1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/Verifier.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/ToolOutputFile.h"
44 #include "llvm/Support/raw_ostream.h"
51 #include <system_error>
56 static cl::opt
<unsigned> SeedCL("seed",
57 cl::desc("Seed used for randomness"), cl::init(0));
59 static cl::opt
<unsigned> SizeCL("size",
60 cl::desc("The estimated size of the generated function (# of instrs)"),
63 static cl::opt
<std::string
>
64 OutputFilename("o", cl::desc("Override output filename"),
65 cl::value_desc("filename"));
67 static LLVMContext Context
;
71 template <> class parser
<Type
*> final
: public basic_parser
<Type
*> {
73 parser(Option
&O
) : basic_parser(O
) {}
75 // Parse options as IR types. Return true on error.
76 bool parse(Option
&O
, StringRef
, StringRef Arg
, Type
*&Value
) {
77 if (Arg
== "half") Value
= Type::getHalfTy(Context
);
78 else if (Arg
== "fp128") Value
= Type::getFP128Ty(Context
);
79 else if (Arg
== "x86_fp80") Value
= Type::getX86_FP80Ty(Context
);
80 else if (Arg
== "ppc_fp128") Value
= Type::getPPC_FP128Ty(Context
);
81 else if (Arg
== "x86_mmx") Value
= Type::getX86_MMXTy(Context
);
82 else if (Arg
.startswith("i")) {
84 Arg
.drop_front().getAsInteger(10, N
);
86 Value
= Type::getIntNTy(Context
, N
);
90 return O
.error("Invalid IR scalar type: '" + Arg
+ "'!");
94 StringRef
getValueName() const override
{ return "IR scalar type"; }
99 static cl::list
<Type
*> AdditionalScalarTypes("types", cl::CommaSeparated
,
100 cl::desc("Additional IR scalar types "
101 "(always includes i1, i8, i16, i32, i64, float and double)"));
105 /// A utility class to provide a pseudo-random number generator which is
106 /// the same across all platforms. This is somewhat close to the libc
107 /// implementation. Note: This is not a cryptographically secure pseudorandom
108 /// number generator.
112 Random(unsigned _seed
):Seed(_seed
) {}
114 /// Return a random integer, up to a
115 /// maximum of 2**19 - 1.
117 uint32_t Val
= Seed
+ 0x000b07a1;
118 Seed
= (Val
* 0x3c7c0ac1);
119 // Only lowest 19 bits are random-ish.
120 return Seed
& 0x7ffff;
123 /// Return a random 64 bit integer.
125 uint64_t Val
= Rand() & 0xffff;
126 Val
|= uint64_t(Rand() & 0xffff) << 16;
127 Val
|= uint64_t(Rand() & 0xffff) << 32;
128 Val
|= uint64_t(Rand() & 0xffff) << 48;
132 /// Rand operator for STL algorithms.
133 ptrdiff_t operator()(ptrdiff_t y
) {
137 /// Make this like a C++11 random device
138 using result_type
= uint32_t ;
140 static constexpr result_type
min() { return 0; }
141 static constexpr result_type
max() { return 0x7ffff; }
143 uint32_t operator()() {
144 uint32_t Val
= Rand();
145 assert(Val
<= max() && "Random value out of range");
153 /// Generate an empty function with a default argument list.
154 Function
*GenEmptyFunction(Module
*M
) {
155 // Define a few arguments
156 LLVMContext
&Context
= M
->getContext();
158 Type::getInt8PtrTy(Context
),
159 Type::getInt32PtrTy(Context
),
160 Type::getInt64PtrTy(Context
),
161 Type::getInt32Ty(Context
),
162 Type::getInt64Ty(Context
),
163 Type::getInt8Ty(Context
)
166 auto *FuncTy
= FunctionType::get(Type::getVoidTy(Context
), ArgsTy
, false);
167 // Pick a unique name to describe the input parameters
168 Twine Name
= "autogen_SD" + Twine
{SeedCL
};
169 auto *Func
= Function::Create(FuncTy
, GlobalValue::ExternalLinkage
, Name
, M
);
170 Func
->setCallingConv(CallingConv::C
);
174 /// A base class, implementing utilities needed for
175 /// modifying and adding new random instructions.
177 /// Used to store the randomly generated values.
178 using PieceTable
= std::vector
<Value
*>;
182 Modifier(BasicBlock
*Block
, PieceTable
*PT
, Random
*R
)
183 : BB(Block
), PT(PT
), Ran(R
), Context(BB
->getContext()) {}
185 /// virtual D'tor to silence warnings.
186 virtual ~Modifier() = default;
188 /// Add a new instruction.
189 virtual void Act() = 0;
191 /// Add N new instructions,
192 virtual void ActN(unsigned n
) {
193 for (unsigned i
=0; i
<n
; ++i
)
198 /// Return a random integer.
199 uint32_t getRandom() {
203 /// Return a random value from the list of known values.
204 Value
*getRandomVal() {
206 return PT
->at(getRandom() % PT
->size());
209 Constant
*getRandomConstant(Type
*Tp
) {
210 if (Tp
->isIntegerTy()) {
212 return ConstantInt::getAllOnesValue(Tp
);
213 return ConstantInt::getNullValue(Tp
);
214 } else if (Tp
->isFloatingPointTy()) {
216 return ConstantFP::getAllOnesValue(Tp
);
217 return ConstantFP::getNullValue(Tp
);
219 return UndefValue::get(Tp
);
222 /// Return a random value with a known type.
223 Value
*getRandomValue(Type
*Tp
) {
224 unsigned index
= getRandom();
225 for (unsigned i
=0; i
<PT
->size(); ++i
) {
226 Value
*V
= PT
->at((index
+ i
) % PT
->size());
227 if (V
->getType() == Tp
)
231 // If the requested type was not found, generate a constant value.
232 if (Tp
->isIntegerTy()) {
234 return ConstantInt::getAllOnesValue(Tp
);
235 return ConstantInt::getNullValue(Tp
);
236 } else if (Tp
->isFloatingPointTy()) {
238 return ConstantFP::getAllOnesValue(Tp
);
239 return ConstantFP::getNullValue(Tp
);
240 } else if (Tp
->isVectorTy()) {
241 VectorType
*VTp
= cast
<VectorType
>(Tp
);
243 std::vector
<Constant
*> TempValues
;
244 TempValues
.reserve(VTp
->getNumElements());
245 for (unsigned i
= 0; i
< VTp
->getNumElements(); ++i
)
246 TempValues
.push_back(getRandomConstant(VTp
->getScalarType()));
248 ArrayRef
<Constant
*> VectorValue(TempValues
);
249 return ConstantVector::get(VectorValue
);
252 return UndefValue::get(Tp
);
255 /// Return a random value of any pointer type.
256 Value
*getRandomPointerValue() {
257 unsigned index
= getRandom();
258 for (unsigned i
=0; i
<PT
->size(); ++i
) {
259 Value
*V
= PT
->at((index
+ i
) % PT
->size());
260 if (V
->getType()->isPointerTy())
263 return UndefValue::get(pickPointerType());
266 /// Return a random value of any vector type.
267 Value
*getRandomVectorValue() {
268 unsigned index
= getRandom();
269 for (unsigned i
=0; i
<PT
->size(); ++i
) {
270 Value
*V
= PT
->at((index
+ i
) % PT
->size());
271 if (V
->getType()->isVectorTy())
274 return UndefValue::get(pickVectorType());
277 /// Pick a random type.
279 return (getRandom() & 1) ? pickVectorType() : pickScalarType();
282 /// Pick a random pointer type.
283 Type
*pickPointerType() {
284 Type
*Ty
= pickType();
285 return PointerType::get(Ty
, 0);
288 /// Pick a random vector type.
289 Type
*pickVectorType(unsigned len
= (unsigned)-1) {
290 // Pick a random vector width in the range 2**0 to 2**4.
291 // by adding two randoms we are generating a normal-like distribution
293 unsigned width
= 1<<((getRandom() % 3) + (getRandom() % 3));
296 // Vectors of x86mmx are illegal; keep trying till we get something else.
298 Ty
= pickScalarType();
299 } while (Ty
->isX86_MMXTy());
301 if (len
!= (unsigned)-1)
303 return VectorType::get(Ty
, width
);
306 /// Pick a random scalar type.
307 Type
*pickScalarType() {
308 static std::vector
<Type
*> ScalarTypes
;
309 if (ScalarTypes
.empty()) {
311 Type::getInt1Ty(Context
),
312 Type::getInt8Ty(Context
),
313 Type::getInt16Ty(Context
),
314 Type::getInt32Ty(Context
),
315 Type::getInt64Ty(Context
),
316 Type::getFloatTy(Context
),
317 Type::getDoubleTy(Context
)
319 ScalarTypes
.insert(ScalarTypes
.end(),
320 AdditionalScalarTypes
.begin(), AdditionalScalarTypes
.end());
323 return ScalarTypes
[getRandom() % ScalarTypes
.size()];
326 /// Basic block to populate
332 /// Random number generator
336 LLVMContext
&Context
;
339 struct LoadModifier
: public Modifier
{
340 LoadModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
341 : Modifier(BB
, PT
, R
) {}
343 void Act() override
{
344 // Try to use predefined pointers. If non-exist, use undef pointer value;
345 Value
*Ptr
= getRandomPointerValue();
346 Value
*V
= new LoadInst(Ptr
, "L", BB
->getTerminator());
351 struct StoreModifier
: public Modifier
{
352 StoreModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
353 : Modifier(BB
, PT
, R
) {}
355 void Act() override
{
356 // Try to use predefined pointers. If non-exist, use undef pointer value;
357 Value
*Ptr
= getRandomPointerValue();
358 PointerType
*Tp
= cast
<PointerType
>(Ptr
->getType());
359 Value
*Val
= getRandomValue(Tp
->getElementType());
360 Type
*ValTy
= Val
->getType();
362 // Do not store vectors of i1s because they are unsupported
364 if (ValTy
->isVectorTy() && ValTy
->getScalarSizeInBits() == 1)
367 new StoreInst(Val
, Ptr
, BB
->getTerminator());
371 struct BinModifier
: public Modifier
{
372 BinModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
373 : Modifier(BB
, PT
, R
) {}
375 void Act() override
{
376 Value
*Val0
= getRandomVal();
377 Value
*Val1
= getRandomValue(Val0
->getType());
379 // Don't handle pointer types.
380 if (Val0
->getType()->isPointerTy() ||
381 Val1
->getType()->isPointerTy())
384 // Don't handle i1 types.
385 if (Val0
->getType()->getScalarSizeInBits() == 1)
388 bool isFloat
= Val0
->getType()->getScalarType()->isFloatingPointTy();
389 Instruction
* Term
= BB
->getTerminator();
390 unsigned R
= getRandom() % (isFloat
? 7 : 13);
391 Instruction::BinaryOps Op
;
394 default: llvm_unreachable("Invalid BinOp");
395 case 0:{Op
= (isFloat
?Instruction::FAdd
: Instruction::Add
); break; }
396 case 1:{Op
= (isFloat
?Instruction::FSub
: Instruction::Sub
); break; }
397 case 2:{Op
= (isFloat
?Instruction::FMul
: Instruction::Mul
); break; }
398 case 3:{Op
= (isFloat
?Instruction::FDiv
: Instruction::SDiv
); break; }
399 case 4:{Op
= (isFloat
?Instruction::FDiv
: Instruction::UDiv
); break; }
400 case 5:{Op
= (isFloat
?Instruction::FRem
: Instruction::SRem
); break; }
401 case 6:{Op
= (isFloat
?Instruction::FRem
: Instruction::URem
); break; }
402 case 7: {Op
= Instruction::Shl
; break; }
403 case 8: {Op
= Instruction::LShr
; break; }
404 case 9: {Op
= Instruction::AShr
; break; }
405 case 10:{Op
= Instruction::And
; break; }
406 case 11:{Op
= Instruction::Or
; break; }
407 case 12:{Op
= Instruction::Xor
; break; }
410 PT
->push_back(BinaryOperator::Create(Op
, Val0
, Val1
, "B", Term
));
414 /// Generate constant values.
415 struct ConstModifier
: public Modifier
{
416 ConstModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
417 : Modifier(BB
, PT
, R
) {}
419 void Act() override
{
420 Type
*Ty
= pickType();
422 if (Ty
->isVectorTy()) {
423 switch (getRandom() % 2) {
424 case 0: if (Ty
->isIntOrIntVectorTy())
425 return PT
->push_back(ConstantVector::getAllOnesValue(Ty
));
427 case 1: if (Ty
->isIntOrIntVectorTy())
428 return PT
->push_back(ConstantVector::getNullValue(Ty
));
432 if (Ty
->isFloatingPointTy()) {
433 // Generate 128 random bits, the size of the (currently)
434 // largest floating-point types.
435 uint64_t RandomBits
[2];
436 for (unsigned i
= 0; i
< 2; ++i
)
437 RandomBits
[i
] = Ran
->Rand64();
439 APInt
RandomInt(Ty
->getPrimitiveSizeInBits(), makeArrayRef(RandomBits
));
440 APFloat
RandomFloat(Ty
->getFltSemantics(), RandomInt
);
443 return PT
->push_back(ConstantFP::getNullValue(Ty
));
444 return PT
->push_back(ConstantFP::get(Ty
->getContext(), RandomFloat
));
447 if (Ty
->isIntegerTy()) {
448 switch (getRandom() % 7) {
450 return PT
->push_back(ConstantInt::get(
451 Ty
, APInt::getAllOnesValue(Ty
->getPrimitiveSizeInBits())));
453 return PT
->push_back(ConstantInt::get(
454 Ty
, APInt::getNullValue(Ty
->getPrimitiveSizeInBits())));
460 PT
->push_back(ConstantInt::get(Ty
, getRandom()));
466 struct AllocaModifier
: public Modifier
{
467 AllocaModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
468 : Modifier(BB
, PT
, R
) {}
470 void Act() override
{
471 Type
*Tp
= pickType();
472 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
473 PT
->push_back(new AllocaInst(Tp
, DL
.getAllocaAddrSpace(),
474 "A", BB
->getFirstNonPHI()));
478 struct ExtractElementModifier
: public Modifier
{
479 ExtractElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
480 : Modifier(BB
, PT
, R
) {}
482 void Act() override
{
483 Value
*Val0
= getRandomVectorValue();
484 Value
*V
= ExtractElementInst::Create(Val0
,
485 ConstantInt::get(Type::getInt32Ty(BB
->getContext()),
486 getRandom() % cast
<VectorType
>(Val0
->getType())->getNumElements()),
487 "E", BB
->getTerminator());
488 return PT
->push_back(V
);
492 struct ShuffModifier
: public Modifier
{
493 ShuffModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
494 : Modifier(BB
, PT
, R
) {}
496 void Act() override
{
497 Value
*Val0
= getRandomVectorValue();
498 Value
*Val1
= getRandomValue(Val0
->getType());
500 unsigned Width
= cast
<VectorType
>(Val0
->getType())->getNumElements();
501 std::vector
<Constant
*> Idxs
;
503 Type
*I32
= Type::getInt32Ty(BB
->getContext());
504 for (unsigned i
=0; i
<Width
; ++i
) {
505 Constant
*CI
= ConstantInt::get(I32
, getRandom() % (Width
*2));
506 // Pick some undef values.
507 if (!(getRandom() % 5))
508 CI
= UndefValue::get(I32
);
512 Constant
*Mask
= ConstantVector::get(Idxs
);
514 Value
*V
= new ShuffleVectorInst(Val0
, Val1
, Mask
, "Shuff",
515 BB
->getTerminator());
520 struct InsertElementModifier
: public Modifier
{
521 InsertElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
522 : Modifier(BB
, PT
, R
) {}
524 void Act() override
{
525 Value
*Val0
= getRandomVectorValue();
526 Value
*Val1
= getRandomValue(Val0
->getType()->getScalarType());
528 Value
*V
= InsertElementInst::Create(Val0
, Val1
,
529 ConstantInt::get(Type::getInt32Ty(BB
->getContext()),
530 getRandom() % cast
<VectorType
>(Val0
->getType())->getNumElements()),
531 "I", BB
->getTerminator());
532 return PT
->push_back(V
);
536 struct CastModifier
: public Modifier
{
537 CastModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
538 : Modifier(BB
, PT
, R
) {}
540 void Act() override
{
541 Value
*V
= getRandomVal();
542 Type
*VTy
= V
->getType();
543 Type
*DestTy
= pickScalarType();
545 // Handle vector casts vectors.
546 if (VTy
->isVectorTy()) {
547 VectorType
*VecTy
= cast
<VectorType
>(VTy
);
548 DestTy
= pickVectorType(VecTy
->getNumElements());
552 if (VTy
== DestTy
) return;
555 if (VTy
->isPointerTy()) {
556 if (!DestTy
->isPointerTy())
557 DestTy
= PointerType::get(DestTy
, 0);
558 return PT
->push_back(
559 new BitCastInst(V
, DestTy
, "PC", BB
->getTerminator()));
562 unsigned VSize
= VTy
->getScalarType()->getPrimitiveSizeInBits();
563 unsigned DestSize
= DestTy
->getScalarType()->getPrimitiveSizeInBits();
565 // Generate lots of bitcasts.
566 if ((getRandom() & 1) && VSize
== DestSize
) {
567 return PT
->push_back(
568 new BitCastInst(V
, DestTy
, "BC", BB
->getTerminator()));
571 // Both types are integers:
572 if (VTy
->isIntOrIntVectorTy() && DestTy
->isIntOrIntVectorTy()) {
573 if (VSize
> DestSize
) {
574 return PT
->push_back(
575 new TruncInst(V
, DestTy
, "Tr", BB
->getTerminator()));
577 assert(VSize
< DestSize
&& "Different int types with the same size?");
579 return PT
->push_back(
580 new ZExtInst(V
, DestTy
, "ZE", BB
->getTerminator()));
581 return PT
->push_back(new SExtInst(V
, DestTy
, "Se", BB
->getTerminator()));
586 if (VTy
->isFPOrFPVectorTy() && DestTy
->isIntOrIntVectorTy()) {
588 return PT
->push_back(
589 new FPToSIInst(V
, DestTy
, "FC", BB
->getTerminator()));
590 return PT
->push_back(new FPToUIInst(V
, DestTy
, "FC", BB
->getTerminator()));
594 if (VTy
->isIntOrIntVectorTy() && DestTy
->isFPOrFPVectorTy()) {
596 return PT
->push_back(
597 new SIToFPInst(V
, DestTy
, "FC", BB
->getTerminator()));
598 return PT
->push_back(new UIToFPInst(V
, DestTy
, "FC", BB
->getTerminator()));
602 if (VTy
->isFPOrFPVectorTy() && DestTy
->isFPOrFPVectorTy()) {
603 if (VSize
> DestSize
) {
604 return PT
->push_back(
605 new FPTruncInst(V
, DestTy
, "Tr", BB
->getTerminator()));
606 } else if (VSize
< DestSize
) {
607 return PT
->push_back(
608 new FPExtInst(V
, DestTy
, "ZE", BB
->getTerminator()));
610 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
611 // for which there is no defined conversion. So do nothing.
616 struct SelectModifier
: public Modifier
{
617 SelectModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
618 : Modifier(BB
, PT
, R
) {}
620 void Act() override
{
621 // Try a bunch of different select configuration until a valid one is found.
622 Value
*Val0
= getRandomVal();
623 Value
*Val1
= getRandomValue(Val0
->getType());
625 Type
*CondTy
= Type::getInt1Ty(Context
);
627 // If the value type is a vector, and we allow vector select, then in 50%
628 // of the cases generate a vector select.
629 if (Val0
->getType()->isVectorTy() && (getRandom() % 1)) {
630 unsigned NumElem
= cast
<VectorType
>(Val0
->getType())->getNumElements();
631 CondTy
= VectorType::get(CondTy
, NumElem
);
634 Value
*Cond
= getRandomValue(CondTy
);
635 Value
*V
= SelectInst::Create(Cond
, Val0
, Val1
, "Sl", BB
->getTerminator());
636 return PT
->push_back(V
);
640 struct CmpModifier
: public Modifier
{
641 CmpModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
642 : Modifier(BB
, PT
, R
) {}
644 void Act() override
{
645 Value
*Val0
= getRandomVal();
646 Value
*Val1
= getRandomValue(Val0
->getType());
648 if (Val0
->getType()->isPointerTy()) return;
649 bool fp
= Val0
->getType()->getScalarType()->isFloatingPointTy();
654 (CmpInst::LAST_FCMP_PREDICATE
- CmpInst::FIRST_FCMP_PREDICATE
) +
655 CmpInst::FIRST_FCMP_PREDICATE
;
658 (CmpInst::LAST_ICMP_PREDICATE
- CmpInst::FIRST_ICMP_PREDICATE
) +
659 CmpInst::FIRST_ICMP_PREDICATE
;
662 Value
*V
= CmpInst::Create(fp
? Instruction::FCmp
: Instruction::ICmp
,
663 (CmpInst::Predicate
)op
, Val0
, Val1
, "Cmp",
664 BB
->getTerminator());
665 return PT
->push_back(V
);
669 } // end anonymous namespace
671 static void FillFunction(Function
*F
, Random
&R
) {
672 // Create a legal entry block.
673 BasicBlock
*BB
= BasicBlock::Create(F
->getContext(), "BB", F
);
674 ReturnInst::Create(F
->getContext(), BB
);
676 // Create the value table.
677 Modifier::PieceTable PT
;
679 // Consider arguments as legal values.
680 for (auto &arg
: F
->args())
683 // List of modifiers which add new random instructions.
684 std::vector
<std::unique_ptr
<Modifier
>> Modifiers
;
685 Modifiers
.emplace_back(new LoadModifier(BB
, &PT
, &R
));
686 Modifiers
.emplace_back(new StoreModifier(BB
, &PT
, &R
));
687 auto SM
= Modifiers
.back().get();
688 Modifiers
.emplace_back(new ExtractElementModifier(BB
, &PT
, &R
));
689 Modifiers
.emplace_back(new ShuffModifier(BB
, &PT
, &R
));
690 Modifiers
.emplace_back(new InsertElementModifier(BB
, &PT
, &R
));
691 Modifiers
.emplace_back(new BinModifier(BB
, &PT
, &R
));
692 Modifiers
.emplace_back(new CastModifier(BB
, &PT
, &R
));
693 Modifiers
.emplace_back(new SelectModifier(BB
, &PT
, &R
));
694 Modifiers
.emplace_back(new CmpModifier(BB
, &PT
, &R
));
696 // Generate the random instructions
697 AllocaModifier
{BB
, &PT
, &R
}.ActN(5); // Throw in a few allocas
698 ConstModifier
{BB
, &PT
, &R
}.ActN(40); // Throw in a few constants
700 for (unsigned i
= 0; i
< SizeCL
/ Modifiers
.size(); ++i
)
701 for (auto &Mod
: Modifiers
)
704 SM
->ActN(5); // Throw in a few stores.
707 static void IntroduceControlFlow(Function
*F
, Random
&R
) {
708 std::vector
<Instruction
*> BoolInst
;
709 for (auto &Instr
: F
->front()) {
710 if (Instr
.getType() == IntegerType::getInt1Ty(F
->getContext()))
711 BoolInst
.push_back(&Instr
);
714 std::shuffle(BoolInst
.begin(), BoolInst
.end(), R
);
716 for (auto *Instr
: BoolInst
) {
717 BasicBlock
*Curr
= Instr
->getParent();
718 BasicBlock::iterator Loc
= Instr
->getIterator();
719 BasicBlock
*Next
= Curr
->splitBasicBlock(Loc
, "CF");
720 Instr
->moveBefore(Curr
->getTerminator());
721 if (Curr
!= &F
->getEntryBlock()) {
722 BranchInst::Create(Curr
, Next
, Instr
, Curr
->getTerminator());
723 Curr
->getTerminator()->eraseFromParent();
728 } // end namespace llvm
730 int main(int argc
, char **argv
) {
731 using namespace llvm
;
733 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
734 PrettyStackTraceProgram
X(argc
, argv
);
735 cl::ParseCommandLineOptions(argc
, argv
, "llvm codegen stress-tester\n");
738 auto M
= llvm::make_unique
<Module
>("/tmp/autogen.bc", Context
);
739 Function
*F
= GenEmptyFunction(M
.get());
741 // Pick an initial seed value
743 // Generate lots of random instructions inside a single basic block.
745 // Break the basic block into many loops.
746 IntroduceControlFlow(F
, R
);
748 // Figure out what stream we are supposed to write to...
749 std::unique_ptr
<ToolOutputFile
> Out
;
750 // Default to standard output.
751 if (OutputFilename
.empty())
752 OutputFilename
= "-";
755 Out
.reset(new ToolOutputFile(OutputFilename
, EC
, sys::fs::OF_None
));
757 errs() << EC
.message() << '\n';
761 legacy::PassManager Passes
;
762 Passes
.add(createVerifierPass());
763 Passes
.add(createPrintModulePass(Out
->os()));
764 Passes
.run(*M
.get());