Revert r362472 as it is breaking PPC build bots
[llvm-core.git] / lib / Support / APInt.cpp
blob9c59d93b7375f7adcbe25ba99d4fdc28d43e75d7
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
33 #define DEBUG_TYPE "apint"
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38 uint64_t *result = new uint64_t[numWords];
39 memset(result, 0, numWords * sizeof(uint64_t));
40 return result;
43 /// A utility function for allocating memory and checking for allocation
44 /// failure. The content is not zeroed.
45 inline static uint64_t* getMemory(unsigned numWords) {
46 return new uint64_t[numWords];
49 /// A utility function that converts a character to a digit.
50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51 unsigned r;
53 if (radix == 16 || radix == 36) {
54 r = cdigit - '0';
55 if (r <= 9)
56 return r;
58 r = cdigit - 'A';
59 if (r <= radix - 11U)
60 return r + 10;
62 r = cdigit - 'a';
63 if (r <= radix - 11U)
64 return r + 10;
66 radix = 10;
69 r = cdigit - '0';
70 if (r < radix)
71 return r;
73 return -1U;
77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78 U.pVal = getClearedMemory(getNumWords());
79 U.pVal[0] = val;
80 if (isSigned && int64_t(val) < 0)
81 for (unsigned i = 1; i < getNumWords(); ++i)
82 U.pVal[i] = WORDTYPE_MAX;
83 clearUnusedBits();
86 void APInt::initSlowCase(const APInt& that) {
87 U.pVal = getMemory(getNumWords());
88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92 assert(BitWidth && "Bitwidth too small");
93 assert(bigVal.data() && "Null pointer detected!");
94 if (isSingleWord())
95 U.VAL = bigVal[0];
96 else {
97 // Get memory, cleared to 0
98 U.pVal = getClearedMemory(getNumWords());
99 // Calculate the number of words to copy
100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101 // Copy the words from bigVal to pVal
102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
104 // Make sure unused high bits are cleared
105 clearUnusedBits();
108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109 : BitWidth(numBits) {
110 initFromArray(bigVal);
113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114 : BitWidth(numBits) {
115 initFromArray(makeArrayRef(bigVal, numWords));
118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119 : BitWidth(numbits) {
120 assert(BitWidth && "Bitwidth too small");
121 fromString(numbits, Str, radix);
124 void APInt::reallocate(unsigned NewBitWidth) {
125 // If the number of words is the same we can just change the width and stop.
126 if (getNumWords() == getNumWords(NewBitWidth)) {
127 BitWidth = NewBitWidth;
128 return;
131 // If we have an allocation, delete it.
132 if (!isSingleWord())
133 delete [] U.pVal;
135 // Update BitWidth.
136 BitWidth = NewBitWidth;
138 // If we are supposed to have an allocation, create it.
139 if (!isSingleWord())
140 U.pVal = getMemory(getNumWords());
143 void APInt::AssignSlowCase(const APInt& RHS) {
144 // Don't do anything for X = X
145 if (this == &RHS)
146 return;
148 // Adjust the bit width and handle allocations as necessary.
149 reallocate(RHS.getBitWidth());
151 // Copy the data.
152 if (isSingleWord())
153 U.VAL = RHS.U.VAL;
154 else
155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
158 /// This method 'profiles' an APInt for use with FoldingSet.
159 void APInt::Profile(FoldingSetNodeID& ID) const {
160 ID.AddInteger(BitWidth);
162 if (isSingleWord()) {
163 ID.AddInteger(U.VAL);
164 return;
167 unsigned NumWords = getNumWords();
168 for (unsigned i = 0; i < NumWords; ++i)
169 ID.AddInteger(U.pVal[i]);
172 /// Prefix increment operator. Increments the APInt by one.
173 APInt& APInt::operator++() {
174 if (isSingleWord())
175 ++U.VAL;
176 else
177 tcIncrement(U.pVal, getNumWords());
178 return clearUnusedBits();
181 /// Prefix decrement operator. Decrements the APInt by one.
182 APInt& APInt::operator--() {
183 if (isSingleWord())
184 --U.VAL;
185 else
186 tcDecrement(U.pVal, getNumWords());
187 return clearUnusedBits();
190 /// Adds the RHS APint to this APInt.
191 /// @returns this, after addition of RHS.
192 /// Addition assignment operator.
193 APInt& APInt::operator+=(const APInt& RHS) {
194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
195 if (isSingleWord())
196 U.VAL += RHS.U.VAL;
197 else
198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199 return clearUnusedBits();
202 APInt& APInt::operator+=(uint64_t RHS) {
203 if (isSingleWord())
204 U.VAL += RHS;
205 else
206 tcAddPart(U.pVal, RHS, getNumWords());
207 return clearUnusedBits();
210 /// Subtracts the RHS APInt from this APInt
211 /// @returns this, after subtraction
212 /// Subtraction assignment operator.
213 APInt& APInt::operator-=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 U.VAL -= RHS.U.VAL;
217 else
218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219 return clearUnusedBits();
222 APInt& APInt::operator-=(uint64_t RHS) {
223 if (isSingleWord())
224 U.VAL -= RHS;
225 else
226 tcSubtractPart(U.pVal, RHS, getNumWords());
227 return clearUnusedBits();
230 APInt APInt::operator*(const APInt& RHS) const {
231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232 if (isSingleWord())
233 return APInt(BitWidth, U.VAL * RHS.U.VAL);
235 APInt Result(getMemory(getNumWords()), getBitWidth());
237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
239 Result.clearUnusedBits();
240 return Result;
243 void APInt::AndAssignSlowCase(const APInt& RHS) {
244 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
247 void APInt::OrAssignSlowCase(const APInt& RHS) {
248 tcOr(U.pVal, RHS.U.pVal, getNumWords());
251 void APInt::XorAssignSlowCase(const APInt& RHS) {
252 tcXor(U.pVal, RHS.U.pVal, getNumWords());
255 APInt& APInt::operator*=(const APInt& RHS) {
256 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257 *this = *this * RHS;
258 return *this;
261 APInt& APInt::operator*=(uint64_t RHS) {
262 if (isSingleWord()) {
263 U.VAL *= RHS;
264 } else {
265 unsigned NumWords = getNumWords();
266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
268 return clearUnusedBits();
271 bool APInt::EqualSlowCase(const APInt& RHS) const {
272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
275 int APInt::compare(const APInt& RHS) const {
276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277 if (isSingleWord())
278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
283 int APInt::compareSigned(const APInt& RHS) const {
284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285 if (isSingleWord()) {
286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
291 bool lhsNeg = isNegative();
292 bool rhsNeg = RHS.isNegative();
294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295 if (lhsNeg != rhsNeg)
296 return lhsNeg ? -1 : 1;
298 // Otherwise we can just use an unsigned comparison, because even negative
299 // numbers compare correctly this way if both have the same signed-ness.
300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304 unsigned loWord = whichWord(loBit);
305 unsigned hiWord = whichWord(hiBit);
307 // Create an initial mask for the low word with zeros below loBit.
308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
310 // If hiBit is not aligned, we need a high mask.
311 unsigned hiShiftAmt = whichBit(hiBit);
312 if (hiShiftAmt != 0) {
313 // Create a high mask with zeros above hiBit.
314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316 // set the bits in hiWord.
317 if (hiWord == loWord)
318 loMask &= hiMask;
319 else
320 U.pVal[hiWord] |= hiMask;
322 // Apply the mask to the low word.
323 U.pVal[loWord] |= loMask;
325 // Fill any words between loWord and hiWord with all ones.
326 for (unsigned word = loWord + 1; word < hiWord; ++word)
327 U.pVal[word] = WORDTYPE_MAX;
330 /// Toggle every bit to its opposite value.
331 void APInt::flipAllBitsSlowCase() {
332 tcComplement(U.pVal, getNumWords());
333 clearUnusedBits();
336 /// Toggle a given bit to its opposite value whose position is given
337 /// as "bitPosition".
338 /// Toggles a given bit to its opposite value.
339 void APInt::flipBit(unsigned bitPosition) {
340 assert(bitPosition < BitWidth && "Out of the bit-width range!");
341 if ((*this)[bitPosition]) clearBit(bitPosition);
342 else setBit(bitPosition);
345 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
346 unsigned subBitWidth = subBits.getBitWidth();
347 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
348 "Illegal bit insertion");
350 // Insertion is a direct copy.
351 if (subBitWidth == BitWidth) {
352 *this = subBits;
353 return;
356 // Single word result can be done as a direct bitmask.
357 if (isSingleWord()) {
358 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
359 U.VAL &= ~(mask << bitPosition);
360 U.VAL |= (subBits.U.VAL << bitPosition);
361 return;
364 unsigned loBit = whichBit(bitPosition);
365 unsigned loWord = whichWord(bitPosition);
366 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
368 // Insertion within a single word can be done as a direct bitmask.
369 if (loWord == hi1Word) {
370 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
371 U.pVal[loWord] &= ~(mask << loBit);
372 U.pVal[loWord] |= (subBits.U.VAL << loBit);
373 return;
376 // Insert on word boundaries.
377 if (loBit == 0) {
378 // Direct copy whole words.
379 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
380 memcpy(U.pVal + loWord, subBits.getRawData(),
381 numWholeSubWords * APINT_WORD_SIZE);
383 // Mask+insert remaining bits.
384 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
385 if (remainingBits != 0) {
386 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
387 U.pVal[hi1Word] &= ~mask;
388 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
390 return;
393 // General case - set/clear individual bits in dst based on src.
394 // TODO - there is scope for optimization here, but at the moment this code
395 // path is barely used so prefer readability over performance.
396 for (unsigned i = 0; i != subBitWidth; ++i) {
397 if (subBits[i])
398 setBit(bitPosition + i);
399 else
400 clearBit(bitPosition + i);
404 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
405 assert(numBits > 0 && "Can't extract zero bits");
406 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
407 "Illegal bit extraction");
409 if (isSingleWord())
410 return APInt(numBits, U.VAL >> bitPosition);
412 unsigned loBit = whichBit(bitPosition);
413 unsigned loWord = whichWord(bitPosition);
414 unsigned hiWord = whichWord(bitPosition + numBits - 1);
416 // Single word result extracting bits from a single word source.
417 if (loWord == hiWord)
418 return APInt(numBits, U.pVal[loWord] >> loBit);
420 // Extracting bits that start on a source word boundary can be done
421 // as a fast memory copy.
422 if (loBit == 0)
423 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
425 // General case - shift + copy source words directly into place.
426 APInt Result(numBits, 0);
427 unsigned NumSrcWords = getNumWords();
428 unsigned NumDstWords = Result.getNumWords();
430 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
431 for (unsigned word = 0; word < NumDstWords; ++word) {
432 uint64_t w0 = U.pVal[loWord + word];
433 uint64_t w1 =
434 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
435 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
438 return Result.clearUnusedBits();
441 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
442 assert(!str.empty() && "Invalid string length");
443 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
444 radix == 36) &&
445 "Radix should be 2, 8, 10, 16, or 36!");
447 size_t slen = str.size();
449 // Each computation below needs to know if it's negative.
450 StringRef::iterator p = str.begin();
451 unsigned isNegative = *p == '-';
452 if (*p == '-' || *p == '+') {
453 p++;
454 slen--;
455 assert(slen && "String is only a sign, needs a value.");
458 // For radixes of power-of-two values, the bits required is accurately and
459 // easily computed
460 if (radix == 2)
461 return slen + isNegative;
462 if (radix == 8)
463 return slen * 3 + isNegative;
464 if (radix == 16)
465 return slen * 4 + isNegative;
467 // FIXME: base 36
469 // This is grossly inefficient but accurate. We could probably do something
470 // with a computation of roughly slen*64/20 and then adjust by the value of
471 // the first few digits. But, I'm not sure how accurate that could be.
473 // Compute a sufficient number of bits that is always large enough but might
474 // be too large. This avoids the assertion in the constructor. This
475 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
476 // bits in that case.
477 unsigned sufficient
478 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
479 : (slen == 1 ? 7 : slen * 16/3);
481 // Convert to the actual binary value.
482 APInt tmp(sufficient, StringRef(p, slen), radix);
484 // Compute how many bits are required. If the log is infinite, assume we need
485 // just bit.
486 unsigned log = tmp.logBase2();
487 if (log == (unsigned)-1) {
488 return isNegative + 1;
489 } else {
490 return isNegative + log + 1;
494 hash_code llvm::hash_value(const APInt &Arg) {
495 if (Arg.isSingleWord())
496 return hash_combine(Arg.U.VAL);
498 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
501 bool APInt::isSplat(unsigned SplatSizeInBits) const {
502 assert(getBitWidth() % SplatSizeInBits == 0 &&
503 "SplatSizeInBits must divide width!");
504 // We can check that all parts of an integer are equal by making use of a
505 // little trick: rotate and check if it's still the same value.
506 return *this == rotl(SplatSizeInBits);
509 /// This function returns the high "numBits" bits of this APInt.
510 APInt APInt::getHiBits(unsigned numBits) const {
511 return this->lshr(BitWidth - numBits);
514 /// This function returns the low "numBits" bits of this APInt.
515 APInt APInt::getLoBits(unsigned numBits) const {
516 APInt Result(getLowBitsSet(BitWidth, numBits));
517 Result &= *this;
518 return Result;
521 /// Return a value containing V broadcasted over NewLen bits.
522 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
523 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
525 APInt Val = V.zextOrSelf(NewLen);
526 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
527 Val |= Val << I;
529 return Val;
532 unsigned APInt::countLeadingZerosSlowCase() const {
533 unsigned Count = 0;
534 for (int i = getNumWords()-1; i >= 0; --i) {
535 uint64_t V = U.pVal[i];
536 if (V == 0)
537 Count += APINT_BITS_PER_WORD;
538 else {
539 Count += llvm::countLeadingZeros(V);
540 break;
543 // Adjust for unused bits in the most significant word (they are zero).
544 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
545 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
546 return Count;
549 unsigned APInt::countLeadingOnesSlowCase() const {
550 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
551 unsigned shift;
552 if (!highWordBits) {
553 highWordBits = APINT_BITS_PER_WORD;
554 shift = 0;
555 } else {
556 shift = APINT_BITS_PER_WORD - highWordBits;
558 int i = getNumWords() - 1;
559 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
560 if (Count == highWordBits) {
561 for (i--; i >= 0; --i) {
562 if (U.pVal[i] == WORDTYPE_MAX)
563 Count += APINT_BITS_PER_WORD;
564 else {
565 Count += llvm::countLeadingOnes(U.pVal[i]);
566 break;
570 return Count;
573 unsigned APInt::countTrailingZerosSlowCase() const {
574 unsigned Count = 0;
575 unsigned i = 0;
576 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
577 Count += APINT_BITS_PER_WORD;
578 if (i < getNumWords())
579 Count += llvm::countTrailingZeros(U.pVal[i]);
580 return std::min(Count, BitWidth);
583 unsigned APInt::countTrailingOnesSlowCase() const {
584 unsigned Count = 0;
585 unsigned i = 0;
586 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
587 Count += APINT_BITS_PER_WORD;
588 if (i < getNumWords())
589 Count += llvm::countTrailingOnes(U.pVal[i]);
590 assert(Count <= BitWidth);
591 return Count;
594 unsigned APInt::countPopulationSlowCase() const {
595 unsigned Count = 0;
596 for (unsigned i = 0; i < getNumWords(); ++i)
597 Count += llvm::countPopulation(U.pVal[i]);
598 return Count;
601 bool APInt::intersectsSlowCase(const APInt &RHS) const {
602 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
603 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
604 return true;
606 return false;
609 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
610 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
611 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
612 return false;
614 return true;
617 APInt APInt::byteSwap() const {
618 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
619 if (BitWidth == 16)
620 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
621 if (BitWidth == 32)
622 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
623 if (BitWidth == 48) {
624 unsigned Tmp1 = unsigned(U.VAL >> 16);
625 Tmp1 = ByteSwap_32(Tmp1);
626 uint16_t Tmp2 = uint16_t(U.VAL);
627 Tmp2 = ByteSwap_16(Tmp2);
628 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
630 if (BitWidth == 64)
631 return APInt(BitWidth, ByteSwap_64(U.VAL));
633 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
634 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
635 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
636 if (Result.BitWidth != BitWidth) {
637 Result.lshrInPlace(Result.BitWidth - BitWidth);
638 Result.BitWidth = BitWidth;
640 return Result;
643 APInt APInt::reverseBits() const {
644 switch (BitWidth) {
645 case 64:
646 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
647 case 32:
648 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
649 case 16:
650 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
651 case 8:
652 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
653 default:
654 break;
657 APInt Val(*this);
658 APInt Reversed(BitWidth, 0);
659 unsigned S = BitWidth;
661 for (; Val != 0; Val.lshrInPlace(1)) {
662 Reversed <<= 1;
663 Reversed |= Val[0];
664 --S;
667 Reversed <<= S;
668 return Reversed;
671 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
672 // Fast-path a common case.
673 if (A == B) return A;
675 // Corner cases: if either operand is zero, the other is the gcd.
676 if (!A) return B;
677 if (!B) return A;
679 // Count common powers of 2 and remove all other powers of 2.
680 unsigned Pow2;
682 unsigned Pow2_A = A.countTrailingZeros();
683 unsigned Pow2_B = B.countTrailingZeros();
684 if (Pow2_A > Pow2_B) {
685 A.lshrInPlace(Pow2_A - Pow2_B);
686 Pow2 = Pow2_B;
687 } else if (Pow2_B > Pow2_A) {
688 B.lshrInPlace(Pow2_B - Pow2_A);
689 Pow2 = Pow2_A;
690 } else {
691 Pow2 = Pow2_A;
695 // Both operands are odd multiples of 2^Pow_2:
697 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
699 // This is a modified version of Stein's algorithm, taking advantage of
700 // efficient countTrailingZeros().
701 while (A != B) {
702 if (A.ugt(B)) {
703 A -= B;
704 A.lshrInPlace(A.countTrailingZeros() - Pow2);
705 } else {
706 B -= A;
707 B.lshrInPlace(B.countTrailingZeros() - Pow2);
711 return A;
714 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
715 uint64_t I = bit_cast<uint64_t>(Double);
717 // Get the sign bit from the highest order bit
718 bool isNeg = I >> 63;
720 // Get the 11-bit exponent and adjust for the 1023 bit bias
721 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
723 // If the exponent is negative, the value is < 0 so just return 0.
724 if (exp < 0)
725 return APInt(width, 0u);
727 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
728 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
730 // If the exponent doesn't shift all bits out of the mantissa
731 if (exp < 52)
732 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
733 APInt(width, mantissa >> (52 - exp));
735 // If the client didn't provide enough bits for us to shift the mantissa into
736 // then the result is undefined, just return 0
737 if (width <= exp - 52)
738 return APInt(width, 0);
740 // Otherwise, we have to shift the mantissa bits up to the right location
741 APInt Tmp(width, mantissa);
742 Tmp <<= (unsigned)exp - 52;
743 return isNeg ? -Tmp : Tmp;
746 /// This function converts this APInt to a double.
747 /// The layout for double is as following (IEEE Standard 754):
748 /// --------------------------------------
749 /// | Sign Exponent Fraction Bias |
750 /// |-------------------------------------- |
751 /// | 1[63] 11[62-52] 52[51-00] 1023 |
752 /// --------------------------------------
753 double APInt::roundToDouble(bool isSigned) const {
755 // Handle the simple case where the value is contained in one uint64_t.
756 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
757 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
758 if (isSigned) {
759 int64_t sext = SignExtend64(getWord(0), BitWidth);
760 return double(sext);
761 } else
762 return double(getWord(0));
765 // Determine if the value is negative.
766 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
768 // Construct the absolute value if we're negative.
769 APInt Tmp(isNeg ? -(*this) : (*this));
771 // Figure out how many bits we're using.
772 unsigned n = Tmp.getActiveBits();
774 // The exponent (without bias normalization) is just the number of bits
775 // we are using. Note that the sign bit is gone since we constructed the
776 // absolute value.
777 uint64_t exp = n;
779 // Return infinity for exponent overflow
780 if (exp > 1023) {
781 if (!isSigned || !isNeg)
782 return std::numeric_limits<double>::infinity();
783 else
784 return -std::numeric_limits<double>::infinity();
786 exp += 1023; // Increment for 1023 bias
788 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
789 // extract the high 52 bits from the correct words in pVal.
790 uint64_t mantissa;
791 unsigned hiWord = whichWord(n-1);
792 if (hiWord == 0) {
793 mantissa = Tmp.U.pVal[0];
794 if (n > 52)
795 mantissa >>= n - 52; // shift down, we want the top 52 bits.
796 } else {
797 assert(hiWord > 0 && "huh?");
798 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
799 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
800 mantissa = hibits | lobits;
803 // The leading bit of mantissa is implicit, so get rid of it.
804 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
805 uint64_t I = sign | (exp << 52) | mantissa;
806 return bit_cast<double>(I);
809 // Truncate to new width.
810 APInt APInt::trunc(unsigned width) const {
811 assert(width < BitWidth && "Invalid APInt Truncate request");
812 assert(width && "Can't truncate to 0 bits");
814 if (width <= APINT_BITS_PER_WORD)
815 return APInt(width, getRawData()[0]);
817 APInt Result(getMemory(getNumWords(width)), width);
819 // Copy full words.
820 unsigned i;
821 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
822 Result.U.pVal[i] = U.pVal[i];
824 // Truncate and copy any partial word.
825 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
826 if (bits != 0)
827 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
829 return Result;
832 // Sign extend to a new width.
833 APInt APInt::sext(unsigned Width) const {
834 assert(Width > BitWidth && "Invalid APInt SignExtend request");
836 if (Width <= APINT_BITS_PER_WORD)
837 return APInt(Width, SignExtend64(U.VAL, BitWidth));
839 APInt Result(getMemory(getNumWords(Width)), Width);
841 // Copy words.
842 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
844 // Sign extend the last word since there may be unused bits in the input.
845 Result.U.pVal[getNumWords() - 1] =
846 SignExtend64(Result.U.pVal[getNumWords() - 1],
847 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
849 // Fill with sign bits.
850 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
851 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
852 Result.clearUnusedBits();
853 return Result;
856 // Zero extend to a new width.
857 APInt APInt::zext(unsigned width) const {
858 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
860 if (width <= APINT_BITS_PER_WORD)
861 return APInt(width, U.VAL);
863 APInt Result(getMemory(getNumWords(width)), width);
865 // Copy words.
866 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
868 // Zero remaining words.
869 std::memset(Result.U.pVal + getNumWords(), 0,
870 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
872 return Result;
875 APInt APInt::zextOrTrunc(unsigned width) const {
876 if (BitWidth < width)
877 return zext(width);
878 if (BitWidth > width)
879 return trunc(width);
880 return *this;
883 APInt APInt::sextOrTrunc(unsigned width) const {
884 if (BitWidth < width)
885 return sext(width);
886 if (BitWidth > width)
887 return trunc(width);
888 return *this;
891 APInt APInt::zextOrSelf(unsigned width) const {
892 if (BitWidth < width)
893 return zext(width);
894 return *this;
897 APInt APInt::sextOrSelf(unsigned width) const {
898 if (BitWidth < width)
899 return sext(width);
900 return *this;
903 /// Arithmetic right-shift this APInt by shiftAmt.
904 /// Arithmetic right-shift function.
905 void APInt::ashrInPlace(const APInt &shiftAmt) {
906 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
909 /// Arithmetic right-shift this APInt by shiftAmt.
910 /// Arithmetic right-shift function.
911 void APInt::ashrSlowCase(unsigned ShiftAmt) {
912 // Don't bother performing a no-op shift.
913 if (!ShiftAmt)
914 return;
916 // Save the original sign bit for later.
917 bool Negative = isNegative();
919 // WordShift is the inter-part shift; BitShift is intra-part shift.
920 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
921 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
923 unsigned WordsToMove = getNumWords() - WordShift;
924 if (WordsToMove != 0) {
925 // Sign extend the last word to fill in the unused bits.
926 U.pVal[getNumWords() - 1] = SignExtend64(
927 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
929 // Fastpath for moving by whole words.
930 if (BitShift == 0) {
931 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
932 } else {
933 // Move the words containing significant bits.
934 for (unsigned i = 0; i != WordsToMove - 1; ++i)
935 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
936 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
938 // Handle the last word which has no high bits to copy.
939 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
940 // Sign extend one more time.
941 U.pVal[WordsToMove - 1] =
942 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
946 // Fill in the remainder based on the original sign.
947 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
948 WordShift * APINT_WORD_SIZE);
949 clearUnusedBits();
952 /// Logical right-shift this APInt by shiftAmt.
953 /// Logical right-shift function.
954 void APInt::lshrInPlace(const APInt &shiftAmt) {
955 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
958 /// Logical right-shift this APInt by shiftAmt.
959 /// Logical right-shift function.
960 void APInt::lshrSlowCase(unsigned ShiftAmt) {
961 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
964 /// Left-shift this APInt by shiftAmt.
965 /// Left-shift function.
966 APInt &APInt::operator<<=(const APInt &shiftAmt) {
967 // It's undefined behavior in C to shift by BitWidth or greater.
968 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
969 return *this;
972 void APInt::shlSlowCase(unsigned ShiftAmt) {
973 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
974 clearUnusedBits();
977 // Calculate the rotate amount modulo the bit width.
978 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
979 unsigned rotBitWidth = rotateAmt.getBitWidth();
980 APInt rot = rotateAmt;
981 if (rotBitWidth < BitWidth) {
982 // Extend the rotate APInt, so that the urem doesn't divide by 0.
983 // e.g. APInt(1, 32) would give APInt(1, 0).
984 rot = rotateAmt.zext(BitWidth);
986 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
987 return rot.getLimitedValue(BitWidth);
990 APInt APInt::rotl(const APInt &rotateAmt) const {
991 return rotl(rotateModulo(BitWidth, rotateAmt));
994 APInt APInt::rotl(unsigned rotateAmt) const {
995 rotateAmt %= BitWidth;
996 if (rotateAmt == 0)
997 return *this;
998 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1001 APInt APInt::rotr(const APInt &rotateAmt) const {
1002 return rotr(rotateModulo(BitWidth, rotateAmt));
1005 APInt APInt::rotr(unsigned rotateAmt) const {
1006 rotateAmt %= BitWidth;
1007 if (rotateAmt == 0)
1008 return *this;
1009 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1012 // Square Root - this method computes and returns the square root of "this".
1013 // Three mechanisms are used for computation. For small values (<= 5 bits),
1014 // a table lookup is done. This gets some performance for common cases. For
1015 // values using less than 52 bits, the value is converted to double and then
1016 // the libc sqrt function is called. The result is rounded and then converted
1017 // back to a uint64_t which is then used to construct the result. Finally,
1018 // the Babylonian method for computing square roots is used.
1019 APInt APInt::sqrt() const {
1021 // Determine the magnitude of the value.
1022 unsigned magnitude = getActiveBits();
1024 // Use a fast table for some small values. This also gets rid of some
1025 // rounding errors in libc sqrt for small values.
1026 if (magnitude <= 5) {
1027 static const uint8_t results[32] = {
1028 /* 0 */ 0,
1029 /* 1- 2 */ 1, 1,
1030 /* 3- 6 */ 2, 2, 2, 2,
1031 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1032 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1033 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1034 /* 31 */ 6
1036 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1039 // If the magnitude of the value fits in less than 52 bits (the precision of
1040 // an IEEE double precision floating point value), then we can use the
1041 // libc sqrt function which will probably use a hardware sqrt computation.
1042 // This should be faster than the algorithm below.
1043 if (magnitude < 52) {
1044 return APInt(BitWidth,
1045 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1046 : U.pVal[0])))));
1049 // Okay, all the short cuts are exhausted. We must compute it. The following
1050 // is a classical Babylonian method for computing the square root. This code
1051 // was adapted to APInt from a wikipedia article on such computations.
1052 // See http://www.wikipedia.org/ and go to the page named
1053 // Calculate_an_integer_square_root.
1054 unsigned nbits = BitWidth, i = 4;
1055 APInt testy(BitWidth, 16);
1056 APInt x_old(BitWidth, 1);
1057 APInt x_new(BitWidth, 0);
1058 APInt two(BitWidth, 2);
1060 // Select a good starting value using binary logarithms.
1061 for (;; i += 2, testy = testy.shl(2))
1062 if (i >= nbits || this->ule(testy)) {
1063 x_old = x_old.shl(i / 2);
1064 break;
1067 // Use the Babylonian method to arrive at the integer square root:
1068 for (;;) {
1069 x_new = (this->udiv(x_old) + x_old).udiv(two);
1070 if (x_old.ule(x_new))
1071 break;
1072 x_old = x_new;
1075 // Make sure we return the closest approximation
1076 // NOTE: The rounding calculation below is correct. It will produce an
1077 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1078 // determined to be a rounding issue with pari/gp as it begins to use a
1079 // floating point representation after 192 bits. There are no discrepancies
1080 // between this algorithm and pari/gp for bit widths < 192 bits.
1081 APInt square(x_old * x_old);
1082 APInt nextSquare((x_old + 1) * (x_old +1));
1083 if (this->ult(square))
1084 return x_old;
1085 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1086 APInt midpoint((nextSquare - square).udiv(two));
1087 APInt offset(*this - square);
1088 if (offset.ult(midpoint))
1089 return x_old;
1090 return x_old + 1;
1093 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1094 /// iterative extended Euclidean algorithm is used to solve for this value,
1095 /// however we simplify it to speed up calculating only the inverse, and take
1096 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1097 /// (potentially large) APInts around.
1098 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1099 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1101 // Using the properties listed at the following web page (accessed 06/21/08):
1102 // http://www.numbertheory.org/php/euclid.html
1103 // (especially the properties numbered 3, 4 and 9) it can be proved that
1104 // BitWidth bits suffice for all the computations in the algorithm implemented
1105 // below. More precisely, this number of bits suffice if the multiplicative
1106 // inverse exists, but may not suffice for the general extended Euclidean
1107 // algorithm.
1109 APInt r[2] = { modulo, *this };
1110 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1111 APInt q(BitWidth, 0);
1113 unsigned i;
1114 for (i = 0; r[i^1] != 0; i ^= 1) {
1115 // An overview of the math without the confusing bit-flipping:
1116 // q = r[i-2] / r[i-1]
1117 // r[i] = r[i-2] % r[i-1]
1118 // t[i] = t[i-2] - t[i-1] * q
1119 udivrem(r[i], r[i^1], q, r[i]);
1120 t[i] -= t[i^1] * q;
1123 // If this APInt and the modulo are not coprime, there is no multiplicative
1124 // inverse, so return 0. We check this by looking at the next-to-last
1125 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1126 // algorithm.
1127 if (r[i] != 1)
1128 return APInt(BitWidth, 0);
1130 // The next-to-last t is the multiplicative inverse. However, we are
1131 // interested in a positive inverse. Calculate a positive one from a negative
1132 // one if necessary. A simple addition of the modulo suffices because
1133 // abs(t[i]) is known to be less than *this/2 (see the link above).
1134 if (t[i].isNegative())
1135 t[i] += modulo;
1137 return std::move(t[i]);
1140 /// Calculate the magic numbers required to implement a signed integer division
1141 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1142 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1143 /// Warren, Jr., chapter 10.
1144 APInt::ms APInt::magic() const {
1145 const APInt& d = *this;
1146 unsigned p;
1147 APInt ad, anc, delta, q1, r1, q2, r2, t;
1148 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1149 struct ms mag;
1151 ad = d.abs();
1152 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1153 anc = t - 1 - t.urem(ad); // absolute value of nc
1154 p = d.getBitWidth() - 1; // initialize p
1155 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1156 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1157 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1158 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1159 do {
1160 p = p + 1;
1161 q1 = q1<<1; // update q1 = 2p/abs(nc)
1162 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1163 if (r1.uge(anc)) { // must be unsigned comparison
1164 q1 = q1 + 1;
1165 r1 = r1 - anc;
1167 q2 = q2<<1; // update q2 = 2p/abs(d)
1168 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1169 if (r2.uge(ad)) { // must be unsigned comparison
1170 q2 = q2 + 1;
1171 r2 = r2 - ad;
1173 delta = ad - r2;
1174 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1176 mag.m = q2 + 1;
1177 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1178 mag.s = p - d.getBitWidth(); // resulting shift
1179 return mag;
1182 /// Calculate the magic numbers required to implement an unsigned integer
1183 /// division by a constant as a sequence of multiplies, adds and shifts.
1184 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1185 /// S. Warren, Jr., chapter 10.
1186 /// LeadingZeros can be used to simplify the calculation if the upper bits
1187 /// of the divided value are known zero.
1188 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1189 const APInt& d = *this;
1190 unsigned p;
1191 APInt nc, delta, q1, r1, q2, r2;
1192 struct mu magu;
1193 magu.a = 0; // initialize "add" indicator
1194 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1195 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1196 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1198 nc = allOnes - (allOnes - d).urem(d);
1199 p = d.getBitWidth() - 1; // initialize p
1200 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1201 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1202 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1203 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1204 do {
1205 p = p + 1;
1206 if (r1.uge(nc - r1)) {
1207 q1 = q1 + q1 + 1; // update q1
1208 r1 = r1 + r1 - nc; // update r1
1210 else {
1211 q1 = q1+q1; // update q1
1212 r1 = r1+r1; // update r1
1214 if ((r2 + 1).uge(d - r2)) {
1215 if (q2.uge(signedMax)) magu.a = 1;
1216 q2 = q2+q2 + 1; // update q2
1217 r2 = r2+r2 + 1 - d; // update r2
1219 else {
1220 if (q2.uge(signedMin)) magu.a = 1;
1221 q2 = q2+q2; // update q2
1222 r2 = r2+r2 + 1; // update r2
1224 delta = d - 1 - r2;
1225 } while (p < d.getBitWidth()*2 &&
1226 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1227 magu.m = q2 + 1; // resulting magic number
1228 magu.s = p - d.getBitWidth(); // resulting shift
1229 return magu;
1232 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1233 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1234 /// variables here have the same names as in the algorithm. Comments explain
1235 /// the algorithm and any deviation from it.
1236 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1237 unsigned m, unsigned n) {
1238 assert(u && "Must provide dividend");
1239 assert(v && "Must provide divisor");
1240 assert(q && "Must provide quotient");
1241 assert(u != v && u != q && v != q && "Must use different memory");
1242 assert(n>1 && "n must be > 1");
1244 // b denotes the base of the number system. In our case b is 2^32.
1245 const uint64_t b = uint64_t(1) << 32;
1247 // The DEBUG macros here tend to be spam in the debug output if you're not
1248 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1249 #ifdef KNUTH_DEBUG
1250 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1251 #else
1252 #define DEBUG_KNUTH(X) do {} while(false)
1253 #endif
1255 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1256 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1257 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1258 DEBUG_KNUTH(dbgs() << " by");
1259 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1260 DEBUG_KNUTH(dbgs() << '\n');
1261 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1262 // u and v by d. Note that we have taken Knuth's advice here to use a power
1263 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1264 // 2 allows us to shift instead of multiply and it is easy to determine the
1265 // shift amount from the leading zeros. We are basically normalizing the u
1266 // and v so that its high bits are shifted to the top of v's range without
1267 // overflow. Note that this can require an extra word in u so that u must
1268 // be of length m+n+1.
1269 unsigned shift = countLeadingZeros(v[n-1]);
1270 uint32_t v_carry = 0;
1271 uint32_t u_carry = 0;
1272 if (shift) {
1273 for (unsigned i = 0; i < m+n; ++i) {
1274 uint32_t u_tmp = u[i] >> (32 - shift);
1275 u[i] = (u[i] << shift) | u_carry;
1276 u_carry = u_tmp;
1278 for (unsigned i = 0; i < n; ++i) {
1279 uint32_t v_tmp = v[i] >> (32 - shift);
1280 v[i] = (v[i] << shift) | v_carry;
1281 v_carry = v_tmp;
1284 u[m+n] = u_carry;
1286 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1287 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1288 DEBUG_KNUTH(dbgs() << " by");
1289 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1290 DEBUG_KNUTH(dbgs() << '\n');
1292 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1293 int j = m;
1294 do {
1295 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1296 // D3. [Calculate q'.].
1297 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1298 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1299 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1300 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1301 // on v[n-2] determines at high speed most of the cases in which the trial
1302 // value qp is one too large, and it eliminates all cases where qp is two
1303 // too large.
1304 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1305 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1306 uint64_t qp = dividend / v[n-1];
1307 uint64_t rp = dividend % v[n-1];
1308 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1309 qp--;
1310 rp += v[n-1];
1311 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1312 qp--;
1314 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1316 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1317 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1318 // consists of a simple multiplication by a one-place number, combined with
1319 // a subtraction.
1320 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1321 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1322 // true value plus b**(n+1), namely as the b's complement of
1323 // the true value, and a "borrow" to the left should be remembered.
1324 int64_t borrow = 0;
1325 for (unsigned i = 0; i < n; ++i) {
1326 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1327 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1328 u[j+i] = Lo_32(subres);
1329 borrow = Hi_32(p) - Hi_32(subres);
1330 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1331 << ", borrow = " << borrow << '\n');
1333 bool isNeg = u[j+n] < borrow;
1334 u[j+n] -= Lo_32(borrow);
1336 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1337 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1338 DEBUG_KNUTH(dbgs() << '\n');
1340 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1341 // negative, go to step D6; otherwise go on to step D7.
1342 q[j] = Lo_32(qp);
1343 if (isNeg) {
1344 // D6. [Add back]. The probability that this step is necessary is very
1345 // small, on the order of only 2/b. Make sure that test data accounts for
1346 // this possibility. Decrease q[j] by 1
1347 q[j]--;
1348 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1349 // A carry will occur to the left of u[j+n], and it should be ignored
1350 // since it cancels with the borrow that occurred in D4.
1351 bool carry = false;
1352 for (unsigned i = 0; i < n; i++) {
1353 uint32_t limit = std::min(u[j+i],v[i]);
1354 u[j+i] += v[i] + carry;
1355 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1357 u[j+n] += carry;
1359 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1360 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1361 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1363 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1364 } while (--j >= 0);
1366 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1367 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1368 DEBUG_KNUTH(dbgs() << '\n');
1370 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1371 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1372 // compute the remainder (urem uses this).
1373 if (r) {
1374 // The value d is expressed by the "shift" value above since we avoided
1375 // multiplication by d by using a shift left. So, all we have to do is
1376 // shift right here.
1377 if (shift) {
1378 uint32_t carry = 0;
1379 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1380 for (int i = n-1; i >= 0; i--) {
1381 r[i] = (u[i] >> shift) | carry;
1382 carry = u[i] << (32 - shift);
1383 DEBUG_KNUTH(dbgs() << " " << r[i]);
1385 } else {
1386 for (int i = n-1; i >= 0; i--) {
1387 r[i] = u[i];
1388 DEBUG_KNUTH(dbgs() << " " << r[i]);
1391 DEBUG_KNUTH(dbgs() << '\n');
1393 DEBUG_KNUTH(dbgs() << '\n');
1396 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1397 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1398 assert(lhsWords >= rhsWords && "Fractional result");
1400 // First, compose the values into an array of 32-bit words instead of
1401 // 64-bit words. This is a necessity of both the "short division" algorithm
1402 // and the Knuth "classical algorithm" which requires there to be native
1403 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1404 // can't use 64-bit operands here because we don't have native results of
1405 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1406 // work on large-endian machines.
1407 unsigned n = rhsWords * 2;
1408 unsigned m = (lhsWords * 2) - n;
1410 // Allocate space for the temporary values we need either on the stack, if
1411 // it will fit, or on the heap if it won't.
1412 uint32_t SPACE[128];
1413 uint32_t *U = nullptr;
1414 uint32_t *V = nullptr;
1415 uint32_t *Q = nullptr;
1416 uint32_t *R = nullptr;
1417 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1418 U = &SPACE[0];
1419 V = &SPACE[m+n+1];
1420 Q = &SPACE[(m+n+1) + n];
1421 if (Remainder)
1422 R = &SPACE[(m+n+1) + n + (m+n)];
1423 } else {
1424 U = new uint32_t[m + n + 1];
1425 V = new uint32_t[n];
1426 Q = new uint32_t[m+n];
1427 if (Remainder)
1428 R = new uint32_t[n];
1431 // Initialize the dividend
1432 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1433 for (unsigned i = 0; i < lhsWords; ++i) {
1434 uint64_t tmp = LHS[i];
1435 U[i * 2] = Lo_32(tmp);
1436 U[i * 2 + 1] = Hi_32(tmp);
1438 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1440 // Initialize the divisor
1441 memset(V, 0, (n)*sizeof(uint32_t));
1442 for (unsigned i = 0; i < rhsWords; ++i) {
1443 uint64_t tmp = RHS[i];
1444 V[i * 2] = Lo_32(tmp);
1445 V[i * 2 + 1] = Hi_32(tmp);
1448 // initialize the quotient and remainder
1449 memset(Q, 0, (m+n) * sizeof(uint32_t));
1450 if (Remainder)
1451 memset(R, 0, n * sizeof(uint32_t));
1453 // Now, adjust m and n for the Knuth division. n is the number of words in
1454 // the divisor. m is the number of words by which the dividend exceeds the
1455 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1456 // contain any zero words or the Knuth algorithm fails.
1457 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1458 n--;
1459 m++;
1461 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1462 m--;
1464 // If we're left with only a single word for the divisor, Knuth doesn't work
1465 // so we implement the short division algorithm here. This is much simpler
1466 // and faster because we are certain that we can divide a 64-bit quantity
1467 // by a 32-bit quantity at hardware speed and short division is simply a
1468 // series of such operations. This is just like doing short division but we
1469 // are using base 2^32 instead of base 10.
1470 assert(n != 0 && "Divide by zero?");
1471 if (n == 1) {
1472 uint32_t divisor = V[0];
1473 uint32_t remainder = 0;
1474 for (int i = m; i >= 0; i--) {
1475 uint64_t partial_dividend = Make_64(remainder, U[i]);
1476 if (partial_dividend == 0) {
1477 Q[i] = 0;
1478 remainder = 0;
1479 } else if (partial_dividend < divisor) {
1480 Q[i] = 0;
1481 remainder = Lo_32(partial_dividend);
1482 } else if (partial_dividend == divisor) {
1483 Q[i] = 1;
1484 remainder = 0;
1485 } else {
1486 Q[i] = Lo_32(partial_dividend / divisor);
1487 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1490 if (R)
1491 R[0] = remainder;
1492 } else {
1493 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1494 // case n > 1.
1495 KnuthDiv(U, V, Q, R, m, n);
1498 // If the caller wants the quotient
1499 if (Quotient) {
1500 for (unsigned i = 0; i < lhsWords; ++i)
1501 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1504 // If the caller wants the remainder
1505 if (Remainder) {
1506 for (unsigned i = 0; i < rhsWords; ++i)
1507 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1510 // Clean up the memory we allocated.
1511 if (U != &SPACE[0]) {
1512 delete [] U;
1513 delete [] V;
1514 delete [] Q;
1515 delete [] R;
1519 APInt APInt::udiv(const APInt &RHS) const {
1520 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1522 // First, deal with the easy case
1523 if (isSingleWord()) {
1524 assert(RHS.U.VAL != 0 && "Divide by zero?");
1525 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1528 // Get some facts about the LHS and RHS number of bits and words
1529 unsigned lhsWords = getNumWords(getActiveBits());
1530 unsigned rhsBits = RHS.getActiveBits();
1531 unsigned rhsWords = getNumWords(rhsBits);
1532 assert(rhsWords && "Divided by zero???");
1534 // Deal with some degenerate cases
1535 if (!lhsWords)
1536 // 0 / X ===> 0
1537 return APInt(BitWidth, 0);
1538 if (rhsBits == 1)
1539 // X / 1 ===> X
1540 return *this;
1541 if (lhsWords < rhsWords || this->ult(RHS))
1542 // X / Y ===> 0, iff X < Y
1543 return APInt(BitWidth, 0);
1544 if (*this == RHS)
1545 // X / X ===> 1
1546 return APInt(BitWidth, 1);
1547 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1548 // All high words are zero, just use native divide
1549 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1551 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1552 APInt Quotient(BitWidth, 0); // to hold result.
1553 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1554 return Quotient;
1557 APInt APInt::udiv(uint64_t RHS) const {
1558 assert(RHS != 0 && "Divide by zero?");
1560 // First, deal with the easy case
1561 if (isSingleWord())
1562 return APInt(BitWidth, U.VAL / RHS);
1564 // Get some facts about the LHS words.
1565 unsigned lhsWords = getNumWords(getActiveBits());
1567 // Deal with some degenerate cases
1568 if (!lhsWords)
1569 // 0 / X ===> 0
1570 return APInt(BitWidth, 0);
1571 if (RHS == 1)
1572 // X / 1 ===> X
1573 return *this;
1574 if (this->ult(RHS))
1575 // X / Y ===> 0, iff X < Y
1576 return APInt(BitWidth, 0);
1577 if (*this == RHS)
1578 // X / X ===> 1
1579 return APInt(BitWidth, 1);
1580 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1581 // All high words are zero, just use native divide
1582 return APInt(BitWidth, this->U.pVal[0] / RHS);
1584 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1585 APInt Quotient(BitWidth, 0); // to hold result.
1586 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1587 return Quotient;
1590 APInt APInt::sdiv(const APInt &RHS) const {
1591 if (isNegative()) {
1592 if (RHS.isNegative())
1593 return (-(*this)).udiv(-RHS);
1594 return -((-(*this)).udiv(RHS));
1596 if (RHS.isNegative())
1597 return -(this->udiv(-RHS));
1598 return this->udiv(RHS);
1601 APInt APInt::sdiv(int64_t RHS) const {
1602 if (isNegative()) {
1603 if (RHS < 0)
1604 return (-(*this)).udiv(-RHS);
1605 return -((-(*this)).udiv(RHS));
1607 if (RHS < 0)
1608 return -(this->udiv(-RHS));
1609 return this->udiv(RHS);
1612 APInt APInt::urem(const APInt &RHS) const {
1613 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1614 if (isSingleWord()) {
1615 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1616 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1619 // Get some facts about the LHS
1620 unsigned lhsWords = getNumWords(getActiveBits());
1622 // Get some facts about the RHS
1623 unsigned rhsBits = RHS.getActiveBits();
1624 unsigned rhsWords = getNumWords(rhsBits);
1625 assert(rhsWords && "Performing remainder operation by zero ???");
1627 // Check the degenerate cases
1628 if (lhsWords == 0)
1629 // 0 % Y ===> 0
1630 return APInt(BitWidth, 0);
1631 if (rhsBits == 1)
1632 // X % 1 ===> 0
1633 return APInt(BitWidth, 0);
1634 if (lhsWords < rhsWords || this->ult(RHS))
1635 // X % Y ===> X, iff X < Y
1636 return *this;
1637 if (*this == RHS)
1638 // X % X == 0;
1639 return APInt(BitWidth, 0);
1640 if (lhsWords == 1)
1641 // All high words are zero, just use native remainder
1642 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1644 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1645 APInt Remainder(BitWidth, 0);
1646 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1647 return Remainder;
1650 uint64_t APInt::urem(uint64_t RHS) const {
1651 assert(RHS != 0 && "Remainder by zero?");
1653 if (isSingleWord())
1654 return U.VAL % RHS;
1656 // Get some facts about the LHS
1657 unsigned lhsWords = getNumWords(getActiveBits());
1659 // Check the degenerate cases
1660 if (lhsWords == 0)
1661 // 0 % Y ===> 0
1662 return 0;
1663 if (RHS == 1)
1664 // X % 1 ===> 0
1665 return 0;
1666 if (this->ult(RHS))
1667 // X % Y ===> X, iff X < Y
1668 return getZExtValue();
1669 if (*this == RHS)
1670 // X % X == 0;
1671 return 0;
1672 if (lhsWords == 1)
1673 // All high words are zero, just use native remainder
1674 return U.pVal[0] % RHS;
1676 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1677 uint64_t Remainder;
1678 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1679 return Remainder;
1682 APInt APInt::srem(const APInt &RHS) const {
1683 if (isNegative()) {
1684 if (RHS.isNegative())
1685 return -((-(*this)).urem(-RHS));
1686 return -((-(*this)).urem(RHS));
1688 if (RHS.isNegative())
1689 return this->urem(-RHS);
1690 return this->urem(RHS);
1693 int64_t APInt::srem(int64_t RHS) const {
1694 if (isNegative()) {
1695 if (RHS < 0)
1696 return -((-(*this)).urem(-RHS));
1697 return -((-(*this)).urem(RHS));
1699 if (RHS < 0)
1700 return this->urem(-RHS);
1701 return this->urem(RHS);
1704 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1705 APInt &Quotient, APInt &Remainder) {
1706 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1707 unsigned BitWidth = LHS.BitWidth;
1709 // First, deal with the easy case
1710 if (LHS.isSingleWord()) {
1711 assert(RHS.U.VAL != 0 && "Divide by zero?");
1712 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1713 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1714 Quotient = APInt(BitWidth, QuotVal);
1715 Remainder = APInt(BitWidth, RemVal);
1716 return;
1719 // Get some size facts about the dividend and divisor
1720 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1721 unsigned rhsBits = RHS.getActiveBits();
1722 unsigned rhsWords = getNumWords(rhsBits);
1723 assert(rhsWords && "Performing divrem operation by zero ???");
1725 // Check the degenerate cases
1726 if (lhsWords == 0) {
1727 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1728 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1729 return;
1732 if (rhsBits == 1) {
1733 Quotient = LHS; // X / 1 ===> X
1734 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1737 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1738 Remainder = LHS; // X % Y ===> X, iff X < Y
1739 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1740 return;
1743 if (LHS == RHS) {
1744 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1745 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1746 return;
1749 // Make sure there is enough space to hold the results.
1750 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1751 // change the size. This is necessary if Quotient or Remainder is aliased
1752 // with LHS or RHS.
1753 Quotient.reallocate(BitWidth);
1754 Remainder.reallocate(BitWidth);
1756 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1757 // There is only one word to consider so use the native versions.
1758 uint64_t lhsValue = LHS.U.pVal[0];
1759 uint64_t rhsValue = RHS.U.pVal[0];
1760 Quotient = lhsValue / rhsValue;
1761 Remainder = lhsValue % rhsValue;
1762 return;
1765 // Okay, lets do it the long way
1766 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1767 Remainder.U.pVal);
1768 // Clear the rest of the Quotient and Remainder.
1769 std::memset(Quotient.U.pVal + lhsWords, 0,
1770 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1771 std::memset(Remainder.U.pVal + rhsWords, 0,
1772 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1775 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1776 uint64_t &Remainder) {
1777 assert(RHS != 0 && "Divide by zero?");
1778 unsigned BitWidth = LHS.BitWidth;
1780 // First, deal with the easy case
1781 if (LHS.isSingleWord()) {
1782 uint64_t QuotVal = LHS.U.VAL / RHS;
1783 Remainder = LHS.U.VAL % RHS;
1784 Quotient = APInt(BitWidth, QuotVal);
1785 return;
1788 // Get some size facts about the dividend and divisor
1789 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1791 // Check the degenerate cases
1792 if (lhsWords == 0) {
1793 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1794 Remainder = 0; // 0 % Y ===> 0
1795 return;
1798 if (RHS == 1) {
1799 Quotient = LHS; // X / 1 ===> X
1800 Remainder = 0; // X % 1 ===> 0
1801 return;
1804 if (LHS.ult(RHS)) {
1805 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1806 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1807 return;
1810 if (LHS == RHS) {
1811 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1812 Remainder = 0; // X % X ===> 0;
1813 return;
1816 // Make sure there is enough space to hold the results.
1817 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1818 // change the size. This is necessary if Quotient is aliased with LHS.
1819 Quotient.reallocate(BitWidth);
1821 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1822 // There is only one word to consider so use the native versions.
1823 uint64_t lhsValue = LHS.U.pVal[0];
1824 Quotient = lhsValue / RHS;
1825 Remainder = lhsValue % RHS;
1826 return;
1829 // Okay, lets do it the long way
1830 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1831 // Clear the rest of the Quotient.
1832 std::memset(Quotient.U.pVal + lhsWords, 0,
1833 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1836 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1837 APInt &Quotient, APInt &Remainder) {
1838 if (LHS.isNegative()) {
1839 if (RHS.isNegative())
1840 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1841 else {
1842 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1843 Quotient.negate();
1845 Remainder.negate();
1846 } else if (RHS.isNegative()) {
1847 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1848 Quotient.negate();
1849 } else {
1850 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1854 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1855 APInt &Quotient, int64_t &Remainder) {
1856 uint64_t R = Remainder;
1857 if (LHS.isNegative()) {
1858 if (RHS < 0)
1859 APInt::udivrem(-LHS, -RHS, Quotient, R);
1860 else {
1861 APInt::udivrem(-LHS, RHS, Quotient, R);
1862 Quotient.negate();
1864 R = -R;
1865 } else if (RHS < 0) {
1866 APInt::udivrem(LHS, -RHS, Quotient, R);
1867 Quotient.negate();
1868 } else {
1869 APInt::udivrem(LHS, RHS, Quotient, R);
1871 Remainder = R;
1874 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1875 APInt Res = *this+RHS;
1876 Overflow = isNonNegative() == RHS.isNonNegative() &&
1877 Res.isNonNegative() != isNonNegative();
1878 return Res;
1881 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1882 APInt Res = *this+RHS;
1883 Overflow = Res.ult(RHS);
1884 return Res;
1887 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1888 APInt Res = *this - RHS;
1889 Overflow = isNonNegative() != RHS.isNonNegative() &&
1890 Res.isNonNegative() != isNonNegative();
1891 return Res;
1894 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1895 APInt Res = *this-RHS;
1896 Overflow = Res.ugt(*this);
1897 return Res;
1900 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1901 // MININT/-1 --> overflow.
1902 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1903 return sdiv(RHS);
1906 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1907 APInt Res = *this * RHS;
1909 if (*this != 0 && RHS != 0)
1910 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1911 else
1912 Overflow = false;
1913 return Res;
1916 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1917 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1918 Overflow = true;
1919 return *this * RHS;
1922 APInt Res = lshr(1) * RHS;
1923 Overflow = Res.isNegative();
1924 Res <<= 1;
1925 if ((*this)[0]) {
1926 Res += RHS;
1927 if (Res.ult(RHS))
1928 Overflow = true;
1930 return Res;
1933 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1934 Overflow = ShAmt.uge(getBitWidth());
1935 if (Overflow)
1936 return APInt(BitWidth, 0);
1938 if (isNonNegative()) // Don't allow sign change.
1939 Overflow = ShAmt.uge(countLeadingZeros());
1940 else
1941 Overflow = ShAmt.uge(countLeadingOnes());
1943 return *this << ShAmt;
1946 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1947 Overflow = ShAmt.uge(getBitWidth());
1948 if (Overflow)
1949 return APInt(BitWidth, 0);
1951 Overflow = ShAmt.ugt(countLeadingZeros());
1953 return *this << ShAmt;
1956 APInt APInt::sadd_sat(const APInt &RHS) const {
1957 bool Overflow;
1958 APInt Res = sadd_ov(RHS, Overflow);
1959 if (!Overflow)
1960 return Res;
1962 return isNegative() ? APInt::getSignedMinValue(BitWidth)
1963 : APInt::getSignedMaxValue(BitWidth);
1966 APInt APInt::uadd_sat(const APInt &RHS) const {
1967 bool Overflow;
1968 APInt Res = uadd_ov(RHS, Overflow);
1969 if (!Overflow)
1970 return Res;
1972 return APInt::getMaxValue(BitWidth);
1975 APInt APInt::ssub_sat(const APInt &RHS) const {
1976 bool Overflow;
1977 APInt Res = ssub_ov(RHS, Overflow);
1978 if (!Overflow)
1979 return Res;
1981 return isNegative() ? APInt::getSignedMinValue(BitWidth)
1982 : APInt::getSignedMaxValue(BitWidth);
1985 APInt APInt::usub_sat(const APInt &RHS) const {
1986 bool Overflow;
1987 APInt Res = usub_ov(RHS, Overflow);
1988 if (!Overflow)
1989 return Res;
1991 return APInt(BitWidth, 0);
1995 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
1996 // Check our assumptions here
1997 assert(!str.empty() && "Invalid string length");
1998 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
1999 radix == 36) &&
2000 "Radix should be 2, 8, 10, 16, or 36!");
2002 StringRef::iterator p = str.begin();
2003 size_t slen = str.size();
2004 bool isNeg = *p == '-';
2005 if (*p == '-' || *p == '+') {
2006 p++;
2007 slen--;
2008 assert(slen && "String is only a sign, needs a value.");
2010 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2011 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2012 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2013 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2014 "Insufficient bit width");
2016 // Allocate memory if needed
2017 if (isSingleWord())
2018 U.VAL = 0;
2019 else
2020 U.pVal = getClearedMemory(getNumWords());
2022 // Figure out if we can shift instead of multiply
2023 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2025 // Enter digit traversal loop
2026 for (StringRef::iterator e = str.end(); p != e; ++p) {
2027 unsigned digit = getDigit(*p, radix);
2028 assert(digit < radix && "Invalid character in digit string");
2030 // Shift or multiply the value by the radix
2031 if (slen > 1) {
2032 if (shift)
2033 *this <<= shift;
2034 else
2035 *this *= radix;
2038 // Add in the digit we just interpreted
2039 *this += digit;
2041 // If its negative, put it in two's complement form
2042 if (isNeg)
2043 this->negate();
2046 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2047 bool Signed, bool formatAsCLiteral) const {
2048 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2049 Radix == 36) &&
2050 "Radix should be 2, 8, 10, 16, or 36!");
2052 const char *Prefix = "";
2053 if (formatAsCLiteral) {
2054 switch (Radix) {
2055 case 2:
2056 // Binary literals are a non-standard extension added in gcc 4.3:
2057 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2058 Prefix = "0b";
2059 break;
2060 case 8:
2061 Prefix = "0";
2062 break;
2063 case 10:
2064 break; // No prefix
2065 case 16:
2066 Prefix = "0x";
2067 break;
2068 default:
2069 llvm_unreachable("Invalid radix!");
2073 // First, check for a zero value and just short circuit the logic below.
2074 if (*this == 0) {
2075 while (*Prefix) {
2076 Str.push_back(*Prefix);
2077 ++Prefix;
2079 Str.push_back('0');
2080 return;
2083 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2085 if (isSingleWord()) {
2086 char Buffer[65];
2087 char *BufPtr = std::end(Buffer);
2089 uint64_t N;
2090 if (!Signed) {
2091 N = getZExtValue();
2092 } else {
2093 int64_t I = getSExtValue();
2094 if (I >= 0) {
2095 N = I;
2096 } else {
2097 Str.push_back('-');
2098 N = -(uint64_t)I;
2102 while (*Prefix) {
2103 Str.push_back(*Prefix);
2104 ++Prefix;
2107 while (N) {
2108 *--BufPtr = Digits[N % Radix];
2109 N /= Radix;
2111 Str.append(BufPtr, std::end(Buffer));
2112 return;
2115 APInt Tmp(*this);
2117 if (Signed && isNegative()) {
2118 // They want to print the signed version and it is a negative value
2119 // Flip the bits and add one to turn it into the equivalent positive
2120 // value and put a '-' in the result.
2121 Tmp.negate();
2122 Str.push_back('-');
2125 while (*Prefix) {
2126 Str.push_back(*Prefix);
2127 ++Prefix;
2130 // We insert the digits backward, then reverse them to get the right order.
2131 unsigned StartDig = Str.size();
2133 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2134 // because the number of bits per digit (1, 3 and 4 respectively) divides
2135 // equally. We just shift until the value is zero.
2136 if (Radix == 2 || Radix == 8 || Radix == 16) {
2137 // Just shift tmp right for each digit width until it becomes zero
2138 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2139 unsigned MaskAmt = Radix - 1;
2141 while (Tmp.getBoolValue()) {
2142 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2143 Str.push_back(Digits[Digit]);
2144 Tmp.lshrInPlace(ShiftAmt);
2146 } else {
2147 while (Tmp.getBoolValue()) {
2148 uint64_t Digit;
2149 udivrem(Tmp, Radix, Tmp, Digit);
2150 assert(Digit < Radix && "divide failed");
2151 Str.push_back(Digits[Digit]);
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
2159 /// Returns the APInt as a std::string. Note that this is an inefficient method.
2160 /// It is better to pass in a SmallVector/SmallString to the methods above.
2161 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2162 SmallString<40> S;
2163 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2164 return S.str();
2167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2168 LLVM_DUMP_METHOD void APInt::dump() const {
2169 SmallString<40> S, U;
2170 this->toStringUnsigned(U);
2171 this->toStringSigned(S);
2172 dbgs() << "APInt(" << BitWidth << "b, "
2173 << U << "u " << S << "s)\n";
2175 #endif
2177 void APInt::print(raw_ostream &OS, bool isSigned) const {
2178 SmallString<40> S;
2179 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2180 OS << S;
2183 // This implements a variety of operations on a representation of
2184 // arbitrary precision, two's-complement, bignum integer values.
2186 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2187 // and unrestricting assumption.
2188 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2189 "Part width must be divisible by 2!");
2191 /* Some handy functions local to this file. */
2193 /* Returns the integer part with the least significant BITS set.
2194 BITS cannot be zero. */
2195 static inline APInt::WordType lowBitMask(unsigned bits) {
2196 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2198 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2201 /* Returns the value of the lower half of PART. */
2202 static inline APInt::WordType lowHalf(APInt::WordType part) {
2203 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2206 /* Returns the value of the upper half of PART. */
2207 static inline APInt::WordType highHalf(APInt::WordType part) {
2208 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2211 /* Returns the bit number of the most significant set bit of a part.
2212 If the input number has no bits set -1U is returned. */
2213 static unsigned partMSB(APInt::WordType value) {
2214 return findLastSet(value, ZB_Max);
2217 /* Returns the bit number of the least significant set bit of a
2218 part. If the input number has no bits set -1U is returned. */
2219 static unsigned partLSB(APInt::WordType value) {
2220 return findFirstSet(value, ZB_Max);
2223 /* Sets the least significant part of a bignum to the input value, and
2224 zeroes out higher parts. */
2225 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2226 assert(parts > 0);
2228 dst[0] = part;
2229 for (unsigned i = 1; i < parts; i++)
2230 dst[i] = 0;
2233 /* Assign one bignum to another. */
2234 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2235 for (unsigned i = 0; i < parts; i++)
2236 dst[i] = src[i];
2239 /* Returns true if a bignum is zero, false otherwise. */
2240 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2241 for (unsigned i = 0; i < parts; i++)
2242 if (src[i])
2243 return false;
2245 return true;
2248 /* Extract the given bit of a bignum; returns 0 or 1. */
2249 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2250 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2253 /* Set the given bit of a bignum. */
2254 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2255 parts[whichWord(bit)] |= maskBit(bit);
2258 /* Clears the given bit of a bignum. */
2259 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2260 parts[whichWord(bit)] &= ~maskBit(bit);
2263 /* Returns the bit number of the least significant set bit of a
2264 number. If the input number has no bits set -1U is returned. */
2265 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2266 for (unsigned i = 0; i < n; i++) {
2267 if (parts[i] != 0) {
2268 unsigned lsb = partLSB(parts[i]);
2270 return lsb + i * APINT_BITS_PER_WORD;
2274 return -1U;
2277 /* Returns the bit number of the most significant set bit of a number.
2278 If the input number has no bits set -1U is returned. */
2279 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2280 do {
2281 --n;
2283 if (parts[n] != 0) {
2284 unsigned msb = partMSB(parts[n]);
2286 return msb + n * APINT_BITS_PER_WORD;
2288 } while (n);
2290 return -1U;
2293 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2294 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2295 the least significant bit of DST. All high bits above srcBITS in
2296 DST are zero-filled. */
2297 void
2298 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2299 unsigned srcBits, unsigned srcLSB) {
2300 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2301 assert(dstParts <= dstCount);
2303 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2304 tcAssign (dst, src + firstSrcPart, dstParts);
2306 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2307 tcShiftRight (dst, dstParts, shift);
2309 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2310 in DST. If this is less that srcBits, append the rest, else
2311 clear the high bits. */
2312 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2313 if (n < srcBits) {
2314 WordType mask = lowBitMask (srcBits - n);
2315 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2316 << n % APINT_BITS_PER_WORD);
2317 } else if (n > srcBits) {
2318 if (srcBits % APINT_BITS_PER_WORD)
2319 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2322 /* Clear high parts. */
2323 while (dstParts < dstCount)
2324 dst[dstParts++] = 0;
2327 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2328 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2329 WordType c, unsigned parts) {
2330 assert(c <= 1);
2332 for (unsigned i = 0; i < parts; i++) {
2333 WordType l = dst[i];
2334 if (c) {
2335 dst[i] += rhs[i] + 1;
2336 c = (dst[i] <= l);
2337 } else {
2338 dst[i] += rhs[i];
2339 c = (dst[i] < l);
2343 return c;
2346 /// This function adds a single "word" integer, src, to the multiple
2347 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2348 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2349 /// @returns the carry of the addition.
2350 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2351 unsigned parts) {
2352 for (unsigned i = 0; i < parts; ++i) {
2353 dst[i] += src;
2354 if (dst[i] >= src)
2355 return 0; // No need to carry so exit early.
2356 src = 1; // Carry one to next digit.
2359 return 1;
2362 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2363 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2364 WordType c, unsigned parts) {
2365 assert(c <= 1);
2367 for (unsigned i = 0; i < parts; i++) {
2368 WordType l = dst[i];
2369 if (c) {
2370 dst[i] -= rhs[i] + 1;
2371 c = (dst[i] >= l);
2372 } else {
2373 dst[i] -= rhs[i];
2374 c = (dst[i] > l);
2378 return c;
2381 /// This function subtracts a single "word" (64-bit word), src, from
2382 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2383 /// no further borrowing is needed or it runs out of "words" in dst. The result
2384 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2385 /// exhausted. In other words, if src > dst then this function returns 1,
2386 /// otherwise 0.
2387 /// @returns the borrow out of the subtraction
2388 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2389 unsigned parts) {
2390 for (unsigned i = 0; i < parts; ++i) {
2391 WordType Dst = dst[i];
2392 dst[i] -= src;
2393 if (src <= Dst)
2394 return 0; // No need to borrow so exit early.
2395 src = 1; // We have to "borrow 1" from next "word"
2398 return 1;
2401 /* Negate a bignum in-place. */
2402 void APInt::tcNegate(WordType *dst, unsigned parts) {
2403 tcComplement(dst, parts);
2404 tcIncrement(dst, parts);
2407 /* DST += SRC * MULTIPLIER + CARRY if add is true
2408 DST = SRC * MULTIPLIER + CARRY if add is false
2410 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2411 they must start at the same point, i.e. DST == SRC.
2413 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2414 returned. Otherwise DST is filled with the least significant
2415 DSTPARTS parts of the result, and if all of the omitted higher
2416 parts were zero return zero, otherwise overflow occurred and
2417 return one. */
2418 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2419 WordType multiplier, WordType carry,
2420 unsigned srcParts, unsigned dstParts,
2421 bool add) {
2422 /* Otherwise our writes of DST kill our later reads of SRC. */
2423 assert(dst <= src || dst >= src + srcParts);
2424 assert(dstParts <= srcParts + 1);
2426 /* N loops; minimum of dstParts and srcParts. */
2427 unsigned n = std::min(dstParts, srcParts);
2429 for (unsigned i = 0; i < n; i++) {
2430 WordType low, mid, high, srcPart;
2432 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2434 This cannot overflow, because
2436 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2438 which is less than n^2. */
2440 srcPart = src[i];
2442 if (multiplier == 0 || srcPart == 0) {
2443 low = carry;
2444 high = 0;
2445 } else {
2446 low = lowHalf(srcPart) * lowHalf(multiplier);
2447 high = highHalf(srcPart) * highHalf(multiplier);
2449 mid = lowHalf(srcPart) * highHalf(multiplier);
2450 high += highHalf(mid);
2451 mid <<= APINT_BITS_PER_WORD / 2;
2452 if (low + mid < low)
2453 high++;
2454 low += mid;
2456 mid = highHalf(srcPart) * lowHalf(multiplier);
2457 high += highHalf(mid);
2458 mid <<= APINT_BITS_PER_WORD / 2;
2459 if (low + mid < low)
2460 high++;
2461 low += mid;
2463 /* Now add carry. */
2464 if (low + carry < low)
2465 high++;
2466 low += carry;
2469 if (add) {
2470 /* And now DST[i], and store the new low part there. */
2471 if (low + dst[i] < low)
2472 high++;
2473 dst[i] += low;
2474 } else
2475 dst[i] = low;
2477 carry = high;
2480 if (srcParts < dstParts) {
2481 /* Full multiplication, there is no overflow. */
2482 assert(srcParts + 1 == dstParts);
2483 dst[srcParts] = carry;
2484 return 0;
2487 /* We overflowed if there is carry. */
2488 if (carry)
2489 return 1;
2491 /* We would overflow if any significant unwritten parts would be
2492 non-zero. This is true if any remaining src parts are non-zero
2493 and the multiplier is non-zero. */
2494 if (multiplier)
2495 for (unsigned i = dstParts; i < srcParts; i++)
2496 if (src[i])
2497 return 1;
2499 /* We fitted in the narrow destination. */
2500 return 0;
2503 /* DST = LHS * RHS, where DST has the same width as the operands and
2504 is filled with the least significant parts of the result. Returns
2505 one if overflow occurred, otherwise zero. DST must be disjoint
2506 from both operands. */
2507 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2508 const WordType *rhs, unsigned parts) {
2509 assert(dst != lhs && dst != rhs);
2511 int overflow = 0;
2512 tcSet(dst, 0, parts);
2514 for (unsigned i = 0; i < parts; i++)
2515 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2516 parts - i, true);
2518 return overflow;
2521 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2522 /// operands. No overflow occurs. DST must be disjoint from both operands.
2523 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2524 const WordType *rhs, unsigned lhsParts,
2525 unsigned rhsParts) {
2526 /* Put the narrower number on the LHS for less loops below. */
2527 if (lhsParts > rhsParts)
2528 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2530 assert(dst != lhs && dst != rhs);
2532 tcSet(dst, 0, rhsParts);
2534 for (unsigned i = 0; i < lhsParts; i++)
2535 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2538 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2539 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2540 set REMAINDER to the remainder, return zero. i.e.
2542 OLD_LHS = RHS * LHS + REMAINDER
2544 SCRATCH is a bignum of the same size as the operands and result for
2545 use by the routine; its contents need not be initialized and are
2546 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2548 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2549 WordType *remainder, WordType *srhs,
2550 unsigned parts) {
2551 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2553 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2554 if (shiftCount == 0)
2555 return true;
2557 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2558 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2559 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2561 tcAssign(srhs, rhs, parts);
2562 tcShiftLeft(srhs, parts, shiftCount);
2563 tcAssign(remainder, lhs, parts);
2564 tcSet(lhs, 0, parts);
2566 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2567 the total. */
2568 for (;;) {
2569 int compare = tcCompare(remainder, srhs, parts);
2570 if (compare >= 0) {
2571 tcSubtract(remainder, srhs, 0, parts);
2572 lhs[n] |= mask;
2575 if (shiftCount == 0)
2576 break;
2577 shiftCount--;
2578 tcShiftRight(srhs, parts, 1);
2579 if ((mask >>= 1) == 0) {
2580 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2581 n--;
2585 return false;
2588 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2589 /// no restrictions on Count.
2590 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2591 // Don't bother performing a no-op shift.
2592 if (!Count)
2593 return;
2595 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2596 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2597 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2599 // Fastpath for moving by whole words.
2600 if (BitShift == 0) {
2601 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2602 } else {
2603 while (Words-- > WordShift) {
2604 Dst[Words] = Dst[Words - WordShift] << BitShift;
2605 if (Words > WordShift)
2606 Dst[Words] |=
2607 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2611 // Fill in the remainder with 0s.
2612 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2615 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2616 /// are no restrictions on Count.
2617 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2618 // Don't bother performing a no-op shift.
2619 if (!Count)
2620 return;
2622 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2623 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2624 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2626 unsigned WordsToMove = Words - WordShift;
2627 // Fastpath for moving by whole words.
2628 if (BitShift == 0) {
2629 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2630 } else {
2631 for (unsigned i = 0; i != WordsToMove; ++i) {
2632 Dst[i] = Dst[i + WordShift] >> BitShift;
2633 if (i + 1 != WordsToMove)
2634 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2638 // Fill in the remainder with 0s.
2639 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2642 /* Bitwise and of two bignums. */
2643 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2644 for (unsigned i = 0; i < parts; i++)
2645 dst[i] &= rhs[i];
2648 /* Bitwise inclusive or of two bignums. */
2649 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2650 for (unsigned i = 0; i < parts; i++)
2651 dst[i] |= rhs[i];
2654 /* Bitwise exclusive or of two bignums. */
2655 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2656 for (unsigned i = 0; i < parts; i++)
2657 dst[i] ^= rhs[i];
2660 /* Complement a bignum in-place. */
2661 void APInt::tcComplement(WordType *dst, unsigned parts) {
2662 for (unsigned i = 0; i < parts; i++)
2663 dst[i] = ~dst[i];
2666 /* Comparison (unsigned) of two bignums. */
2667 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2668 unsigned parts) {
2669 while (parts) {
2670 parts--;
2671 if (lhs[parts] != rhs[parts])
2672 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2675 return 0;
2678 /* Set the least significant BITS bits of a bignum, clear the
2679 rest. */
2680 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2681 unsigned bits) {
2682 unsigned i = 0;
2683 while (bits > APINT_BITS_PER_WORD) {
2684 dst[i++] = ~(WordType) 0;
2685 bits -= APINT_BITS_PER_WORD;
2688 if (bits)
2689 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2691 while (i < parts)
2692 dst[i++] = 0;
2695 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2696 APInt::Rounding RM) {
2697 // Currently udivrem always rounds down.
2698 switch (RM) {
2699 case APInt::Rounding::DOWN:
2700 case APInt::Rounding::TOWARD_ZERO:
2701 return A.udiv(B);
2702 case APInt::Rounding::UP: {
2703 APInt Quo, Rem;
2704 APInt::udivrem(A, B, Quo, Rem);
2705 if (Rem == 0)
2706 return Quo;
2707 return Quo + 1;
2710 llvm_unreachable("Unknown APInt::Rounding enum");
2713 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2714 APInt::Rounding RM) {
2715 switch (RM) {
2716 case APInt::Rounding::DOWN:
2717 case APInt::Rounding::UP: {
2718 APInt Quo, Rem;
2719 APInt::sdivrem(A, B, Quo, Rem);
2720 if (Rem == 0)
2721 return Quo;
2722 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2723 // We want to check whether the non-integer part of the mathematical value
2724 // is negative or not. If the non-integer part is negative, we need to round
2725 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2726 // already rounded down.
2727 if (RM == APInt::Rounding::DOWN) {
2728 if (Rem.isNegative() != B.isNegative())
2729 return Quo - 1;
2730 return Quo;
2732 if (Rem.isNegative() != B.isNegative())
2733 return Quo;
2734 return Quo + 1;
2736 // Currently sdiv rounds twards zero.
2737 case APInt::Rounding::TOWARD_ZERO:
2738 return A.sdiv(B);
2740 llvm_unreachable("Unknown APInt::Rounding enum");
2743 Optional<APInt>
2744 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2745 unsigned RangeWidth) {
2746 unsigned CoeffWidth = A.getBitWidth();
2747 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2748 assert(RangeWidth <= CoeffWidth &&
2749 "Value range width should be less than coefficient width");
2750 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2752 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2753 << "x + " << C << ", rw:" << RangeWidth << '\n');
2755 // Identify 0 as a (non)solution immediately.
2756 if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2757 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2758 return APInt(CoeffWidth, 0);
2761 // The result of APInt arithmetic has the same bit width as the operands,
2762 // so it can actually lose high bits. A product of two n-bit integers needs
2763 // 2n-1 bits to represent the full value.
2764 // The operation done below (on quadratic coefficients) that can produce
2765 // the largest value is the evaluation of the equation during bisection,
2766 // which needs 3 times the bitwidth of the coefficient, so the total number
2767 // of required bits is 3n.
2769 // The purpose of this extension is to simulate the set Z of all integers,
2770 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2771 // and negative numbers (not so much in a modulo arithmetic). The method
2772 // used to solve the equation is based on the standard formula for real
2773 // numbers, and uses the concepts of "positive" and "negative" with their
2774 // usual meanings.
2775 CoeffWidth *= 3;
2776 A = A.sext(CoeffWidth);
2777 B = B.sext(CoeffWidth);
2778 C = C.sext(CoeffWidth);
2780 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2781 // the bit width has increased.
2782 if (A.isNegative()) {
2783 A.negate();
2784 B.negate();
2785 C.negate();
2788 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2789 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2790 // and R = 2^BitWidth.
2791 // Since we're trying not only to find exact solutions, but also values
2792 // that "wrap around", such a set will always have a solution, i.e. an x
2793 // that satisfies at least one of the equations, or such that |q(x)|
2794 // exceeds kR, while |q(x-1)| for the same k does not.
2796 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2797 // positive solution n (in the above sense), and also such that the n
2798 // will be the least among all solutions corresponding to k = 0, 1, ...
2799 // (more precisely, the least element in the set
2800 // { n(k) | k is such that a solution n(k) exists }).
2802 // Consider the parabola (over real numbers) that corresponds to the
2803 // quadratic equation. Since A > 0, the arms of the parabola will point
2804 // up. Picking different values of k will shift it up and down by R.
2806 // We want to shift the parabola in such a way as to reduce the problem
2807 // of solving q(x) = kR to solving shifted_q(x) = 0.
2808 // (The interesting solutions are the ceilings of the real number
2809 // solutions.)
2810 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2811 APInt TwoA = 2 * A;
2812 APInt SqrB = B * B;
2813 bool PickLow;
2815 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2816 assert(A.isStrictlyPositive());
2817 APInt T = V.abs().urem(A);
2818 if (T.isNullValue())
2819 return V;
2820 return V.isNegative() ? V+T : V+(A-T);
2823 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2824 // iff B is positive.
2825 if (B.isNonNegative()) {
2826 // If B >= 0, the vertex it at a negative location (or at 0), so in
2827 // order to have a non-negative solution we need to pick k that makes
2828 // C-kR negative. To satisfy all the requirements for the solution
2829 // that we are looking for, it needs to be closest to 0 of all k.
2830 C = C.srem(R);
2831 if (C.isStrictlyPositive())
2832 C -= R;
2833 // Pick the greater solution.
2834 PickLow = false;
2835 } else {
2836 // If B < 0, the vertex is at a positive location. For any solution
2837 // to exist, the discriminant must be non-negative. This means that
2838 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2839 // lower bound on values of k: kR >= C - B^2/4A.
2840 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2841 // Round LowkR up (towards +inf) to the nearest kR.
2842 LowkR = RoundUp(LowkR, R);
2844 // If there exists k meeting the condition above, and such that
2845 // C-kR > 0, there will be two positive real number solutions of
2846 // q(x) = kR. Out of all such values of k, pick the one that makes
2847 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2848 // In other words, find maximum k such that LowkR <= kR < C.
2849 if (C.sgt(LowkR)) {
2850 // If LowkR < C, then such a k is guaranteed to exist because
2851 // LowkR itself is a multiple of R.
2852 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2853 // Pick the smaller solution.
2854 PickLow = true;
2855 } else {
2856 // If C-kR < 0 for all potential k's, it means that one solution
2857 // will be negative, while the other will be positive. The positive
2858 // solution will shift towards 0 if the parabola is moved up.
2859 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2860 // to 0, or in other words, out of all parabolas that have solutions,
2861 // pick the one that is the farthest "up").
2862 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2863 C -= LowkR;
2864 // Pick the greater solution.
2865 PickLow = false;
2869 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2870 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2872 APInt D = SqrB - 4*A*C;
2873 assert(D.isNonNegative() && "Negative discriminant");
2874 APInt SQ = D.sqrt();
2876 APInt Q = SQ * SQ;
2877 bool InexactSQ = Q != D;
2878 // The calculated SQ may actually be greater than the exact (non-integer)
2879 // value. If that's the case, decremement SQ to get a value that is lower.
2880 if (Q.sgt(D))
2881 SQ -= 1;
2883 APInt X;
2884 APInt Rem;
2886 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2887 // When using the quadratic formula directly, the calculated low root
2888 // may be greater than the exact one, since we would be subtracting SQ.
2889 // To make sure that the calculated root is not greater than the exact
2890 // one, subtract SQ+1 when calculating the low root (for inexact value
2891 // of SQ).
2892 if (PickLow)
2893 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2894 else
2895 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2897 // The updated coefficients should be such that the (exact) solution is
2898 // positive. Since APInt division rounds towards 0, the calculated one
2899 // can be 0, but cannot be negative.
2900 assert(X.isNonNegative() && "Solution should be non-negative");
2902 if (!InexactSQ && Rem.isNullValue()) {
2903 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2904 return X;
2907 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2908 // The exact value of the square root of D should be between SQ and SQ+1.
2909 // This implies that the solution should be between that corresponding to
2910 // SQ (i.e. X) and that corresponding to SQ+1.
2912 // The calculated X cannot be greater than the exact (real) solution.
2913 // Actually it must be strictly less than the exact solution, while
2914 // X+1 will be greater than or equal to it.
2916 APInt VX = (A*X + B)*X + C;
2917 APInt VY = VX + TwoA*X + A + B;
2918 bool SignChange = VX.isNegative() != VY.isNegative() ||
2919 VX.isNullValue() != VY.isNullValue();
2920 // If the sign did not change between X and X+1, X is not a valid solution.
2921 // This could happen when the actual (exact) roots don't have an integer
2922 // between them, so they would both be contained between X and X+1.
2923 if (!SignChange) {
2924 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2925 return None;
2928 X += 1;
2929 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2930 return X;