[PowerPC] Generate Power9 extswsli extend sign and shift immediate instruction
[llvm-core.git] / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
blob789d8620155c569be917c5cfff3bb4e88740736a
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCMCTargetDesc.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCISelLowering.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCSubtarget.h"
21 #include "PPCTargetMachine.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MachineValueType.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <limits>
63 #include <memory>
64 #include <new>
65 #include <tuple>
66 #include <utility>
68 using namespace llvm;
70 #define DEBUG_TYPE "ppc-codegen"
72 STATISTIC(NumSextSetcc,
73 "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc,
75 "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded,
77 "Number of sign extensions for compare inputs added.");
78 STATISTIC(ZeroExtensionsAdded,
79 "Number of zero extensions for compare inputs added.");
80 STATISTIC(NumLogicOpsOnComparison,
81 "Number of logical ops on i1 values calculated in GPR.");
82 STATISTIC(OmittedForNonExtendUses,
83 "Number of compares not eliminated as they have non-extending uses.");
85 // FIXME: Remove this once the bug has been fixed!
86 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
87 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
89 static cl::opt<bool>
90 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
91 cl::desc("use aggressive ppc isel for bit permutations"),
92 cl::Hidden);
93 static cl::opt<bool> BPermRewriterNoMasking(
94 "ppc-bit-perm-rewriter-stress-rotates",
95 cl::desc("stress rotate selection in aggressive ppc isel for "
96 "bit permutations"),
97 cl::Hidden);
99 static cl::opt<bool> EnableBranchHint(
100 "ppc-use-branch-hint", cl::init(true),
101 cl::desc("Enable static hinting of branches on ppc"),
102 cl::Hidden);
104 static cl::opt<bool> EnableTLSOpt(
105 "ppc-tls-opt", cl::init(true),
106 cl::desc("Enable tls optimization peephole"),
107 cl::Hidden);
109 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
110 ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
111 ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
113 static cl::opt<ICmpInGPRType> CmpInGPR(
114 "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
115 cl::desc("Specify the types of comparisons to emit GPR-only code for."),
116 cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
117 clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
118 clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
119 clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
120 clEnumValN(ICGPR_NonExtIn, "nonextin",
121 "Only comparisons where inputs don't need [sz]ext."),
122 clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
123 clEnumValN(ICGPR_ZextI32, "zexti32",
124 "Only i32 comparisons with zext result."),
125 clEnumValN(ICGPR_ZextI64, "zexti64",
126 "Only i64 comparisons with zext result."),
127 clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
128 clEnumValN(ICGPR_SextI32, "sexti32",
129 "Only i32 comparisons with sext result."),
130 clEnumValN(ICGPR_SextI64, "sexti64",
131 "Only i64 comparisons with sext result.")));
132 namespace {
134 //===--------------------------------------------------------------------===//
135 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
136 /// instructions for SelectionDAG operations.
138 class PPCDAGToDAGISel : public SelectionDAGISel {
139 const PPCTargetMachine &TM;
140 const PPCSubtarget *PPCSubTarget;
141 const PPCTargetLowering *PPCLowering;
142 unsigned GlobalBaseReg;
144 public:
145 explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
146 : SelectionDAGISel(tm, OptLevel), TM(tm) {}
148 bool runOnMachineFunction(MachineFunction &MF) override {
149 // Make sure we re-emit a set of the global base reg if necessary
150 GlobalBaseReg = 0;
151 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
152 PPCLowering = PPCSubTarget->getTargetLowering();
153 SelectionDAGISel::runOnMachineFunction(MF);
155 if (!PPCSubTarget->isSVR4ABI())
156 InsertVRSaveCode(MF);
158 return true;
161 void PreprocessISelDAG() override;
162 void PostprocessISelDAG() override;
164 /// getI16Imm - Return a target constant with the specified value, of type
165 /// i16.
166 inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
167 return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
170 /// getI32Imm - Return a target constant with the specified value, of type
171 /// i32.
172 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
173 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
176 /// getI64Imm - Return a target constant with the specified value, of type
177 /// i64.
178 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
179 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
182 /// getSmallIPtrImm - Return a target constant of pointer type.
183 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
184 return CurDAG->getTargetConstant(
185 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
188 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
189 /// rotate and mask opcode and mask operation.
190 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
191 unsigned &SH, unsigned &MB, unsigned &ME);
193 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
194 /// base register. Return the virtual register that holds this value.
195 SDNode *getGlobalBaseReg();
197 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
199 // Select - Convert the specified operand from a target-independent to a
200 // target-specific node if it hasn't already been changed.
201 void Select(SDNode *N) override;
203 bool tryBitfieldInsert(SDNode *N);
204 bool tryBitPermutation(SDNode *N);
205 bool tryIntCompareInGPR(SDNode *N);
207 // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
208 // an X-Form load instruction with the offset being a relocation coming from
209 // the PPCISD::ADD_TLS.
210 bool tryTLSXFormLoad(LoadSDNode *N);
211 // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
212 // an X-Form store instruction with the offset being a relocation coming from
213 // the PPCISD::ADD_TLS.
214 bool tryTLSXFormStore(StoreSDNode *N);
215 /// SelectCC - Select a comparison of the specified values with the
216 /// specified condition code, returning the CR# of the expression.
217 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
218 const SDLoc &dl);
220 /// SelectAddrImm - Returns true if the address N can be represented by
221 /// a base register plus a signed 16-bit displacement [r+imm].
222 bool SelectAddrImm(SDValue N, SDValue &Disp,
223 SDValue &Base) {
224 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
227 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
228 /// immediate field. Note that the operand at this point is already the
229 /// result of a prior SelectAddressRegImm call.
230 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
231 if (N.getOpcode() == ISD::TargetConstant ||
232 N.getOpcode() == ISD::TargetGlobalAddress) {
233 Out = N;
234 return true;
237 return false;
240 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
241 /// represented as an indexed [r+r] operation. Returns false if it can
242 /// be represented by [r+imm], which are preferred.
243 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
244 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
247 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
248 /// represented as an indexed [r+r] operation.
249 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
250 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
253 /// SelectAddrImmX4 - Returns true if the address N can be represented by
254 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
255 /// Suitable for use by STD and friends.
256 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
257 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
260 bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
261 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
264 // Select an address into a single register.
265 bool SelectAddr(SDValue N, SDValue &Base) {
266 Base = N;
267 return true;
270 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
271 /// inline asm expressions. It is always correct to compute the value into
272 /// a register. The case of adding a (possibly relocatable) constant to a
273 /// register can be improved, but it is wrong to substitute Reg+Reg for
274 /// Reg in an asm, because the load or store opcode would have to change.
275 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
276 unsigned ConstraintID,
277 std::vector<SDValue> &OutOps) override {
278 switch(ConstraintID) {
279 default:
280 errs() << "ConstraintID: " << ConstraintID << "\n";
281 llvm_unreachable("Unexpected asm memory constraint");
282 case InlineAsm::Constraint_es:
283 case InlineAsm::Constraint_i:
284 case InlineAsm::Constraint_m:
285 case InlineAsm::Constraint_o:
286 case InlineAsm::Constraint_Q:
287 case InlineAsm::Constraint_Z:
288 case InlineAsm::Constraint_Zy:
289 // We need to make sure that this one operand does not end up in r0
290 // (because we might end up lowering this as 0(%op)).
291 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
292 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
293 SDLoc dl(Op);
294 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
295 SDValue NewOp =
296 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
297 dl, Op.getValueType(),
298 Op, RC), 0);
300 OutOps.push_back(NewOp);
301 return false;
303 return true;
306 void InsertVRSaveCode(MachineFunction &MF);
308 StringRef getPassName() const override {
309 return "PowerPC DAG->DAG Pattern Instruction Selection";
312 // Include the pieces autogenerated from the target description.
313 #include "PPCGenDAGISel.inc"
315 private:
316 bool trySETCC(SDNode *N);
318 void PeepholePPC64();
319 void PeepholePPC64ZExt();
320 void PeepholeCROps();
322 SDValue combineToCMPB(SDNode *N);
323 void foldBoolExts(SDValue &Res, SDNode *&N);
325 bool AllUsersSelectZero(SDNode *N);
326 void SwapAllSelectUsers(SDNode *N);
328 bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
329 void transferMemOperands(SDNode *N, SDNode *Result);
330 MachineSDNode *flipSignBit(const SDValue &N, SDNode **SignBit = nullptr);
333 } // end anonymous namespace
335 /// InsertVRSaveCode - Once the entire function has been instruction selected,
336 /// all virtual registers are created and all machine instructions are built,
337 /// check to see if we need to save/restore VRSAVE. If so, do it.
338 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
339 // Check to see if this function uses vector registers, which means we have to
340 // save and restore the VRSAVE register and update it with the regs we use.
342 // In this case, there will be virtual registers of vector type created
343 // by the scheduler. Detect them now.
344 bool HasVectorVReg = false;
345 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
346 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
347 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
348 HasVectorVReg = true;
349 break;
352 if (!HasVectorVReg) return; // nothing to do.
354 // If we have a vector register, we want to emit code into the entry and exit
355 // blocks to save and restore the VRSAVE register. We do this here (instead
356 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
358 // 1. This (trivially) reduces the load on the register allocator, by not
359 // having to represent the live range of the VRSAVE register.
360 // 2. This (more significantly) allows us to create a temporary virtual
361 // register to hold the saved VRSAVE value, allowing this temporary to be
362 // register allocated, instead of forcing it to be spilled to the stack.
364 // Create two vregs - one to hold the VRSAVE register that is live-in to the
365 // function and one for the value after having bits or'd into it.
366 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
367 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
369 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
370 MachineBasicBlock &EntryBB = *Fn.begin();
371 DebugLoc dl;
372 // Emit the following code into the entry block:
373 // InVRSAVE = MFVRSAVE
374 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
375 // MTVRSAVE UpdatedVRSAVE
376 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
377 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
378 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
379 UpdatedVRSAVE).addReg(InVRSAVE);
380 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
382 // Find all return blocks, outputting a restore in each epilog.
383 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
384 if (BB->isReturnBlock()) {
385 IP = BB->end(); --IP;
387 // Skip over all terminator instructions, which are part of the return
388 // sequence.
389 MachineBasicBlock::iterator I2 = IP;
390 while (I2 != BB->begin() && (--I2)->isTerminator())
391 IP = I2;
393 // Emit: MTVRSAVE InVRSave
394 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
399 /// getGlobalBaseReg - Output the instructions required to put the
400 /// base address to use for accessing globals into a register.
402 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
403 if (!GlobalBaseReg) {
404 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
405 // Insert the set of GlobalBaseReg into the first MBB of the function
406 MachineBasicBlock &FirstMBB = MF->front();
407 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
408 const Module *M = MF->getFunction().getParent();
409 DebugLoc dl;
411 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
412 if (PPCSubTarget->isTargetELF()) {
413 GlobalBaseReg = PPC::R30;
414 if (M->getPICLevel() == PICLevel::SmallPIC) {
415 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
416 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
417 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
418 } else {
419 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
420 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
421 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
422 BuildMI(FirstMBB, MBBI, dl,
423 TII.get(PPC::UpdateGBR), GlobalBaseReg)
424 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
425 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
427 } else {
428 GlobalBaseReg =
429 RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
430 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
431 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
433 } else {
434 // We must ensure that this sequence is dominated by the prologue.
435 // FIXME: This is a bit of a big hammer since we don't get the benefits
436 // of shrink-wrapping whenever we emit this instruction. Considering
437 // this is used in any function where we emit a jump table, this may be
438 // a significant limitation. We should consider inserting this in the
439 // block where it is used and then commoning this sequence up if it
440 // appears in multiple places.
441 // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
442 // MovePCtoLR8.
443 MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
444 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
445 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
446 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
449 return CurDAG->getRegister(GlobalBaseReg,
450 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
451 .getNode();
454 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
455 /// operand. If so Imm will receive the 32-bit value.
456 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
457 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
458 Imm = cast<ConstantSDNode>(N)->getZExtValue();
459 return true;
461 return false;
464 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
465 /// operand. If so Imm will receive the 64-bit value.
466 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
467 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
468 Imm = cast<ConstantSDNode>(N)->getZExtValue();
469 return true;
471 return false;
474 // isInt32Immediate - This method tests to see if a constant operand.
475 // If so Imm will receive the 32 bit value.
476 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
477 return isInt32Immediate(N.getNode(), Imm);
480 /// isInt64Immediate - This method tests to see if the value is a 64-bit
481 /// constant operand. If so Imm will receive the 64-bit value.
482 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
483 return isInt64Immediate(N.getNode(), Imm);
486 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
487 const SDValue &DestMBB) {
488 assert(isa<BasicBlockSDNode>(DestMBB));
490 if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
492 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
493 const TerminatorInst *BBTerm = BB->getTerminator();
495 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
497 const BasicBlock *TBB = BBTerm->getSuccessor(0);
498 const BasicBlock *FBB = BBTerm->getSuccessor(1);
500 auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
501 auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
503 // We only want to handle cases which are easy to predict at static time, e.g.
504 // C++ throw statement, that is very likely not taken, or calling never
505 // returned function, e.g. stdlib exit(). So we set Threshold to filter
506 // unwanted cases.
508 // Below is LLVM branch weight table, we only want to handle case 1, 2
510 // Case Taken:Nontaken Example
511 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
512 // 2. Invoke-terminating 1:1048575
513 // 3. Coldblock 4:64 __builtin_expect
514 // 4. Loop Branch 124:4 For loop
515 // 5. PH/ZH/FPH 20:12
516 const uint32_t Threshold = 10000;
518 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
519 return PPC::BR_NO_HINT;
521 LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName()
522 << "::" << BB->getName() << "'\n"
523 << " -> " << TBB->getName() << ": " << TProb << "\n"
524 << " -> " << FBB->getName() << ": " << FProb << "\n");
526 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
528 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
529 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
530 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
531 std::swap(TProb, FProb);
533 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
536 // isOpcWithIntImmediate - This method tests to see if the node is a specific
537 // opcode and that it has a immediate integer right operand.
538 // If so Imm will receive the 32 bit value.
539 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
540 return N->getOpcode() == Opc
541 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
544 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
545 SDLoc dl(SN);
546 int FI = cast<FrameIndexSDNode>(N)->getIndex();
547 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
548 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
549 if (SN->hasOneUse())
550 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
551 getSmallIPtrImm(Offset, dl));
552 else
553 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
554 getSmallIPtrImm(Offset, dl)));
557 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
558 bool isShiftMask, unsigned &SH,
559 unsigned &MB, unsigned &ME) {
560 // Don't even go down this path for i64, since different logic will be
561 // necessary for rldicl/rldicr/rldimi.
562 if (N->getValueType(0) != MVT::i32)
563 return false;
565 unsigned Shift = 32;
566 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
567 unsigned Opcode = N->getOpcode();
568 if (N->getNumOperands() != 2 ||
569 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
570 return false;
572 if (Opcode == ISD::SHL) {
573 // apply shift left to mask if it comes first
574 if (isShiftMask) Mask = Mask << Shift;
575 // determine which bits are made indeterminant by shift
576 Indeterminant = ~(0xFFFFFFFFu << Shift);
577 } else if (Opcode == ISD::SRL) {
578 // apply shift right to mask if it comes first
579 if (isShiftMask) Mask = Mask >> Shift;
580 // determine which bits are made indeterminant by shift
581 Indeterminant = ~(0xFFFFFFFFu >> Shift);
582 // adjust for the left rotate
583 Shift = 32 - Shift;
584 } else if (Opcode == ISD::ROTL) {
585 Indeterminant = 0;
586 } else {
587 return false;
590 // if the mask doesn't intersect any Indeterminant bits
591 if (Mask && !(Mask & Indeterminant)) {
592 SH = Shift & 31;
593 // make sure the mask is still a mask (wrap arounds may not be)
594 return isRunOfOnes(Mask, MB, ME);
596 return false;
599 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
600 SDValue Base = ST->getBasePtr();
601 if (Base.getOpcode() != PPCISD::ADD_TLS)
602 return false;
603 SDValue Offset = ST->getOffset();
604 if (!Offset.isUndef())
605 return false;
607 SDLoc dl(ST);
608 EVT MemVT = ST->getMemoryVT();
609 EVT RegVT = ST->getValue().getValueType();
611 unsigned Opcode;
612 switch (MemVT.getSimpleVT().SimpleTy) {
613 default:
614 return false;
615 case MVT::i8: {
616 Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
617 break;
619 case MVT::i16: {
620 Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
621 break;
623 case MVT::i32: {
624 Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
625 break;
627 case MVT::i64: {
628 Opcode = PPC::STDXTLS;
629 break;
632 SDValue Chain = ST->getChain();
633 SDVTList VTs = ST->getVTList();
634 SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
635 Chain};
636 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
637 transferMemOperands(ST, MN);
638 ReplaceNode(ST, MN);
639 return true;
642 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
643 SDValue Base = LD->getBasePtr();
644 if (Base.getOpcode() != PPCISD::ADD_TLS)
645 return false;
646 SDValue Offset = LD->getOffset();
647 if (!Offset.isUndef())
648 return false;
650 SDLoc dl(LD);
651 EVT MemVT = LD->getMemoryVT();
652 EVT RegVT = LD->getValueType(0);
653 unsigned Opcode;
654 switch (MemVT.getSimpleVT().SimpleTy) {
655 default:
656 return false;
657 case MVT::i8: {
658 Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
659 break;
661 case MVT::i16: {
662 Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
663 break;
665 case MVT::i32: {
666 Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
667 break;
669 case MVT::i64: {
670 Opcode = PPC::LDXTLS;
671 break;
674 SDValue Chain = LD->getChain();
675 SDVTList VTs = LD->getVTList();
676 SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
677 SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
678 transferMemOperands(LD, MN);
679 ReplaceNode(LD, MN);
680 return true;
683 /// Turn an or of two masked values into the rotate left word immediate then
684 /// mask insert (rlwimi) instruction.
685 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
686 SDValue Op0 = N->getOperand(0);
687 SDValue Op1 = N->getOperand(1);
688 SDLoc dl(N);
690 KnownBits LKnown, RKnown;
691 CurDAG->computeKnownBits(Op0, LKnown);
692 CurDAG->computeKnownBits(Op1, RKnown);
694 unsigned TargetMask = LKnown.Zero.getZExtValue();
695 unsigned InsertMask = RKnown.Zero.getZExtValue();
697 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
698 unsigned Op0Opc = Op0.getOpcode();
699 unsigned Op1Opc = Op1.getOpcode();
700 unsigned Value, SH = 0;
701 TargetMask = ~TargetMask;
702 InsertMask = ~InsertMask;
704 // If the LHS has a foldable shift and the RHS does not, then swap it to the
705 // RHS so that we can fold the shift into the insert.
706 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
707 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
708 Op0.getOperand(0).getOpcode() == ISD::SRL) {
709 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
710 Op1.getOperand(0).getOpcode() != ISD::SRL) {
711 std::swap(Op0, Op1);
712 std::swap(Op0Opc, Op1Opc);
713 std::swap(TargetMask, InsertMask);
716 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
717 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
718 Op1.getOperand(0).getOpcode() != ISD::SRL) {
719 std::swap(Op0, Op1);
720 std::swap(Op0Opc, Op1Opc);
721 std::swap(TargetMask, InsertMask);
725 unsigned MB, ME;
726 if (isRunOfOnes(InsertMask, MB, ME)) {
727 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
728 isInt32Immediate(Op1.getOperand(1), Value)) {
729 Op1 = Op1.getOperand(0);
730 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
732 if (Op1Opc == ISD::AND) {
733 // The AND mask might not be a constant, and we need to make sure that
734 // if we're going to fold the masking with the insert, all bits not
735 // know to be zero in the mask are known to be one.
736 KnownBits MKnown;
737 CurDAG->computeKnownBits(Op1.getOperand(1), MKnown);
738 bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
740 unsigned SHOpc = Op1.getOperand(0).getOpcode();
741 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
742 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
743 // Note that Value must be in range here (less than 32) because
744 // otherwise there would not be any bits set in InsertMask.
745 Op1 = Op1.getOperand(0).getOperand(0);
746 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
750 SH &= 31;
751 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
752 getI32Imm(ME, dl) };
753 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
754 return true;
757 return false;
760 // Predict the number of instructions that would be generated by calling
761 // selectI64Imm(N).
762 static unsigned selectI64ImmInstrCountDirect(int64_t Imm) {
763 // Assume no remaining bits.
764 unsigned Remainder = 0;
765 // Assume no shift required.
766 unsigned Shift = 0;
768 // If it can't be represented as a 32 bit value.
769 if (!isInt<32>(Imm)) {
770 Shift = countTrailingZeros<uint64_t>(Imm);
771 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
773 // If the shifted value fits 32 bits.
774 if (isInt<32>(ImmSh)) {
775 // Go with the shifted value.
776 Imm = ImmSh;
777 } else {
778 // Still stuck with a 64 bit value.
779 Remainder = Imm;
780 Shift = 32;
781 Imm >>= 32;
785 // Intermediate operand.
786 unsigned Result = 0;
788 // Handle first 32 bits.
789 unsigned Lo = Imm & 0xFFFF;
791 // Simple value.
792 if (isInt<16>(Imm)) {
793 // Just the Lo bits.
794 ++Result;
795 } else if (Lo) {
796 // Handle the Hi bits and Lo bits.
797 Result += 2;
798 } else {
799 // Just the Hi bits.
800 ++Result;
803 // If no shift, we're done.
804 if (!Shift) return Result;
806 // If Hi word == Lo word,
807 // we can use rldimi to insert the Lo word into Hi word.
808 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
809 ++Result;
810 return Result;
813 // Shift for next step if the upper 32-bits were not zero.
814 if (Imm)
815 ++Result;
817 // Add in the last bits as required.
818 if ((Remainder >> 16) & 0xFFFF)
819 ++Result;
820 if (Remainder & 0xFFFF)
821 ++Result;
823 return Result;
826 static uint64_t Rot64(uint64_t Imm, unsigned R) {
827 return (Imm << R) | (Imm >> (64 - R));
830 static unsigned selectI64ImmInstrCount(int64_t Imm) {
831 unsigned Count = selectI64ImmInstrCountDirect(Imm);
833 // If the instruction count is 1 or 2, we do not need further analysis
834 // since rotate + load constant requires at least 2 instructions.
835 if (Count <= 2)
836 return Count;
838 for (unsigned r = 1; r < 63; ++r) {
839 uint64_t RImm = Rot64(Imm, r);
840 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
841 Count = std::min(Count, RCount);
843 // See comments in selectI64Imm for an explanation of the logic below.
844 unsigned LS = findLastSet(RImm);
845 if (LS != r-1)
846 continue;
848 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
849 uint64_t RImmWithOnes = RImm | OnesMask;
851 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
852 Count = std::min(Count, RCount);
855 return Count;
858 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
859 // (above) needs to be kept in sync with this function.
860 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
861 int64_t Imm) {
862 // Assume no remaining bits.
863 unsigned Remainder = 0;
864 // Assume no shift required.
865 unsigned Shift = 0;
867 // If it can't be represented as a 32 bit value.
868 if (!isInt<32>(Imm)) {
869 Shift = countTrailingZeros<uint64_t>(Imm);
870 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
872 // If the shifted value fits 32 bits.
873 if (isInt<32>(ImmSh)) {
874 // Go with the shifted value.
875 Imm = ImmSh;
876 } else {
877 // Still stuck with a 64 bit value.
878 Remainder = Imm;
879 Shift = 32;
880 Imm >>= 32;
884 // Intermediate operand.
885 SDNode *Result;
887 // Handle first 32 bits.
888 unsigned Lo = Imm & 0xFFFF;
889 unsigned Hi = (Imm >> 16) & 0xFFFF;
891 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
892 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
895 // Simple value.
896 if (isInt<16>(Imm)) {
897 uint64_t SextImm = SignExtend64(Lo, 16);
898 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
899 // Just the Lo bits.
900 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
901 } else if (Lo) {
902 // Handle the Hi bits.
903 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
904 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
905 // And Lo bits.
906 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
907 SDValue(Result, 0), getI32Imm(Lo));
908 } else {
909 // Just the Hi bits.
910 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
913 // If no shift, we're done.
914 if (!Shift) return Result;
916 // If Hi word == Lo word,
917 // we can use rldimi to insert the Lo word into Hi word.
918 if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) {
919 SDValue Ops[] =
920 { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)};
921 return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
924 // Shift for next step if the upper 32-bits were not zero.
925 if (Imm) {
926 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
927 SDValue(Result, 0),
928 getI32Imm(Shift),
929 getI32Imm(63 - Shift));
932 // Add in the last bits as required.
933 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
934 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
935 SDValue(Result, 0), getI32Imm(Hi));
937 if ((Lo = Remainder & 0xFFFF)) {
938 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
939 SDValue(Result, 0), getI32Imm(Lo));
942 return Result;
945 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl,
946 int64_t Imm) {
947 unsigned Count = selectI64ImmInstrCountDirect(Imm);
949 // If the instruction count is 1 or 2, we do not need further analysis
950 // since rotate + load constant requires at least 2 instructions.
951 if (Count <= 2)
952 return selectI64ImmDirect(CurDAG, dl, Imm);
954 unsigned RMin = 0;
956 int64_t MatImm;
957 unsigned MaskEnd;
959 for (unsigned r = 1; r < 63; ++r) {
960 uint64_t RImm = Rot64(Imm, r);
961 unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1;
962 if (RCount < Count) {
963 Count = RCount;
964 RMin = r;
965 MatImm = RImm;
966 MaskEnd = 63;
969 // If the immediate to generate has many trailing zeros, it might be
970 // worthwhile to generate a rotated value with too many leading ones
971 // (because that's free with li/lis's sign-extension semantics), and then
972 // mask them off after rotation.
974 unsigned LS = findLastSet(RImm);
975 // We're adding (63-LS) higher-order ones, and we expect to mask them off
976 // after performing the inverse rotation by (64-r). So we need that:
977 // 63-LS == 64-r => LS == r-1
978 if (LS != r-1)
979 continue;
981 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
982 uint64_t RImmWithOnes = RImm | OnesMask;
984 RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1;
985 if (RCount < Count) {
986 Count = RCount;
987 RMin = r;
988 MatImm = RImmWithOnes;
989 MaskEnd = LS;
993 if (!RMin)
994 return selectI64ImmDirect(CurDAG, dl, Imm);
996 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
997 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1000 SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0);
1001 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
1002 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
1005 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
1006 unsigned MaxTruncation = 0;
1007 // Cannot use range-based for loop here as we need the actual use (i.e. we
1008 // need the operand number corresponding to the use). A range-based for
1009 // will unbox the use and provide an SDNode*.
1010 for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
1011 Use != UseEnd; ++Use) {
1012 unsigned Opc =
1013 Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
1014 switch (Opc) {
1015 default: return 0;
1016 case ISD::TRUNCATE:
1017 if (Use->isMachineOpcode())
1018 return 0;
1019 MaxTruncation =
1020 std::max(MaxTruncation, Use->getValueType(0).getSizeInBits());
1021 continue;
1022 case ISD::STORE: {
1023 if (Use->isMachineOpcode())
1024 return 0;
1025 StoreSDNode *STN = cast<StoreSDNode>(*Use);
1026 unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
1027 if (MemVTSize == 64 || Use.getOperandNo() != 0)
1028 return 0;
1029 MaxTruncation = std::max(MaxTruncation, MemVTSize);
1030 continue;
1032 case PPC::STW8:
1033 case PPC::STWX8:
1034 case PPC::STWU8:
1035 case PPC::STWUX8:
1036 if (Use.getOperandNo() != 0)
1037 return 0;
1038 MaxTruncation = std::max(MaxTruncation, 32u);
1039 continue;
1040 case PPC::STH8:
1041 case PPC::STHX8:
1042 case PPC::STHU8:
1043 case PPC::STHUX8:
1044 if (Use.getOperandNo() != 0)
1045 return 0;
1046 MaxTruncation = std::max(MaxTruncation, 16u);
1047 continue;
1048 case PPC::STB8:
1049 case PPC::STBX8:
1050 case PPC::STBU8:
1051 case PPC::STBUX8:
1052 if (Use.getOperandNo() != 0)
1053 return 0;
1054 MaxTruncation = std::max(MaxTruncation, 8u);
1055 continue;
1058 return MaxTruncation;
1061 // Select a 64-bit constant.
1062 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1063 SDLoc dl(N);
1065 // Get 64 bit value.
1066 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1067 if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1068 uint64_t SextImm = SignExtend64(Imm, MinSize);
1069 SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1070 if (isInt<16>(SextImm))
1071 return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1073 return selectI64Imm(CurDAG, dl, Imm);
1076 namespace {
1078 class BitPermutationSelector {
1079 struct ValueBit {
1080 SDValue V;
1082 // The bit number in the value, using a convention where bit 0 is the
1083 // lowest-order bit.
1084 unsigned Idx;
1086 enum Kind {
1087 ConstZero,
1088 Variable
1089 } K;
1091 ValueBit(SDValue V, unsigned I, Kind K = Variable)
1092 : V(V), Idx(I), K(K) {}
1093 ValueBit(Kind K = Variable)
1094 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
1096 bool isZero() const {
1097 return K == ConstZero;
1100 bool hasValue() const {
1101 return K == Variable;
1104 SDValue getValue() const {
1105 assert(hasValue() && "Cannot get the value of a constant bit");
1106 return V;
1109 unsigned getValueBitIndex() const {
1110 assert(hasValue() && "Cannot get the value bit index of a constant bit");
1111 return Idx;
1115 // A bit group has the same underlying value and the same rotate factor.
1116 struct BitGroup {
1117 SDValue V;
1118 unsigned RLAmt;
1119 unsigned StartIdx, EndIdx;
1121 // This rotation amount assumes that the lower 32 bits of the quantity are
1122 // replicated in the high 32 bits by the rotation operator (which is done
1123 // by rlwinm and friends in 64-bit mode).
1124 bool Repl32;
1125 // Did converting to Repl32 == true change the rotation factor? If it did,
1126 // it decreased it by 32.
1127 bool Repl32CR;
1128 // Was this group coalesced after setting Repl32 to true?
1129 bool Repl32Coalesced;
1131 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1132 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1133 Repl32Coalesced(false) {
1134 LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1135 << " [" << S << ", " << E << "]\n");
1139 // Information on each (Value, RLAmt) pair (like the number of groups
1140 // associated with each) used to choose the lowering method.
1141 struct ValueRotInfo {
1142 SDValue V;
1143 unsigned RLAmt = std::numeric_limits<unsigned>::max();
1144 unsigned NumGroups = 0;
1145 unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1146 bool Repl32 = false;
1148 ValueRotInfo() = default;
1150 // For sorting (in reverse order) by NumGroups, and then by
1151 // FirstGroupStartIdx.
1152 bool operator < (const ValueRotInfo &Other) const {
1153 // We need to sort so that the non-Repl32 come first because, when we're
1154 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1155 // masking operation.
1156 if (Repl32 < Other.Repl32)
1157 return true;
1158 else if (Repl32 > Other.Repl32)
1159 return false;
1160 else if (NumGroups > Other.NumGroups)
1161 return true;
1162 else if (NumGroups < Other.NumGroups)
1163 return false;
1164 else if (RLAmt == 0 && Other.RLAmt != 0)
1165 return true;
1166 else if (RLAmt != 0 && Other.RLAmt == 0)
1167 return false;
1168 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1169 return true;
1170 return false;
1174 using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1175 using ValueBitsMemoizer =
1176 DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1177 ValueBitsMemoizer Memoizer;
1179 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1180 // The bool is true if something interesting was deduced, otherwise if we're
1181 // providing only a generic representation of V (or something else likewise
1182 // uninteresting for instruction selection) through the SmallVector.
1183 std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1184 unsigned NumBits) {
1185 auto &ValueEntry = Memoizer[V];
1186 if (ValueEntry)
1187 return std::make_pair(ValueEntry->first, &ValueEntry->second);
1188 ValueEntry.reset(new ValueBitsMemoizedValue());
1189 bool &Interesting = ValueEntry->first;
1190 SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1191 Bits.resize(NumBits);
1193 switch (V.getOpcode()) {
1194 default: break;
1195 case ISD::ROTL:
1196 if (isa<ConstantSDNode>(V.getOperand(1))) {
1197 unsigned RotAmt = V.getConstantOperandVal(1);
1199 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1201 for (unsigned i = 0; i < NumBits; ++i)
1202 Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1204 return std::make_pair(Interesting = true, &Bits);
1206 break;
1207 case ISD::SHL:
1208 if (isa<ConstantSDNode>(V.getOperand(1))) {
1209 unsigned ShiftAmt = V.getConstantOperandVal(1);
1211 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1213 for (unsigned i = ShiftAmt; i < NumBits; ++i)
1214 Bits[i] = LHSBits[i - ShiftAmt];
1216 for (unsigned i = 0; i < ShiftAmt; ++i)
1217 Bits[i] = ValueBit(ValueBit::ConstZero);
1219 return std::make_pair(Interesting = true, &Bits);
1221 break;
1222 case ISD::SRL:
1223 if (isa<ConstantSDNode>(V.getOperand(1))) {
1224 unsigned ShiftAmt = V.getConstantOperandVal(1);
1226 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1228 for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1229 Bits[i] = LHSBits[i + ShiftAmt];
1231 for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1232 Bits[i] = ValueBit(ValueBit::ConstZero);
1234 return std::make_pair(Interesting = true, &Bits);
1236 break;
1237 case ISD::AND:
1238 if (isa<ConstantSDNode>(V.getOperand(1))) {
1239 uint64_t Mask = V.getConstantOperandVal(1);
1241 const SmallVector<ValueBit, 64> *LHSBits;
1242 // Mark this as interesting, only if the LHS was also interesting. This
1243 // prevents the overall procedure from matching a single immediate 'and'
1244 // (which is non-optimal because such an and might be folded with other
1245 // things if we don't select it here).
1246 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1248 for (unsigned i = 0; i < NumBits; ++i)
1249 if (((Mask >> i) & 1) == 1)
1250 Bits[i] = (*LHSBits)[i];
1251 else
1252 Bits[i] = ValueBit(ValueBit::ConstZero);
1254 return std::make_pair(Interesting, &Bits);
1256 break;
1257 case ISD::OR: {
1258 const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1259 const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1261 bool AllDisjoint = true;
1262 for (unsigned i = 0; i < NumBits; ++i)
1263 if (LHSBits[i].isZero())
1264 Bits[i] = RHSBits[i];
1265 else if (RHSBits[i].isZero())
1266 Bits[i] = LHSBits[i];
1267 else {
1268 AllDisjoint = false;
1269 break;
1272 if (!AllDisjoint)
1273 break;
1275 return std::make_pair(Interesting = true, &Bits);
1277 case ISD::ZERO_EXTEND: {
1278 // We support only the case with zero extension from i32 to i64 so far.
1279 if (V.getValueType() != MVT::i64 ||
1280 V.getOperand(0).getValueType() != MVT::i32)
1281 break;
1283 const SmallVector<ValueBit, 64> *LHSBits;
1284 const unsigned NumOperandBits = 32;
1285 std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1286 NumOperandBits);
1288 for (unsigned i = 0; i < NumOperandBits; ++i)
1289 Bits[i] = (*LHSBits)[i];
1291 for (unsigned i = NumOperandBits; i < NumBits; ++i)
1292 Bits[i] = ValueBit(ValueBit::ConstZero);
1294 return std::make_pair(Interesting, &Bits);
1298 for (unsigned i = 0; i < NumBits; ++i)
1299 Bits[i] = ValueBit(V, i);
1301 return std::make_pair(Interesting = false, &Bits);
1304 // For each value (except the constant ones), compute the left-rotate amount
1305 // to get it from its original to final position.
1306 void computeRotationAmounts() {
1307 HasZeros = false;
1308 RLAmt.resize(Bits.size());
1309 for (unsigned i = 0; i < Bits.size(); ++i)
1310 if (Bits[i].hasValue()) {
1311 unsigned VBI = Bits[i].getValueBitIndex();
1312 if (i >= VBI)
1313 RLAmt[i] = i - VBI;
1314 else
1315 RLAmt[i] = Bits.size() - (VBI - i);
1316 } else if (Bits[i].isZero()) {
1317 HasZeros = true;
1318 RLAmt[i] = UINT32_MAX;
1319 } else {
1320 llvm_unreachable("Unknown value bit type");
1324 // Collect groups of consecutive bits with the same underlying value and
1325 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1326 // they break up groups.
1327 void collectBitGroups(bool LateMask) {
1328 BitGroups.clear();
1330 unsigned LastRLAmt = RLAmt[0];
1331 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1332 unsigned LastGroupStartIdx = 0;
1333 for (unsigned i = 1; i < Bits.size(); ++i) {
1334 unsigned ThisRLAmt = RLAmt[i];
1335 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1336 if (LateMask && !ThisValue) {
1337 ThisValue = LastValue;
1338 ThisRLAmt = LastRLAmt;
1339 // If we're doing late masking, then the first bit group always starts
1340 // at zero (even if the first bits were zero).
1341 if (BitGroups.empty())
1342 LastGroupStartIdx = 0;
1345 // If this bit has the same underlying value and the same rotate factor as
1346 // the last one, then they're part of the same group.
1347 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1348 continue;
1350 if (LastValue.getNode())
1351 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1352 i-1));
1353 LastRLAmt = ThisRLAmt;
1354 LastValue = ThisValue;
1355 LastGroupStartIdx = i;
1357 if (LastValue.getNode())
1358 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1359 Bits.size()-1));
1361 if (BitGroups.empty())
1362 return;
1364 // We might be able to combine the first and last groups.
1365 if (BitGroups.size() > 1) {
1366 // If the first and last groups are the same, then remove the first group
1367 // in favor of the last group, making the ending index of the last group
1368 // equal to the ending index of the to-be-removed first group.
1369 if (BitGroups[0].StartIdx == 0 &&
1370 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1371 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1372 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1373 LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1374 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1375 BitGroups.erase(BitGroups.begin());
1380 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1381 // associated with each. If the number of groups are same, we prefer a group
1382 // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1383 // instruction. If there is a degeneracy, pick the one that occurs
1384 // first (in the final value).
1385 void collectValueRotInfo() {
1386 ValueRots.clear();
1388 for (auto &BG : BitGroups) {
1389 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1390 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1391 VRI.V = BG.V;
1392 VRI.RLAmt = BG.RLAmt;
1393 VRI.Repl32 = BG.Repl32;
1394 VRI.NumGroups += 1;
1395 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1398 // Now that we've collected the various ValueRotInfo instances, we need to
1399 // sort them.
1400 ValueRotsVec.clear();
1401 for (auto &I : ValueRots) {
1402 ValueRotsVec.push_back(I.second);
1404 llvm::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1407 // In 64-bit mode, rlwinm and friends have a rotation operator that
1408 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1409 // indices of these instructions can only be in the lower 32 bits, so they
1410 // can only represent some 64-bit bit groups. However, when they can be used,
1411 // the 32-bit replication can be used to represent, as a single bit group,
1412 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1413 // groups when possible. Returns true if any of the bit groups were
1414 // converted.
1415 void assignRepl32BitGroups() {
1416 // If we have bits like this:
1418 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1419 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1420 // Groups: | RLAmt = 8 | RLAmt = 40 |
1422 // But, making use of a 32-bit operation that replicates the low-order 32
1423 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1424 // of 8.
1426 auto IsAllLow32 = [this](BitGroup & BG) {
1427 if (BG.StartIdx <= BG.EndIdx) {
1428 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1429 if (!Bits[i].hasValue())
1430 continue;
1431 if (Bits[i].getValueBitIndex() >= 32)
1432 return false;
1434 } else {
1435 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1436 if (!Bits[i].hasValue())
1437 continue;
1438 if (Bits[i].getValueBitIndex() >= 32)
1439 return false;
1441 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1442 if (!Bits[i].hasValue())
1443 continue;
1444 if (Bits[i].getValueBitIndex() >= 32)
1445 return false;
1449 return true;
1452 for (auto &BG : BitGroups) {
1453 // If this bit group has RLAmt of 0 and will not be merged with
1454 // another bit group, we don't benefit from Repl32. We don't mark
1455 // such group to give more freedom for later instruction selection.
1456 if (BG.RLAmt == 0) {
1457 auto PotentiallyMerged = [this](BitGroup & BG) {
1458 for (auto &BG2 : BitGroups)
1459 if (&BG != &BG2 && BG.V == BG2.V &&
1460 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1461 return true;
1462 return false;
1464 if (!PotentiallyMerged(BG))
1465 continue;
1467 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1468 if (IsAllLow32(BG)) {
1469 if (BG.RLAmt >= 32) {
1470 BG.RLAmt -= 32;
1471 BG.Repl32CR = true;
1474 BG.Repl32 = true;
1476 LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1477 << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1478 << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1483 // Now walk through the bit groups, consolidating where possible.
1484 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1485 // We might want to remove this bit group by merging it with the previous
1486 // group (which might be the ending group).
1487 auto IP = (I == BitGroups.begin()) ?
1488 std::prev(BitGroups.end()) : std::prev(I);
1489 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1490 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1492 LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1493 << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1494 << I->StartIdx << ", " << I->EndIdx
1495 << "] with group with range [" << IP->StartIdx << ", "
1496 << IP->EndIdx << "]\n");
1498 IP->EndIdx = I->EndIdx;
1499 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1500 IP->Repl32Coalesced = true;
1501 I = BitGroups.erase(I);
1502 continue;
1503 } else {
1504 // There is a special case worth handling: If there is a single group
1505 // covering the entire upper 32 bits, and it can be merged with both
1506 // the next and previous groups (which might be the same group), then
1507 // do so. If it is the same group (so there will be only one group in
1508 // total), then we need to reverse the order of the range so that it
1509 // covers the entire 64 bits.
1510 if (I->StartIdx == 32 && I->EndIdx == 63) {
1511 assert(std::next(I) == BitGroups.end() &&
1512 "bit group ends at index 63 but there is another?");
1513 auto IN = BitGroups.begin();
1515 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1516 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1517 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1518 IsAllLow32(*I)) {
1520 LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1521 << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1522 << ", " << I->EndIdx
1523 << "] with 32-bit replicated groups with ranges ["
1524 << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1525 << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1527 if (IP == IN) {
1528 // There is only one other group; change it to cover the whole
1529 // range (backward, so that it can still be Repl32 but cover the
1530 // whole 64-bit range).
1531 IP->StartIdx = 31;
1532 IP->EndIdx = 30;
1533 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1534 IP->Repl32Coalesced = true;
1535 I = BitGroups.erase(I);
1536 } else {
1537 // There are two separate groups, one before this group and one
1538 // after us (at the beginning). We're going to remove this group,
1539 // but also the group at the very beginning.
1540 IP->EndIdx = IN->EndIdx;
1541 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1542 IP->Repl32Coalesced = true;
1543 I = BitGroups.erase(I);
1544 BitGroups.erase(BitGroups.begin());
1547 // This must be the last group in the vector (and we might have
1548 // just invalidated the iterator above), so break here.
1549 break;
1554 ++I;
1558 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1559 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1562 uint64_t getZerosMask() {
1563 uint64_t Mask = 0;
1564 for (unsigned i = 0; i < Bits.size(); ++i) {
1565 if (Bits[i].hasValue())
1566 continue;
1567 Mask |= (UINT64_C(1) << i);
1570 return ~Mask;
1573 // This method extends an input value to 64 bit if input is 32-bit integer.
1574 // While selecting instructions in BitPermutationSelector in 64-bit mode,
1575 // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1576 // In such case, we extend it to 64 bit to be consistent with other values.
1577 SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1578 if (V.getValueSizeInBits() == 64)
1579 return V;
1581 assert(V.getValueSizeInBits() == 32);
1582 SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1583 SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1584 MVT::i64), 0);
1585 SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1586 MVT::i64, ImDef, V,
1587 SubRegIdx), 0);
1588 return ExtVal;
1591 // Depending on the number of groups for a particular value, it might be
1592 // better to rotate, mask explicitly (using andi/andis), and then or the
1593 // result. Select this part of the result first.
1594 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1595 if (BPermRewriterNoMasking)
1596 return;
1598 for (ValueRotInfo &VRI : ValueRotsVec) {
1599 unsigned Mask = 0;
1600 for (unsigned i = 0; i < Bits.size(); ++i) {
1601 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1602 continue;
1603 if (RLAmt[i] != VRI.RLAmt)
1604 continue;
1605 Mask |= (1u << i);
1608 // Compute the masks for andi/andis that would be necessary.
1609 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1610 assert((ANDIMask != 0 || ANDISMask != 0) &&
1611 "No set bits in mask for value bit groups");
1612 bool NeedsRotate = VRI.RLAmt != 0;
1614 // We're trying to minimize the number of instructions. If we have one
1615 // group, using one of andi/andis can break even. If we have three
1616 // groups, we can use both andi and andis and break even (to use both
1617 // andi and andis we also need to or the results together). We need four
1618 // groups if we also need to rotate. To use andi/andis we need to do more
1619 // than break even because rotate-and-mask instructions tend to be easier
1620 // to schedule.
1622 // FIXME: We've biased here against using andi/andis, which is right for
1623 // POWER cores, but not optimal everywhere. For example, on the A2,
1624 // andi/andis have single-cycle latency whereas the rotate-and-mask
1625 // instructions take two cycles, and it would be better to bias toward
1626 // andi/andis in break-even cases.
1628 unsigned NumAndInsts = (unsigned) NeedsRotate +
1629 (unsigned) (ANDIMask != 0) +
1630 (unsigned) (ANDISMask != 0) +
1631 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1632 (unsigned) (bool) Res;
1634 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
1635 << " RL: " << VRI.RLAmt << ":"
1636 << "\n\t\t\tisel using masking: " << NumAndInsts
1637 << " using rotates: " << VRI.NumGroups << "\n");
1639 if (NumAndInsts >= VRI.NumGroups)
1640 continue;
1642 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1644 if (InstCnt) *InstCnt += NumAndInsts;
1646 SDValue VRot;
1647 if (VRI.RLAmt) {
1648 SDValue Ops[] =
1649 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1650 getI32Imm(31, dl) };
1651 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1652 Ops), 0);
1653 } else {
1654 VRot = VRI.V;
1657 SDValue ANDIVal, ANDISVal;
1658 if (ANDIMask != 0)
1659 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1660 VRot, getI32Imm(ANDIMask, dl)), 0);
1661 if (ANDISMask != 0)
1662 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1663 VRot, getI32Imm(ANDISMask, dl)), 0);
1665 SDValue TotalVal;
1666 if (!ANDIVal)
1667 TotalVal = ANDISVal;
1668 else if (!ANDISVal)
1669 TotalVal = ANDIVal;
1670 else
1671 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1672 ANDIVal, ANDISVal), 0);
1674 if (!Res)
1675 Res = TotalVal;
1676 else
1677 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1678 Res, TotalVal), 0);
1680 // Now, remove all groups with this underlying value and rotation
1681 // factor.
1682 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1683 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1688 // Instruction selection for the 32-bit case.
1689 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1690 SDLoc dl(N);
1691 SDValue Res;
1693 if (InstCnt) *InstCnt = 0;
1695 // Take care of cases that should use andi/andis first.
1696 SelectAndParts32(dl, Res, InstCnt);
1698 // If we've not yet selected a 'starting' instruction, and we have no zeros
1699 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1700 // number of groups), and start with this rotated value.
1701 if ((!HasZeros || LateMask) && !Res) {
1702 ValueRotInfo &VRI = ValueRotsVec[0];
1703 if (VRI.RLAmt) {
1704 if (InstCnt) *InstCnt += 1;
1705 SDValue Ops[] =
1706 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1707 getI32Imm(31, dl) };
1708 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1710 } else {
1711 Res = VRI.V;
1714 // Now, remove all groups with this underlying value and rotation factor.
1715 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1716 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1720 if (InstCnt) *InstCnt += BitGroups.size();
1722 // Insert the other groups (one at a time).
1723 for (auto &BG : BitGroups) {
1724 if (!Res) {
1725 SDValue Ops[] =
1726 { BG.V, getI32Imm(BG.RLAmt, dl),
1727 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1728 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1729 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1730 } else {
1731 SDValue Ops[] =
1732 { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1733 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1734 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1735 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1739 if (LateMask) {
1740 unsigned Mask = (unsigned) getZerosMask();
1742 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1743 assert((ANDIMask != 0 || ANDISMask != 0) &&
1744 "No set bits in zeros mask?");
1746 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1747 (unsigned) (ANDISMask != 0) +
1748 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1750 SDValue ANDIVal, ANDISVal;
1751 if (ANDIMask != 0)
1752 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1753 Res, getI32Imm(ANDIMask, dl)), 0);
1754 if (ANDISMask != 0)
1755 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1756 Res, getI32Imm(ANDISMask, dl)), 0);
1758 if (!ANDIVal)
1759 Res = ANDISVal;
1760 else if (!ANDISVal)
1761 Res = ANDIVal;
1762 else
1763 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1764 ANDIVal, ANDISVal), 0);
1767 return Res.getNode();
1770 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1771 unsigned MaskStart, unsigned MaskEnd,
1772 bool IsIns) {
1773 // In the notation used by the instructions, 'start' and 'end' are reversed
1774 // because bits are counted from high to low order.
1775 unsigned InstMaskStart = 64 - MaskEnd - 1,
1776 InstMaskEnd = 64 - MaskStart - 1;
1778 if (Repl32)
1779 return 1;
1781 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1782 InstMaskEnd == 63 - RLAmt)
1783 return 1;
1785 return 2;
1788 // For 64-bit values, not all combinations of rotates and masks are
1789 // available. Produce one if it is available.
1790 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1791 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1792 unsigned *InstCnt = nullptr) {
1793 // In the notation used by the instructions, 'start' and 'end' are reversed
1794 // because bits are counted from high to low order.
1795 unsigned InstMaskStart = 64 - MaskEnd - 1,
1796 InstMaskEnd = 64 - MaskStart - 1;
1798 if (InstCnt) *InstCnt += 1;
1800 if (Repl32) {
1801 // This rotation amount assumes that the lower 32 bits of the quantity
1802 // are replicated in the high 32 bits by the rotation operator (which is
1803 // done by rlwinm and friends).
1804 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1805 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1806 SDValue Ops[] =
1807 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1808 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1809 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1810 Ops), 0);
1813 if (InstMaskEnd == 63) {
1814 SDValue Ops[] =
1815 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1816 getI32Imm(InstMaskStart, dl) };
1817 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1820 if (InstMaskStart == 0) {
1821 SDValue Ops[] =
1822 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1823 getI32Imm(InstMaskEnd, dl) };
1824 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1827 if (InstMaskEnd == 63 - RLAmt) {
1828 SDValue Ops[] =
1829 { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1830 getI32Imm(InstMaskStart, dl) };
1831 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1834 // We cannot do this with a single instruction, so we'll use two. The
1835 // problem is that we're not free to choose both a rotation amount and mask
1836 // start and end independently. We can choose an arbitrary mask start and
1837 // end, but then the rotation amount is fixed. Rotation, however, can be
1838 // inverted, and so by applying an "inverse" rotation first, we can get the
1839 // desired result.
1840 if (InstCnt) *InstCnt += 1;
1842 // The rotation mask for the second instruction must be MaskStart.
1843 unsigned RLAmt2 = MaskStart;
1844 // The first instruction must rotate V so that the overall rotation amount
1845 // is RLAmt.
1846 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1847 if (RLAmt1)
1848 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1849 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1852 // For 64-bit values, not all combinations of rotates and masks are
1853 // available. Produce a rotate-mask-and-insert if one is available.
1854 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1855 unsigned RLAmt, bool Repl32, unsigned MaskStart,
1856 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1857 // In the notation used by the instructions, 'start' and 'end' are reversed
1858 // because bits are counted from high to low order.
1859 unsigned InstMaskStart = 64 - MaskEnd - 1,
1860 InstMaskEnd = 64 - MaskStart - 1;
1862 if (InstCnt) *InstCnt += 1;
1864 if (Repl32) {
1865 // This rotation amount assumes that the lower 32 bits of the quantity
1866 // are replicated in the high 32 bits by the rotation operator (which is
1867 // done by rlwinm and friends).
1868 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1869 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1870 SDValue Ops[] =
1871 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1872 getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
1873 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1874 Ops), 0);
1877 if (InstMaskEnd == 63 - RLAmt) {
1878 SDValue Ops[] =
1879 { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
1880 getI32Imm(InstMaskStart, dl) };
1881 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1884 // We cannot do this with a single instruction, so we'll use two. The
1885 // problem is that we're not free to choose both a rotation amount and mask
1886 // start and end independently. We can choose an arbitrary mask start and
1887 // end, but then the rotation amount is fixed. Rotation, however, can be
1888 // inverted, and so by applying an "inverse" rotation first, we can get the
1889 // desired result.
1890 if (InstCnt) *InstCnt += 1;
1892 // The rotation mask for the second instruction must be MaskStart.
1893 unsigned RLAmt2 = MaskStart;
1894 // The first instruction must rotate V so that the overall rotation amount
1895 // is RLAmt.
1896 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1897 if (RLAmt1)
1898 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1899 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1902 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1903 if (BPermRewriterNoMasking)
1904 return;
1906 // The idea here is the same as in the 32-bit version, but with additional
1907 // complications from the fact that Repl32 might be true. Because we
1908 // aggressively convert bit groups to Repl32 form (which, for small
1909 // rotation factors, involves no other change), and then coalesce, it might
1910 // be the case that a single 64-bit masking operation could handle both
1911 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1912 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1913 // completely capture the new combined bit group.
1915 for (ValueRotInfo &VRI : ValueRotsVec) {
1916 uint64_t Mask = 0;
1918 // We need to add to the mask all bits from the associated bit groups.
1919 // If Repl32 is false, we need to add bits from bit groups that have
1920 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1921 // group is trivially convertable if it overlaps only with the lower 32
1922 // bits, and the group has not been coalesced.
1923 auto MatchingBG = [VRI](const BitGroup &BG) {
1924 if (VRI.V != BG.V)
1925 return false;
1927 unsigned EffRLAmt = BG.RLAmt;
1928 if (!VRI.Repl32 && BG.Repl32) {
1929 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1930 !BG.Repl32Coalesced) {
1931 if (BG.Repl32CR)
1932 EffRLAmt += 32;
1933 } else {
1934 return false;
1936 } else if (VRI.Repl32 != BG.Repl32) {
1937 return false;
1940 return VRI.RLAmt == EffRLAmt;
1943 for (auto &BG : BitGroups) {
1944 if (!MatchingBG(BG))
1945 continue;
1947 if (BG.StartIdx <= BG.EndIdx) {
1948 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1949 Mask |= (UINT64_C(1) << i);
1950 } else {
1951 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1952 Mask |= (UINT64_C(1) << i);
1953 for (unsigned i = 0; i <= BG.EndIdx; ++i)
1954 Mask |= (UINT64_C(1) << i);
1958 // We can use the 32-bit andi/andis technique if the mask does not
1959 // require any higher-order bits. This can save an instruction compared
1960 // to always using the general 64-bit technique.
1961 bool Use32BitInsts = isUInt<32>(Mask);
1962 // Compute the masks for andi/andis that would be necessary.
1963 unsigned ANDIMask = (Mask & UINT16_MAX),
1964 ANDISMask = (Mask >> 16) & UINT16_MAX;
1966 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1968 unsigned NumAndInsts = (unsigned) NeedsRotate +
1969 (unsigned) (bool) Res;
1970 if (Use32BitInsts)
1971 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1972 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1973 else
1974 NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1;
1976 unsigned NumRLInsts = 0;
1977 bool FirstBG = true;
1978 bool MoreBG = false;
1979 for (auto &BG : BitGroups) {
1980 if (!MatchingBG(BG)) {
1981 MoreBG = true;
1982 continue;
1984 NumRLInsts +=
1985 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1986 !FirstBG);
1987 FirstBG = false;
1990 LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
1991 << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
1992 << "\n\t\t\tisel using masking: " << NumAndInsts
1993 << " using rotates: " << NumRLInsts << "\n");
1995 // When we'd use andi/andis, we bias toward using the rotates (andi only
1996 // has a record form, and is cracked on POWER cores). However, when using
1997 // general 64-bit constant formation, bias toward the constant form,
1998 // because that exposes more opportunities for CSE.
1999 if (NumAndInsts > NumRLInsts)
2000 continue;
2001 // When merging multiple bit groups, instruction or is used.
2002 // But when rotate is used, rldimi can inert the rotated value into any
2003 // register, so instruction or can be avoided.
2004 if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2005 continue;
2007 LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2009 if (InstCnt) *InstCnt += NumAndInsts;
2011 SDValue VRot;
2012 // We actually need to generate a rotation if we have a non-zero rotation
2013 // factor or, in the Repl32 case, if we care about any of the
2014 // higher-order replicated bits. In the latter case, we generate a mask
2015 // backward so that it actually includes the entire 64 bits.
2016 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2017 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2018 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2019 else
2020 VRot = VRI.V;
2022 SDValue TotalVal;
2023 if (Use32BitInsts) {
2024 assert((ANDIMask != 0 || ANDISMask != 0) &&
2025 "No set bits in mask when using 32-bit ands for 64-bit value");
2027 SDValue ANDIVal, ANDISVal;
2028 if (ANDIMask != 0)
2029 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2030 ExtendToInt64(VRot, dl),
2031 getI32Imm(ANDIMask, dl)),
2033 if (ANDISMask != 0)
2034 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2035 ExtendToInt64(VRot, dl),
2036 getI32Imm(ANDISMask, dl)),
2039 if (!ANDIVal)
2040 TotalVal = ANDISVal;
2041 else if (!ANDISVal)
2042 TotalVal = ANDIVal;
2043 else
2044 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2045 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2046 } else {
2047 TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2048 TotalVal =
2049 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2050 ExtendToInt64(VRot, dl), TotalVal),
2054 if (!Res)
2055 Res = TotalVal;
2056 else
2057 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2058 ExtendToInt64(Res, dl), TotalVal),
2061 // Now, remove all groups with this underlying value and rotation
2062 // factor.
2063 eraseMatchingBitGroups(MatchingBG);
2067 // Instruction selection for the 64-bit case.
2068 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2069 SDLoc dl(N);
2070 SDValue Res;
2072 if (InstCnt) *InstCnt = 0;
2074 // Take care of cases that should use andi/andis first.
2075 SelectAndParts64(dl, Res, InstCnt);
2077 // If we've not yet selected a 'starting' instruction, and we have no zeros
2078 // to fill in, select the (Value, RLAmt) with the highest priority (largest
2079 // number of groups), and start with this rotated value.
2080 if ((!HasZeros || LateMask) && !Res) {
2081 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2082 // groups will come first, and so the VRI representing the largest number
2083 // of groups might not be first (it might be the first Repl32 groups).
2084 unsigned MaxGroupsIdx = 0;
2085 if (!ValueRotsVec[0].Repl32) {
2086 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2087 if (ValueRotsVec[i].Repl32) {
2088 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2089 MaxGroupsIdx = i;
2090 break;
2094 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2095 bool NeedsRotate = false;
2096 if (VRI.RLAmt) {
2097 NeedsRotate = true;
2098 } else if (VRI.Repl32) {
2099 for (auto &BG : BitGroups) {
2100 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2101 BG.Repl32 != VRI.Repl32)
2102 continue;
2104 // We don't need a rotate if the bit group is confined to the lower
2105 // 32 bits.
2106 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2107 continue;
2109 NeedsRotate = true;
2110 break;
2114 if (NeedsRotate)
2115 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2116 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2117 InstCnt);
2118 else
2119 Res = VRI.V;
2121 // Now, remove all groups with this underlying value and rotation factor.
2122 if (Res)
2123 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2124 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2125 BG.Repl32 == VRI.Repl32;
2129 // Because 64-bit rotates are more flexible than inserts, we might have a
2130 // preference regarding which one we do first (to save one instruction).
2131 if (!Res)
2132 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2133 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2134 false) <
2135 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2136 true)) {
2137 if (I != BitGroups.begin()) {
2138 BitGroup BG = *I;
2139 BitGroups.erase(I);
2140 BitGroups.insert(BitGroups.begin(), BG);
2143 break;
2147 // Insert the other groups (one at a time).
2148 for (auto &BG : BitGroups) {
2149 if (!Res)
2150 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2151 BG.EndIdx, InstCnt);
2152 else
2153 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2154 BG.StartIdx, BG.EndIdx, InstCnt);
2157 if (LateMask) {
2158 uint64_t Mask = getZerosMask();
2160 // We can use the 32-bit andi/andis technique if the mask does not
2161 // require any higher-order bits. This can save an instruction compared
2162 // to always using the general 64-bit technique.
2163 bool Use32BitInsts = isUInt<32>(Mask);
2164 // Compute the masks for andi/andis that would be necessary.
2165 unsigned ANDIMask = (Mask & UINT16_MAX),
2166 ANDISMask = (Mask >> 16) & UINT16_MAX;
2168 if (Use32BitInsts) {
2169 assert((ANDIMask != 0 || ANDISMask != 0) &&
2170 "No set bits in mask when using 32-bit ands for 64-bit value");
2172 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2173 (unsigned) (ANDISMask != 0) +
2174 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2176 SDValue ANDIVal, ANDISVal;
2177 if (ANDIMask != 0)
2178 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
2179 ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0);
2180 if (ANDISMask != 0)
2181 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
2182 ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0);
2184 if (!ANDIVal)
2185 Res = ANDISVal;
2186 else if (!ANDISVal)
2187 Res = ANDIVal;
2188 else
2189 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2190 ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2191 } else {
2192 if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1;
2194 SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2195 Res =
2196 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2197 ExtendToInt64(Res, dl), MaskVal), 0);
2201 return Res.getNode();
2204 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2205 // Fill in BitGroups.
2206 collectBitGroups(LateMask);
2207 if (BitGroups.empty())
2208 return nullptr;
2210 // For 64-bit values, figure out when we can use 32-bit instructions.
2211 if (Bits.size() == 64)
2212 assignRepl32BitGroups();
2214 // Fill in ValueRotsVec.
2215 collectValueRotInfo();
2217 if (Bits.size() == 32) {
2218 return Select32(N, LateMask, InstCnt);
2219 } else {
2220 assert(Bits.size() == 64 && "Not 64 bits here?");
2221 return Select64(N, LateMask, InstCnt);
2224 return nullptr;
2227 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2228 BitGroups.erase(remove_if(BitGroups, F), BitGroups.end());
2231 SmallVector<ValueBit, 64> Bits;
2233 bool HasZeros;
2234 SmallVector<unsigned, 64> RLAmt;
2236 SmallVector<BitGroup, 16> BitGroups;
2238 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2239 SmallVector<ValueRotInfo, 16> ValueRotsVec;
2241 SelectionDAG *CurDAG;
2243 public:
2244 BitPermutationSelector(SelectionDAG *DAG)
2245 : CurDAG(DAG) {}
2247 // Here we try to match complex bit permutations into a set of
2248 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2249 // known to produce optimial code for common cases (like i32 byte swapping).
2250 SDNode *Select(SDNode *N) {
2251 Memoizer.clear();
2252 auto Result =
2253 getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2254 if (!Result.first)
2255 return nullptr;
2256 Bits = std::move(*Result.second);
2258 LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2259 " selection for: ");
2260 LLVM_DEBUG(N->dump(CurDAG));
2262 // Fill it RLAmt and set HasZeros.
2263 computeRotationAmounts();
2265 if (!HasZeros)
2266 return Select(N, false);
2268 // We currently have two techniques for handling results with zeros: early
2269 // masking (the default) and late masking. Late masking is sometimes more
2270 // efficient, but because the structure of the bit groups is different, it
2271 // is hard to tell without generating both and comparing the results. With
2272 // late masking, we ignore zeros in the resulting value when inserting each
2273 // set of bit groups, and then mask in the zeros at the end. With early
2274 // masking, we only insert the non-zero parts of the result at every step.
2276 unsigned InstCnt = 0, InstCntLateMask = 0;
2277 LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2278 SDNode *RN = Select(N, false, &InstCnt);
2279 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2281 LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2282 SDNode *RNLM = Select(N, true, &InstCntLateMask);
2283 LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2284 << " instructions\n");
2286 if (InstCnt <= InstCntLateMask) {
2287 LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2288 return RN;
2291 LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2292 return RNLM;
2296 class IntegerCompareEliminator {
2297 SelectionDAG *CurDAG;
2298 PPCDAGToDAGISel *S;
2299 // Conversion type for interpreting results of a 32-bit instruction as
2300 // a 64-bit value or vice versa.
2301 enum ExtOrTruncConversion { Ext, Trunc };
2303 // Modifiers to guide how an ISD::SETCC node's result is to be computed
2304 // in a GPR.
2305 // ZExtOrig - use the original condition code, zero-extend value
2306 // ZExtInvert - invert the condition code, zero-extend value
2307 // SExtOrig - use the original condition code, sign-extend value
2308 // SExtInvert - invert the condition code, sign-extend value
2309 enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2311 // Comparisons against zero to emit GPR code sequences for. Each of these
2312 // sequences may need to be emitted for two or more equivalent patterns.
2313 // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2314 // matters as well as the extension type: sext (-1/0), zext (1/0).
2315 // GEZExt - (zext (LHS >= 0))
2316 // GESExt - (sext (LHS >= 0))
2317 // LEZExt - (zext (LHS <= 0))
2318 // LESExt - (sext (LHS <= 0))
2319 enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2321 SDNode *tryEXTEND(SDNode *N);
2322 SDNode *tryLogicOpOfCompares(SDNode *N);
2323 SDValue computeLogicOpInGPR(SDValue LogicOp);
2324 SDValue signExtendInputIfNeeded(SDValue Input);
2325 SDValue zeroExtendInputIfNeeded(SDValue Input);
2326 SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2327 SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2328 ZeroCompare CmpTy);
2329 SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2330 int64_t RHSValue, SDLoc dl);
2331 SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2332 int64_t RHSValue, SDLoc dl);
2333 SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2334 int64_t RHSValue, SDLoc dl);
2335 SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2336 int64_t RHSValue, SDLoc dl);
2337 SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2339 public:
2340 IntegerCompareEliminator(SelectionDAG *DAG,
2341 PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2342 assert(CurDAG->getTargetLoweringInfo()
2343 .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2344 "Only expecting to use this on 64 bit targets.");
2346 SDNode *Select(SDNode *N) {
2347 if (CmpInGPR == ICGPR_None)
2348 return nullptr;
2349 switch (N->getOpcode()) {
2350 default: break;
2351 case ISD::ZERO_EXTEND:
2352 if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2353 CmpInGPR == ICGPR_SextI64)
2354 return nullptr;
2355 LLVM_FALLTHROUGH;
2356 case ISD::SIGN_EXTEND:
2357 if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2358 CmpInGPR == ICGPR_ZextI64)
2359 return nullptr;
2360 return tryEXTEND(N);
2361 case ISD::AND:
2362 case ISD::OR:
2363 case ISD::XOR:
2364 return tryLogicOpOfCompares(N);
2366 return nullptr;
2370 static bool isLogicOp(unsigned Opc) {
2371 return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2373 // The obvious case for wanting to keep the value in a GPR. Namely, the
2374 // result of the comparison is actually needed in a GPR.
2375 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2376 assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2377 N->getOpcode() == ISD::SIGN_EXTEND) &&
2378 "Expecting a zero/sign extend node!");
2379 SDValue WideRes;
2380 // If we are zero-extending the result of a logical operation on i1
2381 // values, we can keep the values in GPRs.
2382 if (isLogicOp(N->getOperand(0).getOpcode()) &&
2383 N->getOperand(0).getValueType() == MVT::i1 &&
2384 N->getOpcode() == ISD::ZERO_EXTEND)
2385 WideRes = computeLogicOpInGPR(N->getOperand(0));
2386 else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2387 return nullptr;
2388 else
2389 WideRes =
2390 getSETCCInGPR(N->getOperand(0),
2391 N->getOpcode() == ISD::SIGN_EXTEND ?
2392 SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2394 if (!WideRes)
2395 return nullptr;
2397 SDLoc dl(N);
2398 bool Input32Bit = WideRes.getValueType() == MVT::i32;
2399 bool Output32Bit = N->getValueType(0) == MVT::i32;
2401 NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2402 NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2404 SDValue ConvOp = WideRes;
2405 if (Input32Bit != Output32Bit)
2406 ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2407 ExtOrTruncConversion::Trunc);
2408 return ConvOp.getNode();
2411 // Attempt to perform logical operations on the results of comparisons while
2412 // keeping the values in GPRs. Without doing so, these would end up being
2413 // lowered to CR-logical operations which suffer from significant latency and
2414 // low ILP.
2415 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2416 if (N->getValueType(0) != MVT::i1)
2417 return nullptr;
2418 assert(isLogicOp(N->getOpcode()) &&
2419 "Expected a logic operation on setcc results.");
2420 SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2421 if (!LoweredLogical)
2422 return nullptr;
2424 SDLoc dl(N);
2425 bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2426 unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2427 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2428 SDValue LHS = LoweredLogical.getOperand(0);
2429 SDValue RHS = LoweredLogical.getOperand(1);
2430 SDValue WideOp;
2431 SDValue OpToConvToRecForm;
2433 // Look through any 32-bit to 64-bit implicit extend nodes to find the
2434 // opcode that is input to the XORI.
2435 if (IsBitwiseNegate &&
2436 LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2437 OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2438 else if (IsBitwiseNegate)
2439 // If the input to the XORI isn't an extension, that's what we're after.
2440 OpToConvToRecForm = LoweredLogical.getOperand(0);
2441 else
2442 // If this is not an XORI, it is a reg-reg logical op and we can convert
2443 // it to record-form.
2444 OpToConvToRecForm = LoweredLogical;
2446 // Get the record-form version of the node we're looking to use to get the
2447 // CR result from.
2448 uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2449 int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2451 // Convert the right node to record-form. This is either the logical we're
2452 // looking at or it is the input node to the negation (if we're looking at
2453 // a bitwise negation).
2454 if (NewOpc != -1 && IsBitwiseNegate) {
2455 // The input to the XORI has a record-form. Use it.
2456 assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2457 "Expected a PPC::XORI8 only for bitwise negation.");
2458 // Emit the record-form instruction.
2459 std::vector<SDValue> Ops;
2460 for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2461 Ops.push_back(OpToConvToRecForm.getOperand(i));
2463 WideOp =
2464 SDValue(CurDAG->getMachineNode(NewOpc, dl,
2465 OpToConvToRecForm.getValueType(),
2466 MVT::Glue, Ops), 0);
2467 } else {
2468 assert((NewOpc != -1 || !IsBitwiseNegate) &&
2469 "No record form available for AND8/OR8/XOR8?");
2470 WideOp =
2471 SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl,
2472 MVT::i64, MVT::Glue, LHS, RHS), 0);
2475 // Select this node to a single bit from CR0 set by the record-form node
2476 // just created. For bitwise negation, use the EQ bit which is the equivalent
2477 // of negating the result (i.e. it is a bit set when the result of the
2478 // operation is zero).
2479 SDValue SRIdxVal =
2480 CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2481 SDValue CRBit =
2482 SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2483 MVT::i1, CR0Reg, SRIdxVal,
2484 WideOp.getValue(1)), 0);
2485 return CRBit.getNode();
2488 // Lower a logical operation on i1 values into a GPR sequence if possible.
2489 // The result can be kept in a GPR if requested.
2490 // Three types of inputs can be handled:
2491 // - SETCC
2492 // - TRUNCATE
2493 // - Logical operation (AND/OR/XOR)
2494 // There is also a special case that is handled (namely a complement operation
2495 // achieved with xor %a, -1).
2496 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2497 assert(isLogicOp(LogicOp.getOpcode()) &&
2498 "Can only handle logic operations here.");
2499 assert(LogicOp.getValueType() == MVT::i1 &&
2500 "Can only handle logic operations on i1 values here.");
2501 SDLoc dl(LogicOp);
2502 SDValue LHS, RHS;
2504 // Special case: xor %a, -1
2505 bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2507 // Produces a GPR sequence for each operand of the binary logic operation.
2508 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2509 // the value in a GPR and for logic operations, it will recursively produce
2510 // a GPR sequence for the operation.
2511 auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2512 unsigned OperandOpcode = Operand.getOpcode();
2513 if (OperandOpcode == ISD::SETCC)
2514 return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2515 else if (OperandOpcode == ISD::TRUNCATE) {
2516 SDValue InputOp = Operand.getOperand(0);
2517 EVT InVT = InputOp.getValueType();
2518 return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2519 PPC::RLDICL, dl, InVT, InputOp,
2520 S->getI64Imm(0, dl),
2521 S->getI64Imm(63, dl)), 0);
2522 } else if (isLogicOp(OperandOpcode))
2523 return computeLogicOpInGPR(Operand);
2524 return SDValue();
2526 LHS = getLogicOperand(LogicOp.getOperand(0));
2527 RHS = getLogicOperand(LogicOp.getOperand(1));
2529 // If a GPR sequence can't be produced for the LHS we can't proceed.
2530 // Not producing a GPR sequence for the RHS is only a problem if this isn't
2531 // a bitwise negation operation.
2532 if (!LHS || (!RHS && !IsBitwiseNegation))
2533 return SDValue();
2535 NumLogicOpsOnComparison++;
2537 // We will use the inputs as 64-bit values.
2538 if (LHS.getValueType() == MVT::i32)
2539 LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2540 if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2541 RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2543 unsigned NewOpc;
2544 switch (LogicOp.getOpcode()) {
2545 default: llvm_unreachable("Unknown logic operation.");
2546 case ISD::AND: NewOpc = PPC::AND8; break;
2547 case ISD::OR: NewOpc = PPC::OR8; break;
2548 case ISD::XOR: NewOpc = PPC::XOR8; break;
2551 if (IsBitwiseNegation) {
2552 RHS = S->getI64Imm(1, dl);
2553 NewOpc = PPC::XORI8;
2556 return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2560 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2561 /// Otherwise just reinterpret it as a 64-bit value.
2562 /// Useful when emitting comparison code for 32-bit values without using
2563 /// the compare instruction (which only considers the lower 32-bits).
2564 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2565 assert(Input.getValueType() == MVT::i32 &&
2566 "Can only sign-extend 32-bit values here.");
2567 unsigned Opc = Input.getOpcode();
2569 // The value was sign extended and then truncated to 32-bits. No need to
2570 // sign extend it again.
2571 if (Opc == ISD::TRUNCATE &&
2572 (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2573 Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2574 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2576 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2577 // The input is a sign-extending load. All ppc sign-extending loads
2578 // sign-extend to the full 64-bits.
2579 if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
2580 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2582 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2583 // We don't sign-extend constants.
2584 if (InputConst)
2585 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2587 SDLoc dl(Input);
2588 SignExtensionsAdded++;
2589 return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
2590 MVT::i64, Input), 0);
2593 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2594 /// Otherwise just reinterpret it as a 64-bit value.
2595 /// Useful when emitting comparison code for 32-bit values without using
2596 /// the compare instruction (which only considers the lower 32-bits).
2597 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
2598 assert(Input.getValueType() == MVT::i32 &&
2599 "Can only zero-extend 32-bit values here.");
2600 unsigned Opc = Input.getOpcode();
2602 // The only condition under which we can omit the actual extend instruction:
2603 // - The value is a positive constant
2604 // - The value comes from a load that isn't a sign-extending load
2605 // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
2606 bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
2607 (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
2608 Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
2609 if (IsTruncateOfZExt)
2610 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2612 ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
2613 if (InputConst && InputConst->getSExtValue() >= 0)
2614 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2616 LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2617 // The input is a load that doesn't sign-extend (it will be zero-extended).
2618 if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
2619 return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2621 // None of the above, need to zero-extend.
2622 SDLoc dl(Input);
2623 ZeroExtensionsAdded++;
2624 return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
2625 S->getI64Imm(0, dl),
2626 S->getI64Imm(32, dl)), 0);
2629 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2630 // course not actual zero/sign extensions that will generate machine code,
2631 // they're just a way to reinterpret a 32 bit value in a register as a
2632 // 64 bit value and vice-versa.
2633 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
2634 ExtOrTruncConversion Conv) {
2635 SDLoc dl(NatWidthRes);
2637 // For reinterpreting 32-bit values as 64 bit values, we generate
2638 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2639 if (Conv == ExtOrTruncConversion::Ext) {
2640 SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
2641 SDValue SubRegIdx =
2642 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2643 return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
2644 ImDef, NatWidthRes, SubRegIdx), 0);
2647 assert(Conv == ExtOrTruncConversion::Trunc &&
2648 "Unknown convertion between 32 and 64 bit values.");
2649 // For reinterpreting 64-bit values as 32-bit values, we just need to
2650 // EXTRACT_SUBREG (i.e. extract the low word).
2651 SDValue SubRegIdx =
2652 CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
2653 return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
2654 NatWidthRes, SubRegIdx), 0);
2657 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2658 // Handle both zero-extensions and sign-extensions.
2659 SDValue
2660 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2661 ZeroCompare CmpTy) {
2662 EVT InVT = LHS.getValueType();
2663 bool Is32Bit = InVT == MVT::i32;
2664 SDValue ToExtend;
2666 // Produce the value that needs to be either zero or sign extended.
2667 switch (CmpTy) {
2668 case ZeroCompare::GEZExt:
2669 case ZeroCompare::GESExt:
2670 ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
2671 dl, InVT, LHS, LHS), 0);
2672 break;
2673 case ZeroCompare::LEZExt:
2674 case ZeroCompare::LESExt: {
2675 if (Is32Bit) {
2676 // Upper 32 bits cannot be undefined for this sequence.
2677 LHS = signExtendInputIfNeeded(LHS);
2678 SDValue Neg =
2679 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2680 ToExtend =
2681 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2682 Neg, S->getI64Imm(1, dl),
2683 S->getI64Imm(63, dl)), 0);
2684 } else {
2685 SDValue Addi =
2686 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
2687 S->getI64Imm(~0ULL, dl)), 0);
2688 ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2689 Addi, LHS), 0);
2691 break;
2695 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2696 if (!Is32Bit &&
2697 (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
2698 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2699 ToExtend, S->getI64Imm(1, dl),
2700 S->getI64Imm(63, dl)), 0);
2701 if (!Is32Bit &&
2702 (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
2703 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
2704 S->getI64Imm(63, dl)), 0);
2706 assert(Is32Bit && "Should have handled the 32-bit sequences above.");
2707 // For 32-bit sequences, the extensions differ between GE/LE cases.
2708 switch (CmpTy) {
2709 case ZeroCompare::GEZExt: {
2710 SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2711 S->getI32Imm(31, dl) };
2712 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2713 ShiftOps), 0);
2715 case ZeroCompare::GESExt:
2716 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
2717 S->getI32Imm(31, dl)), 0);
2718 case ZeroCompare::LEZExt:
2719 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
2720 S->getI32Imm(1, dl)), 0);
2721 case ZeroCompare::LESExt:
2722 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
2723 S->getI32Imm(-1, dl)), 0);
2726 // The above case covers all the enumerators so it can't have a default clause
2727 // to avoid compiler warnings.
2728 llvm_unreachable("Unknown zero-comparison type.");
2731 /// Produces a zero-extended result of comparing two 32-bit values according to
2732 /// the passed condition code.
2733 SDValue
2734 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
2735 ISD::CondCode CC,
2736 int64_t RHSValue, SDLoc dl) {
2737 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2738 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
2739 return SDValue();
2740 bool IsRHSZero = RHSValue == 0;
2741 bool IsRHSOne = RHSValue == 1;
2742 bool IsRHSNegOne = RHSValue == -1LL;
2743 switch (CC) {
2744 default: return SDValue();
2745 case ISD::SETEQ: {
2746 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2747 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
2748 SDValue Xor = IsRHSZero ? LHS :
2749 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2750 SDValue Clz =
2751 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2752 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2753 S->getI32Imm(31, dl) };
2754 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2755 ShiftOps), 0);
2757 case ISD::SETNE: {
2758 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2759 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
2760 SDValue Xor = IsRHSZero ? LHS :
2761 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2762 SDValue Clz =
2763 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2764 SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
2765 S->getI32Imm(31, dl) };
2766 SDValue Shift =
2767 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2768 return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2769 S->getI32Imm(1, dl)), 0);
2771 case ISD::SETGE: {
2772 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2773 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
2774 if(IsRHSZero)
2775 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2777 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2778 // by swapping inputs and falling through.
2779 std::swap(LHS, RHS);
2780 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2781 IsRHSZero = RHSConst && RHSConst->isNullValue();
2782 LLVM_FALLTHROUGH;
2784 case ISD::SETLE: {
2785 if (CmpInGPR == ICGPR_NonExtIn)
2786 return SDValue();
2787 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2788 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
2789 if(IsRHSZero) {
2790 if (CmpInGPR == ICGPR_NonExtIn)
2791 return SDValue();
2792 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2795 // The upper 32-bits of the register can't be undefined for this sequence.
2796 LHS = signExtendInputIfNeeded(LHS);
2797 RHS = signExtendInputIfNeeded(RHS);
2798 SDValue Sub =
2799 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2800 SDValue Shift =
2801 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
2802 S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
2804 return
2805 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
2806 MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
2808 case ISD::SETGT: {
2809 // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
2810 // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
2811 // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
2812 // Handle SETLT -1 (which is equivalent to SETGE 0).
2813 if (IsRHSNegOne)
2814 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
2816 if (IsRHSZero) {
2817 if (CmpInGPR == ICGPR_NonExtIn)
2818 return SDValue();
2819 // The upper 32-bits of the register can't be undefined for this sequence.
2820 LHS = signExtendInputIfNeeded(LHS);
2821 RHS = signExtendInputIfNeeded(RHS);
2822 SDValue Neg =
2823 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
2824 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2825 Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
2827 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
2828 // (%b < %a) by swapping inputs and falling through.
2829 std::swap(LHS, RHS);
2830 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2831 IsRHSZero = RHSConst && RHSConst->isNullValue();
2832 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
2833 LLVM_FALLTHROUGH;
2835 case ISD::SETLT: {
2836 // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
2837 // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
2838 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
2839 // Handle SETLT 1 (which is equivalent to SETLE 0).
2840 if (IsRHSOne) {
2841 if (CmpInGPR == ICGPR_NonExtIn)
2842 return SDValue();
2843 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
2846 if (IsRHSZero) {
2847 SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
2848 S->getI32Imm(31, dl) };
2849 return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2850 ShiftOps), 0);
2853 if (CmpInGPR == ICGPR_NonExtIn)
2854 return SDValue();
2855 // The upper 32-bits of the register can't be undefined for this sequence.
2856 LHS = signExtendInputIfNeeded(LHS);
2857 RHS = signExtendInputIfNeeded(RHS);
2858 SDValue SUBFNode =
2859 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
2860 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2861 SUBFNode, S->getI64Imm(1, dl),
2862 S->getI64Imm(63, dl)), 0);
2864 case ISD::SETUGE:
2865 // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
2866 // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
2867 std::swap(LHS, RHS);
2868 LLVM_FALLTHROUGH;
2869 case ISD::SETULE: {
2870 if (CmpInGPR == ICGPR_NonExtIn)
2871 return SDValue();
2872 // The upper 32-bits of the register can't be undefined for this sequence.
2873 LHS = zeroExtendInputIfNeeded(LHS);
2874 RHS = zeroExtendInputIfNeeded(RHS);
2875 SDValue Subtract =
2876 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
2877 SDValue SrdiNode =
2878 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2879 Subtract, S->getI64Imm(1, dl),
2880 S->getI64Imm(63, dl)), 0);
2881 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
2882 S->getI32Imm(1, dl)), 0);
2884 case ISD::SETUGT:
2885 // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
2886 // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
2887 std::swap(LHS, RHS);
2888 LLVM_FALLTHROUGH;
2889 case ISD::SETULT: {
2890 if (CmpInGPR == ICGPR_NonExtIn)
2891 return SDValue();
2892 // The upper 32-bits of the register can't be undefined for this sequence.
2893 LHS = zeroExtendInputIfNeeded(LHS);
2894 RHS = zeroExtendInputIfNeeded(RHS);
2895 SDValue Subtract =
2896 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
2897 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2898 Subtract, S->getI64Imm(1, dl),
2899 S->getI64Imm(63, dl)), 0);
2904 /// Produces a sign-extended result of comparing two 32-bit values according to
2905 /// the passed condition code.
2906 SDValue
2907 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
2908 ISD::CondCode CC,
2909 int64_t RHSValue, SDLoc dl) {
2910 if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
2911 CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
2912 return SDValue();
2913 bool IsRHSZero = RHSValue == 0;
2914 bool IsRHSOne = RHSValue == 1;
2915 bool IsRHSNegOne = RHSValue == -1LL;
2917 switch (CC) {
2918 default: return SDValue();
2919 case ISD::SETEQ: {
2920 // (sext (setcc %a, %b, seteq)) ->
2921 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
2922 // (sext (setcc %a, 0, seteq)) ->
2923 // (ashr (shl (ctlz %a), 58), 63)
2924 SDValue CountInput = IsRHSZero ? LHS :
2925 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2926 SDValue Cntlzw =
2927 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
2928 SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
2929 S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
2930 SDValue Slwi =
2931 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
2932 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
2934 case ISD::SETNE: {
2935 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
2936 // flip the bit, finally take 2's complement.
2937 // (sext (setcc %a, %b, setne)) ->
2938 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
2939 // Same as above, but the first xor is not needed.
2940 // (sext (setcc %a, 0, setne)) ->
2941 // (neg (xor (lshr (ctlz %a), 5), 1))
2942 SDValue Xor = IsRHSZero ? LHS :
2943 SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
2944 SDValue Clz =
2945 SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
2946 SDValue ShiftOps[] =
2947 { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
2948 SDValue Shift =
2949 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
2950 SDValue Xori =
2951 SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
2952 S->getI32Imm(1, dl)), 0);
2953 return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
2955 case ISD::SETGE: {
2956 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
2957 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
2958 if (IsRHSZero)
2959 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
2961 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2962 // by swapping inputs and falling through.
2963 std::swap(LHS, RHS);
2964 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
2965 IsRHSZero = RHSConst && RHSConst->isNullValue();
2966 LLVM_FALLTHROUGH;
2968 case ISD::SETLE: {
2969 if (CmpInGPR == ICGPR_NonExtIn)
2970 return SDValue();
2971 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
2972 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
2973 if (IsRHSZero)
2974 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
2976 // The upper 32-bits of the register can't be undefined for this sequence.
2977 LHS = signExtendInputIfNeeded(LHS);
2978 RHS = signExtendInputIfNeeded(RHS);
2979 SDValue SUBFNode =
2980 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
2981 LHS, RHS), 0);
2982 SDValue Srdi =
2983 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
2984 SUBFNode, S->getI64Imm(1, dl),
2985 S->getI64Imm(63, dl)), 0);
2986 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
2987 S->getI32Imm(-1, dl)), 0);
2989 case ISD::SETGT: {
2990 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
2991 // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
2992 // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
2993 if (IsRHSNegOne)
2994 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
2995 if (IsRHSZero) {
2996 if (CmpInGPR == ICGPR_NonExtIn)
2997 return SDValue();
2998 // The upper 32-bits of the register can't be undefined for this sequence.
2999 LHS = signExtendInputIfNeeded(LHS);
3000 RHS = signExtendInputIfNeeded(RHS);
3001 SDValue Neg =
3002 SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3003 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3004 S->getI64Imm(63, dl)), 0);
3006 // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3007 // (%b < %a) by swapping inputs and falling through.
3008 std::swap(LHS, RHS);
3009 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3010 IsRHSZero = RHSConst && RHSConst->isNullValue();
3011 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3012 LLVM_FALLTHROUGH;
3014 case ISD::SETLT: {
3015 // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3016 // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
3017 // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
3018 if (IsRHSOne) {
3019 if (CmpInGPR == ICGPR_NonExtIn)
3020 return SDValue();
3021 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3023 if (IsRHSZero)
3024 return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3025 S->getI32Imm(31, dl)), 0);
3027 if (CmpInGPR == ICGPR_NonExtIn)
3028 return SDValue();
3029 // The upper 32-bits of the register can't be undefined for this sequence.
3030 LHS = signExtendInputIfNeeded(LHS);
3031 RHS = signExtendInputIfNeeded(RHS);
3032 SDValue SUBFNode =
3033 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3034 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3035 SUBFNode, S->getI64Imm(63, dl)), 0);
3037 case ISD::SETUGE:
3038 // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3039 // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3040 std::swap(LHS, RHS);
3041 LLVM_FALLTHROUGH;
3042 case ISD::SETULE: {
3043 if (CmpInGPR == ICGPR_NonExtIn)
3044 return SDValue();
3045 // The upper 32-bits of the register can't be undefined for this sequence.
3046 LHS = zeroExtendInputIfNeeded(LHS);
3047 RHS = zeroExtendInputIfNeeded(RHS);
3048 SDValue Subtract =
3049 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3050 SDValue Shift =
3051 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3052 S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3054 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3055 S->getI32Imm(-1, dl)), 0);
3057 case ISD::SETUGT:
3058 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3059 // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3060 std::swap(LHS, RHS);
3061 LLVM_FALLTHROUGH;
3062 case ISD::SETULT: {
3063 if (CmpInGPR == ICGPR_NonExtIn)
3064 return SDValue();
3065 // The upper 32-bits of the register can't be undefined for this sequence.
3066 LHS = zeroExtendInputIfNeeded(LHS);
3067 RHS = zeroExtendInputIfNeeded(RHS);
3068 SDValue Subtract =
3069 SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3070 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3071 Subtract, S->getI64Imm(63, dl)), 0);
3076 /// Produces a zero-extended result of comparing two 64-bit values according to
3077 /// the passed condition code.
3078 SDValue
3079 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3080 ISD::CondCode CC,
3081 int64_t RHSValue, SDLoc dl) {
3082 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3083 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3084 return SDValue();
3085 bool IsRHSZero = RHSValue == 0;
3086 bool IsRHSOne = RHSValue == 1;
3087 bool IsRHSNegOne = RHSValue == -1LL;
3088 switch (CC) {
3089 default: return SDValue();
3090 case ISD::SETEQ: {
3091 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3092 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3093 SDValue Xor = IsRHSZero ? LHS :
3094 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3095 SDValue Clz =
3096 SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3097 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3098 S->getI64Imm(58, dl),
3099 S->getI64Imm(63, dl)), 0);
3101 case ISD::SETNE: {
3102 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3103 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3104 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3105 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3106 SDValue Xor = IsRHSZero ? LHS :
3107 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3108 SDValue AC =
3109 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3110 Xor, S->getI32Imm(~0U, dl)), 0);
3111 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3112 Xor, AC.getValue(1)), 0);
3114 case ISD::SETGE: {
3115 // {subc.reg, subc.CA} = (subcarry %a, %b)
3116 // (zext (setcc %a, %b, setge)) ->
3117 // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3118 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3119 if (IsRHSZero)
3120 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3121 std::swap(LHS, RHS);
3122 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3123 IsRHSZero = RHSConst && RHSConst->isNullValue();
3124 LLVM_FALLTHROUGH;
3126 case ISD::SETLE: {
3127 // {subc.reg, subc.CA} = (subcarry %b, %a)
3128 // (zext (setcc %a, %b, setge)) ->
3129 // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3130 // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3131 if (IsRHSZero)
3132 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3133 SDValue ShiftL =
3134 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3135 S->getI64Imm(1, dl),
3136 S->getI64Imm(63, dl)), 0);
3137 SDValue ShiftR =
3138 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3139 S->getI64Imm(63, dl)), 0);
3140 SDValue SubtractCarry =
3141 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3142 LHS, RHS), 1);
3143 return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3144 ShiftR, ShiftL, SubtractCarry), 0);
3146 case ISD::SETGT: {
3147 // {subc.reg, subc.CA} = (subcarry %b, %a)
3148 // (zext (setcc %a, %b, setgt)) ->
3149 // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3150 // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3151 if (IsRHSNegOne)
3152 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3153 if (IsRHSZero) {
3154 SDValue Addi =
3155 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3156 S->getI64Imm(~0ULL, dl)), 0);
3157 SDValue Nor =
3158 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3159 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3160 S->getI64Imm(1, dl),
3161 S->getI64Imm(63, dl)), 0);
3163 std::swap(LHS, RHS);
3164 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3165 IsRHSZero = RHSConst && RHSConst->isNullValue();
3166 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3167 LLVM_FALLTHROUGH;
3169 case ISD::SETLT: {
3170 // {subc.reg, subc.CA} = (subcarry %a, %b)
3171 // (zext (setcc %a, %b, setlt)) ->
3172 // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3173 // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3174 if (IsRHSOne)
3175 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3176 if (IsRHSZero)
3177 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3178 S->getI64Imm(1, dl),
3179 S->getI64Imm(63, dl)), 0);
3180 SDValue SRADINode =
3181 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3182 LHS, S->getI64Imm(63, dl)), 0);
3183 SDValue SRDINode =
3184 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3185 RHS, S->getI64Imm(1, dl),
3186 S->getI64Imm(63, dl)), 0);
3187 SDValue SUBFC8Carry =
3188 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3189 RHS, LHS), 1);
3190 SDValue ADDE8Node =
3191 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3192 SRDINode, SRADINode, SUBFC8Carry), 0);
3193 return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3194 ADDE8Node, S->getI64Imm(1, dl)), 0);
3196 case ISD::SETUGE:
3197 // {subc.reg, subc.CA} = (subcarry %a, %b)
3198 // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3199 std::swap(LHS, RHS);
3200 LLVM_FALLTHROUGH;
3201 case ISD::SETULE: {
3202 // {subc.reg, subc.CA} = (subcarry %b, %a)
3203 // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3204 SDValue SUBFC8Carry =
3205 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3206 LHS, RHS), 1);
3207 SDValue SUBFE8Node =
3208 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3209 LHS, LHS, SUBFC8Carry), 0);
3210 return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3211 SUBFE8Node, S->getI64Imm(1, dl)), 0);
3213 case ISD::SETUGT:
3214 // {subc.reg, subc.CA} = (subcarry %b, %a)
3215 // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3216 std::swap(LHS, RHS);
3217 LLVM_FALLTHROUGH;
3218 case ISD::SETULT: {
3219 // {subc.reg, subc.CA} = (subcarry %a, %b)
3220 // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3221 SDValue SubtractCarry =
3222 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3223 RHS, LHS), 1);
3224 SDValue ExtSub =
3225 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3226 LHS, LHS, SubtractCarry), 0);
3227 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3228 ExtSub), 0);
3233 /// Produces a sign-extended result of comparing two 64-bit values according to
3234 /// the passed condition code.
3235 SDValue
3236 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3237 ISD::CondCode CC,
3238 int64_t RHSValue, SDLoc dl) {
3239 if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3240 CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3241 return SDValue();
3242 bool IsRHSZero = RHSValue == 0;
3243 bool IsRHSOne = RHSValue == 1;
3244 bool IsRHSNegOne = RHSValue == -1LL;
3245 switch (CC) {
3246 default: return SDValue();
3247 case ISD::SETEQ: {
3248 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3249 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3250 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3251 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3252 SDValue AddInput = IsRHSZero ? LHS :
3253 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3254 SDValue Addic =
3255 SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3256 AddInput, S->getI32Imm(~0U, dl)), 0);
3257 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3258 Addic, Addic.getValue(1)), 0);
3260 case ISD::SETNE: {
3261 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3262 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3263 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3264 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3265 SDValue Xor = IsRHSZero ? LHS :
3266 SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3267 SDValue SC =
3268 SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3269 Xor, S->getI32Imm(0, dl)), 0);
3270 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3271 SC, SC.getValue(1)), 0);
3273 case ISD::SETGE: {
3274 // {subc.reg, subc.CA} = (subcarry %a, %b)
3275 // (zext (setcc %a, %b, setge)) ->
3276 // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3277 // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3278 if (IsRHSZero)
3279 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3280 std::swap(LHS, RHS);
3281 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3282 IsRHSZero = RHSConst && RHSConst->isNullValue();
3283 LLVM_FALLTHROUGH;
3285 case ISD::SETLE: {
3286 // {subc.reg, subc.CA} = (subcarry %b, %a)
3287 // (zext (setcc %a, %b, setge)) ->
3288 // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3289 // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3290 if (IsRHSZero)
3291 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3292 SDValue ShiftR =
3293 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3294 S->getI64Imm(63, dl)), 0);
3295 SDValue ShiftL =
3296 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3297 S->getI64Imm(1, dl),
3298 S->getI64Imm(63, dl)), 0);
3299 SDValue SubtractCarry =
3300 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3301 LHS, RHS), 1);
3302 SDValue Adde =
3303 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3304 ShiftR, ShiftL, SubtractCarry), 0);
3305 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3307 case ISD::SETGT: {
3308 // {subc.reg, subc.CA} = (subcarry %b, %a)
3309 // (zext (setcc %a, %b, setgt)) ->
3310 // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3311 // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3312 if (IsRHSNegOne)
3313 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3314 if (IsRHSZero) {
3315 SDValue Add =
3316 SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3317 S->getI64Imm(-1, dl)), 0);
3318 SDValue Nor =
3319 SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3320 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3321 S->getI64Imm(63, dl)), 0);
3323 std::swap(LHS, RHS);
3324 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3325 IsRHSZero = RHSConst && RHSConst->isNullValue();
3326 IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3327 LLVM_FALLTHROUGH;
3329 case ISD::SETLT: {
3330 // {subc.reg, subc.CA} = (subcarry %a, %b)
3331 // (zext (setcc %a, %b, setlt)) ->
3332 // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3333 // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3334 if (IsRHSOne)
3335 return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3336 if (IsRHSZero) {
3337 return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3338 S->getI64Imm(63, dl)), 0);
3340 SDValue SRADINode =
3341 SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3342 LHS, S->getI64Imm(63, dl)), 0);
3343 SDValue SRDINode =
3344 SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3345 RHS, S->getI64Imm(1, dl),
3346 S->getI64Imm(63, dl)), 0);
3347 SDValue SUBFC8Carry =
3348 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3349 RHS, LHS), 1);
3350 SDValue ADDE8Node =
3351 SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3352 SRDINode, SRADINode, SUBFC8Carry), 0);
3353 SDValue XORI8Node =
3354 SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3355 ADDE8Node, S->getI64Imm(1, dl)), 0);
3356 return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3357 XORI8Node), 0);
3359 case ISD::SETUGE:
3360 // {subc.reg, subc.CA} = (subcarry %a, %b)
3361 // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3362 std::swap(LHS, RHS);
3363 LLVM_FALLTHROUGH;
3364 case ISD::SETULE: {
3365 // {subc.reg, subc.CA} = (subcarry %b, %a)
3366 // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3367 SDValue SubtractCarry =
3368 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3369 LHS, RHS), 1);
3370 SDValue ExtSub =
3371 SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3372 LHS, SubtractCarry), 0);
3373 return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3374 ExtSub, ExtSub), 0);
3376 case ISD::SETUGT:
3377 // {subc.reg, subc.CA} = (subcarry %b, %a)
3378 // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3379 std::swap(LHS, RHS);
3380 LLVM_FALLTHROUGH;
3381 case ISD::SETULT: {
3382 // {subc.reg, subc.CA} = (subcarry %a, %b)
3383 // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3384 SDValue SubCarry =
3385 SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3386 RHS, LHS), 1);
3387 return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3388 LHS, LHS, SubCarry), 0);
3393 /// Do all uses of this SDValue need the result in a GPR?
3394 /// This is meant to be used on values that have type i1 since
3395 /// it is somewhat meaningless to ask if values of other types
3396 /// should be kept in GPR's.
3397 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3398 assert(Compare.getOpcode() == ISD::SETCC &&
3399 "An ISD::SETCC node required here.");
3401 // For values that have a single use, the caller should obviously already have
3402 // checked if that use is an extending use. We check the other uses here.
3403 if (Compare.hasOneUse())
3404 return true;
3405 // We want the value in a GPR if it is being extended, used for a select, or
3406 // used in logical operations.
3407 for (auto CompareUse : Compare.getNode()->uses())
3408 if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3409 CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3410 CompareUse->getOpcode() != ISD::SELECT &&
3411 !isLogicOp(CompareUse->getOpcode())) {
3412 OmittedForNonExtendUses++;
3413 return false;
3415 return true;
3418 /// Returns an equivalent of a SETCC node but with the result the same width as
3419 /// the inputs. This can also be used for SELECT_CC if either the true or false
3420 /// values is a power of two while the other is zero.
3421 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3422 SetccInGPROpts ConvOpts) {
3423 assert((Compare.getOpcode() == ISD::SETCC ||
3424 Compare.getOpcode() == ISD::SELECT_CC) &&
3425 "An ISD::SETCC node required here.");
3427 // Don't convert this comparison to a GPR sequence because there are uses
3428 // of the i1 result (i.e. uses that require the result in the CR).
3429 if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3430 return SDValue();
3432 SDValue LHS = Compare.getOperand(0);
3433 SDValue RHS = Compare.getOperand(1);
3435 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3436 int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3437 ISD::CondCode CC =
3438 cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3439 EVT InputVT = LHS.getValueType();
3440 if (InputVT != MVT::i32 && InputVT != MVT::i64)
3441 return SDValue();
3443 if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3444 ConvOpts == SetccInGPROpts::SExtInvert)
3445 CC = ISD::getSetCCInverse(CC, true);
3447 bool Inputs32Bit = InputVT == MVT::i32;
3449 SDLoc dl(Compare);
3450 ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3451 int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3452 bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3453 ConvOpts == SetccInGPROpts::SExtInvert;
3455 if (IsSext && Inputs32Bit)
3456 return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3457 else if (Inputs32Bit)
3458 return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3459 else if (IsSext)
3460 return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3461 return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3464 } // end anonymous namespace
3466 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3467 if (N->getValueType(0) != MVT::i32 &&
3468 N->getValueType(0) != MVT::i64)
3469 return false;
3471 // This optimization will emit code that assumes 64-bit registers
3472 // so we don't want to run it in 32-bit mode. Also don't run it
3473 // on functions that are not to be optimized.
3474 if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3475 return false;
3477 switch (N->getOpcode()) {
3478 default: break;
3479 case ISD::ZERO_EXTEND:
3480 case ISD::SIGN_EXTEND:
3481 case ISD::AND:
3482 case ISD::OR:
3483 case ISD::XOR: {
3484 IntegerCompareEliminator ICmpElim(CurDAG, this);
3485 if (SDNode *New = ICmpElim.Select(N)) {
3486 ReplaceNode(N, New);
3487 return true;
3491 return false;
3494 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3495 if (N->getValueType(0) != MVT::i32 &&
3496 N->getValueType(0) != MVT::i64)
3497 return false;
3499 if (!UseBitPermRewriter)
3500 return false;
3502 switch (N->getOpcode()) {
3503 default: break;
3504 case ISD::ROTL:
3505 case ISD::SHL:
3506 case ISD::SRL:
3507 case ISD::AND:
3508 case ISD::OR: {
3509 BitPermutationSelector BPS(CurDAG);
3510 if (SDNode *New = BPS.Select(N)) {
3511 ReplaceNode(N, New);
3512 return true;
3514 return false;
3518 return false;
3521 /// SelectCC - Select a comparison of the specified values with the specified
3522 /// condition code, returning the CR# of the expression.
3523 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3524 const SDLoc &dl) {
3525 // Always select the LHS.
3526 unsigned Opc;
3528 if (LHS.getValueType() == MVT::i32) {
3529 unsigned Imm;
3530 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3531 if (isInt32Immediate(RHS, Imm)) {
3532 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3533 if (isUInt<16>(Imm))
3534 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3535 getI32Imm(Imm & 0xFFFF, dl)),
3537 // If this is a 16-bit signed immediate, fold it.
3538 if (isInt<16>((int)Imm))
3539 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3540 getI32Imm(Imm & 0xFFFF, dl)),
3543 // For non-equality comparisons, the default code would materialize the
3544 // constant, then compare against it, like this:
3545 // lis r2, 4660
3546 // ori r2, r2, 22136
3547 // cmpw cr0, r3, r2
3548 // Since we are just comparing for equality, we can emit this instead:
3549 // xoris r0,r3,0x1234
3550 // cmplwi cr0,r0,0x5678
3551 // beq cr0,L6
3552 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3553 getI32Imm(Imm >> 16, dl)), 0);
3554 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3555 getI32Imm(Imm & 0xFFFF, dl)), 0);
3557 Opc = PPC::CMPLW;
3558 } else if (ISD::isUnsignedIntSetCC(CC)) {
3559 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3560 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3561 getI32Imm(Imm & 0xFFFF, dl)), 0);
3562 Opc = PPC::CMPLW;
3563 } else {
3564 int16_t SImm;
3565 if (isIntS16Immediate(RHS, SImm))
3566 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3567 getI32Imm((int)SImm & 0xFFFF,
3568 dl)),
3570 Opc = PPC::CMPW;
3572 } else if (LHS.getValueType() == MVT::i64) {
3573 uint64_t Imm;
3574 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3575 if (isInt64Immediate(RHS.getNode(), Imm)) {
3576 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3577 if (isUInt<16>(Imm))
3578 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3579 getI32Imm(Imm & 0xFFFF, dl)),
3581 // If this is a 16-bit signed immediate, fold it.
3582 if (isInt<16>(Imm))
3583 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3584 getI32Imm(Imm & 0xFFFF, dl)),
3587 // For non-equality comparisons, the default code would materialize the
3588 // constant, then compare against it, like this:
3589 // lis r2, 4660
3590 // ori r2, r2, 22136
3591 // cmpd cr0, r3, r2
3592 // Since we are just comparing for equality, we can emit this instead:
3593 // xoris r0,r3,0x1234
3594 // cmpldi cr0,r0,0x5678
3595 // beq cr0,L6
3596 if (isUInt<32>(Imm)) {
3597 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
3598 getI64Imm(Imm >> 16, dl)), 0);
3599 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
3600 getI64Imm(Imm & 0xFFFF, dl)),
3604 Opc = PPC::CMPLD;
3605 } else if (ISD::isUnsignedIntSetCC(CC)) {
3606 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
3607 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
3608 getI64Imm(Imm & 0xFFFF, dl)), 0);
3609 Opc = PPC::CMPLD;
3610 } else {
3611 int16_t SImm;
3612 if (isIntS16Immediate(RHS, SImm))
3613 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
3614 getI64Imm(SImm & 0xFFFF, dl)),
3616 Opc = PPC::CMPD;
3618 } else if (LHS.getValueType() == MVT::f32) {
3619 if (PPCSubTarget->hasSPE()) {
3620 switch (CC) {
3621 default:
3622 case ISD::SETEQ:
3623 case ISD::SETNE:
3624 Opc = PPC::EFSCMPEQ;
3625 break;
3626 case ISD::SETLT:
3627 case ISD::SETGE:
3628 case ISD::SETOLT:
3629 case ISD::SETOGE:
3630 case ISD::SETULT:
3631 case ISD::SETUGE:
3632 Opc = PPC::EFSCMPLT;
3633 break;
3634 case ISD::SETGT:
3635 case ISD::SETLE:
3636 case ISD::SETOGT:
3637 case ISD::SETOLE:
3638 case ISD::SETUGT:
3639 case ISD::SETULE:
3640 Opc = PPC::EFSCMPGT;
3641 break;
3643 } else
3644 Opc = PPC::FCMPUS;
3645 } else if (LHS.getValueType() == MVT::f64) {
3646 if (PPCSubTarget->hasSPE()) {
3647 switch (CC) {
3648 default:
3649 case ISD::SETEQ:
3650 case ISD::SETNE:
3651 Opc = PPC::EFDCMPEQ;
3652 break;
3653 case ISD::SETLT:
3654 case ISD::SETGE:
3655 case ISD::SETOLT:
3656 case ISD::SETOGE:
3657 case ISD::SETULT:
3658 case ISD::SETUGE:
3659 Opc = PPC::EFDCMPLT;
3660 break;
3661 case ISD::SETGT:
3662 case ISD::SETLE:
3663 case ISD::SETOGT:
3664 case ISD::SETOLE:
3665 case ISD::SETUGT:
3666 case ISD::SETULE:
3667 Opc = PPC::EFDCMPGT;
3668 break;
3670 } else
3671 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
3672 } else {
3673 assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
3674 assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
3675 Opc = PPC::XSCMPUQP;
3677 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
3680 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
3681 switch (CC) {
3682 case ISD::SETUEQ:
3683 case ISD::SETONE:
3684 case ISD::SETOLE:
3685 case ISD::SETOGE:
3686 llvm_unreachable("Should be lowered by legalize!");
3687 default: llvm_unreachable("Unknown condition!");
3688 case ISD::SETOEQ:
3689 case ISD::SETEQ: return PPC::PRED_EQ;
3690 case ISD::SETUNE:
3691 case ISD::SETNE: return PPC::PRED_NE;
3692 case ISD::SETOLT:
3693 case ISD::SETLT: return PPC::PRED_LT;
3694 case ISD::SETULE:
3695 case ISD::SETLE: return PPC::PRED_LE;
3696 case ISD::SETOGT:
3697 case ISD::SETGT: return PPC::PRED_GT;
3698 case ISD::SETUGE:
3699 case ISD::SETGE: return PPC::PRED_GE;
3700 case ISD::SETO: return PPC::PRED_NU;
3701 case ISD::SETUO: return PPC::PRED_UN;
3702 // These two are invalid for floating point. Assume we have int.
3703 case ISD::SETULT: return PPC::PRED_LT;
3704 case ISD::SETUGT: return PPC::PRED_GT;
3708 /// getCRIdxForSetCC - Return the index of the condition register field
3709 /// associated with the SetCC condition, and whether or not the field is
3710 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
3711 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
3712 Invert = false;
3713 switch (CC) {
3714 default: llvm_unreachable("Unknown condition!");
3715 case ISD::SETOLT:
3716 case ISD::SETLT: return 0; // Bit #0 = SETOLT
3717 case ISD::SETOGT:
3718 case ISD::SETGT: return 1; // Bit #1 = SETOGT
3719 case ISD::SETOEQ:
3720 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
3721 case ISD::SETUO: return 3; // Bit #3 = SETUO
3722 case ISD::SETUGE:
3723 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
3724 case ISD::SETULE:
3725 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
3726 case ISD::SETUNE:
3727 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
3728 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
3729 case ISD::SETUEQ:
3730 case ISD::SETOGE:
3731 case ISD::SETOLE:
3732 case ISD::SETONE:
3733 llvm_unreachable("Invalid branch code: should be expanded by legalize");
3734 // These are invalid for floating point. Assume integer.
3735 case ISD::SETULT: return 0;
3736 case ISD::SETUGT: return 1;
3740 // getVCmpInst: return the vector compare instruction for the specified
3741 // vector type and condition code. Since this is for altivec specific code,
3742 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
3743 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
3744 bool HasVSX, bool &Swap, bool &Negate) {
3745 Swap = false;
3746 Negate = false;
3748 if (VecVT.isFloatingPoint()) {
3749 /* Handle some cases by swapping input operands. */
3750 switch (CC) {
3751 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
3752 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3753 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
3754 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
3755 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3756 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
3757 default: break;
3759 /* Handle some cases by negating the result. */
3760 switch (CC) {
3761 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3762 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
3763 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
3764 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
3765 default: break;
3767 /* We have instructions implementing the remaining cases. */
3768 switch (CC) {
3769 case ISD::SETEQ:
3770 case ISD::SETOEQ:
3771 if (VecVT == MVT::v4f32)
3772 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
3773 else if (VecVT == MVT::v2f64)
3774 return PPC::XVCMPEQDP;
3775 break;
3776 case ISD::SETGT:
3777 case ISD::SETOGT:
3778 if (VecVT == MVT::v4f32)
3779 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
3780 else if (VecVT == MVT::v2f64)
3781 return PPC::XVCMPGTDP;
3782 break;
3783 case ISD::SETGE:
3784 case ISD::SETOGE:
3785 if (VecVT == MVT::v4f32)
3786 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
3787 else if (VecVT == MVT::v2f64)
3788 return PPC::XVCMPGEDP;
3789 break;
3790 default:
3791 break;
3793 llvm_unreachable("Invalid floating-point vector compare condition");
3794 } else {
3795 /* Handle some cases by swapping input operands. */
3796 switch (CC) {
3797 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
3798 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
3799 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
3800 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
3801 default: break;
3803 /* Handle some cases by negating the result. */
3804 switch (CC) {
3805 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
3806 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
3807 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
3808 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
3809 default: break;
3811 /* We have instructions implementing the remaining cases. */
3812 switch (CC) {
3813 case ISD::SETEQ:
3814 case ISD::SETUEQ:
3815 if (VecVT == MVT::v16i8)
3816 return PPC::VCMPEQUB;
3817 else if (VecVT == MVT::v8i16)
3818 return PPC::VCMPEQUH;
3819 else if (VecVT == MVT::v4i32)
3820 return PPC::VCMPEQUW;
3821 else if (VecVT == MVT::v2i64)
3822 return PPC::VCMPEQUD;
3823 break;
3824 case ISD::SETGT:
3825 if (VecVT == MVT::v16i8)
3826 return PPC::VCMPGTSB;
3827 else if (VecVT == MVT::v8i16)
3828 return PPC::VCMPGTSH;
3829 else if (VecVT == MVT::v4i32)
3830 return PPC::VCMPGTSW;
3831 else if (VecVT == MVT::v2i64)
3832 return PPC::VCMPGTSD;
3833 break;
3834 case ISD::SETUGT:
3835 if (VecVT == MVT::v16i8)
3836 return PPC::VCMPGTUB;
3837 else if (VecVT == MVT::v8i16)
3838 return PPC::VCMPGTUH;
3839 else if (VecVT == MVT::v4i32)
3840 return PPC::VCMPGTUW;
3841 else if (VecVT == MVT::v2i64)
3842 return PPC::VCMPGTUD;
3843 break;
3844 default:
3845 break;
3847 llvm_unreachable("Invalid integer vector compare condition");
3851 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
3852 SDLoc dl(N);
3853 unsigned Imm;
3854 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
3855 EVT PtrVT =
3856 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
3857 bool isPPC64 = (PtrVT == MVT::i64);
3859 if (!PPCSubTarget->useCRBits() &&
3860 isInt32Immediate(N->getOperand(1), Imm)) {
3861 // We can codegen setcc op, imm very efficiently compared to a brcond.
3862 // Check for those cases here.
3863 // setcc op, 0
3864 if (Imm == 0) {
3865 SDValue Op = N->getOperand(0);
3866 switch (CC) {
3867 default: break;
3868 case ISD::SETEQ: {
3869 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
3870 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
3871 getI32Imm(31, dl) };
3872 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3873 return true;
3875 case ISD::SETNE: {
3876 if (isPPC64) break;
3877 SDValue AD =
3878 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3879 Op, getI32Imm(~0U, dl)), 0);
3880 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
3881 return true;
3883 case ISD::SETLT: {
3884 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
3885 getI32Imm(31, dl) };
3886 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3887 return true;
3889 case ISD::SETGT: {
3890 SDValue T =
3891 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
3892 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
3893 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
3894 getI32Imm(31, dl) };
3895 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3896 return true;
3899 } else if (Imm == ~0U) { // setcc op, -1
3900 SDValue Op = N->getOperand(0);
3901 switch (CC) {
3902 default: break;
3903 case ISD::SETEQ:
3904 if (isPPC64) break;
3905 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3906 Op, getI32Imm(1, dl)), 0);
3907 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
3908 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
3909 MVT::i32,
3910 getI32Imm(0, dl)),
3911 0), Op.getValue(1));
3912 return true;
3913 case ISD::SETNE: {
3914 if (isPPC64) break;
3915 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
3916 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
3917 Op, getI32Imm(~0U, dl));
3918 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
3919 SDValue(AD, 1));
3920 return true;
3922 case ISD::SETLT: {
3923 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
3924 getI32Imm(1, dl)), 0);
3925 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
3926 Op), 0);
3927 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
3928 getI32Imm(31, dl) };
3929 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3930 return true;
3932 case ISD::SETGT: {
3933 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
3934 getI32Imm(31, dl) };
3935 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
3936 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
3937 return true;
3943 SDValue LHS = N->getOperand(0);
3944 SDValue RHS = N->getOperand(1);
3946 // Altivec Vector compare instructions do not set any CR register by default and
3947 // vector compare operations return the same type as the operands.
3948 if (LHS.getValueType().isVector()) {
3949 if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
3950 return false;
3952 EVT VecVT = LHS.getValueType();
3953 bool Swap, Negate;
3954 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
3955 PPCSubTarget->hasVSX(), Swap, Negate);
3956 if (Swap)
3957 std::swap(LHS, RHS);
3959 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
3960 if (Negate) {
3961 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
3962 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
3963 ResVT, VCmp, VCmp);
3964 return true;
3967 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
3968 return true;
3971 if (PPCSubTarget->useCRBits())
3972 return false;
3974 bool Inv;
3975 unsigned Idx = getCRIdxForSetCC(CC, Inv);
3976 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
3977 SDValue IntCR;
3979 // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
3980 // The correct compare instruction is already set by SelectCC()
3981 if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
3982 Idx = 1;
3985 // Force the ccreg into CR7.
3986 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
3988 SDValue InFlag(nullptr, 0); // Null incoming flag value.
3989 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
3990 InFlag).getValue(1);
3992 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
3993 CCReg), 0);
3995 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
3996 getI32Imm(31, dl), getI32Imm(31, dl) };
3997 if (!Inv) {
3998 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
3999 return true;
4002 // Get the specified bit.
4003 SDValue Tmp =
4004 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4005 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4006 return true;
4009 /// Does this node represent a load/store node whose address can be represented
4010 /// with a register plus an immediate that's a multiple of \p Val:
4011 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4012 LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4013 StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4014 SDValue AddrOp;
4015 if (LDN)
4016 AddrOp = LDN->getOperand(1);
4017 else if (STN)
4018 AddrOp = STN->getOperand(2);
4020 // If the address points a frame object or a frame object with an offset,
4021 // we need to check the object alignment.
4022 short Imm = 0;
4023 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4024 AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4025 AddrOp)) {
4026 // If op0 is a frame index that is under aligned, we can't do it either,
4027 // because it is translated to r31 or r1 + slot + offset. We won't know the
4028 // slot number until the stack frame is finalized.
4029 const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4030 unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
4031 if ((SlotAlign % Val) != 0)
4032 return false;
4034 // If we have an offset, we need further check on the offset.
4035 if (AddrOp.getOpcode() != ISD::ADD)
4036 return true;
4039 if (AddrOp.getOpcode() == ISD::ADD)
4040 return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4042 // If the address comes from the outside, the offset will be zero.
4043 return AddrOp.getOpcode() == ISD::CopyFromReg;
4046 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4047 // Transfer memoperands.
4048 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4049 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4052 /// This method returns a node after flipping the MSB of each element
4053 /// of vector integer type. Additionally, if SignBitVec is non-null,
4054 /// this method sets a node with one at MSB of all elements
4055 /// and zero at other bits in SignBitVec.
4056 MachineSDNode *
4057 PPCDAGToDAGISel::flipSignBit(const SDValue &N, SDNode **SignBitVec) {
4058 SDLoc dl(N);
4059 EVT VecVT = N.getValueType();
4060 if (VecVT == MVT::v4i32) {
4061 if (SignBitVec) {
4062 SDNode *ZV = CurDAG->getMachineNode(PPC::V_SET0, dl, MVT::v4i32);
4063 *SignBitVec = CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT,
4064 SDValue(ZV, 0));
4066 return CurDAG->getMachineNode(PPC::XVNEGSP, dl, VecVT, N);
4068 else if (VecVT == MVT::v8i16) {
4069 SDNode *Hi = CurDAG->getMachineNode(PPC::LIS, dl, MVT::i32,
4070 getI32Imm(0x8000, dl));
4071 SDNode *ScaImm = CurDAG->getMachineNode(PPC::ORI, dl, MVT::i32,
4072 SDValue(Hi, 0),
4073 getI32Imm(0x8000, dl));
4074 SDNode *VecImm = CurDAG->getMachineNode(PPC::MTVSRWS, dl, VecVT,
4075 SDValue(ScaImm, 0));
4077 Alternatively, we can do this as follow to use VRF instead of GPR.
4078 vspltish 5, 1
4079 vspltish 6, 15
4080 vslh 5, 6, 5
4082 if (SignBitVec) *SignBitVec = VecImm;
4083 return CurDAG->getMachineNode(PPC::VADDUHM, dl, VecVT, N,
4084 SDValue(VecImm, 0));
4086 else if (VecVT == MVT::v16i8) {
4087 SDNode *VecImm = CurDAG->getMachineNode(PPC::XXSPLTIB, dl, MVT::i32,
4088 getI32Imm(0x80, dl));
4089 if (SignBitVec) *SignBitVec = VecImm;
4090 return CurDAG->getMachineNode(PPC::VADDUBM, dl, VecVT, N,
4091 SDValue(VecImm, 0));
4093 else
4094 llvm_unreachable("Unsupported vector data type for flipSignBit");
4097 // Select - Convert the specified operand from a target-independent to a
4098 // target-specific node if it hasn't already been changed.
4099 void PPCDAGToDAGISel::Select(SDNode *N) {
4100 SDLoc dl(N);
4101 if (N->isMachineOpcode()) {
4102 N->setNodeId(-1);
4103 return; // Already selected.
4106 // In case any misguided DAG-level optimizations form an ADD with a
4107 // TargetConstant operand, crash here instead of miscompiling (by selecting
4108 // an r+r add instead of some kind of r+i add).
4109 if (N->getOpcode() == ISD::ADD &&
4110 N->getOperand(1).getOpcode() == ISD::TargetConstant)
4111 llvm_unreachable("Invalid ADD with TargetConstant operand");
4113 // Try matching complex bit permutations before doing anything else.
4114 if (tryBitPermutation(N))
4115 return;
4117 // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4118 if (tryIntCompareInGPR(N))
4119 return;
4121 switch (N->getOpcode()) {
4122 default: break;
4124 case ISD::Constant:
4125 if (N->getValueType(0) == MVT::i64) {
4126 ReplaceNode(N, selectI64Imm(CurDAG, N));
4127 return;
4129 break;
4131 case ISD::SETCC:
4132 if (trySETCC(N))
4133 return;
4134 break;
4136 case PPCISD::CALL: {
4137 const Module *M = MF->getFunction().getParent();
4139 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
4140 !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
4141 M->getPICLevel() == PICLevel::SmallPIC)
4142 break;
4144 SDValue Op = N->getOperand(1);
4146 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4147 if (GA->getTargetFlags() == PPCII::MO_PLT)
4148 getGlobalBaseReg();
4150 else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
4151 if (ES->getTargetFlags() == PPCII::MO_PLT)
4152 getGlobalBaseReg();
4155 break;
4157 case PPCISD::GlobalBaseReg:
4158 ReplaceNode(N, getGlobalBaseReg());
4159 return;
4161 case ISD::FrameIndex:
4162 selectFrameIndex(N, N);
4163 return;
4165 case PPCISD::MFOCRF: {
4166 SDValue InFlag = N->getOperand(1);
4167 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
4168 N->getOperand(0), InFlag));
4169 return;
4172 case PPCISD::READ_TIME_BASE:
4173 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
4174 MVT::Other, N->getOperand(0)));
4175 return;
4177 case PPCISD::SRA_ADDZE: {
4178 SDValue N0 = N->getOperand(0);
4179 SDValue ShiftAmt =
4180 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
4181 getConstantIntValue(), dl,
4182 N->getValueType(0));
4183 if (N->getValueType(0) == MVT::i64) {
4184 SDNode *Op =
4185 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
4186 N0, ShiftAmt);
4187 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
4188 SDValue(Op, 1));
4189 return;
4190 } else {
4191 assert(N->getValueType(0) == MVT::i32 &&
4192 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
4193 SDNode *Op =
4194 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
4195 N0, ShiftAmt);
4196 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
4197 SDValue(Op, 1));
4198 return;
4202 case ISD::STORE: {
4203 // Change TLS initial-exec D-form stores to X-form stores.
4204 StoreSDNode *ST = cast<StoreSDNode>(N);
4205 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
4206 ST->getAddressingMode() != ISD::PRE_INC)
4207 if (tryTLSXFormStore(ST))
4208 return;
4209 break;
4211 case ISD::LOAD: {
4212 // Handle preincrement loads.
4213 LoadSDNode *LD = cast<LoadSDNode>(N);
4214 EVT LoadedVT = LD->getMemoryVT();
4216 // Normal loads are handled by code generated from the .td file.
4217 if (LD->getAddressingMode() != ISD::PRE_INC) {
4218 // Change TLS initial-exec D-form loads to X-form loads.
4219 if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
4220 if (tryTLSXFormLoad(LD))
4221 return;
4222 break;
4225 SDValue Offset = LD->getOffset();
4226 if (Offset.getOpcode() == ISD::TargetConstant ||
4227 Offset.getOpcode() == ISD::TargetGlobalAddress) {
4229 unsigned Opcode;
4230 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4231 if (LD->getValueType(0) != MVT::i64) {
4232 // Handle PPC32 integer and normal FP loads.
4233 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4234 switch (LoadedVT.getSimpleVT().SimpleTy) {
4235 default: llvm_unreachable("Invalid PPC load type!");
4236 case MVT::f64: Opcode = PPC::LFDU; break;
4237 case MVT::f32: Opcode = PPC::LFSU; break;
4238 case MVT::i32: Opcode = PPC::LWZU; break;
4239 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
4240 case MVT::i1:
4241 case MVT::i8: Opcode = PPC::LBZU; break;
4243 } else {
4244 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4245 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4246 switch (LoadedVT.getSimpleVT().SimpleTy) {
4247 default: llvm_unreachable("Invalid PPC load type!");
4248 case MVT::i64: Opcode = PPC::LDU; break;
4249 case MVT::i32: Opcode = PPC::LWZU8; break;
4250 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
4251 case MVT::i1:
4252 case MVT::i8: Opcode = PPC::LBZU8; break;
4256 SDValue Chain = LD->getChain();
4257 SDValue Base = LD->getBasePtr();
4258 SDValue Ops[] = { Offset, Base, Chain };
4259 SDNode *MN = CurDAG->getMachineNode(
4260 Opcode, dl, LD->getValueType(0),
4261 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4262 transferMemOperands(N, MN);
4263 ReplaceNode(N, MN);
4264 return;
4265 } else {
4266 unsigned Opcode;
4267 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
4268 if (LD->getValueType(0) != MVT::i64) {
4269 // Handle PPC32 integer and normal FP loads.
4270 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
4271 switch (LoadedVT.getSimpleVT().SimpleTy) {
4272 default: llvm_unreachable("Invalid PPC load type!");
4273 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
4274 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
4275 case MVT::f64: Opcode = PPC::LFDUX; break;
4276 case MVT::f32: Opcode = PPC::LFSUX; break;
4277 case MVT::i32: Opcode = PPC::LWZUX; break;
4278 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
4279 case MVT::i1:
4280 case MVT::i8: Opcode = PPC::LBZUX; break;
4282 } else {
4283 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
4284 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
4285 "Invalid sext update load");
4286 switch (LoadedVT.getSimpleVT().SimpleTy) {
4287 default: llvm_unreachable("Invalid PPC load type!");
4288 case MVT::i64: Opcode = PPC::LDUX; break;
4289 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
4290 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
4291 case MVT::i1:
4292 case MVT::i8: Opcode = PPC::LBZUX8; break;
4296 SDValue Chain = LD->getChain();
4297 SDValue Base = LD->getBasePtr();
4298 SDValue Ops[] = { Base, Offset, Chain };
4299 SDNode *MN = CurDAG->getMachineNode(
4300 Opcode, dl, LD->getValueType(0),
4301 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
4302 transferMemOperands(N, MN);
4303 ReplaceNode(N, MN);
4304 return;
4308 case ISD::AND: {
4309 unsigned Imm, Imm2, SH, MB, ME;
4310 uint64_t Imm64;
4312 // If this is an and of a value rotated between 0 and 31 bits and then and'd
4313 // with a mask, emit rlwinm
4314 if (isInt32Immediate(N->getOperand(1), Imm) &&
4315 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
4316 SDValue Val = N->getOperand(0).getOperand(0);
4317 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4318 getI32Imm(ME, dl) };
4319 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4320 return;
4322 // If this is just a masked value where the input is not handled above, and
4323 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4324 if (isInt32Immediate(N->getOperand(1), Imm) &&
4325 isRunOfOnes(Imm, MB, ME) &&
4326 N->getOperand(0).getOpcode() != ISD::ROTL) {
4327 SDValue Val = N->getOperand(0);
4328 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4329 getI32Imm(ME, dl) };
4330 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4331 return;
4333 // If this is a 64-bit zero-extension mask, emit rldicl.
4334 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4335 isMask_64(Imm64)) {
4336 SDValue Val = N->getOperand(0);
4337 MB = 64 - countTrailingOnes(Imm64);
4338 SH = 0;
4340 if (Val.getOpcode() == ISD::ANY_EXTEND) {
4341 auto Op0 = Val.getOperand(0);
4342 if ( Op0.getOpcode() == ISD::SRL &&
4343 isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4345 auto ResultType = Val.getNode()->getValueType(0);
4346 auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
4347 ResultType);
4348 SDValue IDVal (ImDef, 0);
4350 Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
4351 ResultType, IDVal, Op0.getOperand(0),
4352 getI32Imm(1, dl)), 0);
4353 SH = 64 - Imm;
4357 // If the operand is a logical right shift, we can fold it into this
4358 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4359 // for n <= mb. The right shift is really a left rotate followed by a
4360 // mask, and this mask is a more-restrictive sub-mask of the mask implied
4361 // by the shift.
4362 if (Val.getOpcode() == ISD::SRL &&
4363 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4364 assert(Imm < 64 && "Illegal shift amount");
4365 Val = Val.getOperand(0);
4366 SH = 64 - Imm;
4369 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4370 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4371 return;
4373 // If this is a negated 64-bit zero-extension mask,
4374 // i.e. the immediate is a sequence of ones from most significant side
4375 // and all zero for reminder, we should use rldicr.
4376 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
4377 isMask_64(~Imm64)) {
4378 SDValue Val = N->getOperand(0);
4379 MB = 63 - countTrailingOnes(~Imm64);
4380 SH = 0;
4381 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
4382 CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4383 return;
4386 // AND X, 0 -> 0, not "rlwinm 32".
4387 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
4388 ReplaceUses(SDValue(N, 0), N->getOperand(1));
4389 return;
4391 // ISD::OR doesn't get all the bitfield insertion fun.
4392 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4393 // bitfield insert.
4394 if (isInt32Immediate(N->getOperand(1), Imm) &&
4395 N->getOperand(0).getOpcode() == ISD::OR &&
4396 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
4397 // The idea here is to check whether this is equivalent to:
4398 // (c1 & m) | (x & ~m)
4399 // where m is a run-of-ones mask. The logic here is that, for each bit in
4400 // c1 and c2:
4401 // - if both are 1, then the output will be 1.
4402 // - if both are 0, then the output will be 0.
4403 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4404 // come from x.
4405 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4406 // be 0.
4407 // If that last condition is never the case, then we can form m from the
4408 // bits that are the same between c1 and c2.
4409 unsigned MB, ME;
4410 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
4411 SDValue Ops[] = { N->getOperand(0).getOperand(0),
4412 N->getOperand(0).getOperand(1),
4413 getI32Imm(0, dl), getI32Imm(MB, dl),
4414 getI32Imm(ME, dl) };
4415 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4416 return;
4420 // Other cases are autogenerated.
4421 break;
4423 case ISD::OR: {
4424 if (N->getValueType(0) == MVT::i32)
4425 if (tryBitfieldInsert(N))
4426 return;
4428 int16_t Imm;
4429 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4430 isIntS16Immediate(N->getOperand(1), Imm)) {
4431 KnownBits LHSKnown;
4432 CurDAG->computeKnownBits(N->getOperand(0), LHSKnown);
4434 // If this is equivalent to an add, then we can fold it with the
4435 // FrameIndex calculation.
4436 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
4437 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4438 return;
4442 // OR with a 32-bit immediate can be handled by ori + oris
4443 // without creating an immediate in a GPR.
4444 uint64_t Imm64 = 0;
4445 bool IsPPC64 = PPCSubTarget->isPPC64();
4446 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4447 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4448 // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
4449 uint64_t ImmHi = Imm64 >> 16;
4450 uint64_t ImmLo = Imm64 & 0xFFFF;
4451 if (ImmHi != 0 && ImmLo != 0) {
4452 SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
4453 N->getOperand(0),
4454 getI16Imm(ImmLo, dl));
4455 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4456 CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
4457 return;
4461 // Other cases are autogenerated.
4462 break;
4464 case ISD::XOR: {
4465 // XOR with a 32-bit immediate can be handled by xori + xoris
4466 // without creating an immediate in a GPR.
4467 uint64_t Imm64 = 0;
4468 bool IsPPC64 = PPCSubTarget->isPPC64();
4469 if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
4470 (Imm64 & ~0xFFFFFFFFuLL) == 0) {
4471 // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
4472 uint64_t ImmHi = Imm64 >> 16;
4473 uint64_t ImmLo = Imm64 & 0xFFFF;
4474 if (ImmHi != 0 && ImmLo != 0) {
4475 SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
4476 N->getOperand(0),
4477 getI16Imm(ImmLo, dl));
4478 SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
4479 CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
4480 return;
4484 break;
4486 case ISD::ADD: {
4487 int16_t Imm;
4488 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
4489 isIntS16Immediate(N->getOperand(1), Imm)) {
4490 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
4491 return;
4494 break;
4496 case ISD::SHL: {
4497 unsigned Imm, SH, MB, ME;
4498 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4499 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4500 SDValue Ops[] = { N->getOperand(0).getOperand(0),
4501 getI32Imm(SH, dl), getI32Imm(MB, dl),
4502 getI32Imm(ME, dl) };
4503 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4504 return;
4507 // Other cases are autogenerated.
4508 break;
4510 case ISD::SRL: {
4511 unsigned Imm, SH, MB, ME;
4512 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
4513 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
4514 SDValue Ops[] = { N->getOperand(0).getOperand(0),
4515 getI32Imm(SH, dl), getI32Imm(MB, dl),
4516 getI32Imm(ME, dl) };
4517 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4518 return;
4521 // Other cases are autogenerated.
4522 break;
4524 // FIXME: Remove this once the ANDI glue bug is fixed:
4525 case PPCISD::ANDIo_1_EQ_BIT:
4526 case PPCISD::ANDIo_1_GT_BIT: {
4527 if (!ANDIGlueBug)
4528 break;
4530 EVT InVT = N->getOperand(0).getValueType();
4531 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
4532 "Invalid input type for ANDIo_1_EQ_BIT");
4534 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
4535 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
4536 N->getOperand(0),
4537 CurDAG->getTargetConstant(1, dl, InVT)),
4539 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
4540 SDValue SRIdxVal =
4541 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
4542 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
4544 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
4545 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
4546 return;
4548 case ISD::SELECT_CC: {
4549 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4550 EVT PtrVT =
4551 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4552 bool isPPC64 = (PtrVT == MVT::i64);
4554 // If this is a select of i1 operands, we'll pattern match it.
4555 if (PPCSubTarget->useCRBits() &&
4556 N->getOperand(0).getValueType() == MVT::i1)
4557 break;
4559 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
4560 if (!isPPC64)
4561 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
4562 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
4563 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
4564 if (N1C->isNullValue() && N3C->isNullValue() &&
4565 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
4566 // FIXME: Implement this optzn for PPC64.
4567 N->getValueType(0) == MVT::i32) {
4568 SDNode *Tmp =
4569 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4570 N->getOperand(0), getI32Imm(~0U, dl));
4571 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
4572 N->getOperand(0), SDValue(Tmp, 1));
4573 return;
4576 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
4578 if (N->getValueType(0) == MVT::i1) {
4579 // An i1 select is: (c & t) | (!c & f).
4580 bool Inv;
4581 unsigned Idx = getCRIdxForSetCC(CC, Inv);
4583 unsigned SRI;
4584 switch (Idx) {
4585 default: llvm_unreachable("Invalid CC index");
4586 case 0: SRI = PPC::sub_lt; break;
4587 case 1: SRI = PPC::sub_gt; break;
4588 case 2: SRI = PPC::sub_eq; break;
4589 case 3: SRI = PPC::sub_un; break;
4592 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
4594 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
4595 CCBit, CCBit), 0);
4596 SDValue C = Inv ? NotCCBit : CCBit,
4597 NotC = Inv ? CCBit : NotCCBit;
4599 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4600 C, N->getOperand(2)), 0);
4601 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
4602 NotC, N->getOperand(3)), 0);
4604 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
4605 return;
4608 unsigned BROpc = getPredicateForSetCC(CC);
4610 unsigned SelectCCOp;
4611 if (N->getValueType(0) == MVT::i32)
4612 SelectCCOp = PPC::SELECT_CC_I4;
4613 else if (N->getValueType(0) == MVT::i64)
4614 SelectCCOp = PPC::SELECT_CC_I8;
4615 else if (N->getValueType(0) == MVT::f32) {
4616 if (PPCSubTarget->hasP8Vector())
4617 SelectCCOp = PPC::SELECT_CC_VSSRC;
4618 else if (PPCSubTarget->hasSPE())
4619 SelectCCOp = PPC::SELECT_CC_SPE4;
4620 else
4621 SelectCCOp = PPC::SELECT_CC_F4;
4622 } else if (N->getValueType(0) == MVT::f64) {
4623 if (PPCSubTarget->hasVSX())
4624 SelectCCOp = PPC::SELECT_CC_VSFRC;
4625 else if (PPCSubTarget->hasSPE())
4626 SelectCCOp = PPC::SELECT_CC_SPE;
4627 else
4628 SelectCCOp = PPC::SELECT_CC_F8;
4629 } else if (N->getValueType(0) == MVT::f128)
4630 SelectCCOp = PPC::SELECT_CC_F16;
4631 else if (PPCSubTarget->hasSPE())
4632 SelectCCOp = PPC::SELECT_CC_SPE;
4633 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
4634 SelectCCOp = PPC::SELECT_CC_QFRC;
4635 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
4636 SelectCCOp = PPC::SELECT_CC_QSRC;
4637 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
4638 SelectCCOp = PPC::SELECT_CC_QBRC;
4639 else if (N->getValueType(0) == MVT::v2f64 ||
4640 N->getValueType(0) == MVT::v2i64)
4641 SelectCCOp = PPC::SELECT_CC_VSRC;
4642 else
4643 SelectCCOp = PPC::SELECT_CC_VRRC;
4645 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
4646 getI32Imm(BROpc, dl) };
4647 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
4648 return;
4650 case ISD::VECTOR_SHUFFLE:
4651 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
4652 N->getValueType(0) == MVT::v2i64)) {
4653 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4655 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
4656 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
4657 unsigned DM[2];
4659 for (int i = 0; i < 2; ++i)
4660 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
4661 DM[i] = 0;
4662 else
4663 DM[i] = 1;
4665 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
4666 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4667 isa<LoadSDNode>(Op1.getOperand(0))) {
4668 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
4669 SDValue Base, Offset;
4671 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
4672 (LD->getMemoryVT() == MVT::f64 ||
4673 LD->getMemoryVT() == MVT::i64) &&
4674 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
4675 SDValue Chain = LD->getChain();
4676 SDValue Ops[] = { Base, Offset, Chain };
4677 MachineMemOperand *MemOp = LD->getMemOperand();
4678 SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
4679 N->getValueType(0), Ops);
4680 CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
4681 return;
4685 // For little endian, we must swap the input operands and adjust
4686 // the mask elements (reverse and invert them).
4687 if (PPCSubTarget->isLittleEndian()) {
4688 std::swap(Op1, Op2);
4689 unsigned tmp = DM[0];
4690 DM[0] = 1 - DM[1];
4691 DM[1] = 1 - tmp;
4694 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
4695 MVT::i32);
4696 SDValue Ops[] = { Op1, Op2, DMV };
4697 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
4698 return;
4701 break;
4702 case PPCISD::BDNZ:
4703 case PPCISD::BDZ: {
4704 bool IsPPC64 = PPCSubTarget->isPPC64();
4705 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
4706 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
4707 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
4708 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
4709 MVT::Other, Ops);
4710 return;
4712 case PPCISD::COND_BRANCH: {
4713 // Op #0 is the Chain.
4714 // Op #1 is the PPC::PRED_* number.
4715 // Op #2 is the CR#
4716 // Op #3 is the Dest MBB
4717 // Op #4 is the Flag.
4718 // Prevent PPC::PRED_* from being selected into LI.
4719 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
4720 if (EnableBranchHint)
4721 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
4723 SDValue Pred = getI32Imm(PCC, dl);
4724 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
4725 N->getOperand(0), N->getOperand(4) };
4726 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4727 return;
4729 case ISD::BR_CC: {
4730 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4731 unsigned PCC = getPredicateForSetCC(CC);
4733 if (N->getOperand(2).getValueType() == MVT::i1) {
4734 unsigned Opc;
4735 bool Swap;
4736 switch (PCC) {
4737 default: llvm_unreachable("Unexpected Boolean-operand predicate");
4738 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
4739 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
4740 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
4741 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
4742 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
4743 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
4746 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
4747 N->getOperand(Swap ? 3 : 2),
4748 N->getOperand(Swap ? 2 : 3)), 0);
4749 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
4750 N->getOperand(0));
4751 return;
4754 if (EnableBranchHint)
4755 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
4757 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
4758 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
4759 N->getOperand(4), N->getOperand(0) };
4760 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4761 return;
4763 case ISD::BRIND: {
4764 // FIXME: Should custom lower this.
4765 SDValue Chain = N->getOperand(0);
4766 SDValue Target = N->getOperand(1);
4767 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
4768 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
4769 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
4770 Chain), 0);
4771 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
4772 return;
4774 case PPCISD::TOC_ENTRY: {
4775 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
4776 "Only supported for 64-bit ABI and 32-bit SVR4");
4777 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
4778 SDValue GA = N->getOperand(0);
4779 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
4780 N->getOperand(1));
4781 transferMemOperands(N, MN);
4782 ReplaceNode(N, MN);
4783 return;
4786 // For medium and large code model, we generate two instructions as
4787 // described below. Otherwise we allow SelectCodeCommon to handle this,
4788 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
4789 CodeModel::Model CModel = TM.getCodeModel();
4790 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
4791 break;
4793 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
4794 // If it must be toc-referenced according to PPCSubTarget, we generate:
4795 // LDtocL(@sym, ADDIStocHA(%x2, @sym))
4796 // Otherwise we generate:
4797 // ADDItocL(ADDIStocHA(%x2, @sym), @sym)
4798 SDValue GA = N->getOperand(0);
4799 SDValue TOCbase = N->getOperand(1);
4800 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
4801 TOCbase, GA);
4803 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
4804 CModel == CodeModel::Large) {
4805 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
4806 SDValue(Tmp, 0));
4807 transferMemOperands(N, MN);
4808 ReplaceNode(N, MN);
4809 return;
4812 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
4813 const GlobalValue *GV = G->getGlobal();
4814 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
4815 if (GVFlags & PPCII::MO_NLP_FLAG) {
4816 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
4817 SDValue(Tmp, 0));
4818 transferMemOperands(N, MN);
4819 ReplaceNode(N, MN);
4820 return;
4824 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
4825 SDValue(Tmp, 0), GA));
4826 return;
4828 case PPCISD::PPC32_PICGOT:
4829 // Generate a PIC-safe GOT reference.
4830 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
4831 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
4832 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
4833 PPCLowering->getPointerTy(CurDAG->getDataLayout()),
4834 MVT::i32);
4835 return;
4837 case PPCISD::VADD_SPLAT: {
4838 // This expands into one of three sequences, depending on whether
4839 // the first operand is odd or even, positive or negative.
4840 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
4841 isa<ConstantSDNode>(N->getOperand(1)) &&
4842 "Invalid operand on VADD_SPLAT!");
4844 int Elt = N->getConstantOperandVal(0);
4845 int EltSize = N->getConstantOperandVal(1);
4846 unsigned Opc1, Opc2, Opc3;
4847 EVT VT;
4849 if (EltSize == 1) {
4850 Opc1 = PPC::VSPLTISB;
4851 Opc2 = PPC::VADDUBM;
4852 Opc3 = PPC::VSUBUBM;
4853 VT = MVT::v16i8;
4854 } else if (EltSize == 2) {
4855 Opc1 = PPC::VSPLTISH;
4856 Opc2 = PPC::VADDUHM;
4857 Opc3 = PPC::VSUBUHM;
4858 VT = MVT::v8i16;
4859 } else {
4860 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
4861 Opc1 = PPC::VSPLTISW;
4862 Opc2 = PPC::VADDUWM;
4863 Opc3 = PPC::VSUBUWM;
4864 VT = MVT::v4i32;
4867 if ((Elt & 1) == 0) {
4868 // Elt is even, in the range [-32,-18] + [16,30].
4870 // Convert: VADD_SPLAT elt, size
4871 // Into: tmp = VSPLTIS[BHW] elt
4872 // VADDU[BHW]M tmp, tmp
4873 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
4874 SDValue EltVal = getI32Imm(Elt >> 1, dl);
4875 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4876 SDValue TmpVal = SDValue(Tmp, 0);
4877 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
4878 return;
4879 } else if (Elt > 0) {
4880 // Elt is odd and positive, in the range [17,31].
4882 // Convert: VADD_SPLAT elt, size
4883 // Into: tmp1 = VSPLTIS[BHW] elt-16
4884 // tmp2 = VSPLTIS[BHW] -16
4885 // VSUBU[BHW]M tmp1, tmp2
4886 SDValue EltVal = getI32Imm(Elt - 16, dl);
4887 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4888 EltVal = getI32Imm(-16, dl);
4889 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4890 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
4891 SDValue(Tmp2, 0)));
4892 return;
4893 } else {
4894 // Elt is odd and negative, in the range [-31,-17].
4896 // Convert: VADD_SPLAT elt, size
4897 // Into: tmp1 = VSPLTIS[BHW] elt+16
4898 // tmp2 = VSPLTIS[BHW] -16
4899 // VADDU[BHW]M tmp1, tmp2
4900 SDValue EltVal = getI32Imm(Elt + 16, dl);
4901 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4902 EltVal = getI32Imm(-16, dl);
4903 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
4904 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
4905 SDValue(Tmp2, 0)));
4906 return;
4909 case ISD::ABS: {
4910 assert(PPCSubTarget->hasP9Vector() && "ABS is supported with P9 Vector");
4912 // For vector absolute difference, we use VABSDUW instruction of POWER9.
4913 // Since VABSDU instructions are for unsigned integers, we need adjustment
4914 // for signed integers.
4915 // For abs(sub(a, b)), we generate VABSDUW(a+0x80000000, b+0x80000000).
4916 // Otherwise, abs(sub(-1, 0)) returns 0xFFFFFFFF(=-1) instead of 1.
4917 // For abs(a), we generate VABSDUW(a+0x80000000, 0x80000000).
4918 EVT VecVT = N->getOperand(0).getValueType();
4919 SDNode *AbsOp = nullptr;
4920 unsigned AbsOpcode;
4922 if (VecVT == MVT::v4i32)
4923 AbsOpcode = PPC::VABSDUW;
4924 else if (VecVT == MVT::v8i16)
4925 AbsOpcode = PPC::VABSDUH;
4926 else if (VecVT == MVT::v16i8)
4927 AbsOpcode = PPC::VABSDUB;
4928 else
4929 llvm_unreachable("Unsupported vector data type for ISD::ABS");
4931 // Even for signed integers, we can skip adjustment if all values are
4932 // known to be positive (as signed integer) due to zero-extended inputs.
4933 if (N->getOperand(0).getOpcode() == ISD::SUB &&
4934 N->getOperand(0)->getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4935 N->getOperand(0)->getOperand(1).getOpcode() == ISD::ZERO_EXTEND) {
4936 AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
4937 SDValue(N->getOperand(0)->getOperand(0)),
4938 SDValue(N->getOperand(0)->getOperand(1)));
4939 ReplaceNode(N, AbsOp);
4940 return;
4942 if (N->getOperand(0).getOpcode() == ISD::SUB) {
4943 SDValue SubVal = N->getOperand(0);
4944 SDNode *Op0 = flipSignBit(SubVal->getOperand(0));
4945 SDNode *Op1 = flipSignBit(SubVal->getOperand(1));
4946 AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT,
4947 SDValue(Op0, 0), SDValue(Op1, 0));
4949 else {
4950 SDNode *Op1 = nullptr;
4951 SDNode *Op0 = flipSignBit(N->getOperand(0), &Op1);
4952 AbsOp = CurDAG->getMachineNode(AbsOpcode, dl, VecVT, SDValue(Op0, 0),
4953 SDValue(Op1, 0));
4955 ReplaceNode(N, AbsOp);
4956 return;
4960 SelectCode(N);
4963 // If the target supports the cmpb instruction, do the idiom recognition here.
4964 // We don't do this as a DAG combine because we don't want to do it as nodes
4965 // are being combined (because we might miss part of the eventual idiom). We
4966 // don't want to do it during instruction selection because we want to reuse
4967 // the logic for lowering the masking operations already part of the
4968 // instruction selector.
4969 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
4970 SDLoc dl(N);
4972 assert(N->getOpcode() == ISD::OR &&
4973 "Only OR nodes are supported for CMPB");
4975 SDValue Res;
4976 if (!PPCSubTarget->hasCMPB())
4977 return Res;
4979 if (N->getValueType(0) != MVT::i32 &&
4980 N->getValueType(0) != MVT::i64)
4981 return Res;
4983 EVT VT = N->getValueType(0);
4985 SDValue RHS, LHS;
4986 bool BytesFound[8] = {false, false, false, false, false, false, false, false};
4987 uint64_t Mask = 0, Alt = 0;
4989 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
4990 uint64_t &Mask, uint64_t &Alt,
4991 SDValue &LHS, SDValue &RHS) {
4992 if (O.getOpcode() != ISD::SELECT_CC)
4993 return false;
4994 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
4996 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
4997 !isa<ConstantSDNode>(O.getOperand(3)))
4998 return false;
5000 uint64_t PM = O.getConstantOperandVal(2);
5001 uint64_t PAlt = O.getConstantOperandVal(3);
5002 for (b = 0; b < 8; ++b) {
5003 uint64_t Mask = UINT64_C(0xFF) << (8*b);
5004 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
5005 break;
5008 if (b == 8)
5009 return false;
5010 Mask |= PM;
5011 Alt |= PAlt;
5013 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
5014 O.getConstantOperandVal(1) != 0) {
5015 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
5016 if (Op0.getOpcode() == ISD::TRUNCATE)
5017 Op0 = Op0.getOperand(0);
5018 if (Op1.getOpcode() == ISD::TRUNCATE)
5019 Op1 = Op1.getOperand(0);
5021 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
5022 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
5023 isa<ConstantSDNode>(Op0.getOperand(1))) {
5025 unsigned Bits = Op0.getValueSizeInBits();
5026 if (b != Bits/8-1)
5027 return false;
5028 if (Op0.getConstantOperandVal(1) != Bits-8)
5029 return false;
5031 LHS = Op0.getOperand(0);
5032 RHS = Op1.getOperand(0);
5033 return true;
5036 // When we have small integers (i16 to be specific), the form present
5037 // post-legalization uses SETULT in the SELECT_CC for the
5038 // higher-order byte, depending on the fact that the
5039 // even-higher-order bytes are known to all be zero, for example:
5040 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
5041 // (so when the second byte is the same, because all higher-order
5042 // bits from bytes 3 and 4 are known to be zero, the result of the
5043 // xor can be at most 255)
5044 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
5045 isa<ConstantSDNode>(O.getOperand(1))) {
5047 uint64_t ULim = O.getConstantOperandVal(1);
5048 if (ULim != (UINT64_C(1) << b*8))
5049 return false;
5051 // Now we need to make sure that the upper bytes are known to be
5052 // zero.
5053 unsigned Bits = Op0.getValueSizeInBits();
5054 if (!CurDAG->MaskedValueIsZero(
5055 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
5056 return false;
5058 LHS = Op0.getOperand(0);
5059 RHS = Op0.getOperand(1);
5060 return true;
5063 return false;
5066 if (CC != ISD::SETEQ)
5067 return false;
5069 SDValue Op = O.getOperand(0);
5070 if (Op.getOpcode() == ISD::AND) {
5071 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5072 return false;
5073 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
5074 return false;
5076 SDValue XOR = Op.getOperand(0);
5077 if (XOR.getOpcode() == ISD::TRUNCATE)
5078 XOR = XOR.getOperand(0);
5079 if (XOR.getOpcode() != ISD::XOR)
5080 return false;
5082 LHS = XOR.getOperand(0);
5083 RHS = XOR.getOperand(1);
5084 return true;
5085 } else if (Op.getOpcode() == ISD::SRL) {
5086 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5087 return false;
5088 unsigned Bits = Op.getValueSizeInBits();
5089 if (b != Bits/8-1)
5090 return false;
5091 if (Op.getConstantOperandVal(1) != Bits-8)
5092 return false;
5094 SDValue XOR = Op.getOperand(0);
5095 if (XOR.getOpcode() == ISD::TRUNCATE)
5096 XOR = XOR.getOperand(0);
5097 if (XOR.getOpcode() != ISD::XOR)
5098 return false;
5100 LHS = XOR.getOperand(0);
5101 RHS = XOR.getOperand(1);
5102 return true;
5105 return false;
5108 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
5109 while (!Queue.empty()) {
5110 SDValue V = Queue.pop_back_val();
5112 for (const SDValue &O : V.getNode()->ops()) {
5113 unsigned b;
5114 uint64_t M = 0, A = 0;
5115 SDValue OLHS, ORHS;
5116 if (O.getOpcode() == ISD::OR) {
5117 Queue.push_back(O);
5118 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
5119 if (!LHS) {
5120 LHS = OLHS;
5121 RHS = ORHS;
5122 BytesFound[b] = true;
5123 Mask |= M;
5124 Alt |= A;
5125 } else if ((LHS == ORHS && RHS == OLHS) ||
5126 (RHS == ORHS && LHS == OLHS)) {
5127 BytesFound[b] = true;
5128 Mask |= M;
5129 Alt |= A;
5130 } else {
5131 return Res;
5133 } else {
5134 return Res;
5139 unsigned LastB = 0, BCnt = 0;
5140 for (unsigned i = 0; i < 8; ++i)
5141 if (BytesFound[LastB]) {
5142 ++BCnt;
5143 LastB = i;
5146 if (!LastB || BCnt < 2)
5147 return Res;
5149 // Because we'll be zero-extending the output anyway if don't have a specific
5150 // value for each input byte (via the Mask), we can 'anyext' the inputs.
5151 if (LHS.getValueType() != VT) {
5152 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
5153 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
5156 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
5158 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
5159 if (NonTrivialMask && !Alt) {
5160 // Res = Mask & CMPB
5161 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5162 CurDAG->getConstant(Mask, dl, VT));
5163 } else if (Alt) {
5164 // Res = (CMPB & Mask) | (~CMPB & Alt)
5165 // Which, as suggested here:
5166 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
5167 // can be written as:
5168 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
5169 // useful because the (Alt ^ Mask) can be pre-computed.
5170 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
5171 CurDAG->getConstant(Mask ^ Alt, dl, VT));
5172 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
5173 CurDAG->getConstant(Alt, dl, VT));
5176 return Res;
5179 // When CR bit registers are enabled, an extension of an i1 variable to a i32
5180 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
5181 // involves constant materialization of a 0 or a 1 or both. If the result of
5182 // the extension is then operated upon by some operator that can be constant
5183 // folded with a constant 0 or 1, and that constant can be materialized using
5184 // only one instruction (like a zero or one), then we should fold in those
5185 // operations with the select.
5186 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
5187 if (!PPCSubTarget->useCRBits())
5188 return;
5190 if (N->getOpcode() != ISD::ZERO_EXTEND &&
5191 N->getOpcode() != ISD::SIGN_EXTEND &&
5192 N->getOpcode() != ISD::ANY_EXTEND)
5193 return;
5195 if (N->getOperand(0).getValueType() != MVT::i1)
5196 return;
5198 if (!N->hasOneUse())
5199 return;
5201 SDLoc dl(N);
5202 EVT VT = N->getValueType(0);
5203 SDValue Cond = N->getOperand(0);
5204 SDValue ConstTrue =
5205 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
5206 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
5208 do {
5209 SDNode *User = *N->use_begin();
5210 if (User->getNumOperands() != 2)
5211 break;
5213 auto TryFold = [this, N, User, dl](SDValue Val) {
5214 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
5215 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
5216 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
5218 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
5219 User->getValueType(0),
5220 O0.getNode(), O1.getNode());
5223 // FIXME: When the semantics of the interaction between select and undef
5224 // are clearly defined, it may turn out to be unnecessary to break here.
5225 SDValue TrueRes = TryFold(ConstTrue);
5226 if (!TrueRes || TrueRes.isUndef())
5227 break;
5228 SDValue FalseRes = TryFold(ConstFalse);
5229 if (!FalseRes || FalseRes.isUndef())
5230 break;
5232 // For us to materialize these using one instruction, we must be able to
5233 // represent them as signed 16-bit integers.
5234 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
5235 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
5236 if (!isInt<16>(True) || !isInt<16>(False))
5237 break;
5239 // We can replace User with a new SELECT node, and try again to see if we
5240 // can fold the select with its user.
5241 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
5242 N = User;
5243 ConstTrue = TrueRes;
5244 ConstFalse = FalseRes;
5245 } while (N->hasOneUse());
5248 void PPCDAGToDAGISel::PreprocessISelDAG() {
5249 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
5251 bool MadeChange = false;
5252 while (Position != CurDAG->allnodes_begin()) {
5253 SDNode *N = &*--Position;
5254 if (N->use_empty())
5255 continue;
5257 SDValue Res;
5258 switch (N->getOpcode()) {
5259 default: break;
5260 case ISD::OR:
5261 Res = combineToCMPB(N);
5262 break;
5265 if (!Res)
5266 foldBoolExts(Res, N);
5268 if (Res) {
5269 LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
5270 LLVM_DEBUG(N->dump(CurDAG));
5271 LLVM_DEBUG(dbgs() << "\nNew: ");
5272 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
5273 LLVM_DEBUG(dbgs() << "\n");
5275 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
5276 MadeChange = true;
5280 if (MadeChange)
5281 CurDAG->RemoveDeadNodes();
5284 /// PostprocessISelDAG - Perform some late peephole optimizations
5285 /// on the DAG representation.
5286 void PPCDAGToDAGISel::PostprocessISelDAG() {
5287 // Skip peepholes at -O0.
5288 if (TM.getOptLevel() == CodeGenOpt::None)
5289 return;
5291 PeepholePPC64();
5292 PeepholeCROps();
5293 PeepholePPC64ZExt();
5296 // Check if all users of this node will become isel where the second operand
5297 // is the constant zero. If this is so, and if we can negate the condition,
5298 // then we can flip the true and false operands. This will allow the zero to
5299 // be folded with the isel so that we don't need to materialize a register
5300 // containing zero.
5301 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
5302 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5303 UI != UE; ++UI) {
5304 SDNode *User = *UI;
5305 if (!User->isMachineOpcode())
5306 return false;
5307 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
5308 User->getMachineOpcode() != PPC::SELECT_I8)
5309 return false;
5311 SDNode *Op2 = User->getOperand(2).getNode();
5312 if (!Op2->isMachineOpcode())
5313 return false;
5315 if (Op2->getMachineOpcode() != PPC::LI &&
5316 Op2->getMachineOpcode() != PPC::LI8)
5317 return false;
5319 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
5320 if (!C)
5321 return false;
5323 if (!C->isNullValue())
5324 return false;
5327 return true;
5330 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
5331 SmallVector<SDNode *, 4> ToReplace;
5332 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5333 UI != UE; ++UI) {
5334 SDNode *User = *UI;
5335 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
5336 User->getMachineOpcode() == PPC::SELECT_I8) &&
5337 "Must have all select users");
5338 ToReplace.push_back(User);
5341 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
5342 UE = ToReplace.end(); UI != UE; ++UI) {
5343 SDNode *User = *UI;
5344 SDNode *ResNode =
5345 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
5346 User->getValueType(0), User->getOperand(0),
5347 User->getOperand(2),
5348 User->getOperand(1));
5350 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
5351 LLVM_DEBUG(User->dump(CurDAG));
5352 LLVM_DEBUG(dbgs() << "\nNew: ");
5353 LLVM_DEBUG(ResNode->dump(CurDAG));
5354 LLVM_DEBUG(dbgs() << "\n");
5356 ReplaceUses(User, ResNode);
5360 void PPCDAGToDAGISel::PeepholeCROps() {
5361 bool IsModified;
5362 do {
5363 IsModified = false;
5364 for (SDNode &Node : CurDAG->allnodes()) {
5365 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
5366 if (!MachineNode || MachineNode->use_empty())
5367 continue;
5368 SDNode *ResNode = MachineNode;
5370 bool Op1Set = false, Op1Unset = false,
5371 Op1Not = false,
5372 Op2Set = false, Op2Unset = false,
5373 Op2Not = false;
5375 unsigned Opcode = MachineNode->getMachineOpcode();
5376 switch (Opcode) {
5377 default: break;
5378 case PPC::CRAND:
5379 case PPC::CRNAND:
5380 case PPC::CROR:
5381 case PPC::CRXOR:
5382 case PPC::CRNOR:
5383 case PPC::CREQV:
5384 case PPC::CRANDC:
5385 case PPC::CRORC: {
5386 SDValue Op = MachineNode->getOperand(1);
5387 if (Op.isMachineOpcode()) {
5388 if (Op.getMachineOpcode() == PPC::CRSET)
5389 Op2Set = true;
5390 else if (Op.getMachineOpcode() == PPC::CRUNSET)
5391 Op2Unset = true;
5392 else if (Op.getMachineOpcode() == PPC::CRNOR &&
5393 Op.getOperand(0) == Op.getOperand(1))
5394 Op2Not = true;
5396 LLVM_FALLTHROUGH;
5398 case PPC::BC:
5399 case PPC::BCn:
5400 case PPC::SELECT_I4:
5401 case PPC::SELECT_I8:
5402 case PPC::SELECT_F4:
5403 case PPC::SELECT_F8:
5404 case PPC::SELECT_QFRC:
5405 case PPC::SELECT_QSRC:
5406 case PPC::SELECT_QBRC:
5407 case PPC::SELECT_SPE:
5408 case PPC::SELECT_SPE4:
5409 case PPC::SELECT_VRRC:
5410 case PPC::SELECT_VSFRC:
5411 case PPC::SELECT_VSSRC:
5412 case PPC::SELECT_VSRC: {
5413 SDValue Op = MachineNode->getOperand(0);
5414 if (Op.isMachineOpcode()) {
5415 if (Op.getMachineOpcode() == PPC::CRSET)
5416 Op1Set = true;
5417 else if (Op.getMachineOpcode() == PPC::CRUNSET)
5418 Op1Unset = true;
5419 else if (Op.getMachineOpcode() == PPC::CRNOR &&
5420 Op.getOperand(0) == Op.getOperand(1))
5421 Op1Not = true;
5424 break;
5427 bool SelectSwap = false;
5428 switch (Opcode) {
5429 default: break;
5430 case PPC::CRAND:
5431 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5432 // x & x = x
5433 ResNode = MachineNode->getOperand(0).getNode();
5434 else if (Op1Set)
5435 // 1 & y = y
5436 ResNode = MachineNode->getOperand(1).getNode();
5437 else if (Op2Set)
5438 // x & 1 = x
5439 ResNode = MachineNode->getOperand(0).getNode();
5440 else if (Op1Unset || Op2Unset)
5441 // x & 0 = 0 & y = 0
5442 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5443 MVT::i1);
5444 else if (Op1Not)
5445 // ~x & y = andc(y, x)
5446 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5447 MVT::i1, MachineNode->getOperand(1),
5448 MachineNode->getOperand(0).
5449 getOperand(0));
5450 else if (Op2Not)
5451 // x & ~y = andc(x, y)
5452 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5453 MVT::i1, MachineNode->getOperand(0),
5454 MachineNode->getOperand(1).
5455 getOperand(0));
5456 else if (AllUsersSelectZero(MachineNode)) {
5457 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5458 MVT::i1, MachineNode->getOperand(0),
5459 MachineNode->getOperand(1));
5460 SelectSwap = true;
5462 break;
5463 case PPC::CRNAND:
5464 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5465 // nand(x, x) -> nor(x, x)
5466 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5467 MVT::i1, MachineNode->getOperand(0),
5468 MachineNode->getOperand(0));
5469 else if (Op1Set)
5470 // nand(1, y) -> nor(y, y)
5471 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5472 MVT::i1, MachineNode->getOperand(1),
5473 MachineNode->getOperand(1));
5474 else if (Op2Set)
5475 // nand(x, 1) -> nor(x, x)
5476 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5477 MVT::i1, MachineNode->getOperand(0),
5478 MachineNode->getOperand(0));
5479 else if (Op1Unset || Op2Unset)
5480 // nand(x, 0) = nand(0, y) = 1
5481 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5482 MVT::i1);
5483 else if (Op1Not)
5484 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
5485 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5486 MVT::i1, MachineNode->getOperand(0).
5487 getOperand(0),
5488 MachineNode->getOperand(1));
5489 else if (Op2Not)
5490 // nand(x, ~y) = ~x | y = orc(y, x)
5491 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5492 MVT::i1, MachineNode->getOperand(1).
5493 getOperand(0),
5494 MachineNode->getOperand(0));
5495 else if (AllUsersSelectZero(MachineNode)) {
5496 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5497 MVT::i1, MachineNode->getOperand(0),
5498 MachineNode->getOperand(1));
5499 SelectSwap = true;
5501 break;
5502 case PPC::CROR:
5503 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5504 // x | x = x
5505 ResNode = MachineNode->getOperand(0).getNode();
5506 else if (Op1Set || Op2Set)
5507 // x | 1 = 1 | y = 1
5508 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5509 MVT::i1);
5510 else if (Op1Unset)
5511 // 0 | y = y
5512 ResNode = MachineNode->getOperand(1).getNode();
5513 else if (Op2Unset)
5514 // x | 0 = x
5515 ResNode = MachineNode->getOperand(0).getNode();
5516 else if (Op1Not)
5517 // ~x | y = orc(y, x)
5518 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5519 MVT::i1, MachineNode->getOperand(1),
5520 MachineNode->getOperand(0).
5521 getOperand(0));
5522 else if (Op2Not)
5523 // x | ~y = orc(x, y)
5524 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5525 MVT::i1, MachineNode->getOperand(0),
5526 MachineNode->getOperand(1).
5527 getOperand(0));
5528 else if (AllUsersSelectZero(MachineNode)) {
5529 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5530 MVT::i1, MachineNode->getOperand(0),
5531 MachineNode->getOperand(1));
5532 SelectSwap = true;
5534 break;
5535 case PPC::CRXOR:
5536 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5537 // xor(x, x) = 0
5538 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5539 MVT::i1);
5540 else if (Op1Set)
5541 // xor(1, y) -> nor(y, y)
5542 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5543 MVT::i1, MachineNode->getOperand(1),
5544 MachineNode->getOperand(1));
5545 else if (Op2Set)
5546 // xor(x, 1) -> nor(x, x)
5547 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5548 MVT::i1, MachineNode->getOperand(0),
5549 MachineNode->getOperand(0));
5550 else if (Op1Unset)
5551 // xor(0, y) = y
5552 ResNode = MachineNode->getOperand(1).getNode();
5553 else if (Op2Unset)
5554 // xor(x, 0) = x
5555 ResNode = MachineNode->getOperand(0).getNode();
5556 else if (Op1Not)
5557 // xor(~x, y) = eqv(x, y)
5558 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5559 MVT::i1, MachineNode->getOperand(0).
5560 getOperand(0),
5561 MachineNode->getOperand(1));
5562 else if (Op2Not)
5563 // xor(x, ~y) = eqv(x, y)
5564 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5565 MVT::i1, MachineNode->getOperand(0),
5566 MachineNode->getOperand(1).
5567 getOperand(0));
5568 else if (AllUsersSelectZero(MachineNode)) {
5569 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
5570 MVT::i1, MachineNode->getOperand(0),
5571 MachineNode->getOperand(1));
5572 SelectSwap = true;
5574 break;
5575 case PPC::CRNOR:
5576 if (Op1Set || Op2Set)
5577 // nor(1, y) -> 0
5578 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5579 MVT::i1);
5580 else if (Op1Unset)
5581 // nor(0, y) = ~y -> nor(y, y)
5582 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5583 MVT::i1, MachineNode->getOperand(1),
5584 MachineNode->getOperand(1));
5585 else if (Op2Unset)
5586 // nor(x, 0) = ~x
5587 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5588 MVT::i1, MachineNode->getOperand(0),
5589 MachineNode->getOperand(0));
5590 else if (Op1Not)
5591 // nor(~x, y) = andc(x, y)
5592 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5593 MVT::i1, MachineNode->getOperand(0).
5594 getOperand(0),
5595 MachineNode->getOperand(1));
5596 else if (Op2Not)
5597 // nor(x, ~y) = andc(y, x)
5598 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5599 MVT::i1, MachineNode->getOperand(1).
5600 getOperand(0),
5601 MachineNode->getOperand(0));
5602 else if (AllUsersSelectZero(MachineNode)) {
5603 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5604 MVT::i1, MachineNode->getOperand(0),
5605 MachineNode->getOperand(1));
5606 SelectSwap = true;
5608 break;
5609 case PPC::CREQV:
5610 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5611 // eqv(x, x) = 1
5612 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5613 MVT::i1);
5614 else if (Op1Set)
5615 // eqv(1, y) = y
5616 ResNode = MachineNode->getOperand(1).getNode();
5617 else if (Op2Set)
5618 // eqv(x, 1) = x
5619 ResNode = MachineNode->getOperand(0).getNode();
5620 else if (Op1Unset)
5621 // eqv(0, y) = ~y -> nor(y, y)
5622 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5623 MVT::i1, MachineNode->getOperand(1),
5624 MachineNode->getOperand(1));
5625 else if (Op2Unset)
5626 // eqv(x, 0) = ~x
5627 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5628 MVT::i1, MachineNode->getOperand(0),
5629 MachineNode->getOperand(0));
5630 else if (Op1Not)
5631 // eqv(~x, y) = xor(x, y)
5632 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5633 MVT::i1, MachineNode->getOperand(0).
5634 getOperand(0),
5635 MachineNode->getOperand(1));
5636 else if (Op2Not)
5637 // eqv(x, ~y) = xor(x, y)
5638 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5639 MVT::i1, MachineNode->getOperand(0),
5640 MachineNode->getOperand(1).
5641 getOperand(0));
5642 else if (AllUsersSelectZero(MachineNode)) {
5643 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
5644 MVT::i1, MachineNode->getOperand(0),
5645 MachineNode->getOperand(1));
5646 SelectSwap = true;
5648 break;
5649 case PPC::CRANDC:
5650 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5651 // andc(x, x) = 0
5652 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5653 MVT::i1);
5654 else if (Op1Set)
5655 // andc(1, y) = ~y
5656 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5657 MVT::i1, MachineNode->getOperand(1),
5658 MachineNode->getOperand(1));
5659 else if (Op1Unset || Op2Set)
5660 // andc(0, y) = andc(x, 1) = 0
5661 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
5662 MVT::i1);
5663 else if (Op2Unset)
5664 // andc(x, 0) = x
5665 ResNode = MachineNode->getOperand(0).getNode();
5666 else if (Op1Not)
5667 // andc(~x, y) = ~(x | y) = nor(x, y)
5668 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5669 MVT::i1, MachineNode->getOperand(0).
5670 getOperand(0),
5671 MachineNode->getOperand(1));
5672 else if (Op2Not)
5673 // andc(x, ~y) = x & y
5674 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
5675 MVT::i1, MachineNode->getOperand(0),
5676 MachineNode->getOperand(1).
5677 getOperand(0));
5678 else if (AllUsersSelectZero(MachineNode)) {
5679 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
5680 MVT::i1, MachineNode->getOperand(1),
5681 MachineNode->getOperand(0));
5682 SelectSwap = true;
5684 break;
5685 case PPC::CRORC:
5686 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
5687 // orc(x, x) = 1
5688 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5689 MVT::i1);
5690 else if (Op1Set || Op2Unset)
5691 // orc(1, y) = orc(x, 0) = 1
5692 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
5693 MVT::i1);
5694 else if (Op2Set)
5695 // orc(x, 1) = x
5696 ResNode = MachineNode->getOperand(0).getNode();
5697 else if (Op1Unset)
5698 // orc(0, y) = ~y
5699 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
5700 MVT::i1, MachineNode->getOperand(1),
5701 MachineNode->getOperand(1));
5702 else if (Op1Not)
5703 // orc(~x, y) = ~(x & y) = nand(x, y)
5704 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
5705 MVT::i1, MachineNode->getOperand(0).
5706 getOperand(0),
5707 MachineNode->getOperand(1));
5708 else if (Op2Not)
5709 // orc(x, ~y) = x | y
5710 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
5711 MVT::i1, MachineNode->getOperand(0),
5712 MachineNode->getOperand(1).
5713 getOperand(0));
5714 else if (AllUsersSelectZero(MachineNode)) {
5715 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
5716 MVT::i1, MachineNode->getOperand(1),
5717 MachineNode->getOperand(0));
5718 SelectSwap = true;
5720 break;
5721 case PPC::SELECT_I4:
5722 case PPC::SELECT_I8:
5723 case PPC::SELECT_F4:
5724 case PPC::SELECT_F8:
5725 case PPC::SELECT_QFRC:
5726 case PPC::SELECT_QSRC:
5727 case PPC::SELECT_QBRC:
5728 case PPC::SELECT_SPE:
5729 case PPC::SELECT_SPE4:
5730 case PPC::SELECT_VRRC:
5731 case PPC::SELECT_VSFRC:
5732 case PPC::SELECT_VSSRC:
5733 case PPC::SELECT_VSRC:
5734 if (Op1Set)
5735 ResNode = MachineNode->getOperand(1).getNode();
5736 else if (Op1Unset)
5737 ResNode = MachineNode->getOperand(2).getNode();
5738 else if (Op1Not)
5739 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
5740 SDLoc(MachineNode),
5741 MachineNode->getValueType(0),
5742 MachineNode->getOperand(0).
5743 getOperand(0),
5744 MachineNode->getOperand(2),
5745 MachineNode->getOperand(1));
5746 break;
5747 case PPC::BC:
5748 case PPC::BCn:
5749 if (Op1Not)
5750 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
5751 PPC::BC,
5752 SDLoc(MachineNode),
5753 MVT::Other,
5754 MachineNode->getOperand(0).
5755 getOperand(0),
5756 MachineNode->getOperand(1),
5757 MachineNode->getOperand(2));
5758 // FIXME: Handle Op1Set, Op1Unset here too.
5759 break;
5762 // If we're inverting this node because it is used only by selects that
5763 // we'd like to swap, then swap the selects before the node replacement.
5764 if (SelectSwap)
5765 SwapAllSelectUsers(MachineNode);
5767 if (ResNode != MachineNode) {
5768 LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
5769 LLVM_DEBUG(MachineNode->dump(CurDAG));
5770 LLVM_DEBUG(dbgs() << "\nNew: ");
5771 LLVM_DEBUG(ResNode->dump(CurDAG));
5772 LLVM_DEBUG(dbgs() << "\n");
5774 ReplaceUses(MachineNode, ResNode);
5775 IsModified = true;
5778 if (IsModified)
5779 CurDAG->RemoveDeadNodes();
5780 } while (IsModified);
5783 // Gather the set of 32-bit operations that are known to have their
5784 // higher-order 32 bits zero, where ToPromote contains all such operations.
5785 static bool PeepholePPC64ZExtGather(SDValue Op32,
5786 SmallPtrSetImpl<SDNode *> &ToPromote) {
5787 if (!Op32.isMachineOpcode())
5788 return false;
5790 // First, check for the "frontier" instructions (those that will clear the
5791 // higher-order 32 bits.
5793 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
5794 // around. If it does not, then these instructions will clear the
5795 // higher-order bits.
5796 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
5797 Op32.getMachineOpcode() == PPC::RLWNM) &&
5798 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
5799 ToPromote.insert(Op32.getNode());
5800 return true;
5803 // SLW and SRW always clear the higher-order bits.
5804 if (Op32.getMachineOpcode() == PPC::SLW ||
5805 Op32.getMachineOpcode() == PPC::SRW) {
5806 ToPromote.insert(Op32.getNode());
5807 return true;
5810 // For LI and LIS, we need the immediate to be positive (so that it is not
5811 // sign extended).
5812 if (Op32.getMachineOpcode() == PPC::LI ||
5813 Op32.getMachineOpcode() == PPC::LIS) {
5814 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
5815 return false;
5817 ToPromote.insert(Op32.getNode());
5818 return true;
5821 // LHBRX and LWBRX always clear the higher-order bits.
5822 if (Op32.getMachineOpcode() == PPC::LHBRX ||
5823 Op32.getMachineOpcode() == PPC::LWBRX) {
5824 ToPromote.insert(Op32.getNode());
5825 return true;
5828 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
5829 if (Op32.getMachineOpcode() == PPC::CNTLZW ||
5830 Op32.getMachineOpcode() == PPC::CNTTZW) {
5831 ToPromote.insert(Op32.getNode());
5832 return true;
5835 // Next, check for those instructions we can look through.
5837 // Assuming the mask does not wrap around, then the higher-order bits are
5838 // taken directly from the first operand.
5839 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
5840 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
5841 SmallPtrSet<SDNode *, 16> ToPromote1;
5842 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
5843 return false;
5845 ToPromote.insert(Op32.getNode());
5846 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5847 return true;
5850 // For OR, the higher-order bits are zero if that is true for both operands.
5851 // For SELECT_I4, the same is true (but the relevant operand numbers are
5852 // shifted by 1).
5853 if (Op32.getMachineOpcode() == PPC::OR ||
5854 Op32.getMachineOpcode() == PPC::SELECT_I4) {
5855 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
5856 SmallPtrSet<SDNode *, 16> ToPromote1;
5857 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
5858 return false;
5859 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
5860 return false;
5862 ToPromote.insert(Op32.getNode());
5863 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5864 return true;
5867 // For ORI and ORIS, we need the higher-order bits of the first operand to be
5868 // zero, and also for the constant to be positive (so that it is not sign
5869 // extended).
5870 if (Op32.getMachineOpcode() == PPC::ORI ||
5871 Op32.getMachineOpcode() == PPC::ORIS) {
5872 SmallPtrSet<SDNode *, 16> ToPromote1;
5873 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
5874 return false;
5875 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
5876 return false;
5878 ToPromote.insert(Op32.getNode());
5879 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5880 return true;
5883 // The higher-order bits of AND are zero if that is true for at least one of
5884 // the operands.
5885 if (Op32.getMachineOpcode() == PPC::AND) {
5886 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
5887 bool Op0OK =
5888 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
5889 bool Op1OK =
5890 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
5891 if (!Op0OK && !Op1OK)
5892 return false;
5894 ToPromote.insert(Op32.getNode());
5896 if (Op0OK)
5897 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5899 if (Op1OK)
5900 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
5902 return true;
5905 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
5906 // of the first operand, or if the second operand is positive (so that it is
5907 // not sign extended).
5908 if (Op32.getMachineOpcode() == PPC::ANDIo ||
5909 Op32.getMachineOpcode() == PPC::ANDISo) {
5910 SmallPtrSet<SDNode *, 16> ToPromote1;
5911 bool Op0OK =
5912 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
5913 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
5914 if (!Op0OK && !Op1OK)
5915 return false;
5917 ToPromote.insert(Op32.getNode());
5919 if (Op0OK)
5920 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
5922 return true;
5925 return false;
5928 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
5929 if (!PPCSubTarget->isPPC64())
5930 return;
5932 // When we zero-extend from i32 to i64, we use a pattern like this:
5933 // def : Pat<(i64 (zext i32:$in)),
5934 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
5935 // 0, 32)>;
5936 // There are several 32-bit shift/rotate instructions, however, that will
5937 // clear the higher-order bits of their output, rendering the RLDICL
5938 // unnecessary. When that happens, we remove it here, and redefine the
5939 // relevant 32-bit operation to be a 64-bit operation.
5941 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
5943 bool MadeChange = false;
5944 while (Position != CurDAG->allnodes_begin()) {
5945 SDNode *N = &*--Position;
5946 // Skip dead nodes and any non-machine opcodes.
5947 if (N->use_empty() || !N->isMachineOpcode())
5948 continue;
5950 if (N->getMachineOpcode() != PPC::RLDICL)
5951 continue;
5953 if (N->getConstantOperandVal(1) != 0 ||
5954 N->getConstantOperandVal(2) != 32)
5955 continue;
5957 SDValue ISR = N->getOperand(0);
5958 if (!ISR.isMachineOpcode() ||
5959 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
5960 continue;
5962 if (!ISR.hasOneUse())
5963 continue;
5965 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
5966 continue;
5968 SDValue IDef = ISR.getOperand(0);
5969 if (!IDef.isMachineOpcode() ||
5970 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
5971 continue;
5973 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
5974 // can get rid of it.
5976 SDValue Op32 = ISR->getOperand(1);
5977 if (!Op32.isMachineOpcode())
5978 continue;
5980 // There are some 32-bit instructions that always clear the high-order 32
5981 // bits, there are also some instructions (like AND) that we can look
5982 // through.
5983 SmallPtrSet<SDNode *, 16> ToPromote;
5984 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
5985 continue;
5987 // If the ToPromote set contains nodes that have uses outside of the set
5988 // (except for the original INSERT_SUBREG), then abort the transformation.
5989 bool OutsideUse = false;
5990 for (SDNode *PN : ToPromote) {
5991 for (SDNode *UN : PN->uses()) {
5992 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
5993 OutsideUse = true;
5994 break;
5998 if (OutsideUse)
5999 break;
6001 if (OutsideUse)
6002 continue;
6004 MadeChange = true;
6006 // We now know that this zero extension can be removed by promoting to
6007 // nodes in ToPromote to 64-bit operations, where for operations in the
6008 // frontier of the set, we need to insert INSERT_SUBREGs for their
6009 // operands.
6010 for (SDNode *PN : ToPromote) {
6011 unsigned NewOpcode;
6012 switch (PN->getMachineOpcode()) {
6013 default:
6014 llvm_unreachable("Don't know the 64-bit variant of this instruction");
6015 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
6016 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
6017 case PPC::SLW: NewOpcode = PPC::SLW8; break;
6018 case PPC::SRW: NewOpcode = PPC::SRW8; break;
6019 case PPC::LI: NewOpcode = PPC::LI8; break;
6020 case PPC::LIS: NewOpcode = PPC::LIS8; break;
6021 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
6022 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
6023 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
6024 case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
6025 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
6026 case PPC::OR: NewOpcode = PPC::OR8; break;
6027 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
6028 case PPC::ORI: NewOpcode = PPC::ORI8; break;
6029 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
6030 case PPC::AND: NewOpcode = PPC::AND8; break;
6031 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
6032 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
6035 // Note: During the replacement process, the nodes will be in an
6036 // inconsistent state (some instructions will have operands with values
6037 // of the wrong type). Once done, however, everything should be right
6038 // again.
6040 SmallVector<SDValue, 4> Ops;
6041 for (const SDValue &V : PN->ops()) {
6042 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
6043 !isa<ConstantSDNode>(V)) {
6044 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
6045 SDNode *ReplOp =
6046 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
6047 ISR.getNode()->getVTList(), ReplOpOps);
6048 Ops.push_back(SDValue(ReplOp, 0));
6049 } else {
6050 Ops.push_back(V);
6054 // Because all to-be-promoted nodes only have users that are other
6055 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
6056 // the i32 result value type with i64.
6058 SmallVector<EVT, 2> NewVTs;
6059 SDVTList VTs = PN->getVTList();
6060 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
6061 if (VTs.VTs[i] == MVT::i32)
6062 NewVTs.push_back(MVT::i64);
6063 else
6064 NewVTs.push_back(VTs.VTs[i]);
6066 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
6067 LLVM_DEBUG(PN->dump(CurDAG));
6069 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
6071 LLVM_DEBUG(dbgs() << "\nNew: ");
6072 LLVM_DEBUG(PN->dump(CurDAG));
6073 LLVM_DEBUG(dbgs() << "\n");
6076 // Now we replace the original zero extend and its associated INSERT_SUBREG
6077 // with the value feeding the INSERT_SUBREG (which has now been promoted to
6078 // return an i64).
6080 LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
6081 LLVM_DEBUG(N->dump(CurDAG));
6082 LLVM_DEBUG(dbgs() << "\nNew: ");
6083 LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
6084 LLVM_DEBUG(dbgs() << "\n");
6086 ReplaceUses(N, Op32.getNode());
6089 if (MadeChange)
6090 CurDAG->RemoveDeadNodes();
6093 void PPCDAGToDAGISel::PeepholePPC64() {
6094 // These optimizations are currently supported only for 64-bit SVR4.
6095 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
6096 return;
6098 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6100 while (Position != CurDAG->allnodes_begin()) {
6101 SDNode *N = &*--Position;
6102 // Skip dead nodes and any non-machine opcodes.
6103 if (N->use_empty() || !N->isMachineOpcode())
6104 continue;
6106 unsigned FirstOp;
6107 unsigned StorageOpcode = N->getMachineOpcode();
6108 bool RequiresMod4Offset = false;
6110 switch (StorageOpcode) {
6111 default: continue;
6113 case PPC::LWA:
6114 case PPC::LD:
6115 case PPC::DFLOADf64:
6116 case PPC::DFLOADf32:
6117 RequiresMod4Offset = true;
6118 LLVM_FALLTHROUGH;
6119 case PPC::LBZ:
6120 case PPC::LBZ8:
6121 case PPC::LFD:
6122 case PPC::LFS:
6123 case PPC::LHA:
6124 case PPC::LHA8:
6125 case PPC::LHZ:
6126 case PPC::LHZ8:
6127 case PPC::LWZ:
6128 case PPC::LWZ8:
6129 FirstOp = 0;
6130 break;
6132 case PPC::STD:
6133 case PPC::DFSTOREf64:
6134 case PPC::DFSTOREf32:
6135 RequiresMod4Offset = true;
6136 LLVM_FALLTHROUGH;
6137 case PPC::STB:
6138 case PPC::STB8:
6139 case PPC::STFD:
6140 case PPC::STFS:
6141 case PPC::STH:
6142 case PPC::STH8:
6143 case PPC::STW:
6144 case PPC::STW8:
6145 FirstOp = 1;
6146 break;
6149 // If this is a load or store with a zero offset, or within the alignment,
6150 // we may be able to fold an add-immediate into the memory operation.
6151 // The check against alignment is below, as it can't occur until we check
6152 // the arguments to N
6153 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
6154 continue;
6156 SDValue Base = N->getOperand(FirstOp + 1);
6157 if (!Base.isMachineOpcode())
6158 continue;
6160 unsigned Flags = 0;
6161 bool ReplaceFlags = true;
6163 // When the feeding operation is an add-immediate of some sort,
6164 // determine whether we need to add relocation information to the
6165 // target flags on the immediate operand when we fold it into the
6166 // load instruction.
6168 // For something like ADDItocL, the relocation information is
6169 // inferred from the opcode; when we process it in the AsmPrinter,
6170 // we add the necessary relocation there. A load, though, can receive
6171 // relocation from various flavors of ADDIxxx, so we need to carry
6172 // the relocation information in the target flags.
6173 switch (Base.getMachineOpcode()) {
6174 default: continue;
6176 case PPC::ADDI8:
6177 case PPC::ADDI:
6178 // In some cases (such as TLS) the relocation information
6179 // is already in place on the operand, so copying the operand
6180 // is sufficient.
6181 ReplaceFlags = false;
6182 // For these cases, the immediate may not be divisible by 4, in
6183 // which case the fold is illegal for DS-form instructions. (The
6184 // other cases provide aligned addresses and are always safe.)
6185 if (RequiresMod4Offset &&
6186 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
6187 Base.getConstantOperandVal(1) % 4 != 0))
6188 continue;
6189 break;
6190 case PPC::ADDIdtprelL:
6191 Flags = PPCII::MO_DTPREL_LO;
6192 break;
6193 case PPC::ADDItlsldL:
6194 Flags = PPCII::MO_TLSLD_LO;
6195 break;
6196 case PPC::ADDItocL:
6197 Flags = PPCII::MO_TOC_LO;
6198 break;
6201 SDValue ImmOpnd = Base.getOperand(1);
6203 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
6204 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
6205 // we might have needed different @ha relocation values for the offset
6206 // pointers).
6207 int MaxDisplacement = 7;
6208 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6209 const GlobalValue *GV = GA->getGlobal();
6210 MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
6213 bool UpdateHBase = false;
6214 SDValue HBase = Base.getOperand(0);
6216 int Offset = N->getConstantOperandVal(FirstOp);
6217 if (ReplaceFlags) {
6218 if (Offset < 0 || Offset > MaxDisplacement) {
6219 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
6220 // one use, then we can do this for any offset, we just need to also
6221 // update the offset (i.e. the symbol addend) on the addis also.
6222 if (Base.getMachineOpcode() != PPC::ADDItocL)
6223 continue;
6225 if (!HBase.isMachineOpcode() ||
6226 HBase.getMachineOpcode() != PPC::ADDIStocHA)
6227 continue;
6229 if (!Base.hasOneUse() || !HBase.hasOneUse())
6230 continue;
6232 SDValue HImmOpnd = HBase.getOperand(1);
6233 if (HImmOpnd != ImmOpnd)
6234 continue;
6236 UpdateHBase = true;
6238 } else {
6239 // If we're directly folding the addend from an addi instruction, then:
6240 // 1. In general, the offset on the memory access must be zero.
6241 // 2. If the addend is a constant, then it can be combined with a
6242 // non-zero offset, but only if the result meets the encoding
6243 // requirements.
6244 if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
6245 Offset += C->getSExtValue();
6247 if (RequiresMod4Offset && (Offset % 4) != 0)
6248 continue;
6250 if (!isInt<16>(Offset))
6251 continue;
6253 ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
6254 ImmOpnd.getValueType());
6255 } else if (Offset != 0) {
6256 continue;
6260 // We found an opportunity. Reverse the operands from the add
6261 // immediate and substitute them into the load or store. If
6262 // needed, update the target flags for the immediate operand to
6263 // reflect the necessary relocation information.
6264 LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
6265 LLVM_DEBUG(Base->dump(CurDAG));
6266 LLVM_DEBUG(dbgs() << "\nN: ");
6267 LLVM_DEBUG(N->dump(CurDAG));
6268 LLVM_DEBUG(dbgs() << "\n");
6270 // If the relocation information isn't already present on the
6271 // immediate operand, add it now.
6272 if (ReplaceFlags) {
6273 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
6274 SDLoc dl(GA);
6275 const GlobalValue *GV = GA->getGlobal();
6276 // We can't perform this optimization for data whose alignment
6277 // is insufficient for the instruction encoding.
6278 if (GV->getAlignment() < 4 &&
6279 (RequiresMod4Offset || (Offset % 4) != 0)) {
6280 LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
6281 continue;
6283 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
6284 } else if (ConstantPoolSDNode *CP =
6285 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
6286 const Constant *C = CP->getConstVal();
6287 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
6288 CP->getAlignment(),
6289 Offset, Flags);
6293 if (FirstOp == 1) // Store
6294 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
6295 Base.getOperand(0), N->getOperand(3));
6296 else // Load
6297 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
6298 N->getOperand(2));
6300 if (UpdateHBase)
6301 (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
6302 ImmOpnd);
6304 // The add-immediate may now be dead, in which case remove it.
6305 if (Base.getNode()->use_empty())
6306 CurDAG->RemoveDeadNode(Base.getNode());
6310 /// createPPCISelDag - This pass converts a legalized DAG into a
6311 /// PowerPC-specific DAG, ready for instruction scheduling.
6313 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
6314 CodeGenOpt::Level OptLevel) {
6315 return new PPCDAGToDAGISel(TM, OptLevel);