)
420 : BitcodeWriterBase(Stream
, StrtabBuilder
), Index(Index
),
421 ModuleToSummariesForIndex(ModuleToSummariesForIndex
) {
422 // Assign unique value ids to all summaries to be written, for use
423 // in writing out the call graph edges. Save the mapping from GUID
424 // to the new global value id to use when writing those edges, which
425 // are currently saved in the index in terms of GUID.
426 forEachSummary([&](GVInfo I
, bool) {
427 GUIDToValueIdMap
[I
.first
] = ++GlobalValueId
;
431 /// The below iterator returns the GUID and associated summary.
432 using GVInfo
= std::pair
<GlobalValue::GUID
, GlobalValueSummary
*>;
434 /// Calls the callback for each value GUID and summary to be written to
435 /// bitcode. This hides the details of whether they are being pulled from the
436 /// entire index or just those in a provided ModuleToSummariesForIndex map.
437 template<typename Functor
>
438 void forEachSummary(Functor Callback
) {
439 if (ModuleToSummariesForIndex
) {
440 for (auto &M
: *ModuleToSummariesForIndex
)
441 for (auto &Summary
: M
.second
) {
442 Callback(Summary
, false);
443 // Ensure aliasee is handled, e.g. for assigning a valueId,
444 // even if we are not importing the aliasee directly (the
445 // imported alias will contain a copy of aliasee).
446 if (auto *AS
= dyn_cast
<AliasSummary
>(Summary
.getSecond()))
447 Callback({AS
->getAliaseeGUID(), &AS
->getAliasee()}, true);
450 for (auto &Summaries
: Index
)
451 for (auto &Summary
: Summaries
.second
.SummaryList
)
452 Callback({Summaries
.first
, Summary
.get()}, false);
456 /// Calls the callback for each entry in the modulePaths StringMap that
457 /// should be written to the module path string table. This hides the details
458 /// of whether they are being pulled from the entire index or just those in a
459 /// provided ModuleToSummariesForIndex map.
460 template <typename Functor
> void forEachModule(Functor Callback
) {
461 if (ModuleToSummariesForIndex
) {
462 for (const auto &M
: *ModuleToSummariesForIndex
) {
463 const auto &MPI
= Index
.modulePaths().find(M
.first
);
464 if (MPI
== Index
.modulePaths().end()) {
465 // This should only happen if the bitcode file was empty, in which
466 // case we shouldn't be importing (the ModuleToSummariesForIndex
467 // would only include the module we are writing and index for).
468 assert(ModuleToSummariesForIndex
->size() == 1);
474 for (const auto &MPSE
: Index
.modulePaths())
479 /// Main entry point for writing a combined index to bitcode.
483 void writeModStrings();
484 void writeCombinedGlobalValueSummary();
486 Optional
<unsigned> getValueId(GlobalValue::GUID ValGUID
) {
487 auto VMI
= GUIDToValueIdMap
.find(ValGUID
);
488 if (VMI
== GUIDToValueIdMap
.end())
493 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
496 } // end anonymous namespace
498 static unsigned getEncodedCastOpcode(unsigned Opcode
) {
500 default: llvm_unreachable("Unknown cast instruction!");
501 case Instruction::Trunc
: return bitc::CAST_TRUNC
;
502 case Instruction::ZExt
: return bitc::CAST_ZEXT
;
503 case Instruction::SExt
: return bitc::CAST_SEXT
;
504 case Instruction::FPToUI
: return bitc::CAST_FPTOUI
;
505 case Instruction::FPToSI
: return bitc::CAST_FPTOSI
;
506 case Instruction::UIToFP
: return bitc::CAST_UITOFP
;
507 case Instruction::SIToFP
: return bitc::CAST_SITOFP
;
508 case Instruction::FPTrunc
: return bitc::CAST_FPTRUNC
;
509 case Instruction::FPExt
: return bitc::CAST_FPEXT
;
510 case Instruction::PtrToInt
: return bitc::CAST_PTRTOINT
;
511 case Instruction::IntToPtr
: return bitc::CAST_INTTOPTR
;
512 case Instruction::BitCast
: return bitc::CAST_BITCAST
;
513 case Instruction::AddrSpaceCast
: return bitc::CAST_ADDRSPACECAST
;
517 static unsigned getEncodedUnaryOpcode(unsigned Opcode
) {
519 default: llvm_unreachable("Unknown binary instruction!");
520 case Instruction::FNeg
: return bitc::UNOP_NEG
;
524 static unsigned getEncodedBinaryOpcode(unsigned Opcode
) {
526 default: llvm_unreachable("Unknown binary instruction!");
527 case Instruction::Add
:
528 case Instruction::FAdd
: return bitc::BINOP_ADD
;
529 case Instruction::Sub
:
530 case Instruction::FSub
: return bitc::BINOP_SUB
;
531 case Instruction::Mul
:
532 case Instruction::FMul
: return bitc::BINOP_MUL
;
533 case Instruction::UDiv
: return bitc::BINOP_UDIV
;
534 case Instruction::FDiv
:
535 case Instruction::SDiv
: return bitc::BINOP_SDIV
;
536 case Instruction::URem
: return bitc::BINOP_UREM
;
537 case Instruction::FRem
:
538 case Instruction::SRem
: return bitc::BINOP_SREM
;
539 case Instruction::Shl
: return bitc::BINOP_SHL
;
540 case Instruction::LShr
: return bitc::BINOP_LSHR
;
541 case Instruction::AShr
: return bitc::BINOP_ASHR
;
542 case Instruction::And
: return bitc::BINOP_AND
;
543 case Instruction::Or
: return bitc::BINOP_OR
;
544 case Instruction::Xor
: return bitc::BINOP_XOR
;
548 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op
) {
550 default: llvm_unreachable("Unknown RMW operation!");
551 case AtomicRMWInst::Xchg
: return bitc::RMW_XCHG
;
552 case AtomicRMWInst::Add
: return bitc::RMW_ADD
;
553 case AtomicRMWInst::Sub
: return bitc::RMW_SUB
;
554 case AtomicRMWInst::And
: return bitc::RMW_AND
;
555 case AtomicRMWInst::Nand
: return bitc::RMW_NAND
;
556 case AtomicRMWInst::Or
: return bitc::RMW_OR
;
557 case AtomicRMWInst::Xor
: return bitc::RMW_XOR
;
558 case AtomicRMWInst::Max
: return bitc::RMW_MAX
;
559 case AtomicRMWInst::Min
: return bitc::RMW_MIN
;
560 case AtomicRMWInst::UMax
: return bitc::RMW_UMAX
;
561 case AtomicRMWInst::UMin
: return bitc::RMW_UMIN
;
562 case AtomicRMWInst::FAdd
: return bitc::RMW_FADD
;
563 case AtomicRMWInst::FSub
: return bitc::RMW_FSUB
;
567 static unsigned getEncodedOrdering(AtomicOrdering Ordering
) {
569 case AtomicOrdering::NotAtomic
: return bitc::ORDERING_NOTATOMIC
;
570 case AtomicOrdering::Unordered
: return bitc::ORDERING_UNORDERED
;
571 case AtomicOrdering::Monotonic
: return bitc::ORDERING_MONOTONIC
;
572 case AtomicOrdering::Acquire
: return bitc::ORDERING_ACQUIRE
;
573 case AtomicOrdering::Release
: return bitc::ORDERING_RELEASE
;
574 case AtomicOrdering::AcquireRelease
: return bitc::ORDERING_ACQREL
;
575 case AtomicOrdering::SequentiallyConsistent
: return bitc::ORDERING_SEQCST
;
577 llvm_unreachable("Invalid ordering");
580 static void writeStringRecord(BitstreamWriter
&Stream
, unsigned Code
,
581 StringRef Str
, unsigned AbbrevToUse
) {
582 SmallVector
<unsigned, 64> Vals
;
584 // Code: [strchar x N]
585 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
) {
586 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(Str
[i
]))
588 Vals
.push_back(Str
[i
]);
591 // Emit the finished record.
592 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
595 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind
) {
597 case Attribute::Alignment
:
598 return bitc::ATTR_KIND_ALIGNMENT
;
599 case Attribute::AllocSize
:
600 return bitc::ATTR_KIND_ALLOC_SIZE
;
601 case Attribute::AlwaysInline
:
602 return bitc::ATTR_KIND_ALWAYS_INLINE
;
603 case Attribute::ArgMemOnly
:
604 return bitc::ATTR_KIND_ARGMEMONLY
;
605 case Attribute::Builtin
:
606 return bitc::ATTR_KIND_BUILTIN
;
607 case Attribute::ByVal
:
608 return bitc::ATTR_KIND_BY_VAL
;
609 case Attribute::Convergent
:
610 return bitc::ATTR_KIND_CONVERGENT
;
611 case Attribute::InAlloca
:
612 return bitc::ATTR_KIND_IN_ALLOCA
;
613 case Attribute::Cold
:
614 return bitc::ATTR_KIND_COLD
;
615 case Attribute::InaccessibleMemOnly
:
616 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY
;
617 case Attribute::InaccessibleMemOrArgMemOnly
:
618 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY
;
619 case Attribute::InlineHint
:
620 return bitc::ATTR_KIND_INLINE_HINT
;
621 case Attribute::InReg
:
622 return bitc::ATTR_KIND_IN_REG
;
623 case Attribute::JumpTable
:
624 return bitc::ATTR_KIND_JUMP_TABLE
;
625 case Attribute::MinSize
:
626 return bitc::ATTR_KIND_MIN_SIZE
;
627 case Attribute::Naked
:
628 return bitc::ATTR_KIND_NAKED
;
629 case Attribute::Nest
:
630 return bitc::ATTR_KIND_NEST
;
631 case Attribute::NoAlias
:
632 return bitc::ATTR_KIND_NO_ALIAS
;
633 case Attribute::NoBuiltin
:
634 return bitc::ATTR_KIND_NO_BUILTIN
;
635 case Attribute::NoCapture
:
636 return bitc::ATTR_KIND_NO_CAPTURE
;
637 case Attribute::NoDuplicate
:
638 return bitc::ATTR_KIND_NO_DUPLICATE
;
639 case Attribute::NoImplicitFloat
:
640 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT
;
641 case Attribute::NoInline
:
642 return bitc::ATTR_KIND_NO_INLINE
;
643 case Attribute::NoRecurse
:
644 return bitc::ATTR_KIND_NO_RECURSE
;
645 case Attribute::NonLazyBind
:
646 return bitc::ATTR_KIND_NON_LAZY_BIND
;
647 case Attribute::NonNull
:
648 return bitc::ATTR_KIND_NON_NULL
;
649 case Attribute::Dereferenceable
:
650 return bitc::ATTR_KIND_DEREFERENCEABLE
;
651 case Attribute::DereferenceableOrNull
:
652 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL
;
653 case Attribute::NoRedZone
:
654 return bitc::ATTR_KIND_NO_RED_ZONE
;
655 case Attribute::NoReturn
:
656 return bitc::ATTR_KIND_NO_RETURN
;
657 case Attribute::NoCfCheck
:
658 return bitc::ATTR_KIND_NOCF_CHECK
;
659 case Attribute::NoUnwind
:
660 return bitc::ATTR_KIND_NO_UNWIND
;
661 case Attribute::OptForFuzzing
:
662 return bitc::ATTR_KIND_OPT_FOR_FUZZING
;
663 case Attribute::OptimizeForSize
:
664 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE
;
665 case Attribute::OptimizeNone
:
666 return bitc::ATTR_KIND_OPTIMIZE_NONE
;
667 case Attribute::ReadNone
:
668 return bitc::ATTR_KIND_READ_NONE
;
669 case Attribute::ReadOnly
:
670 return bitc::ATTR_KIND_READ_ONLY
;
671 case Attribute::Returned
:
672 return bitc::ATTR_KIND_RETURNED
;
673 case Attribute::ReturnsTwice
:
674 return bitc::ATTR_KIND_RETURNS_TWICE
;
675 case Attribute::SExt
:
676 return bitc::ATTR_KIND_S_EXT
;
677 case Attribute::Speculatable
:
678 return bitc::ATTR_KIND_SPECULATABLE
;
679 case Attribute::StackAlignment
:
680 return bitc::ATTR_KIND_STACK_ALIGNMENT
;
681 case Attribute::StackProtect
:
682 return bitc::ATTR_KIND_STACK_PROTECT
;
683 case Attribute::StackProtectReq
:
684 return bitc::ATTR_KIND_STACK_PROTECT_REQ
;
685 case Attribute::StackProtectStrong
:
686 return bitc::ATTR_KIND_STACK_PROTECT_STRONG
;
687 case Attribute::SafeStack
:
688 return bitc::ATTR_KIND_SAFESTACK
;
689 case Attribute::ShadowCallStack
:
690 return bitc::ATTR_KIND_SHADOWCALLSTACK
;
691 case Attribute::StrictFP
:
692 return bitc::ATTR_KIND_STRICT_FP
;
693 case Attribute::StructRet
:
694 return bitc::ATTR_KIND_STRUCT_RET
;
695 case Attribute::SanitizeAddress
:
696 return bitc::ATTR_KIND_SANITIZE_ADDRESS
;
697 case Attribute::SanitizeHWAddress
:
698 return bitc::ATTR_KIND_SANITIZE_HWADDRESS
;
699 case Attribute::SanitizeThread
:
700 return bitc::ATTR_KIND_SANITIZE_THREAD
;
701 case Attribute::SanitizeMemory
:
702 return bitc::ATTR_KIND_SANITIZE_MEMORY
;
703 case Attribute::SpeculativeLoadHardening
:
704 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING
;
705 case Attribute::SwiftError
:
706 return bitc::ATTR_KIND_SWIFT_ERROR
;
707 case Attribute::SwiftSelf
:
708 return bitc::ATTR_KIND_SWIFT_SELF
;
709 case Attribute::UWTable
:
710 return bitc::ATTR_KIND_UW_TABLE
;
711 case Attribute::WriteOnly
:
712 return bitc::ATTR_KIND_WRITEONLY
;
713 case Attribute::ZExt
:
714 return bitc::ATTR_KIND_Z_EXT
;
715 case Attribute::EndAttrKinds
:
716 llvm_unreachable("Can not encode end-attribute kinds marker.");
717 case Attribute::None
:
718 llvm_unreachable("Can not encode none-attribute.");
721 llvm_unreachable("Trying to encode unknown attribute");
724 void ModuleBitcodeWriter::writeAttributeGroupTable() {
725 const std::vector
<ValueEnumerator::IndexAndAttrSet
> &AttrGrps
=
726 VE
.getAttributeGroups();
727 if (AttrGrps
.empty()) return;
729 Stream
.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID
, 3);
731 SmallVector
<uint64_t, 64> Record
;
732 for (ValueEnumerator::IndexAndAttrSet Pair
: AttrGrps
) {
733 unsigned AttrListIndex
= Pair
.first
;
734 AttributeSet AS
= Pair
.second
;
735 Record
.push_back(VE
.getAttributeGroupID(Pair
));
736 Record
.push_back(AttrListIndex
);
738 for (Attribute Attr
: AS
) {
739 if (Attr
.isEnumAttribute()) {
741 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
742 } else if (Attr
.isIntAttribute()) {
744 Record
.push_back(getAttrKindEncoding(Attr
.getKindAsEnum()));
745 Record
.push_back(Attr
.getValueAsInt());
747 StringRef Kind
= Attr
.getKindAsString();
748 StringRef Val
= Attr
.getValueAsString();
750 Record
.push_back(Val
.empty() ? 3 : 4);
751 Record
.append(Kind
.begin(), Kind
.end());
754 Record
.append(Val
.begin(), Val
.end());
760 Stream
.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY
, Record
);
767 void ModuleBitcodeWriter::writeAttributeTable() {
768 const std::vector
<AttributeList
> &Attrs
= VE
.getAttributeLists();
769 if (Attrs
.empty()) return;
771 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
773 SmallVector
<uint64_t, 64> Record
;
774 for (unsigned i
= 0, e
= Attrs
.size(); i
!= e
; ++i
) {
775 AttributeList AL
= Attrs
[i
];
776 for (unsigned i
= AL
.index_begin(), e
= AL
.index_end(); i
!= e
; ++i
) {
777 AttributeSet AS
= AL
.getAttributes(i
);
778 if (AS
.hasAttributes())
779 Record
.push_back(VE
.getAttributeGroupID({i
, AS
}));
782 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
789 /// WriteTypeTable - Write out the type table for a module.
790 void ModuleBitcodeWriter::writeTypeTable() {
791 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
793 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
794 SmallVector
<uint64_t, 64> TypeVals
;
796 uint64_t NumBits
= VE
.computeBitsRequiredForTypeIndicies();
798 // Abbrev for TYPE_CODE_POINTER.
799 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
800 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER
));
801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
802 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
803 unsigned PtrAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
805 // Abbrev for TYPE_CODE_FUNCTION.
806 Abbv
= std::make_shared
<BitCodeAbbrev
>();
807 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
808 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
809 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
810 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
811 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
813 // Abbrev for TYPE_CODE_STRUCT_ANON.
814 Abbv
= std::make_shared
<BitCodeAbbrev
>();
815 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
816 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
817 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
818 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
819 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
821 // Abbrev for TYPE_CODE_STRUCT_NAME.
822 Abbv
= std::make_shared
<BitCodeAbbrev
>();
823 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
824 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
825 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
826 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
828 // Abbrev for TYPE_CODE_STRUCT_NAMED.
829 Abbv
= std::make_shared
<BitCodeAbbrev
>();
830 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
831 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
832 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
833 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
834 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
836 // Abbrev for TYPE_CODE_ARRAY.
837 Abbv
= std::make_shared
<BitCodeAbbrev
>();
838 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
839 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
840 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
841 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
843 // Emit an entry count so the reader can reserve space.
844 TypeVals
.push_back(TypeList
.size());
845 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
848 // Loop over all of the types, emitting each in turn.
849 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
850 Type
*T
= TypeList
[i
];
854 switch (T
->getTypeID()) {
855 case Type::VoidTyID
: Code
= bitc::TYPE_CODE_VOID
; break;
856 case Type::HalfTyID
: Code
= bitc::TYPE_CODE_HALF
; break;
857 case Type::FloatTyID
: Code
= bitc::TYPE_CODE_FLOAT
; break;
858 case Type::DoubleTyID
: Code
= bitc::TYPE_CODE_DOUBLE
; break;
859 case Type::X86_FP80TyID
: Code
= bitc::TYPE_CODE_X86_FP80
; break;
860 case Type::FP128TyID
: Code
= bitc::TYPE_CODE_FP128
; break;
861 case Type::PPC_FP128TyID
: Code
= bitc::TYPE_CODE_PPC_FP128
; break;
862 case Type::LabelTyID
: Code
= bitc::TYPE_CODE_LABEL
; break;
863 case Type::MetadataTyID
: Code
= bitc::TYPE_CODE_METADATA
; break;
864 case Type::X86_MMXTyID
: Code
= bitc::TYPE_CODE_X86_MMX
; break;
865 case Type::TokenTyID
: Code
= bitc::TYPE_CODE_TOKEN
; break;
866 case Type::IntegerTyID
:
868 Code
= bitc::TYPE_CODE_INTEGER
;
869 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
871 case Type::PointerTyID
: {
872 PointerType
*PTy
= cast
<PointerType
>(T
);
873 // POINTER: [pointee type, address space]
874 Code
= bitc::TYPE_CODE_POINTER
;
875 TypeVals
.push_back(VE
.getTypeID(PTy
->getElementType()));
876 unsigned AddressSpace
= PTy
->getAddressSpace();
877 TypeVals
.push_back(AddressSpace
);
878 if (AddressSpace
== 0) AbbrevToUse
= PtrAbbrev
;
881 case Type::FunctionTyID
: {
882 FunctionType
*FT
= cast
<FunctionType
>(T
);
883 // FUNCTION: [isvararg, retty, paramty x N]
884 Code
= bitc::TYPE_CODE_FUNCTION
;
885 TypeVals
.push_back(FT
->isVarArg());
886 TypeVals
.push_back(VE
.getTypeID(FT
->getReturnType()));
887 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
)
888 TypeVals
.push_back(VE
.getTypeID(FT
->getParamType(i
)));
889 AbbrevToUse
= FunctionAbbrev
;
892 case Type::StructTyID
: {
893 StructType
*ST
= cast
<StructType
>(T
);
894 // STRUCT: [ispacked, eltty x N]
895 TypeVals
.push_back(ST
->isPacked());
896 // Output all of the element types.
897 for (StructType::element_iterator I
= ST
->element_begin(),
898 E
= ST
->element_end(); I
!= E
; ++I
)
899 TypeVals
.push_back(VE
.getTypeID(*I
));
901 if (ST
->isLiteral()) {
902 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
903 AbbrevToUse
= StructAnonAbbrev
;
905 if (ST
->isOpaque()) {
906 Code
= bitc::TYPE_CODE_OPAQUE
;
908 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
909 AbbrevToUse
= StructNamedAbbrev
;
912 // Emit the name if it is present.
913 if (!ST
->getName().empty())
914 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
919 case Type::ArrayTyID
: {
920 ArrayType
*AT
= cast
<ArrayType
>(T
);
921 // ARRAY: [numelts, eltty]
922 Code
= bitc::TYPE_CODE_ARRAY
;
923 TypeVals
.push_back(AT
->getNumElements());
924 TypeVals
.push_back(VE
.getTypeID(AT
->getElementType()));
925 AbbrevToUse
= ArrayAbbrev
;
928 case Type::VectorTyID
: {
929 VectorType
*VT
= cast
<VectorType
>(T
);
930 // VECTOR [numelts, eltty]
931 Code
= bitc::TYPE_CODE_VECTOR
;
932 TypeVals
.push_back(VT
->getNumElements());
933 TypeVals
.push_back(VE
.getTypeID(VT
->getElementType()));
938 // Emit the finished record.
939 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
946 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
) {
948 case GlobalValue::ExternalLinkage
:
950 case GlobalValue::WeakAnyLinkage
:
952 case GlobalValue::AppendingLinkage
:
954 case GlobalValue::InternalLinkage
:
956 case GlobalValue::LinkOnceAnyLinkage
:
958 case GlobalValue::ExternalWeakLinkage
:
960 case GlobalValue::CommonLinkage
:
962 case GlobalValue::PrivateLinkage
:
964 case GlobalValue::WeakODRLinkage
:
966 case GlobalValue::LinkOnceODRLinkage
:
968 case GlobalValue::AvailableExternallyLinkage
:
971 llvm_unreachable("Invalid linkage");
974 static unsigned getEncodedLinkage(const GlobalValue
&GV
) {
975 return getEncodedLinkage(GV
.getLinkage());
978 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags
) {
979 uint64_t RawFlags
= 0;
980 RawFlags
|= Flags
.ReadNone
;
981 RawFlags
|= (Flags
.ReadOnly
<< 1);
982 RawFlags
|= (Flags
.NoRecurse
<< 2);
983 RawFlags
|= (Flags
.ReturnDoesNotAlias
<< 3);
984 RawFlags
|= (Flags
.NoInline
<< 4);
988 // Decode the flags for GlobalValue in the summary
989 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags
) {
990 uint64_t RawFlags
= 0;
992 RawFlags
|= Flags
.NotEligibleToImport
; // bool
993 RawFlags
|= (Flags
.Live
<< 1);
994 RawFlags
|= (Flags
.DSOLocal
<< 2);
996 // Linkage don't need to be remapped at that time for the summary. Any future
997 // change to the getEncodedLinkage() function will need to be taken into
998 // account here as well.
999 RawFlags
= (RawFlags
<< 4) | Flags
.Linkage
; // 4 bits
1004 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags
) {
1005 uint64_t RawFlags
= Flags
.ReadOnly
;
1009 static unsigned getEncodedVisibility(const GlobalValue
&GV
) {
1010 switch (GV
.getVisibility()) {
1011 case GlobalValue::DefaultVisibility
: return 0;
1012 case GlobalValue::HiddenVisibility
: return 1;
1013 case GlobalValue::ProtectedVisibility
: return 2;
1015 llvm_unreachable("Invalid visibility");
1018 static unsigned getEncodedDLLStorageClass(const GlobalValue
&GV
) {
1019 switch (GV
.getDLLStorageClass()) {
1020 case GlobalValue::DefaultStorageClass
: return 0;
1021 case GlobalValue::DLLImportStorageClass
: return 1;
1022 case GlobalValue::DLLExportStorageClass
: return 2;
1024 llvm_unreachable("Invalid DLL storage class");
1027 static unsigned getEncodedThreadLocalMode(const GlobalValue
&GV
) {
1028 switch (GV
.getThreadLocalMode()) {
1029 case GlobalVariable::NotThreadLocal
: return 0;
1030 case GlobalVariable::GeneralDynamicTLSModel
: return 1;
1031 case GlobalVariable::LocalDynamicTLSModel
: return 2;
1032 case GlobalVariable::InitialExecTLSModel
: return 3;
1033 case GlobalVariable::LocalExecTLSModel
: return 4;
1035 llvm_unreachable("Invalid TLS model");
1038 static unsigned getEncodedComdatSelectionKind(const Comdat
&C
) {
1039 switch (C
.getSelectionKind()) {
1041 return bitc::COMDAT_SELECTION_KIND_ANY
;
1042 case Comdat::ExactMatch
:
1043 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH
;
1044 case Comdat::Largest
:
1045 return bitc::COMDAT_SELECTION_KIND_LARGEST
;
1046 case Comdat::NoDuplicates
:
1047 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES
;
1048 case Comdat::SameSize
:
1049 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE
;
1051 llvm_unreachable("Invalid selection kind");
1054 static unsigned getEncodedUnnamedAddr(const GlobalValue
&GV
) {
1055 switch (GV
.getUnnamedAddr()) {
1056 case GlobalValue::UnnamedAddr::None
: return 0;
1057 case GlobalValue::UnnamedAddr::Local
: return 2;
1058 case GlobalValue::UnnamedAddr::Global
: return 1;
1060 llvm_unreachable("Invalid unnamed_addr");
1063 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str
) {
1066 return StrtabBuilder
.add(Str
);
1069 void ModuleBitcodeWriter::writeComdats() {
1070 SmallVector
<unsigned, 64> Vals
;
1071 for (const Comdat
*C
: VE
.getComdats()) {
1072 // COMDAT: [strtab offset, strtab size, selection_kind]
1073 Vals
.push_back(addToStrtab(C
->getName()));
1074 Vals
.push_back(C
->getName().size());
1075 Vals
.push_back(getEncodedComdatSelectionKind(*C
));
1076 Stream
.EmitRecord(bitc::MODULE_CODE_COMDAT
, Vals
, /*AbbrevToUse=*/0);
1081 /// Write a record that will eventually hold the word offset of the
1082 /// module-level VST. For now the offset is 0, which will be backpatched
1083 /// after the real VST is written. Saves the bit offset to backpatch.
1084 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1085 // Write a placeholder value in for the offset of the real VST,
1086 // which is written after the function blocks so that it can include
1087 // the offset of each function. The placeholder offset will be
1088 // updated when the real VST is written.
1089 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1090 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET
));
1091 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1092 // hold the real VST offset. Must use fixed instead of VBR as we don't
1093 // know how many VBR chunks to reserve ahead of time.
1094 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
1095 unsigned VSTOffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1097 // Emit the placeholder
1098 uint64_t Vals
[] = {bitc::MODULE_CODE_VSTOFFSET
, 0};
1099 Stream
.EmitRecordWithAbbrev(VSTOffsetAbbrev
, Vals
);
1101 // Compute and save the bit offset to the placeholder, which will be
1102 // patched when the real VST is written. We can simply subtract the 32-bit
1103 // fixed size from the current bit number to get the location to backpatch.
1104 VSTOffsetPlaceholder
= Stream
.GetCurrentBitNo() - 32;
1107 enum StringEncoding
{ SE_Char6
, SE_Fixed7
, SE_Fixed8
};
1109 /// Determine the encoding to use for the given string name and length.
1110 static StringEncoding
getStringEncoding(StringRef Str
) {
1111 bool isChar6
= true;
1112 for (char C
: Str
) {
1114 isChar6
= BitCodeAbbrevOp::isChar6(C
);
1115 if ((unsigned char)C
& 128)
1116 // don't bother scanning the rest.
1124 /// Emit top-level description of module, including target triple, inline asm,
1125 /// descriptors for global variables, and function prototype info.
1126 /// Returns the bit offset to backpatch with the location of the real VST.
1127 void ModuleBitcodeWriter::writeModuleInfo() {
1128 // Emit various pieces of data attached to a module.
1129 if (!M
.getTargetTriple().empty())
1130 writeStringRecord(Stream
, bitc::MODULE_CODE_TRIPLE
, M
.getTargetTriple(),
1132 const std::string
&DL
= M
.getDataLayoutStr();
1134 writeStringRecord(Stream
, bitc::MODULE_CODE_DATALAYOUT
, DL
, 0 /*TODO*/);
1135 if (!M
.getModuleInlineAsm().empty())
1136 writeStringRecord(Stream
, bitc::MODULE_CODE_ASM
, M
.getModuleInlineAsm(),
1139 // Emit information about sections and GC, computing how many there are. Also
1140 // compute the maximum alignment value.
1141 std::map
<std::string
, unsigned> SectionMap
;
1142 std::map
<std::string
, unsigned> GCMap
;
1143 unsigned MaxAlignment
= 0;
1144 unsigned MaxGlobalType
= 0;
1145 for (const GlobalValue
&GV
: M
.globals()) {
1146 MaxAlignment
= std::max(MaxAlignment
, GV
.getAlignment());
1147 MaxGlobalType
= std::max(MaxGlobalType
, VE
.getTypeID(GV
.getValueType()));
1148 if (GV
.hasSection()) {
1149 // Give section names unique ID's.
1150 unsigned &Entry
= SectionMap
[GV
.getSection()];
1152 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, GV
.getSection(),
1154 Entry
= SectionMap
.size();
1158 for (const Function
&F
: M
) {
1159 MaxAlignment
= std::max(MaxAlignment
, F
.getAlignment());
1160 if (F
.hasSection()) {
1161 // Give section names unique ID's.
1162 unsigned &Entry
= SectionMap
[F
.getSection()];
1164 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, F
.getSection(),
1166 Entry
= SectionMap
.size();
1170 // Same for GC names.
1171 unsigned &Entry
= GCMap
[F
.getGC()];
1173 writeStringRecord(Stream
, bitc::MODULE_CODE_GCNAME
, F
.getGC(),
1175 Entry
= GCMap
.size();
1180 // Emit abbrev for globals, now that we know # sections and max alignment.
1181 unsigned SimpleGVarAbbrev
= 0;
1182 if (!M
.global_empty()) {
1183 // Add an abbrev for common globals with no visibility or thread localness.
1184 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1185 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
1186 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1187 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1188 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1189 Log2_32_Ceil(MaxGlobalType
+1)));
1190 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // AddrSpace << 2
1191 //| explicitType << 1
1193 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
1194 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 5)); // Linkage.
1195 if (MaxAlignment
== 0) // Alignment.
1196 Abbv
->Add(BitCodeAbbrevOp(0));
1198 unsigned MaxEncAlignment
= Log2_32(MaxAlignment
)+1;
1199 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1200 Log2_32_Ceil(MaxEncAlignment
+1)));
1202 if (SectionMap
.empty()) // Section.
1203 Abbv
->Add(BitCodeAbbrevOp(0));
1205 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1206 Log2_32_Ceil(SectionMap
.size()+1)));
1207 // Don't bother emitting vis + thread local.
1208 SimpleGVarAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1211 SmallVector
<unsigned, 64> Vals
;
1212 // Emit the module's source file name.
1214 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
1215 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
1216 if (Bits
== SE_Char6
)
1217 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
1218 else if (Bits
== SE_Fixed7
)
1219 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
1221 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1222 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1223 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
1224 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1225 Abbv
->Add(AbbrevOpToUse
);
1226 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1228 for (const auto P
: M
.getSourceFileName())
1229 Vals
.push_back((unsigned char)P
);
1231 // Emit the finished record.
1232 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
1236 // Emit the global variable information.
1237 for (const GlobalVariable
&GV
: M
.globals()) {
1238 unsigned AbbrevToUse
= 0;
1240 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1241 // linkage, alignment, section, visibility, threadlocal,
1242 // unnamed_addr, externally_initialized, dllstorageclass,
1243 // comdat, attributes, DSO_Local]
1244 Vals
.push_back(addToStrtab(GV
.getName()));
1245 Vals
.push_back(GV
.getName().size());
1246 Vals
.push_back(VE
.getTypeID(GV
.getValueType()));
1247 Vals
.push_back(GV
.getType()->getAddressSpace() << 2 | 2 | GV
.isConstant());
1248 Vals
.push_back(GV
.isDeclaration() ? 0 :
1249 (VE
.getValueID(GV
.getInitializer()) + 1));
1250 Vals
.push_back(getEncodedLinkage(GV
));
1251 Vals
.push_back(Log2_32(GV
.getAlignment())+1);
1252 Vals
.push_back(GV
.hasSection() ? SectionMap
[GV
.getSection()] : 0);
1253 if (GV
.isThreadLocal() ||
1254 GV
.getVisibility() != GlobalValue::DefaultVisibility
||
1255 GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
||
1256 GV
.isExternallyInitialized() ||
1257 GV
.getDLLStorageClass() != GlobalValue::DefaultStorageClass
||
1259 GV
.hasAttributes() ||
1261 Vals
.push_back(getEncodedVisibility(GV
));
1262 Vals
.push_back(getEncodedThreadLocalMode(GV
));
1263 Vals
.push_back(getEncodedUnnamedAddr(GV
));
1264 Vals
.push_back(GV
.isExternallyInitialized());
1265 Vals
.push_back(getEncodedDLLStorageClass(GV
));
1266 Vals
.push_back(GV
.hasComdat() ? VE
.getComdatID(GV
.getComdat()) : 0);
1268 auto AL
= GV
.getAttributesAsList(AttributeList::FunctionIndex
);
1269 Vals
.push_back(VE
.getAttributeListID(AL
));
1271 Vals
.push_back(GV
.isDSOLocal());
1273 AbbrevToUse
= SimpleGVarAbbrev
;
1276 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
1280 // Emit the function proto information.
1281 for (const Function
&F
: M
) {
1282 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1283 // linkage, paramattrs, alignment, section, visibility, gc,
1284 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1285 // prefixdata, personalityfn, DSO_Local, addrspace]
1286 Vals
.push_back(addToStrtab(F
.getName()));
1287 Vals
.push_back(F
.getName().size());
1288 Vals
.push_back(VE
.getTypeID(F
.getFunctionType()));
1289 Vals
.push_back(F
.getCallingConv());
1290 Vals
.push_back(F
.isDeclaration());
1291 Vals
.push_back(getEncodedLinkage(F
));
1292 Vals
.push_back(VE
.getAttributeListID(F
.getAttributes()));
1293 Vals
.push_back(Log2_32(F
.getAlignment())+1);
1294 Vals
.push_back(F
.hasSection() ? SectionMap
[F
.getSection()] : 0);
1295 Vals
.push_back(getEncodedVisibility(F
));
1296 Vals
.push_back(F
.hasGC() ? GCMap
[F
.getGC()] : 0);
1297 Vals
.push_back(getEncodedUnnamedAddr(F
));
1298 Vals
.push_back(F
.hasPrologueData() ? (VE
.getValueID(F
.getPrologueData()) + 1)
1300 Vals
.push_back(getEncodedDLLStorageClass(F
));
1301 Vals
.push_back(F
.hasComdat() ? VE
.getComdatID(F
.getComdat()) : 0);
1302 Vals
.push_back(F
.hasPrefixData() ? (VE
.getValueID(F
.getPrefixData()) + 1)
1305 F
.hasPersonalityFn() ? (VE
.getValueID(F
.getPersonalityFn()) + 1) : 0);
1307 Vals
.push_back(F
.isDSOLocal());
1308 Vals
.push_back(F
.getAddressSpace());
1310 unsigned AbbrevToUse
= 0;
1311 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
1315 // Emit the alias information.
1316 for (const GlobalAlias
&A
: M
.aliases()) {
1317 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1318 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1320 Vals
.push_back(addToStrtab(A
.getName()));
1321 Vals
.push_back(A
.getName().size());
1322 Vals
.push_back(VE
.getTypeID(A
.getValueType()));
1323 Vals
.push_back(A
.getType()->getAddressSpace());
1324 Vals
.push_back(VE
.getValueID(A
.getAliasee()));
1325 Vals
.push_back(getEncodedLinkage(A
));
1326 Vals
.push_back(getEncodedVisibility(A
));
1327 Vals
.push_back(getEncodedDLLStorageClass(A
));
1328 Vals
.push_back(getEncodedThreadLocalMode(A
));
1329 Vals
.push_back(getEncodedUnnamedAddr(A
));
1330 Vals
.push_back(A
.isDSOLocal());
1332 unsigned AbbrevToUse
= 0;
1333 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
, AbbrevToUse
);
1337 // Emit the ifunc information.
1338 for (const GlobalIFunc
&I
: M
.ifuncs()) {
1339 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1340 // val#, linkage, visibility, DSO_Local]
1341 Vals
.push_back(addToStrtab(I
.getName()));
1342 Vals
.push_back(I
.getName().size());
1343 Vals
.push_back(VE
.getTypeID(I
.getValueType()));
1344 Vals
.push_back(I
.getType()->getAddressSpace());
1345 Vals
.push_back(VE
.getValueID(I
.getResolver()));
1346 Vals
.push_back(getEncodedLinkage(I
));
1347 Vals
.push_back(getEncodedVisibility(I
));
1348 Vals
.push_back(I
.isDSOLocal());
1349 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
1353 writeValueSymbolTableForwardDecl();
1356 static uint64_t getOptimizationFlags(const Value
*V
) {
1359 if (const auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
1360 if (OBO
->hasNoSignedWrap())
1361 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
1362 if (OBO
->hasNoUnsignedWrap())
1363 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
1364 } else if (const auto *PEO
= dyn_cast
<PossiblyExactOperator
>(V
)) {
1366 Flags
|= 1 << bitc::PEO_EXACT
;
1367 } else if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(V
)) {
1368 if (FPMO
->hasAllowReassoc())
1369 Flags
|= bitc::AllowReassoc
;
1370 if (FPMO
->hasNoNaNs())
1371 Flags
|= bitc::NoNaNs
;
1372 if (FPMO
->hasNoInfs())
1373 Flags
|= bitc::NoInfs
;
1374 if (FPMO
->hasNoSignedZeros())
1375 Flags
|= bitc::NoSignedZeros
;
1376 if (FPMO
->hasAllowReciprocal())
1377 Flags
|= bitc::AllowReciprocal
;
1378 if (FPMO
->hasAllowContract())
1379 Flags
|= bitc::AllowContract
;
1380 if (FPMO
->hasApproxFunc())
1381 Flags
|= bitc::ApproxFunc
;
1387 void ModuleBitcodeWriter::writeValueAsMetadata(
1388 const ValueAsMetadata
*MD
, SmallVectorImpl
<uint64_t> &Record
) {
1389 // Mimic an MDNode with a value as one operand.
1390 Value
*V
= MD
->getValue();
1391 Record
.push_back(VE
.getTypeID(V
->getType()));
1392 Record
.push_back(VE
.getValueID(V
));
1393 Stream
.EmitRecord(bitc::METADATA_VALUE
, Record
, 0);
1397 void ModuleBitcodeWriter::writeMDTuple(const MDTuple
*N
,
1398 SmallVectorImpl
<uint64_t> &Record
,
1400 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
1401 Metadata
*MD
= N
->getOperand(i
);
1402 assert(!(MD
&& isa
<LocalAsMetadata
>(MD
)) &&
1403 "Unexpected function-local metadata");
1404 Record
.push_back(VE
.getMetadataOrNullID(MD
));
1406 Stream
.EmitRecord(N
->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1407 : bitc::METADATA_NODE
,
1412 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1413 // Assume the column is usually under 128, and always output the inlined-at
1414 // location (it's never more expensive than building an array size 1).
1415 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1416 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION
));
1417 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1418 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1419 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1420 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1421 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1422 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1423 return Stream
.EmitAbbrev(std::move(Abbv
));
1426 void ModuleBitcodeWriter::writeDILocation(const DILocation
*N
,
1427 SmallVectorImpl
<uint64_t> &Record
,
1430 Abbrev
= createDILocationAbbrev();
1432 Record
.push_back(N
->isDistinct());
1433 Record
.push_back(N
->getLine());
1434 Record
.push_back(N
->getColumn());
1435 Record
.push_back(VE
.getMetadataID(N
->getScope()));
1436 Record
.push_back(VE
.getMetadataOrNullID(N
->getInlinedAt()));
1437 Record
.push_back(N
->isImplicitCode());
1439 Stream
.EmitRecord(bitc::METADATA_LOCATION
, Record
, Abbrev
);
1443 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1444 // Assume the column is usually under 128, and always output the inlined-at
1445 // location (it's never more expensive than building an array size 1).
1446 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1447 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG
));
1448 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1449 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1450 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1451 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1452 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1453 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1454 return Stream
.EmitAbbrev(std::move(Abbv
));
1457 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode
*N
,
1458 SmallVectorImpl
<uint64_t> &Record
,
1461 Abbrev
= createGenericDINodeAbbrev();
1463 Record
.push_back(N
->isDistinct());
1464 Record
.push_back(N
->getTag());
1465 Record
.push_back(0); // Per-tag version field; unused for now.
1467 for (auto &I
: N
->operands())
1468 Record
.push_back(VE
.getMetadataOrNullID(I
));
1470 Stream
.EmitRecord(bitc::METADATA_GENERIC_DEBUG
, Record
, Abbrev
);
1474 static uint64_t rotateSign(int64_t I
) {
1476 return I
< 0 ? ~(U
<< 1) : U
<< 1;
1479 void ModuleBitcodeWriter::writeDISubrange(const DISubrange
*N
,
1480 SmallVectorImpl
<uint64_t> &Record
,
1482 const uint64_t Version
= 1 << 1;
1483 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1484 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawCountNode()));
1485 Record
.push_back(rotateSign(N
->getLowerBound()));
1487 Stream
.EmitRecord(bitc::METADATA_SUBRANGE
, Record
, Abbrev
);
1491 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator
*N
,
1492 SmallVectorImpl
<uint64_t> &Record
,
1494 Record
.push_back((N
->isUnsigned() << 1) | N
->isDistinct());
1495 Record
.push_back(rotateSign(N
->getValue()));
1496 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1498 Stream
.EmitRecord(bitc::METADATA_ENUMERATOR
, Record
, Abbrev
);
1502 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType
*N
,
1503 SmallVectorImpl
<uint64_t> &Record
,
1505 Record
.push_back(N
->isDistinct());
1506 Record
.push_back(N
->getTag());
1507 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1508 Record
.push_back(N
->getSizeInBits());
1509 Record
.push_back(N
->getAlignInBits());
1510 Record
.push_back(N
->getEncoding());
1511 Record
.push_back(N
->getFlags());
1513 Stream
.EmitRecord(bitc::METADATA_BASIC_TYPE
, Record
, Abbrev
);
1517 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType
*N
,
1518 SmallVectorImpl
<uint64_t> &Record
,
1520 Record
.push_back(N
->isDistinct());
1521 Record
.push_back(N
->getTag());
1522 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1523 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1524 Record
.push_back(N
->getLine());
1525 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1526 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1527 Record
.push_back(N
->getSizeInBits());
1528 Record
.push_back(N
->getAlignInBits());
1529 Record
.push_back(N
->getOffsetInBits());
1530 Record
.push_back(N
->getFlags());
1531 Record
.push_back(VE
.getMetadataOrNullID(N
->getExtraData()));
1533 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1534 // that there is no DWARF address space associated with DIDerivedType.
1535 if (const auto &DWARFAddressSpace
= N
->getDWARFAddressSpace())
1536 Record
.push_back(*DWARFAddressSpace
+ 1);
1538 Record
.push_back(0);
1540 Stream
.EmitRecord(bitc::METADATA_DERIVED_TYPE
, Record
, Abbrev
);
1544 void ModuleBitcodeWriter::writeDICompositeType(
1545 const DICompositeType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1547 const unsigned IsNotUsedInOldTypeRef
= 0x2;
1548 Record
.push_back(IsNotUsedInOldTypeRef
| (unsigned)N
->isDistinct());
1549 Record
.push_back(N
->getTag());
1550 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1551 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1552 Record
.push_back(N
->getLine());
1553 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1554 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1555 Record
.push_back(N
->getSizeInBits());
1556 Record
.push_back(N
->getAlignInBits());
1557 Record
.push_back(N
->getOffsetInBits());
1558 Record
.push_back(N
->getFlags());
1559 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1560 Record
.push_back(N
->getRuntimeLang());
1561 Record
.push_back(VE
.getMetadataOrNullID(N
->getVTableHolder()));
1562 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1563 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawIdentifier()));
1564 Record
.push_back(VE
.getMetadataOrNullID(N
->getDiscriminator()));
1566 Stream
.EmitRecord(bitc::METADATA_COMPOSITE_TYPE
, Record
, Abbrev
);
1570 void ModuleBitcodeWriter::writeDISubroutineType(
1571 const DISubroutineType
*N
, SmallVectorImpl
<uint64_t> &Record
,
1573 const unsigned HasNoOldTypeRefs
= 0x2;
1574 Record
.push_back(HasNoOldTypeRefs
| (unsigned)N
->isDistinct());
1575 Record
.push_back(N
->getFlags());
1576 Record
.push_back(VE
.getMetadataOrNullID(N
->getTypeArray().get()));
1577 Record
.push_back(N
->getCC());
1579 Stream
.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE
, Record
, Abbrev
);
1583 void ModuleBitcodeWriter::writeDIFile(const DIFile
*N
,
1584 SmallVectorImpl
<uint64_t> &Record
,
1586 Record
.push_back(N
->isDistinct());
1587 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFilename()));
1588 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDirectory()));
1589 if (N
->getRawChecksum()) {
1590 Record
.push_back(N
->getRawChecksum()->Kind
);
1591 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawChecksum()->Value
));
1593 // Maintain backwards compatibility with the old internal representation of
1594 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1595 Record
.push_back(0);
1596 Record
.push_back(VE
.getMetadataOrNullID(nullptr));
1598 auto Source
= N
->getRawSource();
1600 Record
.push_back(VE
.getMetadataOrNullID(*Source
));
1602 Stream
.EmitRecord(bitc::METADATA_FILE
, Record
, Abbrev
);
1606 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit
*N
,
1607 SmallVectorImpl
<uint64_t> &Record
,
1609 assert(N
->isDistinct() && "Expected distinct compile units");
1610 Record
.push_back(/* IsDistinct */ true);
1611 Record
.push_back(N
->getSourceLanguage());
1612 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1613 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawProducer()));
1614 Record
.push_back(N
->isOptimized());
1615 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFlags()));
1616 Record
.push_back(N
->getRuntimeVersion());
1617 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSplitDebugFilename()));
1618 Record
.push_back(N
->getEmissionKind());
1619 Record
.push_back(VE
.getMetadataOrNullID(N
->getEnumTypes().get()));
1620 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedTypes().get()));
1621 Record
.push_back(/* subprograms */ 0);
1622 Record
.push_back(VE
.getMetadataOrNullID(N
->getGlobalVariables().get()));
1623 Record
.push_back(VE
.getMetadataOrNullID(N
->getImportedEntities().get()));
1624 Record
.push_back(N
->getDWOId());
1625 Record
.push_back(VE
.getMetadataOrNullID(N
->getMacros().get()));
1626 Record
.push_back(N
->getSplitDebugInlining());
1627 Record
.push_back(N
->getDebugInfoForProfiling());
1628 Record
.push_back((unsigned)N
->getNameTableKind());
1630 Stream
.EmitRecord(bitc::METADATA_COMPILE_UNIT
, Record
, Abbrev
);
1634 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram
*N
,
1635 SmallVectorImpl
<uint64_t> &Record
,
1637 const uint64_t HasUnitFlag
= 1 << 1;
1638 const uint64_t HasSPFlagsFlag
= 1 << 2;
1639 Record
.push_back(uint64_t(N
->isDistinct()) | HasUnitFlag
| HasSPFlagsFlag
);
1640 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1641 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1642 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1643 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1644 Record
.push_back(N
->getLine());
1645 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1646 Record
.push_back(N
->getScopeLine());
1647 Record
.push_back(VE
.getMetadataOrNullID(N
->getContainingType()));
1648 Record
.push_back(N
->getSPFlags());
1649 Record
.push_back(N
->getVirtualIndex());
1650 Record
.push_back(N
->getFlags());
1651 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUnit()));
1652 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1653 Record
.push_back(VE
.getMetadataOrNullID(N
->getDeclaration()));
1654 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedNodes().get()));
1655 Record
.push_back(N
->getThisAdjustment());
1656 Record
.push_back(VE
.getMetadataOrNullID(N
->getThrownTypes().get()));
1658 Stream
.EmitRecord(bitc::METADATA_SUBPROGRAM
, Record
, Abbrev
);
1662 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock
*N
,
1663 SmallVectorImpl
<uint64_t> &Record
,
1665 Record
.push_back(N
->isDistinct());
1666 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1667 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1668 Record
.push_back(N
->getLine());
1669 Record
.push_back(N
->getColumn());
1671 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK
, Record
, Abbrev
);
1675 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1676 const DILexicalBlockFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
1678 Record
.push_back(N
->isDistinct());
1679 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1680 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1681 Record
.push_back(N
->getDiscriminator());
1683 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE
, Record
, Abbrev
);
1687 void ModuleBitcodeWriter::writeDINamespace(const DINamespace
*N
,
1688 SmallVectorImpl
<uint64_t> &Record
,
1690 Record
.push_back(N
->isDistinct() | N
->getExportSymbols() << 1);
1691 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1692 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1694 Stream
.EmitRecord(bitc::METADATA_NAMESPACE
, Record
, Abbrev
);
1698 void ModuleBitcodeWriter::writeDIMacro(const DIMacro
*N
,
1699 SmallVectorImpl
<uint64_t> &Record
,
1701 Record
.push_back(N
->isDistinct());
1702 Record
.push_back(N
->getMacinfoType());
1703 Record
.push_back(N
->getLine());
1704 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1705 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawValue()));
1707 Stream
.EmitRecord(bitc::METADATA_MACRO
, Record
, Abbrev
);
1711 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile
*N
,
1712 SmallVectorImpl
<uint64_t> &Record
,
1714 Record
.push_back(N
->isDistinct());
1715 Record
.push_back(N
->getMacinfoType());
1716 Record
.push_back(N
->getLine());
1717 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1718 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1720 Stream
.EmitRecord(bitc::METADATA_MACRO_FILE
, Record
, Abbrev
);
1724 void ModuleBitcodeWriter::writeDIModule(const DIModule
*N
,
1725 SmallVectorImpl
<uint64_t> &Record
,
1727 Record
.push_back(N
->isDistinct());
1728 for (auto &I
: N
->operands())
1729 Record
.push_back(VE
.getMetadataOrNullID(I
));
1731 Stream
.EmitRecord(bitc::METADATA_MODULE
, Record
, Abbrev
);
1735 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1736 const DITemplateTypeParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1738 Record
.push_back(N
->isDistinct());
1739 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1740 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1742 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_TYPE
, Record
, Abbrev
);
1746 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1747 const DITemplateValueParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1749 Record
.push_back(N
->isDistinct());
1750 Record
.push_back(N
->getTag());
1751 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1752 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1753 Record
.push_back(VE
.getMetadataOrNullID(N
->getValue()));
1755 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_VALUE
, Record
, Abbrev
);
1759 void ModuleBitcodeWriter::writeDIGlobalVariable(
1760 const DIGlobalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
1762 const uint64_t Version
= 2 << 1;
1763 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1764 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1765 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1766 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1767 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1768 Record
.push_back(N
->getLine());
1769 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1770 Record
.push_back(N
->isLocalToUnit());
1771 Record
.push_back(N
->isDefinition());
1772 Record
.push_back(VE
.getMetadataOrNullID(N
->getStaticDataMemberDeclaration()));
1773 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams()));
1774 Record
.push_back(N
->getAlignInBits());
1776 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR
, Record
, Abbrev
);
1780 void ModuleBitcodeWriter::writeDILocalVariable(
1781 const DILocalVariable
*N
, SmallVectorImpl
<uint64_t> &Record
,
1783 // In order to support all possible bitcode formats in BitcodeReader we need
1784 // to distinguish the following cases:
1785 // 1) Record has no artificial tag (Record[1]),
1786 // has no obsolete inlinedAt field (Record[9]).
1787 // In this case Record size will be 8, HasAlignment flag is false.
1788 // 2) Record has artificial tag (Record[1]),
1789 // has no obsolete inlignedAt field (Record[9]).
1790 // In this case Record size will be 9, HasAlignment flag is false.
1791 // 3) Record has both artificial tag (Record[1]) and
1792 // obsolete inlignedAt field (Record[9]).
1793 // In this case Record size will be 10, HasAlignment flag is false.
1794 // 4) Record has neither artificial tag, nor inlignedAt field, but
1795 // HasAlignment flag is true and Record[8] contains alignment value.
1796 const uint64_t HasAlignmentFlag
= 1 << 1;
1797 Record
.push_back((uint64_t)N
->isDistinct() | HasAlignmentFlag
);
1798 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1799 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1800 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1801 Record
.push_back(N
->getLine());
1802 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1803 Record
.push_back(N
->getArg());
1804 Record
.push_back(N
->getFlags());
1805 Record
.push_back(N
->getAlignInBits());
1807 Stream
.EmitRecord(bitc::METADATA_LOCAL_VAR
, Record
, Abbrev
);
1811 void ModuleBitcodeWriter::writeDILabel(
1812 const DILabel
*N
, SmallVectorImpl
<uint64_t> &Record
,
1814 Record
.push_back((uint64_t)N
->isDistinct());
1815 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1816 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1817 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1818 Record
.push_back(N
->getLine());
1820 Stream
.EmitRecord(bitc::METADATA_LABEL
, Record
, Abbrev
);
1824 void ModuleBitcodeWriter::writeDIExpression(const DIExpression
*N
,
1825 SmallVectorImpl
<uint64_t> &Record
,
1827 Record
.reserve(N
->getElements().size() + 1);
1828 const uint64_t Version
= 3 << 1;
1829 Record
.push_back((uint64_t)N
->isDistinct() | Version
);
1830 Record
.append(N
->elements_begin(), N
->elements_end());
1832 Stream
.EmitRecord(bitc::METADATA_EXPRESSION
, Record
, Abbrev
);
1836 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1837 const DIGlobalVariableExpression
*N
, SmallVectorImpl
<uint64_t> &Record
,
1839 Record
.push_back(N
->isDistinct());
1840 Record
.push_back(VE
.getMetadataOrNullID(N
->getVariable()));
1841 Record
.push_back(VE
.getMetadataOrNullID(N
->getExpression()));
1843 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR
, Record
, Abbrev
);
1847 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty
*N
,
1848 SmallVectorImpl
<uint64_t> &Record
,
1850 Record
.push_back(N
->isDistinct());
1851 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1852 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1853 Record
.push_back(N
->getLine());
1854 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSetterName()));
1855 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawGetterName()));
1856 Record
.push_back(N
->getAttributes());
1857 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1859 Stream
.EmitRecord(bitc::METADATA_OBJC_PROPERTY
, Record
, Abbrev
);
1863 void ModuleBitcodeWriter::writeDIImportedEntity(
1864 const DIImportedEntity
*N
, SmallVectorImpl
<uint64_t> &Record
,
1866 Record
.push_back(N
->isDistinct());
1867 Record
.push_back(N
->getTag());
1868 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1869 Record
.push_back(VE
.getMetadataOrNullID(N
->getEntity()));
1870 Record
.push_back(N
->getLine());
1871 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1872 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFile()));
1874 Stream
.EmitRecord(bitc::METADATA_IMPORTED_ENTITY
, Record
, Abbrev
);
1878 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1879 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1880 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_NAME
));
1881 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1882 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1883 return Stream
.EmitAbbrev(std::move(Abbv
));
1886 void ModuleBitcodeWriter::writeNamedMetadata(
1887 SmallVectorImpl
<uint64_t> &Record
) {
1888 if (M
.named_metadata_empty())
1891 unsigned Abbrev
= createNamedMetadataAbbrev();
1892 for (const NamedMDNode
&NMD
: M
.named_metadata()) {
1894 StringRef Str
= NMD
.getName();
1895 Record
.append(Str
.bytes_begin(), Str
.bytes_end());
1896 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, Abbrev
);
1899 // Write named metadata operands.
1900 for (const MDNode
*N
: NMD
.operands())
1901 Record
.push_back(VE
.getMetadataID(N
));
1902 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
1907 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1908 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1909 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS
));
1910 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // # of strings
1911 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // offset to chars
1912 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
1913 return Stream
.EmitAbbrev(std::move(Abbv
));
1916 /// Write out a record for MDString.
1918 /// All the metadata strings in a metadata block are emitted in a single
1919 /// record. The sizes and strings themselves are shoved into a blob.
1920 void ModuleBitcodeWriter::writeMetadataStrings(
1921 ArrayRef
<const Metadata
*> Strings
, SmallVectorImpl
<uint64_t> &Record
) {
1922 if (Strings
.empty())
1925 // Start the record with the number of strings.
1926 Record
.push_back(bitc::METADATA_STRINGS
);
1927 Record
.push_back(Strings
.size());
1929 // Emit the sizes of the strings in the blob.
1930 SmallString
<256> Blob
;
1932 BitstreamWriter
W(Blob
);
1933 for (const Metadata
*MD
: Strings
)
1934 W
.EmitVBR(cast
<MDString
>(MD
)->getLength(), 6);
1938 // Add the offset to the strings to the record.
1939 Record
.push_back(Blob
.size());
1941 // Add the strings to the blob.
1942 for (const Metadata
*MD
: Strings
)
1943 Blob
.append(cast
<MDString
>(MD
)->getString());
1945 // Emit the final record.
1946 Stream
.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record
, Blob
);
1950 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1951 enum MetadataAbbrev
: unsigned {
1952 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1953 #include "llvm/IR/Metadata.def"
1957 void ModuleBitcodeWriter::writeMetadataRecords(
1958 ArrayRef
<const Metadata
*> MDs
, SmallVectorImpl
<uint64_t> &Record
,
1959 std::vector
<unsigned> *MDAbbrevs
, std::vector
<uint64_t> *IndexPos
) {
1963 // Initialize MDNode abbreviations.
1964 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1965 #include "llvm/IR/Metadata.def"
1967 for (const Metadata
*MD
: MDs
) {
1969 IndexPos
->push_back(Stream
.GetCurrentBitNo());
1970 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
1971 assert(N
->isResolved() && "Expected forward references to be resolved");
1973 switch (N
->getMetadataID()) {
1975 llvm_unreachable("Invalid MDNode subclass");
1976 #define HANDLE_MDNODE_LEAF(CLASS) \
1977 case Metadata::CLASS##Kind: \
1979 write##CLASS(cast<CLASS>(N), Record, \
1980 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1982 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1984 #include "llvm/IR/Metadata.def"
1987 writeValueAsMetadata(cast
<ValueAsMetadata
>(MD
), Record
);
1991 void ModuleBitcodeWriter::writeModuleMetadata() {
1992 if (!VE
.hasMDs() && M
.named_metadata_empty())
1995 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 4);
1996 SmallVector
<uint64_t, 64> Record
;
1998 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1999 // block and load any metadata.
2000 std::vector
<unsigned> MDAbbrevs
;
2002 MDAbbrevs
.resize(MetadataAbbrev::LastPlusOne
);
2003 MDAbbrevs
[MetadataAbbrev::DILocationAbbrevID
] = createDILocationAbbrev();
2004 MDAbbrevs
[MetadataAbbrev::GenericDINodeAbbrevID
] =
2005 createGenericDINodeAbbrev();
2007 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2008 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET
));
2009 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2010 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
2011 unsigned OffsetAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2013 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2014 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX
));
2015 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2016 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
2017 unsigned IndexAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2019 // Emit MDStrings together upfront.
2020 writeMetadataStrings(VE
.getMDStrings(), Record
);
2022 // We only emit an index for the metadata record if we have more than a given
2023 // (naive) threshold of metadatas, otherwise it is not worth it.
2024 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2025 // Write a placeholder value in for the offset of the metadata index,
2026 // which is written after the records, so that it can include
2027 // the offset of each entry. The placeholder offset will be
2028 // updated after all records are emitted.
2029 uint64_t Vals
[] = {0, 0};
2030 Stream
.EmitRecord(bitc::METADATA_INDEX_OFFSET
, Vals
, OffsetAbbrev
);
2033 // Compute and save the bit offset to the current position, which will be
2034 // patched when we emit the index later. We can simply subtract the 64-bit
2035 // fixed size from the current bit number to get the location to backpatch.
2036 uint64_t IndexOffsetRecordBitPos
= Stream
.GetCurrentBitNo();
2038 // This index will contain the bitpos for each individual record.
2039 std::vector
<uint64_t> IndexPos
;
2040 IndexPos
.reserve(VE
.getNonMDStrings().size());
2042 // Write all the records
2043 writeMetadataRecords(VE
.getNonMDStrings(), Record
, &MDAbbrevs
, &IndexPos
);
2045 if (VE
.getNonMDStrings().size() > IndexThreshold
) {
2046 // Now that we have emitted all the records we will emit the index. But
2048 // backpatch the forward reference so that the reader can skip the records
2050 Stream
.BackpatchWord64(IndexOffsetRecordBitPos
- 64,
2051 Stream
.GetCurrentBitNo() - IndexOffsetRecordBitPos
);
2053 // Delta encode the index.
2054 uint64_t PreviousValue
= IndexOffsetRecordBitPos
;
2055 for (auto &Elt
: IndexPos
) {
2056 auto EltDelta
= Elt
- PreviousValue
;
2057 PreviousValue
= Elt
;
2060 // Emit the index record.
2061 Stream
.EmitRecord(bitc::METADATA_INDEX
, IndexPos
, IndexAbbrev
);
2065 // Write the named metadata now.
2066 writeNamedMetadata(Record
);
2068 auto AddDeclAttachedMetadata
= [&](const GlobalObject
&GO
) {
2069 SmallVector
<uint64_t, 4> Record
;
2070 Record
.push_back(VE
.getValueID(&GO
));
2071 pushGlobalMetadataAttachment(Record
, GO
);
2072 Stream
.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT
, Record
);
2074 for (const Function
&F
: M
)
2075 if (F
.isDeclaration() && F
.hasMetadata())
2076 AddDeclAttachedMetadata(F
);
2077 // FIXME: Only store metadata for declarations here, and move data for global
2078 // variable definitions to a separate block (PR28134).
2079 for (const GlobalVariable
&GV
: M
.globals())
2080 if (GV
.hasMetadata())
2081 AddDeclAttachedMetadata(GV
);
2086 void ModuleBitcodeWriter::writeFunctionMetadata(const Function
&F
) {
2090 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
2091 SmallVector
<uint64_t, 64> Record
;
2092 writeMetadataStrings(VE
.getMDStrings(), Record
);
2093 writeMetadataRecords(VE
.getNonMDStrings(), Record
);
2097 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2098 SmallVectorImpl
<uint64_t> &Record
, const GlobalObject
&GO
) {
2099 // [n x [id, mdnode]]
2100 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2101 GO
.getAllMetadata(MDs
);
2102 for (const auto &I
: MDs
) {
2103 Record
.push_back(I
.first
);
2104 Record
.push_back(VE
.getMetadataID(I
.second
));
2108 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function
&F
) {
2109 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
2111 SmallVector
<uint64_t, 64> Record
;
2113 if (F
.hasMetadata()) {
2114 pushGlobalMetadataAttachment(Record
, F
);
2115 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2119 // Write metadata attachments
2120 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2121 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2122 for (const BasicBlock
&BB
: F
)
2123 for (const Instruction
&I
: BB
) {
2125 I
.getAllMetadataOtherThanDebugLoc(MDs
);
2127 // If no metadata, ignore instruction.
2128 if (MDs
.empty()) continue;
2130 Record
.push_back(VE
.getInstructionID(&I
));
2132 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
2133 Record
.push_back(MDs
[i
].first
);
2134 Record
.push_back(VE
.getMetadataID(MDs
[i
].second
));
2136 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
2143 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2144 SmallVector
<uint64_t, 64> Record
;
2146 // Write metadata kinds
2147 // METADATA_KIND - [n x [id, name]]
2148 SmallVector
<StringRef
, 8> Names
;
2149 M
.getMDKindNames(Names
);
2151 if (Names
.empty()) return;
2153 Stream
.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID
, 3);
2155 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
2156 Record
.push_back(MDKindID
);
2157 StringRef KName
= Names
[MDKindID
];
2158 Record
.append(KName
.begin(), KName
.end());
2160 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
2167 void ModuleBitcodeWriter::writeOperandBundleTags() {
2168 // Write metadata kinds
2170 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2172 // OPERAND_BUNDLE_TAG - [strchr x N]
2174 SmallVector
<StringRef
, 8> Tags
;
2175 M
.getOperandBundleTags(Tags
);
2180 Stream
.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID
, 3);
2182 SmallVector
<uint64_t, 64> Record
;
2184 for (auto Tag
: Tags
) {
2185 Record
.append(Tag
.begin(), Tag
.end());
2187 Stream
.EmitRecord(bitc::OPERAND_BUNDLE_TAG
, Record
, 0);
2194 void ModuleBitcodeWriter::writeSyncScopeNames() {
2195 SmallVector
<StringRef
, 8> SSNs
;
2196 M
.getContext().getSyncScopeNames(SSNs
);
2200 Stream
.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID
, 2);
2202 SmallVector
<uint64_t, 64> Record
;
2203 for (auto SSN
: SSNs
) {
2204 Record
.append(SSN
.begin(), SSN
.end());
2205 Stream
.EmitRecord(bitc::SYNC_SCOPE_NAME
, Record
, 0);
2212 static void emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
, uint64_t V
) {
2213 if ((int64_t)V
>= 0)
2214 Vals
.push_back(V
<< 1);
2216 Vals
.push_back((-V
<< 1) | 1);
2219 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal
, unsigned LastVal
,
2221 if (FirstVal
== LastVal
) return;
2223 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
2225 unsigned AggregateAbbrev
= 0;
2226 unsigned String8Abbrev
= 0;
2227 unsigned CString7Abbrev
= 0;
2228 unsigned CString6Abbrev
= 0;
2229 // If this is a constant pool for the module, emit module-specific abbrevs.
2231 // Abbrev for CST_CODE_AGGREGATE.
2232 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2233 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
2234 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2235 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+1)));
2236 AggregateAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2238 // Abbrev for CST_CODE_STRING.
2239 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2240 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
2241 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2242 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2243 String8Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2244 // Abbrev for CST_CODE_CSTRING.
2245 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2246 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2247 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2248 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
2249 CString7Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2250 // Abbrev for CST_CODE_CSTRING.
2251 Abbv
= std::make_shared
<BitCodeAbbrev
>();
2252 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
2253 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2254 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2255 CString6Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2258 SmallVector
<uint64_t, 64> Record
;
2260 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2261 Type
*LastTy
= nullptr;
2262 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
2263 const Value
*V
= Vals
[i
].first
;
2264 // If we need to switch types, do so now.
2265 if (V
->getType() != LastTy
) {
2266 LastTy
= V
->getType();
2267 Record
.push_back(VE
.getTypeID(LastTy
));
2268 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
2269 CONSTANTS_SETTYPE_ABBREV
);
2273 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
2274 Record
.push_back(unsigned(IA
->hasSideEffects()) |
2275 unsigned(IA
->isAlignStack()) << 1 |
2276 unsigned(IA
->getDialect()&1) << 2);
2278 // Add the asm string.
2279 const std::string
&AsmStr
= IA
->getAsmString();
2280 Record
.push_back(AsmStr
.size());
2281 Record
.append(AsmStr
.begin(), AsmStr
.end());
2283 // Add the constraint string.
2284 const std::string
&ConstraintStr
= IA
->getConstraintString();
2285 Record
.push_back(ConstraintStr
.size());
2286 Record
.append(ConstraintStr
.begin(), ConstraintStr
.end());
2287 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
2291 const Constant
*C
= cast
<Constant
>(V
);
2292 unsigned Code
= -1U;
2293 unsigned AbbrevToUse
= 0;
2294 if (C
->isNullValue()) {
2295 Code
= bitc::CST_CODE_NULL
;
2296 } else if (isa
<UndefValue
>(C
)) {
2297 Code
= bitc::CST_CODE_UNDEF
;
2298 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
2299 if (IV
->getBitWidth() <= 64) {
2300 uint64_t V
= IV
->getSExtValue();
2301 emitSignedInt64(Record
, V
);
2302 Code
= bitc::CST_CODE_INTEGER
;
2303 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
2304 } else { // Wide integers, > 64 bits in size.
2305 // We have an arbitrary precision integer value to write whose
2306 // bit width is > 64. However, in canonical unsigned integer
2307 // format it is likely that the high bits are going to be zero.
2308 // So, we only write the number of active words.
2309 unsigned NWords
= IV
->getValue().getActiveWords();
2310 const uint64_t *RawWords
= IV
->getValue().getRawData();
2311 for (unsigned i
= 0; i
!= NWords
; ++i
) {
2312 emitSignedInt64(Record
, RawWords
[i
]);
2314 Code
= bitc::CST_CODE_WIDE_INTEGER
;
2316 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
2317 Code
= bitc::CST_CODE_FLOAT
;
2318 Type
*Ty
= CFP
->getType();
2319 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) {
2320 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
2321 } else if (Ty
->isX86_FP80Ty()) {
2322 // api needed to prevent premature destruction
2323 // bits are not in the same order as a normal i80 APInt, compensate.
2324 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2325 const uint64_t *p
= api
.getRawData();
2326 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
2327 Record
.push_back(p
[0] & 0xffffLL
);
2328 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
2329 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2330 const uint64_t *p
= api
.getRawData();
2331 Record
.push_back(p
[0]);
2332 Record
.push_back(p
[1]);
2334 assert(0 && "Unknown FP type!");
2336 } else if (isa
<ConstantDataSequential
>(C
) &&
2337 cast
<ConstantDataSequential
>(C
)->isString()) {
2338 const ConstantDataSequential
*Str
= cast
<ConstantDataSequential
>(C
);
2339 // Emit constant strings specially.
2340 unsigned NumElts
= Str
->getNumElements();
2341 // If this is a null-terminated string, use the denser CSTRING encoding.
2342 if (Str
->isCString()) {
2343 Code
= bitc::CST_CODE_CSTRING
;
2344 --NumElts
; // Don't encode the null, which isn't allowed by char6.
2346 Code
= bitc::CST_CODE_STRING
;
2347 AbbrevToUse
= String8Abbrev
;
2349 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
2350 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
2351 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2352 unsigned char V
= Str
->getElementAsInteger(i
);
2353 Record
.push_back(V
);
2354 isCStr7
&= (V
& 128) == 0;
2356 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
2360 AbbrevToUse
= CString6Abbrev
;
2362 AbbrevToUse
= CString7Abbrev
;
2363 } else if (const ConstantDataSequential
*CDS
=
2364 dyn_cast
<ConstantDataSequential
>(C
)) {
2365 Code
= bitc::CST_CODE_DATA
;
2366 Type
*EltTy
= CDS
->getType()->getElementType();
2367 if (isa
<IntegerType
>(EltTy
)) {
2368 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2369 Record
.push_back(CDS
->getElementAsInteger(i
));
2371 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2373 CDS
->getElementAsAPFloat(i
).bitcastToAPInt().getLimitedValue());
2375 } else if (isa
<ConstantAggregate
>(C
)) {
2376 Code
= bitc::CST_CODE_AGGREGATE
;
2377 for (const Value
*Op
: C
->operands())
2378 Record
.push_back(VE
.getValueID(Op
));
2379 AbbrevToUse
= AggregateAbbrev
;
2380 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2381 switch (CE
->getOpcode()) {
2383 if (Instruction::isCast(CE
->getOpcode())) {
2384 Code
= bitc::CST_CODE_CE_CAST
;
2385 Record
.push_back(getEncodedCastOpcode(CE
->getOpcode()));
2386 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2387 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2388 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
2390 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
2391 Code
= bitc::CST_CODE_CE_BINOP
;
2392 Record
.push_back(getEncodedBinaryOpcode(CE
->getOpcode()));
2393 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2394 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2395 uint64_t Flags
= getOptimizationFlags(CE
);
2397 Record
.push_back(Flags
);
2400 case Instruction::FNeg
: {
2401 assert(CE
->getNumOperands() == 1 && "Unknown constant expr!");
2402 Code
= bitc::CST_CODE_CE_UNOP
;
2403 Record
.push_back(getEncodedUnaryOpcode(CE
->getOpcode()));
2404 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2405 uint64_t Flags
= getOptimizationFlags(CE
);
2407 Record
.push_back(Flags
);
2410 case Instruction::GetElementPtr
: {
2411 Code
= bitc::CST_CODE_CE_GEP
;
2412 const auto *GO
= cast
<GEPOperator
>(C
);
2413 Record
.push_back(VE
.getTypeID(GO
->getSourceElementType()));
2414 if (Optional
<unsigned> Idx
= GO
->getInRangeIndex()) {
2415 Code
= bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX
;
2416 Record
.push_back((*Idx
<< 1) | GO
->isInBounds());
2417 } else if (GO
->isInBounds())
2418 Code
= bitc::CST_CODE_CE_INBOUNDS_GEP
;
2419 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
2420 Record
.push_back(VE
.getTypeID(C
->getOperand(i
)->getType()));
2421 Record
.push_back(VE
.getValueID(C
->getOperand(i
)));
2425 case Instruction::Select
:
2426 Code
= bitc::CST_CODE_CE_SELECT
;
2427 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2428 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2429 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2431 case Instruction::ExtractElement
:
2432 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
2433 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2434 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2435 Record
.push_back(VE
.getTypeID(C
->getOperand(1)->getType()));
2436 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2438 case Instruction::InsertElement
:
2439 Code
= bitc::CST_CODE_CE_INSERTELT
;
2440 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2441 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2442 Record
.push_back(VE
.getTypeID(C
->getOperand(2)->getType()));
2443 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2445 case Instruction::ShuffleVector
:
2446 // If the return type and argument types are the same, this is a
2447 // standard shufflevector instruction. If the types are different,
2448 // then the shuffle is widening or truncating the input vectors, and
2449 // the argument type must also be encoded.
2450 if (C
->getType() == C
->getOperand(0)->getType()) {
2451 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
2453 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
2454 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2456 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2457 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2458 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2460 case Instruction::ICmp
:
2461 case Instruction::FCmp
:
2462 Code
= bitc::CST_CODE_CE_CMP
;
2463 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
2464 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2465 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2466 Record
.push_back(CE
->getPredicate());
2469 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
2470 Code
= bitc::CST_CODE_BLOCKADDRESS
;
2471 Record
.push_back(VE
.getTypeID(BA
->getFunction()->getType()));
2472 Record
.push_back(VE
.getValueID(BA
->getFunction()));
2473 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
2478 llvm_unreachable("Unknown constant!");
2480 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
2487 void ModuleBitcodeWriter::writeModuleConstants() {
2488 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2490 // Find the first constant to emit, which is the first non-globalvalue value.
2491 // We know globalvalues have been emitted by WriteModuleInfo.
2492 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
2493 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
2494 writeConstants(i
, Vals
.size(), true);
2500 /// pushValueAndType - The file has to encode both the value and type id for
2501 /// many values, because we need to know what type to create for forward
2502 /// references. However, most operands are not forward references, so this type
2503 /// field is not needed.
2505 /// This function adds V's value ID to Vals. If the value ID is higher than the
2506 /// instruction ID, then it is a forward reference, and it also includes the
2507 /// type ID. The value ID that is written is encoded relative to the InstID.
2508 bool ModuleBitcodeWriter::pushValueAndType(const Value
*V
, unsigned InstID
,
2509 SmallVectorImpl
<unsigned> &Vals
) {
2510 unsigned ValID
= VE
.getValueID(V
);
2511 // Make encoding relative to the InstID.
2512 Vals
.push_back(InstID
- ValID
);
2513 if (ValID
>= InstID
) {
2514 Vals
.push_back(VE
.getTypeID(V
->getType()));
2520 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS
,
2522 SmallVector
<unsigned, 64> Record
;
2523 LLVMContext
&C
= CS
.getInstruction()->getContext();
2525 for (unsigned i
= 0, e
= CS
.getNumOperandBundles(); i
!= e
; ++i
) {
2526 const auto &Bundle
= CS
.getOperandBundleAt(i
);
2527 Record
.push_back(C
.getOperandBundleTagID(Bundle
.getTagName()));
2529 for (auto &Input
: Bundle
.Inputs
)
2530 pushValueAndType(Input
, InstID
, Record
);
2532 Stream
.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE
, Record
);
2537 /// pushValue - Like pushValueAndType, but where the type of the value is
2538 /// omitted (perhaps it was already encoded in an earlier operand).
2539 void ModuleBitcodeWriter::pushValue(const Value
*V
, unsigned InstID
,
2540 SmallVectorImpl
<unsigned> &Vals
) {
2541 unsigned ValID
= VE
.getValueID(V
);
2542 Vals
.push_back(InstID
- ValID
);
2545 void ModuleBitcodeWriter::pushValueSigned(const Value
*V
, unsigned InstID
,
2546 SmallVectorImpl
<uint64_t> &Vals
) {
2547 unsigned ValID
= VE
.getValueID(V
);
2548 int64_t diff
= ((int32_t)InstID
- (int32_t)ValID
);
2549 emitSignedInt64(Vals
, diff
);
2552 /// WriteInstruction - Emit an instruction to the specified stream.
2553 void ModuleBitcodeWriter::writeInstruction(const Instruction
&I
,
2555 SmallVectorImpl
<unsigned> &Vals
) {
2557 unsigned AbbrevToUse
= 0;
2558 VE
.setInstructionID(&I
);
2559 switch (I
.getOpcode()) {
2561 if (Instruction::isCast(I
.getOpcode())) {
2562 Code
= bitc::FUNC_CODE_INST_CAST
;
2563 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2564 AbbrevToUse
= FUNCTION_INST_CAST_ABBREV
;
2565 Vals
.push_back(VE
.getTypeID(I
.getType()));
2566 Vals
.push_back(getEncodedCastOpcode(I
.getOpcode()));
2568 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
2569 Code
= bitc::FUNC_CODE_INST_BINOP
;
2570 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2571 AbbrevToUse
= FUNCTION_INST_BINOP_ABBREV
;
2572 pushValue(I
.getOperand(1), InstID
, Vals
);
2573 Vals
.push_back(getEncodedBinaryOpcode(I
.getOpcode()));
2574 uint64_t Flags
= getOptimizationFlags(&I
);
2576 if (AbbrevToUse
== FUNCTION_INST_BINOP_ABBREV
)
2577 AbbrevToUse
= FUNCTION_INST_BINOP_FLAGS_ABBREV
;
2578 Vals
.push_back(Flags
);
2582 case Instruction::FNeg
: {
2583 Code
= bitc::FUNC_CODE_INST_UNOP
;
2584 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2585 AbbrevToUse
= FUNCTION_INST_UNOP_ABBREV
;
2586 Vals
.push_back(getEncodedUnaryOpcode(I
.getOpcode()));
2587 uint64_t Flags
= getOptimizationFlags(&I
);
2589 if (AbbrevToUse
== FUNCTION_INST_UNOP_ABBREV
)
2590 AbbrevToUse
= FUNCTION_INST_UNOP_FLAGS_ABBREV
;
2591 Vals
.push_back(Flags
);
2595 case Instruction::GetElementPtr
: {
2596 Code
= bitc::FUNC_CODE_INST_GEP
;
2597 AbbrevToUse
= FUNCTION_INST_GEP_ABBREV
;
2598 auto &GEPInst
= cast
<GetElementPtrInst
>(I
);
2599 Vals
.push_back(GEPInst
.isInBounds());
2600 Vals
.push_back(VE
.getTypeID(GEPInst
.getSourceElementType()));
2601 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
2602 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2605 case Instruction::ExtractValue
: {
2606 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
2607 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2608 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
2609 Vals
.append(EVI
->idx_begin(), EVI
->idx_end());
2612 case Instruction::InsertValue
: {
2613 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
2614 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2615 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2616 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
2617 Vals
.append(IVI
->idx_begin(), IVI
->idx_end());
2620 case Instruction::Select
:
2621 Code
= bitc::FUNC_CODE_INST_VSELECT
;
2622 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2623 pushValue(I
.getOperand(2), InstID
, Vals
);
2624 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2626 case Instruction::ExtractElement
:
2627 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
2628 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2629 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2631 case Instruction::InsertElement
:
2632 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
2633 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2634 pushValue(I
.getOperand(1), InstID
, Vals
);
2635 pushValueAndType(I
.getOperand(2), InstID
, Vals
);
2637 case Instruction::ShuffleVector
:
2638 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
2639 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2640 pushValue(I
.getOperand(1), InstID
, Vals
);
2641 pushValue(I
.getOperand(2), InstID
, Vals
);
2643 case Instruction::ICmp
:
2644 case Instruction::FCmp
: {
2645 // compare returning Int1Ty or vector of Int1Ty
2646 Code
= bitc::FUNC_CODE_INST_CMP2
;
2647 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2648 pushValue(I
.getOperand(1), InstID
, Vals
);
2649 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
2650 uint64_t Flags
= getOptimizationFlags(&I
);
2652 Vals
.push_back(Flags
);
2656 case Instruction::Ret
:
2658 Code
= bitc::FUNC_CODE_INST_RET
;
2659 unsigned NumOperands
= I
.getNumOperands();
2660 if (NumOperands
== 0)
2661 AbbrevToUse
= FUNCTION_INST_RET_VOID_ABBREV
;
2662 else if (NumOperands
== 1) {
2663 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2664 AbbrevToUse
= FUNCTION_INST_RET_VAL_ABBREV
;
2666 for (unsigned i
= 0, e
= NumOperands
; i
!= e
; ++i
)
2667 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2671 case Instruction::Br
:
2673 Code
= bitc::FUNC_CODE_INST_BR
;
2674 const BranchInst
&II
= cast
<BranchInst
>(I
);
2675 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
2676 if (II
.isConditional()) {
2677 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
2678 pushValue(II
.getCondition(), InstID
, Vals
);
2682 case Instruction::Switch
:
2684 Code
= bitc::FUNC_CODE_INST_SWITCH
;
2685 const SwitchInst
&SI
= cast
<SwitchInst
>(I
);
2686 Vals
.push_back(VE
.getTypeID(SI
.getCondition()->getType()));
2687 pushValue(SI
.getCondition(), InstID
, Vals
);
2688 Vals
.push_back(VE
.getValueID(SI
.getDefaultDest()));
2689 for (auto Case
: SI
.cases()) {
2690 Vals
.push_back(VE
.getValueID(Case
.getCaseValue()));
2691 Vals
.push_back(VE
.getValueID(Case
.getCaseSuccessor()));
2695 case Instruction::IndirectBr
:
2696 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
2697 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
2698 // Encode the address operand as relative, but not the basic blocks.
2699 pushValue(I
.getOperand(0), InstID
, Vals
);
2700 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
)
2701 Vals
.push_back(VE
.getValueID(I
.getOperand(i
)));
2704 case Instruction::Invoke
: {
2705 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
2706 const Value
*Callee
= II
->getCalledValue();
2707 FunctionType
*FTy
= II
->getFunctionType();
2709 if (II
->hasOperandBundles())
2710 writeOperandBundles(II
, InstID
);
2712 Code
= bitc::FUNC_CODE_INST_INVOKE
;
2714 Vals
.push_back(VE
.getAttributeListID(II
->getAttributes()));
2715 Vals
.push_back(II
->getCallingConv() | 1 << 13);
2716 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
2717 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
2718 Vals
.push_back(VE
.getTypeID(FTy
));
2719 pushValueAndType(Callee
, InstID
, Vals
);
2721 // Emit value #'s for the fixed parameters.
2722 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2723 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
2725 // Emit type/value pairs for varargs params.
2726 if (FTy
->isVarArg()) {
2727 for (unsigned i
= FTy
->getNumParams(), e
= II
->getNumArgOperands();
2729 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
2733 case Instruction::Resume
:
2734 Code
= bitc::FUNC_CODE_INST_RESUME
;
2735 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2737 case Instruction::CleanupRet
: {
2738 Code
= bitc::FUNC_CODE_INST_CLEANUPRET
;
2739 const auto &CRI
= cast
<CleanupReturnInst
>(I
);
2740 pushValue(CRI
.getCleanupPad(), InstID
, Vals
);
2741 if (CRI
.hasUnwindDest())
2742 Vals
.push_back(VE
.getValueID(CRI
.getUnwindDest()));
2745 case Instruction::CatchRet
: {
2746 Code
= bitc::FUNC_CODE_INST_CATCHRET
;
2747 const auto &CRI
= cast
<CatchReturnInst
>(I
);
2748 pushValue(CRI
.getCatchPad(), InstID
, Vals
);
2749 Vals
.push_back(VE
.getValueID(CRI
.getSuccessor()));
2752 case Instruction::CleanupPad
:
2753 case Instruction::CatchPad
: {
2754 const auto &FuncletPad
= cast
<FuncletPadInst
>(I
);
2755 Code
= isa
<CatchPadInst
>(FuncletPad
) ? bitc::FUNC_CODE_INST_CATCHPAD
2756 : bitc::FUNC_CODE_INST_CLEANUPPAD
;
2757 pushValue(FuncletPad
.getParentPad(), InstID
, Vals
);
2759 unsigned NumArgOperands
= FuncletPad
.getNumArgOperands();
2760 Vals
.push_back(NumArgOperands
);
2761 for (unsigned Op
= 0; Op
!= NumArgOperands
; ++Op
)
2762 pushValueAndType(FuncletPad
.getArgOperand(Op
), InstID
, Vals
);
2765 case Instruction::CatchSwitch
: {
2766 Code
= bitc::FUNC_CODE_INST_CATCHSWITCH
;
2767 const auto &CatchSwitch
= cast
<CatchSwitchInst
>(I
);
2769 pushValue(CatchSwitch
.getParentPad(), InstID
, Vals
);
2771 unsigned NumHandlers
= CatchSwitch
.getNumHandlers();
2772 Vals
.push_back(NumHandlers
);
2773 for (const BasicBlock
*CatchPadBB
: CatchSwitch
.handlers())
2774 Vals
.push_back(VE
.getValueID(CatchPadBB
));
2776 if (CatchSwitch
.hasUnwindDest())
2777 Vals
.push_back(VE
.getValueID(CatchSwitch
.getUnwindDest()));
2780 case Instruction::Unreachable
:
2781 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
2782 AbbrevToUse
= FUNCTION_INST_UNREACHABLE_ABBREV
;
2785 case Instruction::PHI
: {
2786 const PHINode
&PN
= cast
<PHINode
>(I
);
2787 Code
= bitc::FUNC_CODE_INST_PHI
;
2788 // With the newer instruction encoding, forward references could give
2789 // negative valued IDs. This is most common for PHIs, so we use
2791 SmallVector
<uint64_t, 128> Vals64
;
2792 Vals64
.push_back(VE
.getTypeID(PN
.getType()));
2793 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
2794 pushValueSigned(PN
.getIncomingValue(i
), InstID
, Vals64
);
2795 Vals64
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
2797 // Emit a Vals64 vector and exit.
2798 Stream
.EmitRecord(Code
, Vals64
, AbbrevToUse
);
2803 case Instruction::LandingPad
: {
2804 const LandingPadInst
&LP
= cast
<LandingPadInst
>(I
);
2805 Code
= bitc::FUNC_CODE_INST_LANDINGPAD
;
2806 Vals
.push_back(VE
.getTypeID(LP
.getType()));
2807 Vals
.push_back(LP
.isCleanup());
2808 Vals
.push_back(LP
.getNumClauses());
2809 for (unsigned I
= 0, E
= LP
.getNumClauses(); I
!= E
; ++I
) {
2811 Vals
.push_back(LandingPadInst::Catch
);
2813 Vals
.push_back(LandingPadInst::Filter
);
2814 pushValueAndType(LP
.getClause(I
), InstID
, Vals
);
2819 case Instruction::Alloca
: {
2820 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
2821 const AllocaInst
&AI
= cast
<AllocaInst
>(I
);
2822 Vals
.push_back(VE
.getTypeID(AI
.getAllocatedType()));
2823 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
2824 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
2825 unsigned AlignRecord
= Log2_32(AI
.getAlignment()) + 1;
2826 assert(Log2_32(Value::MaximumAlignment
) + 1 < 1 << 5 &&
2827 "not enough bits for maximum alignment");
2828 assert(AlignRecord
< 1 << 5 && "alignment greater than 1 << 64");
2829 AlignRecord
|= AI
.isUsedWithInAlloca() << 5;
2830 AlignRecord
|= 1 << 6;
2831 AlignRecord
|= AI
.isSwiftError() << 7;
2832 Vals
.push_back(AlignRecord
);
2836 case Instruction::Load
:
2837 if (cast
<LoadInst
>(I
).isAtomic()) {
2838 Code
= bitc::FUNC_CODE_INST_LOADATOMIC
;
2839 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2841 Code
= bitc::FUNC_CODE_INST_LOAD
;
2842 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
)) // ptr
2843 AbbrevToUse
= FUNCTION_INST_LOAD_ABBREV
;
2845 Vals
.push_back(VE
.getTypeID(I
.getType()));
2846 Vals
.push_back(Log2_32(cast
<LoadInst
>(I
).getAlignment())+1);
2847 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
2848 if (cast
<LoadInst
>(I
).isAtomic()) {
2849 Vals
.push_back(getEncodedOrdering(cast
<LoadInst
>(I
).getOrdering()));
2850 Vals
.push_back(getEncodedSyncScopeID(cast
<LoadInst
>(I
).getSyncScopeID()));
2853 case Instruction::Store
:
2854 if (cast
<StoreInst
>(I
).isAtomic())
2855 Code
= bitc::FUNC_CODE_INST_STOREATOMIC
;
2857 Code
= bitc::FUNC_CODE_INST_STORE
;
2858 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // ptrty + ptr
2859 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // valty + val
2860 Vals
.push_back(Log2_32(cast
<StoreInst
>(I
).getAlignment())+1);
2861 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
2862 if (cast
<StoreInst
>(I
).isAtomic()) {
2863 Vals
.push_back(getEncodedOrdering(cast
<StoreInst
>(I
).getOrdering()));
2865 getEncodedSyncScopeID(cast
<StoreInst
>(I
).getSyncScopeID()));
2868 case Instruction::AtomicCmpXchg
:
2869 Code
= bitc::FUNC_CODE_INST_CMPXCHG
;
2870 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2871 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // cmp.
2872 pushValue(I
.getOperand(2), InstID
, Vals
); // newval.
2873 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isVolatile());
2875 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getSuccessOrdering()));
2877 getEncodedSyncScopeID(cast
<AtomicCmpXchgInst
>(I
).getSyncScopeID()));
2879 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getFailureOrdering()));
2880 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isWeak());
2882 case Instruction::AtomicRMW
:
2883 Code
= bitc::FUNC_CODE_INST_ATOMICRMW
;
2884 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2885 pushValue(I
.getOperand(1), InstID
, Vals
); // val.
2887 getEncodedRMWOperation(cast
<AtomicRMWInst
>(I
).getOperation()));
2888 Vals
.push_back(cast
<AtomicRMWInst
>(I
).isVolatile());
2889 Vals
.push_back(getEncodedOrdering(cast
<AtomicRMWInst
>(I
).getOrdering()));
2891 getEncodedSyncScopeID(cast
<AtomicRMWInst
>(I
).getSyncScopeID()));
2893 case Instruction::Fence
:
2894 Code
= bitc::FUNC_CODE_INST_FENCE
;
2895 Vals
.push_back(getEncodedOrdering(cast
<FenceInst
>(I
).getOrdering()));
2896 Vals
.push_back(getEncodedSyncScopeID(cast
<FenceInst
>(I
).getSyncScopeID()));
2898 case Instruction::Call
: {
2899 const CallInst
&CI
= cast
<CallInst
>(I
);
2900 FunctionType
*FTy
= CI
.getFunctionType();
2902 if (CI
.hasOperandBundles())
2903 writeOperandBundles(&CI
, InstID
);
2905 Code
= bitc::FUNC_CODE_INST_CALL
;
2907 Vals
.push_back(VE
.getAttributeListID(CI
.getAttributes()));
2909 unsigned Flags
= getOptimizationFlags(&I
);
2910 Vals
.push_back(CI
.getCallingConv() << bitc::CALL_CCONV
|
2911 unsigned(CI
.isTailCall()) << bitc::CALL_TAIL
|
2912 unsigned(CI
.isMustTailCall()) << bitc::CALL_MUSTTAIL
|
2913 1 << bitc::CALL_EXPLICIT_TYPE
|
2914 unsigned(CI
.isNoTailCall()) << bitc::CALL_NOTAIL
|
2915 unsigned(Flags
!= 0) << bitc::CALL_FMF
);
2917 Vals
.push_back(Flags
);
2919 Vals
.push_back(VE
.getTypeID(FTy
));
2920 pushValueAndType(CI
.getCalledValue(), InstID
, Vals
); // Callee
2922 // Emit value #'s for the fixed parameters.
2923 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
2924 // Check for labels (can happen with asm labels).
2925 if (FTy
->getParamType(i
)->isLabelTy())
2926 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
)));
2928 pushValue(CI
.getArgOperand(i
), InstID
, Vals
); // fixed param.
2931 // Emit type/value pairs for varargs params.
2932 if (FTy
->isVarArg()) {
2933 for (unsigned i
= FTy
->getNumParams(), e
= CI
.getNumArgOperands();
2935 pushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
); // varargs
2939 case Instruction::VAArg
:
2940 Code
= bitc::FUNC_CODE_INST_VAARG
;
2941 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType())); // valistty
2942 pushValue(I
.getOperand(0), InstID
, Vals
); // valist.
2943 Vals
.push_back(VE
.getTypeID(I
.getType())); // restype.
2947 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
2951 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2952 /// to allow clients to efficiently find the function body.
2953 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2954 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
2955 // Get the offset of the VST we are writing, and backpatch it into
2956 // the VST forward declaration record.
2957 uint64_t VSTOffset
= Stream
.GetCurrentBitNo();
2958 // The BitcodeStartBit was the stream offset of the identification block.
2959 VSTOffset
-= bitcodeStartBit();
2960 assert((VSTOffset
& 31) == 0 && "VST block not 32-bit aligned");
2961 // Note that we add 1 here because the offset is relative to one word
2962 // before the start of the identification block, which was historically
2963 // always the start of the regular bitcode header.
2964 Stream
.BackpatchWord(VSTOffsetPlaceholder
, VSTOffset
/ 32 + 1);
2966 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
2968 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2969 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY
));
2970 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
2971 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // funcoffset
2972 unsigned FnEntryAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
2974 for (const Function
&F
: M
) {
2977 if (F
.isDeclaration())
2980 Record
[0] = VE
.getValueID(&F
);
2982 // Save the word offset of the function (from the start of the
2983 // actual bitcode written to the stream).
2984 uint64_t BitcodeIndex
= FunctionToBitcodeIndex
[&F
] - bitcodeStartBit();
2985 assert((BitcodeIndex
& 31) == 0 && "function block not 32-bit aligned");
2986 // Note that we add 1 here because the offset is relative to one word
2987 // before the start of the identification block, which was historically
2988 // always the start of the regular bitcode header.
2989 Record
[1] = BitcodeIndex
/ 32 + 1;
2991 Stream
.EmitRecord(bitc::VST_CODE_FNENTRY
, Record
, FnEntryAbbrev
);
2997 /// Emit names for arguments, instructions and basic blocks in a function.
2998 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2999 const ValueSymbolTable
&VST
) {
3003 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
3005 // FIXME: Set up the abbrev, we know how many values there are!
3006 // FIXME: We know if the type names can use 7-bit ascii.
3007 SmallVector
<uint64_t, 64> NameVals
;
3009 for (const ValueName
&Name
: VST
) {
3010 // Figure out the encoding to use for the name.
3011 StringEncoding Bits
= getStringEncoding(Name
.getKey());
3013 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
3014 NameVals
.push_back(VE
.getValueID(Name
.getValue()));
3016 // VST_CODE_ENTRY: [valueid, namechar x N]
3017 // VST_CODE_BBENTRY: [bbid, namechar x N]
3019 if (isa
<BasicBlock
>(Name
.getValue())) {
3020 Code
= bitc::VST_CODE_BBENTRY
;
3021 if (Bits
== SE_Char6
)
3022 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
3024 Code
= bitc::VST_CODE_ENTRY
;
3025 if (Bits
== SE_Char6
)
3026 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
3027 else if (Bits
== SE_Fixed7
)
3028 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
3031 for (const auto P
: Name
.getKey())
3032 NameVals
.push_back((unsigned char)P
);
3034 // Emit the finished record.
3035 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
3042 void ModuleBitcodeWriter::writeUseList(UseListOrder
&&Order
) {
3043 assert(Order
.Shuffle
.size() >= 2 && "Shuffle too small");
3045 if (isa
<BasicBlock
>(Order
.V
))
3046 Code
= bitc::USELIST_CODE_BB
;
3048 Code
= bitc::USELIST_CODE_DEFAULT
;
3050 SmallVector
<uint64_t, 64> Record(Order
.Shuffle
.begin(), Order
.Shuffle
.end());
3051 Record
.push_back(VE
.getValueID(Order
.V
));
3052 Stream
.EmitRecord(Code
, Record
);
3055 void ModuleBitcodeWriter::writeUseListBlock(const Function
*F
) {
3056 assert(VE
.shouldPreserveUseListOrder() &&
3057 "Expected to be preserving use-list order");
3059 auto hasMore
= [&]() {
3060 return !VE
.UseListOrders
.empty() && VE
.UseListOrders
.back().F
== F
;
3066 Stream
.EnterSubblock(bitc::USELIST_BLOCK_ID
, 3);
3068 writeUseList(std::move(VE
.UseListOrders
.back()));
3069 VE
.UseListOrders
.pop_back();
3074 /// Emit a function body to the module stream.
3075 void ModuleBitcodeWriter::writeFunction(
3077 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
) {
3078 // Save the bitcode index of the start of this function block for recording
3080 FunctionToBitcodeIndex
[&F
] = Stream
.GetCurrentBitNo();
3082 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
3083 VE
.incorporateFunction(F
);
3085 SmallVector
<unsigned, 64> Vals
;
3087 // Emit the number of basic blocks, so the reader can create them ahead of
3089 Vals
.push_back(VE
.getBasicBlocks().size());
3090 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
3093 // If there are function-local constants, emit them now.
3094 unsigned CstStart
, CstEnd
;
3095 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
3096 writeConstants(CstStart
, CstEnd
, false);
3098 // If there is function-local metadata, emit it now.
3099 writeFunctionMetadata(F
);
3101 // Keep a running idea of what the instruction ID is.
3102 unsigned InstID
= CstEnd
;
3104 bool NeedsMetadataAttachment
= F
.hasMetadata();
3106 DILocation
*LastDL
= nullptr;
3107 // Finally, emit all the instructions, in order.
3108 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
3109 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
3111 writeInstruction(*I
, InstID
, Vals
);
3113 if (!I
->getType()->isVoidTy())
3116 // If the instruction has metadata, write a metadata attachment later.
3117 NeedsMetadataAttachment
|= I
->hasMetadataOtherThanDebugLoc();
3119 // If the instruction has a debug location, emit it.
3120 DILocation
*DL
= I
->getDebugLoc();
3125 // Just repeat the same debug loc as last time.
3126 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
3130 Vals
.push_back(DL
->getLine());
3131 Vals
.push_back(DL
->getColumn());
3132 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getScope()));
3133 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getInlinedAt()));
3134 Vals
.push_back(DL
->isImplicitCode());
3135 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
3141 // Emit names for all the instructions etc.
3142 if (auto *Symtab
= F
.getValueSymbolTable())
3143 writeFunctionLevelValueSymbolTable(*Symtab
);
3145 if (NeedsMetadataAttachment
)
3146 writeFunctionMetadataAttachment(F
);
3147 if (VE
.shouldPreserveUseListOrder())
3148 writeUseListBlock(&F
);
3153 // Emit blockinfo, which defines the standard abbreviations etc.
3154 void ModuleBitcodeWriter::writeBlockInfo() {
3155 // We only want to emit block info records for blocks that have multiple
3156 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3157 // Other blocks can define their abbrevs inline.
3158 Stream
.EnterBlockInfoBlock();
3160 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3161 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3162 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
3163 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3164 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3165 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3166 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3168 llvm_unreachable("Unexpected abbrev ordering!");
3171 { // 7-bit fixed width VST_CODE_ENTRY strings.
3172 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3173 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3174 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3175 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3176 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3177 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3179 llvm_unreachable("Unexpected abbrev ordering!");
3181 { // 6-bit char6 VST_CODE_ENTRY strings.
3182 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3183 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
3184 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3185 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3186 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3187 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3189 llvm_unreachable("Unexpected abbrev ordering!");
3191 { // 6-bit char6 VST_CODE_BBENTRY strings.
3192 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3193 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
3194 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3195 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3196 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3197 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
, Abbv
) !=
3198 VST_BBENTRY_6_ABBREV
)
3199 llvm_unreachable("Unexpected abbrev ordering!");
3202 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3203 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3204 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
3205 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
3206 VE
.computeBitsRequiredForTypeIndicies()));
3207 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3208 CONSTANTS_SETTYPE_ABBREV
)
3209 llvm_unreachable("Unexpected abbrev ordering!");
3212 { // INTEGER abbrev for CONSTANTS_BLOCK.
3213 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3214 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
3215 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3216 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3217 CONSTANTS_INTEGER_ABBREV
)
3218 llvm_unreachable("Unexpected abbrev ordering!");
3221 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3222 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3223 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
3224 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
3225 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
3226 VE
.computeBitsRequiredForTypeIndicies()));
3227 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
3229 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3230 CONSTANTS_CE_CAST_Abbrev
)
3231 llvm_unreachable("Unexpected abbrev ordering!");
3233 { // NULL abbrev for CONSTANTS_BLOCK.
3234 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3235 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
3236 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, Abbv
) !=
3237 CONSTANTS_NULL_Abbrev
)
3238 llvm_unreachable("Unexpected abbrev ordering!");
3241 // FIXME: This should only use space for first class types!
3243 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3244 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3245 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
3246 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
3247 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3248 VE
.computeBitsRequiredForTypeIndicies()));
3249 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
3250 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
3251 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3252 FUNCTION_INST_LOAD_ABBREV
)
3253 llvm_unreachable("Unexpected abbrev ordering!");
3255 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3256 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3257 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3258 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3259 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3260 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3261 FUNCTION_INST_UNOP_ABBREV
)
3262 llvm_unreachable("Unexpected abbrev ordering!");
3264 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3265 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3266 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP
));
3267 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3268 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3269 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3270 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3271 FUNCTION_INST_UNOP_FLAGS_ABBREV
)
3272 llvm_unreachable("Unexpected abbrev ordering!");
3274 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3275 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3276 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3277 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3278 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3279 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3280 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3281 FUNCTION_INST_BINOP_ABBREV
)
3282 llvm_unreachable("Unexpected abbrev ordering!");
3284 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3285 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3286 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
3287 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
3288 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
3289 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3290 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8)); // flags
3291 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3292 FUNCTION_INST_BINOP_FLAGS_ABBREV
)
3293 llvm_unreachable("Unexpected abbrev ordering!");
3295 { // INST_CAST abbrev for FUNCTION_BLOCK.
3296 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3297 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
3298 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
3299 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3300 VE
.computeBitsRequiredForTypeIndicies()));
3301 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
3302 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3303 FUNCTION_INST_CAST_ABBREV
)
3304 llvm_unreachable("Unexpected abbrev ordering!");
3307 { // INST_RET abbrev for FUNCTION_BLOCK.
3308 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3309 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3310 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3311 FUNCTION_INST_RET_VOID_ABBREV
)
3312 llvm_unreachable("Unexpected abbrev ordering!");
3314 { // INST_RET abbrev for FUNCTION_BLOCK.
3315 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3316 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
3317 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
3318 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3319 FUNCTION_INST_RET_VAL_ABBREV
)
3320 llvm_unreachable("Unexpected abbrev ordering!");
3322 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3323 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3324 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
3325 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3326 FUNCTION_INST_UNREACHABLE_ABBREV
)
3327 llvm_unreachable("Unexpected abbrev ordering!");
3330 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3331 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP
));
3332 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
3333 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
3334 Log2_32_Ceil(VE
.getTypes().size() + 1)));
3335 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3336 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
3337 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, Abbv
) !=
3338 FUNCTION_INST_GEP_ABBREV
)
3339 llvm_unreachable("Unexpected abbrev ordering!");
3345 /// Write the module path strings, currently only used when generating
3346 /// a combined index file.
3347 void IndexBitcodeWriter::writeModStrings() {
3348 Stream
.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID
, 3);
3350 // TODO: See which abbrev sizes we actually need to emit
3352 // 8-bit fixed-width MST_ENTRY strings.
3353 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3354 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3355 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3356 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3357 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
3358 unsigned Abbrev8Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3360 // 7-bit fixed width MST_ENTRY strings.
3361 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3362 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3363 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3364 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3365 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
3366 unsigned Abbrev7Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3368 // 6-bit char6 MST_ENTRY strings.
3369 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3370 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY
));
3371 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3372 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3373 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
3374 unsigned Abbrev6Bit
= Stream
.EmitAbbrev(std::move(Abbv
));
3376 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3377 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3378 Abbv
->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH
));
3379 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3380 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3381 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3382 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3383 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 32));
3384 unsigned AbbrevHash
= Stream
.EmitAbbrev(std::move(Abbv
));
3386 SmallVector
<unsigned, 64> Vals
;
3388 [&](const StringMapEntry
<std::pair
<uint64_t, ModuleHash
>> &MPSE
) {
3389 StringRef Key
= MPSE
.getKey();
3390 const auto &Value
= MPSE
.getValue();
3391 StringEncoding Bits
= getStringEncoding(Key
);
3392 unsigned AbbrevToUse
= Abbrev8Bit
;
3393 if (Bits
== SE_Char6
)
3394 AbbrevToUse
= Abbrev6Bit
;
3395 else if (Bits
== SE_Fixed7
)
3396 AbbrevToUse
= Abbrev7Bit
;
3398 Vals
.push_back(Value
.first
);
3399 Vals
.append(Key
.begin(), Key
.end());
3401 // Emit the finished record.
3402 Stream
.EmitRecord(bitc::MST_CODE_ENTRY
, Vals
, AbbrevToUse
);
3404 // Emit an optional hash for the module now
3405 const auto &Hash
= Value
.second
;
3406 if (llvm::any_of(Hash
, [](uint32_t H
) { return H
; })) {
3407 Vals
.assign(Hash
.begin(), Hash
.end());
3408 // Emit the hash record.
3409 Stream
.EmitRecord(bitc::MST_CODE_HASH
, Vals
, AbbrevHash
);
3417 /// Write the function type metadata related records that need to appear before
3418 /// a function summary entry (whether per-module or combined).
3419 static void writeFunctionTypeMetadataRecords(BitstreamWriter
&Stream
,
3420 FunctionSummary
*FS
) {
3421 if (!FS
->type_tests().empty())
3422 Stream
.EmitRecord(bitc::FS_TYPE_TESTS
, FS
->type_tests());
3424 SmallVector
<uint64_t, 64> Record
;
3426 auto WriteVFuncIdVec
= [&](uint64_t Ty
,
3427 ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
3431 for (auto &VF
: VFs
) {
3432 Record
.push_back(VF
.GUID
);
3433 Record
.push_back(VF
.Offset
);
3435 Stream
.EmitRecord(Ty
, Record
);
3438 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS
,
3439 FS
->type_test_assume_vcalls());
3440 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS
,
3441 FS
->type_checked_load_vcalls());
3443 auto WriteConstVCallVec
= [&](uint64_t Ty
,
3444 ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
3445 for (auto &VC
: VCs
) {
3447 Record
.push_back(VC
.VFunc
.GUID
);
3448 Record
.push_back(VC
.VFunc
.Offset
);
3449 Record
.insert(Record
.end(), VC
.Args
.begin(), VC
.Args
.end());
3450 Stream
.EmitRecord(Ty
, Record
);
3454 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL
,
3455 FS
->type_test_assume_const_vcalls());
3456 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL
,
3457 FS
->type_checked_load_const_vcalls());
3460 /// Collect type IDs from type tests used by function.
3462 getReferencedTypeIds(FunctionSummary
*FS
,
3463 std::set
<GlobalValue::GUID
> &ReferencedTypeIds
) {
3464 if (!FS
->type_tests().empty())
3465 for (auto &TT
: FS
->type_tests())
3466 ReferencedTypeIds
.insert(TT
);
3468 auto GetReferencedTypesFromVFuncIdVec
=
3469 [&](ArrayRef
<FunctionSummary::VFuncId
> VFs
) {
3470 for (auto &VF
: VFs
)
3471 ReferencedTypeIds
.insert(VF
.GUID
);
3474 GetReferencedTypesFromVFuncIdVec(FS
->type_test_assume_vcalls());
3475 GetReferencedTypesFromVFuncIdVec(FS
->type_checked_load_vcalls());
3477 auto GetReferencedTypesFromConstVCallVec
=
3478 [&](ArrayRef
<FunctionSummary::ConstVCall
> VCs
) {
3479 for (auto &VC
: VCs
)
3480 ReferencedTypeIds
.insert(VC
.VFunc
.GUID
);
3483 GetReferencedTypesFromConstVCallVec(FS
->type_test_assume_const_vcalls());
3484 GetReferencedTypesFromConstVCallVec(FS
->type_checked_load_const_vcalls());
3487 static void writeWholeProgramDevirtResolutionByArg(
3488 SmallVector
<uint64_t, 64> &NameVals
, const std::vector
<uint64_t> &args
,
3489 const WholeProgramDevirtResolution::ByArg
&ByArg
) {
3490 NameVals
.push_back(args
.size());
3491 NameVals
.insert(NameVals
.end(), args
.begin(), args
.end());
3493 NameVals
.push_back(ByArg
.TheKind
);
3494 NameVals
.push_back(ByArg
.Info
);
3495 NameVals
.push_back(ByArg
.Byte
);
3496 NameVals
.push_back(ByArg
.Bit
);
3499 static void writeWholeProgramDevirtResolution(
3500 SmallVector
<uint64_t, 64> &NameVals
, StringTableBuilder
&StrtabBuilder
,
3501 uint64_t Id
, const WholeProgramDevirtResolution
&Wpd
) {
3502 NameVals
.push_back(Id
);
3504 NameVals
.push_back(Wpd
.TheKind
);
3505 NameVals
.push_back(StrtabBuilder
.add(Wpd
.SingleImplName
));
3506 NameVals
.push_back(Wpd
.SingleImplName
.size());
3508 NameVals
.push_back(Wpd
.ResByArg
.size());
3509 for (auto &A
: Wpd
.ResByArg
)
3510 writeWholeProgramDevirtResolutionByArg(NameVals
, A
.first
, A
.second
);
3513 static void writeTypeIdSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
3514 StringTableBuilder
&StrtabBuilder
,
3515 const std::string
&Id
,
3516 const TypeIdSummary
&Summary
) {
3517 NameVals
.push_back(StrtabBuilder
.add(Id
));
3518 NameVals
.push_back(Id
.size());
3520 NameVals
.push_back(Summary
.TTRes
.TheKind
);
3521 NameVals
.push_back(Summary
.TTRes
.SizeM1BitWidth
);
3522 NameVals
.push_back(Summary
.TTRes
.AlignLog2
);
3523 NameVals
.push_back(Summary
.TTRes
.SizeM1
);
3524 NameVals
.push_back(Summary
.TTRes
.BitMask
);
3525 NameVals
.push_back(Summary
.TTRes
.InlineBits
);
3527 for (auto &W
: Summary
.WPDRes
)
3528 writeWholeProgramDevirtResolution(NameVals
, StrtabBuilder
, W
.first
,
3532 // Helper to emit a single function summary record.
3533 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3534 SmallVector
<uint64_t, 64> &NameVals
, GlobalValueSummary
*Summary
,
3535 unsigned ValueID
, unsigned FSCallsAbbrev
, unsigned FSCallsProfileAbbrev
,
3536 const Function
&F
) {
3537 NameVals
.push_back(ValueID
);
3539 FunctionSummary
*FS
= cast
<FunctionSummary
>(Summary
);
3540 writeFunctionTypeMetadataRecords(Stream
, FS
);
3542 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
3543 NameVals
.push_back(FS
->instCount());
3544 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
3545 NameVals
.push_back(FS
->refs().size());
3546 NameVals
.push_back(FS
->immutableRefCount());
3548 for (auto &RI
: FS
->refs())
3549 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
3551 bool HasProfileData
=
3552 F
.hasProfileData() || ForceSummaryEdgesCold
!= FunctionSummary::FSHT_None
;
3553 for (auto &ECI
: FS
->calls()) {
3554 NameVals
.push_back(getValueId(ECI
.first
));
3556 NameVals
.push_back(static_cast<uint8_t>(ECI
.second
.Hotness
));
3557 else if (WriteRelBFToSummary
)
3558 NameVals
.push_back(ECI
.second
.RelBlockFreq
);
3561 unsigned FSAbbrev
= (HasProfileData
? FSCallsProfileAbbrev
: FSCallsAbbrev
);
3563 (HasProfileData
? bitc::FS_PERMODULE_PROFILE
3564 : (WriteRelBFToSummary
? bitc::FS_PERMODULE_RELBF
3565 : bitc::FS_PERMODULE
));
3567 // Emit the finished record.
3568 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
3572 // Collect the global value references in the given variable's initializer,
3573 // and emit them in a summary record.
3574 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3575 const GlobalVariable
&V
, SmallVector
<uint64_t, 64> &NameVals
,
3576 unsigned FSModRefsAbbrev
) {
3577 auto VI
= Index
->getValueInfo(V
.getGUID());
3578 if (!VI
|| VI
.getSummaryList().empty()) {
3579 // Only declarations should not have a summary (a declaration might however
3580 // have a summary if the def was in module level asm).
3581 assert(V
.isDeclaration());
3584 auto *Summary
= VI
.getSummaryList()[0].get();
3585 NameVals
.push_back(VE
.getValueID(&V
));
3586 GlobalVarSummary
*VS
= cast
<GlobalVarSummary
>(Summary
);
3587 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
3588 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
3590 unsigned SizeBeforeRefs
= NameVals
.size();
3591 for (auto &RI
: VS
->refs())
3592 NameVals
.push_back(VE
.getValueID(RI
.getValue()));
3593 // Sort the refs for determinism output, the vector returned by FS->refs() has
3594 // been initialized from a DenseSet.
3595 llvm::sort(NameVals
.begin() + SizeBeforeRefs
, NameVals
.end());
3597 Stream
.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
, NameVals
,
3602 // Current version for the summary.
3603 // This is bumped whenever we introduce changes in the way some record are
3604 // interpreted, like flags for instance.
3605 static const uint64_t INDEX_VERSION
= 6;
3607 /// Emit the per-module summary section alongside the rest of
3608 /// the module's bitcode.
3609 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3610 // By default we compile with ThinLTO if the module has a summary, but the
3611 // client can request full LTO with a module flag.
3612 bool IsThinLTO
= true;
3614 mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("ThinLTO")))
3615 IsThinLTO
= MD
->getZExtValue();
3616 Stream
.EnterSubblock(IsThinLTO
? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3617 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID
,
3620 Stream
.EmitRecord(bitc::FS_VERSION
, ArrayRef
<uint64_t>{INDEX_VERSION
});
3622 // Write the index flags.
3624 // Bits 1-3 are set only in the combined index, skip them.
3625 if (Index
->enableSplitLTOUnit())
3627 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
3629 if (Index
->begin() == Index
->end()) {
3634 for (const auto &GVI
: valueIds()) {
3635 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
3636 ArrayRef
<uint64_t>{GVI
.second
, GVI
.first
});
3639 // Abbrev for FS_PERMODULE_PROFILE.
3640 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3641 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE
));
3642 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3643 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3644 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3645 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3646 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3647 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // immutablerefcnt
3648 // numrefs x valueid, n x (valueid, hotness)
3649 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3650 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3651 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3653 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3654 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3655 if (WriteRelBFToSummary
)
3656 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF
));
3658 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE
));
3659 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3660 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3661 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3662 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3663 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3664 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // immutablerefcnt
3665 // numrefs x valueid, n x (valueid [, rel_block_freq])
3666 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3667 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3668 unsigned FSCallsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3670 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3671 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3672 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS
));
3673 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3674 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3675 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
3676 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3677 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3679 // Abbrev for FS_ALIAS.
3680 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3681 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_ALIAS
));
3682 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3683 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3684 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3685 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3687 SmallVector
<uint64_t, 64> NameVals
;
3688 // Iterate over the list of functions instead of the Index to
3689 // ensure the ordering is stable.
3690 for (const Function
&F
: M
) {
3691 // Summary emission does not support anonymous functions, they have to
3692 // renamed using the anonymous function renaming pass.
3694 report_fatal_error("Unexpected anonymous function when writing summary");
3696 ValueInfo VI
= Index
->getValueInfo(F
.getGUID());
3697 if (!VI
|| VI
.getSummaryList().empty()) {
3698 // Only declarations should not have a summary (a declaration might
3699 // however have a summary if the def was in module level asm).
3700 assert(F
.isDeclaration());
3703 auto *Summary
= VI
.getSummaryList()[0].get();
3704 writePerModuleFunctionSummaryRecord(NameVals
, Summary
, VE
.getValueID(&F
),
3705 FSCallsAbbrev
, FSCallsProfileAbbrev
, F
);
3708 // Capture references from GlobalVariable initializers, which are outside
3709 // of a function scope.
3710 for (const GlobalVariable
&G
: M
.globals())
3711 writeModuleLevelReferences(G
, NameVals
, FSModRefsAbbrev
);
3713 for (const GlobalAlias
&A
: M
.aliases()) {
3714 auto *Aliasee
= A
.getBaseObject();
3715 if (!Aliasee
->hasName())
3716 // Nameless function don't have an entry in the summary, skip it.
3718 auto AliasId
= VE
.getValueID(&A
);
3719 auto AliaseeId
= VE
.getValueID(Aliasee
);
3720 NameVals
.push_back(AliasId
);
3721 auto *Summary
= Index
->getGlobalValueSummary(A
);
3722 AliasSummary
*AS
= cast
<AliasSummary
>(Summary
);
3723 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
3724 NameVals
.push_back(AliaseeId
);
3725 Stream
.EmitRecord(bitc::FS_ALIAS
, NameVals
, FSAliasAbbrev
);
3732 /// Emit the combined summary section into the combined index file.
3733 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3734 Stream
.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID
, 3);
3735 Stream
.EmitRecord(bitc::FS_VERSION
, ArrayRef
<uint64_t>{INDEX_VERSION
});
3737 // Write the index flags.
3739 if (Index
.withGlobalValueDeadStripping())
3741 if (Index
.skipModuleByDistributedBackend())
3743 if (Index
.hasSyntheticEntryCounts())
3745 if (Index
.enableSplitLTOUnit())
3747 if (Index
.partiallySplitLTOUnits())
3749 Stream
.EmitRecord(bitc::FS_FLAGS
, ArrayRef
<uint64_t>{Flags
});
3751 for (const auto &GVI
: valueIds()) {
3752 Stream
.EmitRecord(bitc::FS_VALUE_GUID
,
3753 ArrayRef
<uint64_t>{GVI
.second
, GVI
.first
});
3756 // Abbrev for FS_COMBINED.
3757 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
3758 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED
));
3759 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3760 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3761 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3762 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3763 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3764 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // entrycount
3765 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3766 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // immutablerefcnt
3767 // numrefs x valueid, n x (valueid)
3768 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3769 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3770 unsigned FSCallsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3772 // Abbrev for FS_COMBINED_PROFILE.
3773 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3774 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE
));
3775 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3776 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3777 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3778 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // instcount
3779 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // fflags
3780 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // numrefs
3781 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // immutablerefcnt
3782 // numrefs x valueid, n x (valueid, hotness)
3783 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
3784 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3785 unsigned FSCallsProfileAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3787 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3788 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3789 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
));
3790 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3791 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3792 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3793 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
)); // valueids
3794 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
3795 unsigned FSModRefsAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3797 // Abbrev for FS_COMBINED_ALIAS.
3798 Abbv
= std::make_shared
<BitCodeAbbrev
>();
3799 Abbv
->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS
));
3800 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // modid
3802 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // flags
3803 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // valueid
3804 unsigned FSAliasAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
3806 // The aliases are emitted as a post-pass, and will point to the value
3807 // id of the aliasee. Save them in a vector for post-processing.
3808 SmallVector
<AliasSummary
*, 64> Aliases
;
3810 // Save the value id for each summary for alias emission.
3811 DenseMap
<const GlobalValueSummary
*, unsigned> SummaryToValueIdMap
;
3813 SmallVector
<uint64_t, 64> NameVals
;
3815 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3816 // with the type ids referenced by this index file.
3817 std::set
<GlobalValue::GUID
> ReferencedTypeIds
;
3819 // For local linkage, we also emit the original name separately
3820 // immediately after the record.
3821 auto MaybeEmitOriginalName
= [&](GlobalValueSummary
&S
) {
3822 if (!GlobalValue::isLocalLinkage(S
.linkage()))
3824 NameVals
.push_back(S
.getOriginalName());
3825 Stream
.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME
, NameVals
);
3829 forEachSummary([&](GVInfo I
, bool IsAliasee
) {
3830 GlobalValueSummary
*S
= I
.second
;
3833 auto ValueId
= getValueId(I
.first
);
3835 SummaryToValueIdMap
[S
] = *ValueId
;
3837 // If this is invoked for an aliasee, we want to record the above
3838 // mapping, but then not emit a summary entry (if the aliasee is
3839 // to be imported, we will invoke this separately with IsAliasee=false).
3843 if (auto *AS
= dyn_cast
<AliasSummary
>(S
)) {
3844 // Will process aliases as a post-pass because the reader wants all
3845 // global to be loaded first.
3846 Aliases
.push_back(AS
);
3850 if (auto *VS
= dyn_cast
<GlobalVarSummary
>(S
)) {
3851 NameVals
.push_back(*ValueId
);
3852 NameVals
.push_back(Index
.getModuleId(VS
->modulePath()));
3853 NameVals
.push_back(getEncodedGVSummaryFlags(VS
->flags()));
3854 NameVals
.push_back(getEncodedGVarFlags(VS
->varflags()));
3855 for (auto &RI
: VS
->refs()) {
3856 auto RefValueId
= getValueId(RI
.getGUID());
3859 NameVals
.push_back(*RefValueId
);
3862 // Emit the finished record.
3863 Stream
.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS
, NameVals
,
3866 MaybeEmitOriginalName(*S
);
3870 auto *FS
= cast
<FunctionSummary
>(S
);
3871 writeFunctionTypeMetadataRecords(Stream
, FS
);
3872 getReferencedTypeIds(FS
, ReferencedTypeIds
);
3874 NameVals
.push_back(*ValueId
);
3875 NameVals
.push_back(Index
.getModuleId(FS
->modulePath()));
3876 NameVals
.push_back(getEncodedGVSummaryFlags(FS
->flags()));
3877 NameVals
.push_back(FS
->instCount());
3878 NameVals
.push_back(getEncodedFFlags(FS
->fflags()));
3879 NameVals
.push_back(FS
->entryCount());
3882 NameVals
.push_back(0); // numrefs
3883 NameVals
.push_back(0); // immutablerefcnt
3885 unsigned Count
= 0, ImmutableRefCnt
= 0;
3886 for (auto &RI
: FS
->refs()) {
3887 auto RefValueId
= getValueId(RI
.getGUID());
3890 NameVals
.push_back(*RefValueId
);
3891 if (RI
.isReadOnly())
3895 NameVals
[6] = Count
;
3896 NameVals
[7] = ImmutableRefCnt
;
3898 bool HasProfileData
= false;
3899 for (auto &EI
: FS
->calls()) {
3901 EI
.second
.getHotness() != CalleeInfo::HotnessType::Unknown
;
3906 for (auto &EI
: FS
->calls()) {
3907 // If this GUID doesn't have a value id, it doesn't have a function
3908 // summary and we don't need to record any calls to it.
3909 GlobalValue::GUID GUID
= EI
.first
.getGUID();
3910 auto CallValueId
= getValueId(GUID
);
3912 // For SamplePGO, the indirect call targets for local functions will
3913 // have its original name annotated in profile. We try to find the
3914 // corresponding PGOFuncName as the GUID.
3915 GUID
= Index
.getGUIDFromOriginalID(GUID
);
3918 CallValueId
= getValueId(GUID
);
3921 // The mapping from OriginalId to GUID may return a GUID
3922 // that corresponds to a static variable. Filter it out here.
3923 // This can happen when
3924 // 1) There is a call to a library function which does not have
3926 // 2) There is a static variable with the OriginalGUID identical
3927 // to the GUID of the library function in 1);
3928 // When this happens, the logic for SamplePGO kicks in and
3929 // the static variable in 2) will be found, which needs to be
3931 auto *GVSum
= Index
.getGlobalValueSummary(GUID
, false);
3933 GVSum
->getSummaryKind() == GlobalValueSummary::GlobalVarKind
)
3936 NameVals
.push_back(*CallValueId
);
3938 NameVals
.push_back(static_cast<uint8_t>(EI
.second
.Hotness
));
3941 unsigned FSAbbrev
= (HasProfileData
? FSCallsProfileAbbrev
: FSCallsAbbrev
);
3943 (HasProfileData
? bitc::FS_COMBINED_PROFILE
: bitc::FS_COMBINED
);
3945 // Emit the finished record.
3946 Stream
.EmitRecord(Code
, NameVals
, FSAbbrev
);
3948 MaybeEmitOriginalName(*S
);
3951 for (auto *AS
: Aliases
) {
3952 auto AliasValueId
= SummaryToValueIdMap
[AS
];
3953 assert(AliasValueId
);
3954 NameVals
.push_back(AliasValueId
);
3955 NameVals
.push_back(Index
.getModuleId(AS
->modulePath()));
3956 NameVals
.push_back(getEncodedGVSummaryFlags(AS
->flags()));
3957 auto AliaseeValueId
= SummaryToValueIdMap
[&AS
->getAliasee()];
3958 assert(AliaseeValueId
);
3959 NameVals
.push_back(AliaseeValueId
);
3961 // Emit the finished record.
3962 Stream
.EmitRecord(bitc::FS_COMBINED_ALIAS
, NameVals
, FSAliasAbbrev
);
3964 MaybeEmitOriginalName(*AS
);
3966 if (auto *FS
= dyn_cast
<FunctionSummary
>(&AS
->getAliasee()))
3967 getReferencedTypeIds(FS
, ReferencedTypeIds
);
3970 if (!Index
.cfiFunctionDefs().empty()) {
3971 for (auto &S
: Index
.cfiFunctionDefs()) {
3972 NameVals
.push_back(StrtabBuilder
.add(S
));
3973 NameVals
.push_back(S
.size());
3975 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS
, NameVals
);
3979 if (!Index
.cfiFunctionDecls().empty()) {
3980 for (auto &S
: Index
.cfiFunctionDecls()) {
3981 NameVals
.push_back(StrtabBuilder
.add(S
));
3982 NameVals
.push_back(S
.size());
3984 Stream
.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS
, NameVals
);
3988 // Walk the GUIDs that were referenced, and write the
3989 // corresponding type id records.
3990 for (auto &T
: ReferencedTypeIds
) {
3991 auto TidIter
= Index
.typeIds().equal_range(T
);
3992 for (auto It
= TidIter
.first
; It
!= TidIter
.second
; ++It
) {
3993 writeTypeIdSummaryRecord(NameVals
, StrtabBuilder
, It
->second
.first
,
3995 Stream
.EmitRecord(bitc::FS_TYPE_ID
, NameVals
);
4003 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4004 /// current llvm version, and a record for the epoch number.
4005 static void writeIdentificationBlock(BitstreamWriter
&Stream
) {
4006 Stream
.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID
, 5);
4008 // Write the "user readable" string identifying the bitcode producer
4009 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4010 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING
));
4011 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4012 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
4013 auto StringAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4014 writeStringRecord(Stream
, bitc::IDENTIFICATION_CODE_STRING
,
4015 "LLVM" LLVM_VERSION_STRING
, StringAbbrev
);
4017 // Write the epoch version
4018 Abbv
= std::make_shared
<BitCodeAbbrev
>();
4019 Abbv
->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH
));
4020 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
4021 auto EpochAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4022 SmallVector
<unsigned, 1> Vals
= {bitc::BITCODE_CURRENT_EPOCH
};
4023 Stream
.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH
, Vals
, EpochAbbrev
);
4027 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos
) {
4028 // Emit the module's hash.
4029 // MODULE_CODE_HASH: [5*i32]
4032 Hasher
.update(ArrayRef
<uint8_t>((const uint8_t *)&(Buffer
)[BlockStartPos
],
4033 Buffer
.size() - BlockStartPos
));
4034 StringRef Hash
= Hasher
.result();
4035 for (int Pos
= 0; Pos
< 20; Pos
+= 4) {
4036 Vals
[Pos
/ 4] = support::endian::read32be(Hash
.data() + Pos
);
4039 // Emit the finished record.
4040 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, Vals
);
4043 // Save the written hash value.
4044 llvm::copy(Vals
, std::begin(*ModHash
));
4048 void ModuleBitcodeWriter::write() {
4049 writeIdentificationBlock(Stream
);
4051 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4052 size_t BlockStartPos
= Buffer
.size();
4054 writeModuleVersion();
4056 // Emit blockinfo, which defines the standard abbreviations etc.
4059 // Emit information about attribute groups.
4060 writeAttributeGroupTable();
4062 // Emit information about parameter attributes.
4063 writeAttributeTable();
4065 // Emit information describing all of the types in the module.
4070 // Emit top-level description of module, including target triple, inline asm,
4071 // descriptors for global variables, and function prototype info.
4075 writeModuleConstants();
4077 // Emit metadata kind names.
4078 writeModuleMetadataKinds();
4081 writeModuleMetadata();
4083 // Emit module-level use-lists.
4084 if (VE
.shouldPreserveUseListOrder())
4085 writeUseListBlock(nullptr);
4087 writeOperandBundleTags();
4088 writeSyncScopeNames();
4090 // Emit function bodies.
4091 DenseMap
<const Function
*, uint64_t> FunctionToBitcodeIndex
;
4092 for (Module::const_iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
4093 if (!F
->isDeclaration())
4094 writeFunction(*F
, FunctionToBitcodeIndex
);
4096 // Need to write after the above call to WriteFunction which populates
4097 // the summary information in the index.
4099 writePerModuleGlobalValueSummary();
4101 writeGlobalValueSymbolTable(FunctionToBitcodeIndex
);
4103 writeModuleHash(BlockStartPos
);
4108 static void writeInt32ToBuffer(uint32_t Value
, SmallVectorImpl
<char> &Buffer
,
4109 uint32_t &Position
) {
4110 support::endian::write32le(&Buffer
[Position
], Value
);
4114 /// If generating a bc file on darwin, we have to emit a
4115 /// header and trailer to make it compatible with the system archiver. To do
4116 /// this we emit the following header, and then emit a trailer that pads the
4117 /// file out to be a multiple of 16 bytes.
4119 /// struct bc_header {
4120 /// uint32_t Magic; // 0x0B17C0DE
4121 /// uint32_t Version; // Version, currently always 0.
4122 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4123 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4124 /// uint32_t CPUType; // CPU specifier.
4125 /// ... potentially more later ...
4127 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl
<char> &Buffer
,
4129 unsigned CPUType
= ~0U;
4131 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4132 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4133 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4134 // specific constants here because they are implicitly part of the Darwin ABI.
4136 DARWIN_CPU_ARCH_ABI64
= 0x01000000,
4137 DARWIN_CPU_TYPE_X86
= 7,
4138 DARWIN_CPU_TYPE_ARM
= 12,
4139 DARWIN_CPU_TYPE_POWERPC
= 18
4142 Triple::ArchType Arch
= TT
.getArch();
4143 if (Arch
== Triple::x86_64
)
4144 CPUType
= DARWIN_CPU_TYPE_X86
| DARWIN_CPU_ARCH_ABI64
;
4145 else if (Arch
== Triple::x86
)
4146 CPUType
= DARWIN_CPU_TYPE_X86
;
4147 else if (Arch
== Triple::ppc
)
4148 CPUType
= DARWIN_CPU_TYPE_POWERPC
;
4149 else if (Arch
== Triple::ppc64
)
4150 CPUType
= DARWIN_CPU_TYPE_POWERPC
| DARWIN_CPU_ARCH_ABI64
;
4151 else if (Arch
== Triple::arm
|| Arch
== Triple::thumb
)
4152 CPUType
= DARWIN_CPU_TYPE_ARM
;
4154 // Traditional Bitcode starts after header.
4155 assert(Buffer
.size() >= BWH_HeaderSize
&&
4156 "Expected header size to be reserved");
4157 unsigned BCOffset
= BWH_HeaderSize
;
4158 unsigned BCSize
= Buffer
.size() - BWH_HeaderSize
;
4160 // Write the magic and version.
4161 unsigned Position
= 0;
4162 writeInt32ToBuffer(0x0B17C0DE, Buffer
, Position
);
4163 writeInt32ToBuffer(0, Buffer
, Position
); // Version.
4164 writeInt32ToBuffer(BCOffset
, Buffer
, Position
);
4165 writeInt32ToBuffer(BCSize
, Buffer
, Position
);
4166 writeInt32ToBuffer(CPUType
, Buffer
, Position
);
4168 // If the file is not a multiple of 16 bytes, insert dummy padding.
4169 while (Buffer
.size() & 15)
4170 Buffer
.push_back(0);
4173 /// Helper to write the header common to all bitcode files.
4174 static void writeBitcodeHeader(BitstreamWriter
&Stream
) {
4175 // Emit the file header.
4176 Stream
.Emit((unsigned)'B', 8);
4177 Stream
.Emit((unsigned)'C', 8);
4178 Stream
.Emit(0x0, 4);
4179 Stream
.Emit(0xC, 4);
4180 Stream
.Emit(0xE, 4);
4181 Stream
.Emit(0xD, 4);
4184 BitcodeWriter::BitcodeWriter(SmallVectorImpl
<char> &Buffer
)
4185 : Buffer(Buffer
), Stream(new BitstreamWriter(Buffer
)) {
4186 writeBitcodeHeader(*Stream
);
4189 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab
); }
4191 void BitcodeWriter::writeBlob(unsigned Block
, unsigned Record
, StringRef Blob
) {
4192 Stream
->EnterSubblock(Block
, 3);
4194 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4195 Abbv
->Add(BitCodeAbbrevOp(Record
));
4196 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
4197 auto AbbrevNo
= Stream
->EmitAbbrev(std::move(Abbv
));
4199 Stream
->EmitRecordWithBlob(AbbrevNo
, ArrayRef
<uint64_t>{Record
}, Blob
);
4201 Stream
->ExitBlock();
4204 void BitcodeWriter::writeSymtab() {
4205 assert(!WroteStrtab
&& !WroteSymtab
);
4207 // If any module has module-level inline asm, we will require a registered asm
4208 // parser for the target so that we can create an accurate symbol table for
4210 for (Module
*M
: Mods
) {
4211 if (M
->getModuleInlineAsm().empty())
4215 const Triple
TT(M
->getTargetTriple());
4216 const Target
*T
= TargetRegistry::lookupTarget(TT
.str(), Err
);
4217 if (!T
|| !T
->hasMCAsmParser())
4222 SmallVector
<char, 0> Symtab
;
4223 // The irsymtab::build function may be unable to create a symbol table if the
4224 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4225 // table is not required for correctness, but we still want to be able to
4226 // write malformed modules to bitcode files, so swallow the error.
4227 if (Error E
= irsymtab::build(Mods
, Symtab
, StrtabBuilder
, Alloc
)) {
4228 consumeError(std::move(E
));
4232 writeBlob(bitc::SYMTAB_BLOCK_ID
, bitc::SYMTAB_BLOB
,
4233 {Symtab
.data(), Symtab
.size()});
4236 void BitcodeWriter::writeStrtab() {
4237 assert(!WroteStrtab
);
4239 std::vector
<char> Strtab
;
4240 StrtabBuilder
.finalizeInOrder();
4241 Strtab
.resize(StrtabBuilder
.getSize());
4242 StrtabBuilder
.write((uint8_t *)Strtab
.data());
4244 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
,
4245 {Strtab
.data(), Strtab
.size()});
4250 void BitcodeWriter::copyStrtab(StringRef Strtab
) {
4251 writeBlob(bitc::STRTAB_BLOCK_ID
, bitc::STRTAB_BLOB
, Strtab
);
4255 void BitcodeWriter::writeModule(const Module
&M
,
4256 bool ShouldPreserveUseListOrder
,
4257 const ModuleSummaryIndex
*Index
,
4258 bool GenerateHash
, ModuleHash
*ModHash
) {
4259 assert(!WroteStrtab
);
4261 // The Mods vector is used by irsymtab::build, which requires non-const
4262 // Modules in case it needs to materialize metadata. But the bitcode writer
4263 // requires that the module is materialized, so we can cast to non-const here,
4264 // after checking that it is in fact materialized.
4265 assert(M
.isMaterialized());
4266 Mods
.push_back(const_cast<Module
*>(&M
));
4268 ModuleBitcodeWriter
ModuleWriter(M
, Buffer
, StrtabBuilder
, *Stream
,
4269 ShouldPreserveUseListOrder
, Index
,
4270 GenerateHash
, ModHash
);
4271 ModuleWriter
.write();
4274 void BitcodeWriter::writeIndex(
4275 const ModuleSummaryIndex
*Index
,
4276 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
) {
4277 IndexBitcodeWriter
IndexWriter(*Stream
, StrtabBuilder
, *Index
,
4278 ModuleToSummariesForIndex
);
4279 IndexWriter
.write();
4282 /// Write the specified module to the specified output stream.
4283 void llvm::WriteBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
4284 bool ShouldPreserveUseListOrder
,
4285 const ModuleSummaryIndex
*Index
,
4286 bool GenerateHash
, ModuleHash
*ModHash
) {
4287 SmallVector
<char, 0> Buffer
;
4288 Buffer
.reserve(256*1024);
4290 // If this is darwin or another generic macho target, reserve space for the
4292 Triple
TT(M
.getTargetTriple());
4293 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO())
4294 Buffer
.insert(Buffer
.begin(), BWH_HeaderSize
, 0);
4296 BitcodeWriter
Writer(Buffer
);
4297 Writer
.writeModule(M
, ShouldPreserveUseListOrder
, Index
, GenerateHash
,
4299 Writer
.writeSymtab();
4300 Writer
.writeStrtab();
4302 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO())
4303 emitDarwinBCHeaderAndTrailer(Buffer
, TT
);
4305 // Write the generated bitstream to "Out".
4306 Out
.write((char*)&Buffer
.front(), Buffer
.size());
4309 void IndexBitcodeWriter::write() {
4310 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4312 writeModuleVersion();
4314 // Write the module paths in the combined index.
4317 // Write the summary combined index records.
4318 writeCombinedGlobalValueSummary();
4323 // Write the specified module summary index to the given raw output stream,
4324 // where it will be written in a new bitcode block. This is used when
4325 // writing the combined index file for ThinLTO. When writing a subset of the
4326 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4327 void llvm::WriteIndexToFile(
4328 const ModuleSummaryIndex
&Index
, raw_ostream
&Out
,
4329 const std::map
<std::string
, GVSummaryMapTy
> *ModuleToSummariesForIndex
) {
4330 SmallVector
<char, 0> Buffer
;
4331 Buffer
.reserve(256 * 1024);
4333 BitcodeWriter
Writer(Buffer
);
4334 Writer
.writeIndex(&Index
, ModuleToSummariesForIndex
);
4335 Writer
.writeStrtab();
4337 Out
.write((char *)&Buffer
.front(), Buffer
.size());
4342 /// Class to manage the bitcode writing for a thin link bitcode file.
4343 class ThinLinkBitcodeWriter
: public ModuleBitcodeWriterBase
{
4344 /// ModHash is for use in ThinLTO incremental build, generated while writing
4345 /// the module bitcode file.
4346 const ModuleHash
*ModHash
;
4349 ThinLinkBitcodeWriter(const Module
&M
, StringTableBuilder
&StrtabBuilder
,
4350 BitstreamWriter
&Stream
,
4351 const ModuleSummaryIndex
&Index
,
4352 const ModuleHash
&ModHash
)
4353 : ModuleBitcodeWriterBase(M
, StrtabBuilder
, Stream
,
4354 /*ShouldPreserveUseListOrder=*/false, &Index
),
4355 ModHash(&ModHash
) {}
4360 void writeSimplifiedModuleInfo();
4363 } // end anonymous namespace
4365 // This function writes a simpilified module info for thin link bitcode file.
4366 // It only contains the source file name along with the name(the offset and
4367 // size in strtab) and linkage for global values. For the global value info
4368 // entry, in order to keep linkage at offset 5, there are three zeros used
4370 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4371 SmallVector
<unsigned, 64> Vals
;
4372 // Emit the module's source file name.
4374 StringEncoding Bits
= getStringEncoding(M
.getSourceFileName());
4375 BitCodeAbbrevOp AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8);
4376 if (Bits
== SE_Char6
)
4377 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
);
4378 else if (Bits
== SE_Fixed7
)
4379 AbbrevOpToUse
= BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7);
4381 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4382 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
4383 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME
));
4384 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
4385 Abbv
->Add(AbbrevOpToUse
);
4386 unsigned FilenameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
4388 for (const auto P
: M
.getSourceFileName())
4389 Vals
.push_back((unsigned char)P
);
4391 Stream
.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME
, Vals
, FilenameAbbrev
);
4395 // Emit the global variable information.
4396 for (const GlobalVariable
&GV
: M
.globals()) {
4397 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4398 Vals
.push_back(StrtabBuilder
.add(GV
.getName()));
4399 Vals
.push_back(GV
.getName().size());
4403 Vals
.push_back(getEncodedLinkage(GV
));
4405 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
);
4409 // Emit the function proto information.
4410 for (const Function
&F
: M
) {
4411 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4412 Vals
.push_back(StrtabBuilder
.add(F
.getName()));
4413 Vals
.push_back(F
.getName().size());
4417 Vals
.push_back(getEncodedLinkage(F
));
4419 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
);
4423 // Emit the alias information.
4424 for (const GlobalAlias
&A
: M
.aliases()) {
4425 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4426 Vals
.push_back(StrtabBuilder
.add(A
.getName()));
4427 Vals
.push_back(A
.getName().size());
4431 Vals
.push_back(getEncodedLinkage(A
));
4433 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
);
4437 // Emit the ifunc information.
4438 for (const GlobalIFunc
&I
: M
.ifuncs()) {
4439 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4440 Vals
.push_back(StrtabBuilder
.add(I
.getName()));
4441 Vals
.push_back(I
.getName().size());
4445 Vals
.push_back(getEncodedLinkage(I
));
4447 Stream
.EmitRecord(bitc::MODULE_CODE_IFUNC
, Vals
);
4452 void ThinLinkBitcodeWriter::write() {
4453 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
4455 writeModuleVersion();
4457 writeSimplifiedModuleInfo();
4459 writePerModuleGlobalValueSummary();
4461 // Write module hash.
4462 Stream
.EmitRecord(bitc::MODULE_CODE_HASH
, ArrayRef
<uint32_t>(*ModHash
));
4467 void BitcodeWriter::writeThinLinkBitcode(const Module
&M
,
4468 const ModuleSummaryIndex
&Index
,
4469 const ModuleHash
&ModHash
) {
4470 assert(!WroteStrtab
);
4472 // The Mods vector is used by irsymtab::build, which requires non-const
4473 // Modules in case it needs to materialize metadata. But the bitcode writer
4474 // requires that the module is materialized, so we can cast to non-const here,
4475 // after checking that it is in fact materialized.
4476 assert(M
.isMaterialized());
4477 Mods
.push_back(const_cast<Module
*>(&M
));
4479 ThinLinkBitcodeWriter
ThinLinkWriter(M
, StrtabBuilder
, *Stream
, Index
,
4481 ThinLinkWriter
.write();
4484 // Write the specified thin link bitcode file to the given raw output stream,
4485 // where it will be written in a new bitcode block. This is used when
4486 // writing the per-module index file for ThinLTO.
4487 void llvm::WriteThinLinkBitcodeToFile(const Module
&M
, raw_ostream
&Out
,
4488 const ModuleSummaryIndex
&Index
,
4489 const ModuleHash
&ModHash
) {
4490 SmallVector
<char, 0> Buffer
;
4491 Buffer
.reserve(256 * 1024);
4493 BitcodeWriter
Writer(Buffer
);
4494 Writer
.writeThinLinkBitcode(M
, Index
, ModHash
);
4495 Writer
.writeSymtab();
4496 Writer
.writeStrtab();
4498 Out
.write((char *)&Buffer
.front(), Buffer
.size());