Fix the build bot break introduced by r320791.
[llvm-core.git] / tools / llvm-objcopy / Object.cpp
blob1501e82224326d1f4335bc6eb135be47e2c187a6
1 //===- Object.cpp ---------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "Object.h"
11 #include "llvm-objcopy.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/FileOutputBuffer.h"
21 #include <algorithm>
22 #include <cstddef>
23 #include <cstdint>
24 #include <iterator>
25 #include <utility>
26 #include <vector>
28 using namespace llvm;
29 using namespace object;
30 using namespace ELF;
32 template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
33 using Elf_Ehdr = typename ELFT::Ehdr;
34 using Elf_Phdr = typename ELFT::Phdr;
36 uint8_t *Buf = Out.getBufferStart();
37 Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
38 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
39 Phdr.p_type = Type;
40 Phdr.p_flags = Flags;
41 Phdr.p_offset = Offset;
42 Phdr.p_vaddr = VAddr;
43 Phdr.p_paddr = PAddr;
44 Phdr.p_filesz = FileSize;
45 Phdr.p_memsz = MemSize;
46 Phdr.p_align = Align;
49 void Segment::writeSegment(FileOutputBuffer &Out) const {
50 uint8_t *Buf = Out.getBufferStart() + Offset;
51 // We want to maintain segments' interstitial data and contents exactly.
52 // This lets us just copy segments directly.
53 std::copy(std::begin(Contents), std::end(Contents), Buf);
56 void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
57 void SectionBase::initialize(SectionTableRef SecTable) {}
58 void SectionBase::finalize() {}
60 template <class ELFT>
61 void SectionBase::writeHeader(FileOutputBuffer &Out) const {
62 uint8_t *Buf = Out.getBufferStart();
63 Buf += HeaderOffset;
64 typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
65 Shdr.sh_name = NameIndex;
66 Shdr.sh_type = Type;
67 Shdr.sh_flags = Flags;
68 Shdr.sh_addr = Addr;
69 Shdr.sh_offset = Offset;
70 Shdr.sh_size = Size;
71 Shdr.sh_link = Link;
72 Shdr.sh_info = Info;
73 Shdr.sh_addralign = Align;
74 Shdr.sh_entsize = EntrySize;
77 void Section::writeSection(FileOutputBuffer &Out) const {
78 if (Type == SHT_NOBITS)
79 return;
80 uint8_t *Buf = Out.getBufferStart() + Offset;
81 std::copy(std::begin(Contents), std::end(Contents), Buf);
84 void StringTableSection::addString(StringRef Name) {
85 StrTabBuilder.add(Name);
86 Size = StrTabBuilder.getSize();
89 uint32_t StringTableSection::findIndex(StringRef Name) const {
90 return StrTabBuilder.getOffset(Name);
93 void StringTableSection::finalize() { StrTabBuilder.finalize(); }
95 void StringTableSection::writeSection(FileOutputBuffer &Out) const {
96 StrTabBuilder.write(Out.getBufferStart() + Offset);
99 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
100 switch (Index) {
101 case SHN_ABS:
102 case SHN_COMMON:
103 return true;
105 if (Machine == EM_HEXAGON) {
106 switch (Index) {
107 case SHN_HEXAGON_SCOMMON:
108 case SHN_HEXAGON_SCOMMON_2:
109 case SHN_HEXAGON_SCOMMON_4:
110 case SHN_HEXAGON_SCOMMON_8:
111 return true;
114 return false;
117 uint16_t Symbol::getShndx() const {
118 if (DefinedIn != nullptr) {
119 return DefinedIn->Index;
121 switch (ShndxType) {
122 // This means that we don't have a defined section but we do need to
123 // output a legitimate section index.
124 case SYMBOL_SIMPLE_INDEX:
125 return SHN_UNDEF;
126 case SYMBOL_ABS:
127 case SYMBOL_COMMON:
128 case SYMBOL_HEXAGON_SCOMMON:
129 case SYMBOL_HEXAGON_SCOMMON_2:
130 case SYMBOL_HEXAGON_SCOMMON_4:
131 case SYMBOL_HEXAGON_SCOMMON_8:
132 return static_cast<uint16_t>(ShndxType);
134 llvm_unreachable("Symbol with invalid ShndxType encountered");
137 void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
138 SectionBase *DefinedIn, uint64_t Value,
139 uint16_t Shndx, uint64_t Sz) {
140 Symbol Sym;
141 Sym.Name = Name;
142 Sym.Binding = Bind;
143 Sym.Type = Type;
144 Sym.DefinedIn = DefinedIn;
145 if (DefinedIn == nullptr) {
146 if (Shndx >= SHN_LORESERVE)
147 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
148 else
149 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
151 Sym.Value = Value;
152 Sym.Size = Sz;
153 Sym.Index = Symbols.size();
154 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
155 Size += this->EntrySize;
158 void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
159 if (SymbolNames == Sec) {
160 error("String table " + SymbolNames->Name +
161 " cannot be removed because it is referenced by the symbol table " +
162 this->Name);
164 auto Iter =
165 std::remove_if(std::begin(Symbols), std::end(Symbols),
166 [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
167 Size -= (std::end(Symbols) - Iter) * this->EntrySize;
168 Symbols.erase(Iter, std::end(Symbols));
171 void SymbolTableSection::initialize(SectionTableRef SecTable) {
172 Size = 0;
173 setStrTab(SecTable.getSectionOfType<StringTableSection>(
174 Link,
175 "Symbol table has link index of " + Twine(Link) +
176 " which is not a valid index",
177 "Symbol table has link index of " + Twine(Link) +
178 " which is not a string table"));
181 void SymbolTableSection::finalize() {
182 // Make sure SymbolNames is finalized before getting name indexes.
183 SymbolNames->finalize();
185 uint32_t MaxLocalIndex = 0;
186 for (auto &Sym : Symbols) {
187 Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
188 if (Sym->Binding == STB_LOCAL)
189 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
191 // Now we need to set the Link and Info fields.
192 Link = SymbolNames->Index;
193 Info = MaxLocalIndex + 1;
196 void SymbolTableSection::addSymbolNames() {
197 // Add all of our strings to SymbolNames so that SymbolNames has the right
198 // size before layout is decided.
199 for (auto &Sym : Symbols)
200 SymbolNames->addString(Sym->Name);
203 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
204 if (Symbols.size() <= Index)
205 error("Invalid symbol index: " + Twine(Index));
206 return Symbols[Index].get();
209 template <class ELFT>
210 void SymbolTableSectionImpl<ELFT>::writeSection(FileOutputBuffer &Out) const {
211 uint8_t *Buf = Out.getBufferStart();
212 Buf += Offset;
213 typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
214 // Loop though symbols setting each entry of the symbol table.
215 for (auto &Symbol : Symbols) {
216 Sym->st_name = Symbol->NameIndex;
217 Sym->st_value = Symbol->Value;
218 Sym->st_size = Symbol->Size;
219 Sym->setBinding(Symbol->Binding);
220 Sym->setType(Symbol->Type);
221 Sym->st_shndx = Symbol->getShndx();
222 ++Sym;
226 template <class SymTabType>
227 void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
228 const SectionBase *Sec) {
229 if (Symbols == Sec) {
230 error("Symbol table " + Symbols->Name +
231 " cannot be removed because it is "
232 "referenced by the relocation "
233 "section " +
234 this->Name);
238 template <class SymTabType>
239 void RelocSectionWithSymtabBase<SymTabType>::initialize(
240 SectionTableRef SecTable) {
241 setSymTab(SecTable.getSectionOfType<SymTabType>(
242 Link,
243 "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
244 "Link field value " + Twine(Link) + " in section " + Name +
245 " is not a symbol table"));
247 if (Info != SHN_UNDEF)
248 setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
249 " in section " + Name +
250 " is invalid"));
251 else
252 setSection(nullptr);
255 template <class SymTabType>
256 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
257 this->Link = Symbols->Index;
258 if (SecToApplyRel != nullptr)
259 this->Info = SecToApplyRel->Index;
262 template <class ELFT>
263 void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
265 template <class ELFT>
266 void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
267 Rela.r_addend = Addend;
270 template <class ELFT>
271 template <class T>
272 void RelocationSection<ELFT>::writeRel(T *Buf) const {
273 for (const auto &Reloc : Relocations) {
274 Buf->r_offset = Reloc.Offset;
275 setAddend(*Buf, Reloc.Addend);
276 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
277 ++Buf;
281 template <class ELFT>
282 void RelocationSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
283 uint8_t *Buf = Out.getBufferStart() + Offset;
284 if (Type == SHT_REL)
285 writeRel(reinterpret_cast<Elf_Rel *>(Buf));
286 else
287 writeRel(reinterpret_cast<Elf_Rela *>(Buf));
290 void DynamicRelocationSection::writeSection(FileOutputBuffer &Out) const {
291 std::copy(std::begin(Contents), std::end(Contents),
292 Out.getBufferStart() + Offset);
295 void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
296 if (StrTab == Sec) {
297 error("String table " + StrTab->Name +
298 " cannot be removed because it is "
299 "referenced by the section " +
300 this->Name);
304 bool SectionWithStrTab::classof(const SectionBase *S) {
305 return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
308 void SectionWithStrTab::initialize(SectionTableRef SecTable) {
309 auto StrTab =
310 SecTable.getSection(Link, "Link field value " + Twine(Link) +
311 " in section " + Name + " is invalid");
312 if (StrTab->Type != SHT_STRTAB) {
313 error("Link field value " + Twine(Link) + " in section " + Name +
314 " is not a string table");
316 setStrTab(StrTab);
319 void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
321 // Returns true IFF a section is wholly inside the range of a segment
322 static bool sectionWithinSegment(const SectionBase &Section,
323 const Segment &Segment) {
324 // If a section is empty it should be treated like it has a size of 1. This is
325 // to clarify the case when an empty section lies on a boundary between two
326 // segments and ensures that the section "belongs" to the second segment and
327 // not the first.
328 uint64_t SecSize = Section.Size ? Section.Size : 1;
329 return Segment.Offset <= Section.OriginalOffset &&
330 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
333 // Returns true IFF a segment's original offset is inside of another segment's
334 // range.
335 static bool segmentOverlapsSegment(const Segment &Child,
336 const Segment &Parent) {
338 return Parent.OriginalOffset <= Child.OriginalOffset &&
339 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
342 static bool compareSegments(const Segment *A, const Segment *B) {
343 // Any segment without a parent segment should come before a segment
344 // that has a parent segment.
345 if (A->OriginalOffset < B->OriginalOffset)
346 return true;
347 if (A->OriginalOffset > B->OriginalOffset)
348 return false;
349 return A->Index < B->Index;
352 template <class ELFT>
353 void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
354 uint32_t Index = 0;
355 for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
356 ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
357 (size_t)Phdr.p_filesz};
358 Segments.emplace_back(llvm::make_unique<Segment>(Data));
359 Segment &Seg = *Segments.back();
360 Seg.Type = Phdr.p_type;
361 Seg.Flags = Phdr.p_flags;
362 Seg.OriginalOffset = Phdr.p_offset;
363 Seg.Offset = Phdr.p_offset;
364 Seg.VAddr = Phdr.p_vaddr;
365 Seg.PAddr = Phdr.p_paddr;
366 Seg.FileSize = Phdr.p_filesz;
367 Seg.MemSize = Phdr.p_memsz;
368 Seg.Align = Phdr.p_align;
369 Seg.Index = Index++;
370 for (auto &Section : Sections) {
371 if (sectionWithinSegment(*Section, Seg)) {
372 Seg.addSection(&*Section);
373 if (!Section->ParentSegment ||
374 Section->ParentSegment->Offset > Seg.Offset) {
375 Section->ParentSegment = &Seg;
380 // Now we do an O(n^2) loop through the segments in order to match up
381 // segments.
382 for (auto &Child : Segments) {
383 for (auto &Parent : Segments) {
384 // Every segment will overlap with itself but we don't want a segment to
385 // be it's own parent so we avoid that situation.
386 if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
387 // We want a canonical "most parental" segment but this requires
388 // inspecting the ParentSegment.
389 if (compareSegments(Parent.get(), Child.get()))
390 if (Child->ParentSegment == nullptr ||
391 compareSegments(Parent.get(), Child->ParentSegment)) {
392 Child->ParentSegment = Parent.get();
399 template <class ELFT>
400 void Object<ELFT>::initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
401 SymbolTableSection *SymTab,
402 SectionTableRef SecTable) {
403 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
404 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
406 for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
407 SectionBase *DefSection = nullptr;
408 StringRef Name = unwrapOrError(Sym.getName(StrTabData));
410 if (Sym.st_shndx >= SHN_LORESERVE) {
411 if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
412 error(
413 "Symbol '" + Name +
414 "' has unsupported value greater than or equal to SHN_LORESERVE: " +
415 Twine(Sym.st_shndx));
417 } else if (Sym.st_shndx != SHN_UNDEF) {
418 DefSection = SecTable.getSection(
419 Sym.st_shndx, "Symbol '" + Name +
420 "' is defined in invalid section with index " +
421 Twine(Sym.st_shndx));
424 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
425 Sym.getValue(), Sym.st_shndx, Sym.st_size);
429 template <class ELFT>
430 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
432 template <class ELFT>
433 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
434 ToSet = Rela.r_addend;
437 template <class ELFT, class T>
438 void initRelocations(RelocationSection<ELFT> *Relocs,
439 SymbolTableSection *SymbolTable, T RelRange) {
440 for (const auto &Rel : RelRange) {
441 Relocation ToAdd;
442 ToAdd.Offset = Rel.r_offset;
443 getAddend(ToAdd.Addend, Rel);
444 ToAdd.Type = Rel.getType(false);
445 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
446 Relocs->addRelocation(ToAdd);
450 SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
451 if (Index == SHN_UNDEF || Index > Sections.size())
452 error(ErrMsg);
453 return Sections[Index - 1].get();
456 template <class T>
457 T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
458 Twine TypeErrMsg) {
459 if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
460 return Sec;
461 error(TypeErrMsg);
464 template <class ELFT>
465 std::unique_ptr<SectionBase>
466 Object<ELFT>::makeSection(const object::ELFFile<ELFT> &ElfFile,
467 const Elf_Shdr &Shdr) {
468 ArrayRef<uint8_t> Data;
469 switch (Shdr.sh_type) {
470 case SHT_REL:
471 case SHT_RELA:
472 if (Shdr.sh_flags & SHF_ALLOC) {
473 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
474 return llvm::make_unique<DynamicRelocationSection>(Data);
476 return llvm::make_unique<RelocationSection<ELFT>>();
477 case SHT_STRTAB:
478 // If a string table is allocated we don't want to mess with it. That would
479 // mean altering the memory image. There are no special link types or
480 // anything so we can just use a Section.
481 if (Shdr.sh_flags & SHF_ALLOC) {
482 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
483 return llvm::make_unique<Section>(Data);
485 return llvm::make_unique<StringTableSection>();
486 case SHT_HASH:
487 case SHT_GNU_HASH:
488 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
489 // Because of this we don't need to mess with the hash tables either.
490 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
491 return llvm::make_unique<Section>(Data);
492 case SHT_DYNSYM:
493 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
494 return llvm::make_unique<DynamicSymbolTableSection>(Data);
495 case SHT_DYNAMIC:
496 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
497 return llvm::make_unique<DynamicSection>(Data);
498 case SHT_SYMTAB: {
499 auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
500 SymbolTable = SymTab.get();
501 return std::move(SymTab);
503 case SHT_NOBITS:
504 return llvm::make_unique<Section>(Data);
505 default:
506 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
507 return llvm::make_unique<Section>(Data);
511 template <class ELFT>
512 SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
513 uint32_t Index = 0;
514 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
515 if (Index == 0) {
516 ++Index;
517 continue;
519 SecPtr Sec = makeSection(ElfFile, Shdr);
520 Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
521 Sec->Type = Shdr.sh_type;
522 Sec->Flags = Shdr.sh_flags;
523 Sec->Addr = Shdr.sh_addr;
524 Sec->Offset = Shdr.sh_offset;
525 Sec->OriginalOffset = Shdr.sh_offset;
526 Sec->Size = Shdr.sh_size;
527 Sec->Link = Shdr.sh_link;
528 Sec->Info = Shdr.sh_info;
529 Sec->Align = Shdr.sh_addralign;
530 Sec->EntrySize = Shdr.sh_entsize;
531 Sec->Index = Index++;
532 Sections.push_back(std::move(Sec));
535 SectionTableRef SecTable(Sections);
537 // Now that all of the sections have been added we can fill out some extra
538 // details about symbol tables. We need the symbol table filled out before
539 // any relocations.
540 if (SymbolTable) {
541 SymbolTable->initialize(SecTable);
542 initSymbolTable(ElfFile, SymbolTable, SecTable);
545 // Now that all sections and symbols have been added we can add
546 // relocations that reference symbols and set the link and info fields for
547 // relocation sections.
548 for (auto &Section : Sections) {
549 if (Section.get() == SymbolTable)
550 continue;
551 Section->initialize(SecTable);
552 if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
553 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
554 if (RelSec->Type == SHT_REL)
555 initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
556 else
557 initRelocations(RelSec, SymbolTable,
558 unwrapOrError(ElfFile.relas(Shdr)));
562 return SecTable;
565 template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
566 const auto &ElfFile = *Obj.getELFFile();
567 const auto &Ehdr = *ElfFile.getHeader();
569 std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
570 Type = Ehdr.e_type;
571 Machine = Ehdr.e_machine;
572 Version = Ehdr.e_version;
573 Entry = Ehdr.e_entry;
574 Flags = Ehdr.e_flags;
576 SectionTableRef SecTable = readSectionHeaders(ElfFile);
577 readProgramHeaders(ElfFile);
579 SectionNames = SecTable.getSectionOfType<StringTableSection>(
580 Ehdr.e_shstrndx,
581 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
582 " is invalid",
583 "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
584 " is not a string table");
587 template <class ELFT>
588 void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
589 uint8_t *Buf = Out.getBufferStart();
590 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
591 std::copy(Ident, Ident + 16, Ehdr.e_ident);
592 Ehdr.e_type = Type;
593 Ehdr.e_machine = Machine;
594 Ehdr.e_version = Version;
595 Ehdr.e_entry = Entry;
596 Ehdr.e_phoff = sizeof(Elf_Ehdr);
597 Ehdr.e_flags = Flags;
598 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
599 Ehdr.e_phentsize = sizeof(Elf_Phdr);
600 Ehdr.e_phnum = Segments.size();
601 Ehdr.e_shentsize = sizeof(Elf_Shdr);
602 if (WriteSectionHeaders) {
603 Ehdr.e_shoff = SHOffset;
604 Ehdr.e_shnum = Sections.size() + 1;
605 Ehdr.e_shstrndx = SectionNames->Index;
606 } else {
607 Ehdr.e_shoff = 0;
608 Ehdr.e_shnum = 0;
609 Ehdr.e_shstrndx = 0;
613 template <class ELFT>
614 void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
615 for (auto &Phdr : Segments)
616 Phdr->template writeHeader<ELFT>(Out);
619 template <class ELFT>
620 void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
621 uint8_t *Buf = Out.getBufferStart() + SHOffset;
622 // This reference serves to write the dummy section header at the begining
623 // of the file. It is not used for anything else
624 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
625 Shdr.sh_name = 0;
626 Shdr.sh_type = SHT_NULL;
627 Shdr.sh_flags = 0;
628 Shdr.sh_addr = 0;
629 Shdr.sh_offset = 0;
630 Shdr.sh_size = 0;
631 Shdr.sh_link = 0;
632 Shdr.sh_info = 0;
633 Shdr.sh_addralign = 0;
634 Shdr.sh_entsize = 0;
636 for (auto &Section : Sections)
637 Section->template writeHeader<ELFT>(Out);
640 template <class ELFT>
641 void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
642 for (auto &Section : Sections)
643 Section->writeSection(Out);
646 template <class ELFT>
647 void Object<ELFT>::removeSections(
648 std::function<bool(const SectionBase &)> ToRemove) {
650 auto Iter = std::stable_partition(
651 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
652 if (ToRemove(*Sec))
653 return false;
654 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
655 if (auto ToRelSec = RelSec->getSection())
656 return !ToRemove(*ToRelSec);
658 return true;
660 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
661 SymbolTable = nullptr;
662 if (ToRemove(*SectionNames)) {
663 if (WriteSectionHeaders)
664 error("Cannot remove " + SectionNames->Name +
665 " because it is the section header string table.");
666 SectionNames = nullptr;
668 // Now make sure there are no remaining references to the sections that will
669 // be removed. Sometimes it is impossible to remove a reference so we emit
670 // an error here instead.
671 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
672 for (auto &Segment : Segments)
673 Segment->removeSection(RemoveSec.get());
674 for (auto &KeepSec : make_range(std::begin(Sections), Iter))
675 KeepSec->removeSectionReferences(RemoveSec.get());
677 // Now finally get rid of them all togethor.
678 Sections.erase(Iter, std::end(Sections));
681 template <class ELFT> void ELFObject<ELFT>::sortSections() {
682 // Put all sections in offset order. Maintain the ordering as closely as
683 // possible while meeting that demand however.
684 auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
685 return A->OriginalOffset < B->OriginalOffset;
687 std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
688 CompareSections);
691 static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
692 // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
693 if (Align == 0)
694 Align = 1;
695 auto Diff =
696 static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
697 // We only want to add to Offset, however, so if Diff < 0 we can add Align and
698 // (Offset + Diff) & -Align == Addr & -Align will still hold.
699 if (Diff < 0)
700 Diff += Align;
701 return Offset + Diff;
704 // Orders segments such that if x = y->ParentSegment then y comes before x.
705 static void OrderSegments(std::vector<Segment *> &Segments) {
706 std::stable_sort(std::begin(Segments), std::end(Segments), compareSegments);
709 // This function finds a consistent layout for a list of segments starting from
710 // an Offset. It assumes that Segments have been sorted by OrderSegments and
711 // returns an Offset one past the end of the last segment.
712 static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
713 uint64_t Offset) {
714 assert(std::is_sorted(std::begin(Segments), std::end(Segments),
715 compareSegments));
716 // The only way a segment should move is if a section was between two
717 // segments and that section was removed. If that section isn't in a segment
718 // then it's acceptable, but not ideal, to simply move it to after the
719 // segments. So we can simply layout segments one after the other accounting
720 // for alignment.
721 for (auto &Segment : Segments) {
722 // We assume that segments have been ordered by OriginalOffset and Index
723 // such that a parent segment will always come before a child segment in
724 // OrderedSegments. This means that the Offset of the ParentSegment should
725 // already be set and we can set our offset relative to it.
726 if (Segment->ParentSegment != nullptr) {
727 auto Parent = Segment->ParentSegment;
728 Segment->Offset =
729 Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
730 } else {
731 Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
732 Segment->Offset = Offset;
734 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
736 return Offset;
739 // This function finds a consistent layout for a list of sections. It assumes
740 // that the ->ParentSegment of each section has already been laid out. The
741 // supplied starting Offset is used for the starting offset of any section that
742 // does not have a ParentSegment. It returns either the offset given if all
743 // sections had a ParentSegment or an offset one past the last section if there
744 // was a section that didn't have a ParentSegment.
745 template <class SecPtr>
746 static uint64_t LayoutSections(std::vector<SecPtr> &Sections, uint64_t Offset) {
747 // Now the offset of every segment has been set we can assign the offsets
748 // of each section. For sections that are covered by a segment we should use
749 // the segment's original offset and the section's original offset to compute
750 // the offset from the start of the segment. Using the offset from the start
751 // of the segment we can assign a new offset to the section. For sections not
752 // covered by segments we can just bump Offset to the next valid location.
753 uint32_t Index = 1;
754 for (auto &Section : Sections) {
755 Section->Index = Index++;
756 if (Section->ParentSegment != nullptr) {
757 auto Segment = Section->ParentSegment;
758 Section->Offset =
759 Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
760 } else {
761 Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
762 Section->Offset = Offset;
763 if (Section->Type != SHT_NOBITS)
764 Offset += Section->Size;
767 return Offset;
770 template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
771 // We need a temporary list of segments that has a special order to it
772 // so that we know that anytime ->ParentSegment is set that segment has
773 // already had its offset properly set.
774 std::vector<Segment *> OrderedSegments;
775 for (auto &Segment : this->Segments)
776 OrderedSegments.push_back(Segment.get());
777 OrderSegments(OrderedSegments);
778 // The size of ELF + program headers will not change so it is ok to assume
779 // that the first offset of the first segment is a good place to start
780 // outputting sections. This covers both the standard case and the PT_PHDR
781 // case.
782 uint64_t Offset;
783 if (!OrderedSegments.empty()) {
784 Offset = OrderedSegments[0]->Offset;
785 } else {
786 Offset = sizeof(Elf_Ehdr);
788 Offset = LayoutSegments(OrderedSegments, Offset);
789 Offset = LayoutSections(this->Sections, Offset);
790 // If we need to write the section header table out then we need to align the
791 // Offset so that SHOffset is valid.
792 if (this->WriteSectionHeaders)
793 Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
794 this->SHOffset = Offset;
797 template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
798 // We already have the section header offset so we can calculate the total
799 // size by just adding up the size of each section header.
800 auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
801 return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
802 NullSectionSize;
805 template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
806 this->writeHeader(Out);
807 this->writeProgramHeaders(Out);
808 this->writeSectionData(Out);
809 if (this->WriteSectionHeaders)
810 this->writeSectionHeaders(Out);
813 template <class ELFT> void ELFObject<ELFT>::finalize() {
814 // Make sure we add the names of all the sections.
815 if (this->SectionNames != nullptr)
816 for (const auto &Section : this->Sections) {
817 this->SectionNames->addString(Section->Name);
819 // Make sure we add the names of all the symbols.
820 if (this->SymbolTable != nullptr)
821 this->SymbolTable->addSymbolNames();
823 sortSections();
824 assignOffsets();
826 // Finalize SectionNames first so that we can assign name indexes.
827 if (this->SectionNames != nullptr)
828 this->SectionNames->finalize();
829 // Finally now that all offsets and indexes have been set we can finalize any
830 // remaining issues.
831 uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
832 for (auto &Section : this->Sections) {
833 Section->HeaderOffset = Offset;
834 Offset += sizeof(Elf_Shdr);
835 if (this->WriteSectionHeaders)
836 Section->NameIndex = this->SectionNames->findIndex(Section->Name);
837 Section->finalize();
841 template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
842 return TotalSize;
845 template <class ELFT>
846 void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
847 for (auto &Section : this->Sections) {
848 if ((Section->Flags & SHF_ALLOC) == 0)
849 continue;
850 Section->writeSection(Out);
854 template <class ELFT> void BinaryObject<ELFT>::finalize() {
855 // TODO: Create a filter range to construct OrderedSegments from so that this
856 // code can be deduped with assignOffsets above. This should also solve the
857 // todo below for LayoutSections.
858 // We need a temporary list of segments that has a special order to it
859 // so that we know that anytime ->ParentSegment is set that segment has
860 // already had it's offset properly set. We only want to consider the segments
861 // that will affect layout of allocated sections so we only add those.
862 std::vector<Segment *> OrderedSegments;
863 for (auto &Section : this->Sections) {
864 if ((Section->Flags & SHF_ALLOC) != 0 &&
865 Section->ParentSegment != nullptr) {
866 OrderedSegments.push_back(Section->ParentSegment);
869 OrderSegments(OrderedSegments);
870 // Because we add a ParentSegment for each section we might have duplicate
871 // segments in OrderedSegments. If there were duplicates then LayoutSegments
872 // would do very strange things.
873 auto End =
874 std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
875 OrderedSegments.erase(End, std::end(OrderedSegments));
877 // Modify the first segment so that there is no gap at the start. This allows
878 // our layout algorithm to proceed as expected while not out writing out the
879 // gap at the start.
880 if (!OrderedSegments.empty()) {
881 auto Seg = OrderedSegments[0];
882 auto Sec = Seg->firstSection();
883 auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
884 Seg->OriginalOffset += Diff;
885 // The size needs to be shrunk as well
886 Seg->FileSize -= Diff;
887 Seg->MemSize -= Diff;
888 // The VAddr needs to be adjusted so that the alignment is correct as well
889 Seg->VAddr += Diff;
890 Seg->PAddr = Seg->VAddr;
891 // We don't want this to be shifted by alignment so we need to set the
892 // alignment to zero.
893 Seg->Align = 0;
896 uint64_t Offset = LayoutSegments(OrderedSegments, 0);
898 // TODO: generalize LayoutSections to take a range. Pass a special range
899 // constructed from an iterator that skips values for which a predicate does
900 // not hold. Then pass such a range to LayoutSections instead of constructing
901 // AllocatedSections here.
902 std::vector<SectionBase *> AllocatedSections;
903 for (auto &Section : this->Sections) {
904 if ((Section->Flags & SHF_ALLOC) == 0)
905 continue;
906 AllocatedSections.push_back(Section.get());
908 LayoutSections(AllocatedSections, Offset);
910 // Now that every section has been laid out we just need to compute the total
911 // file size. This might not be the same as the offset returned by
912 // LayoutSections, because we want to truncate the last segment to the end of
913 // its last section, to match GNU objcopy's behaviour.
914 TotalSize = 0;
915 for (const auto &Section : AllocatedSections) {
916 if (Section->Type != SHT_NOBITS)
917 TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
921 namespace llvm {
923 template class Object<ELF64LE>;
924 template class Object<ELF64BE>;
925 template class Object<ELF32LE>;
926 template class Object<ELF32BE>;
928 template class ELFObject<ELF64LE>;
929 template class ELFObject<ELF64BE>;
930 template class ELFObject<ELF32LE>;
931 template class ELFObject<ELF32BE>;
933 template class BinaryObject<ELF64LE>;
934 template class BinaryObject<ELF64BE>;
935 template class BinaryObject<ELF32LE>;
936 template class BinaryObject<ELF32BE>;
938 } // end namespace llvm