1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/MachineValueType.h"
40 // When adding a NEW PPCISD node please add it to the correct position in
41 // the enum. The order of elements in this enum matters!
42 // Values that are added after this entry:
43 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44 // are considerd memory opcodes and are treated differently than entries
45 // that come before it. For example, ADD or MUL should be placed before
46 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
48 enum NodeType
: unsigned {
49 // Start the numbering where the builtin ops and target ops leave off.
50 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
52 /// FSEL - Traditional three-operand fsel node.
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
63 FCFIDU
, FCFIDS
, FCFIDUS
,
65 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66 /// operand, producing an f64 value containing the integer representation
70 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71 /// unsigned integers with round toward zero.
74 /// Floating-point-to-interger conversion instructions
75 FP_TO_UINT_IN_VSR
, FP_TO_SINT_IN_VSR
,
77 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
78 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
81 /// SExtVElems, takes an input vector of a smaller type and sign
82 /// extends to an output vector of a larger type.
85 /// Reciprocal estimate instructions (unary FP ops).
88 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
89 // three v4f32 operands and producing a v4f32 result.
92 /// VPERM - The PPC VPERM Instruction.
96 /// XXSPLT - The PPC VSX splat instructions
100 /// VECINSERT - The PPC vector insert instruction
104 /// XXREVERSE - The PPC VSX reverse instruction
108 /// VECSHL - The PPC vector shift left instruction
112 /// XXPERMDI - The PPC XXPERMDI instruction
116 /// The CMPB instruction (takes two operands of i32 or i64).
119 /// Hi/Lo - These represent the high and low 16-bit parts of a global
120 /// address respectively. These nodes have two operands, the first of
121 /// which must be a TargetGlobalAddress, and the second of which must be a
122 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
123 /// though these are usually folded into other nodes.
126 /// The following two target-specific nodes are used for calls through
127 /// function pointers in the 64-bit SVR4 ABI.
129 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
130 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
131 /// compute an allocation on the stack.
134 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
135 /// compute an offset from native SP to the address of the most recent
139 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
140 /// at function entry, used for PIC code.
143 /// These nodes represent PPC shifts.
145 /// For scalar types, only the last `n + 1` bits of the shift amounts
146 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
147 /// for exact behaviors.
149 /// For vector types, only the last n bits are used. See vsld.
152 /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
153 /// word and shift left immediate.
156 /// The combination of sra[wd]i and addze used to implemented signed
157 /// integer division by a power of 2. The first operand is the dividend,
158 /// and the second is the constant shift amount (representing the
162 /// CALL - A direct function call.
163 /// CALL_NOP is a call with the special NOP which follows 64-bit
167 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
168 /// MTCTR instruction.
171 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
172 /// BCTRL instruction.
175 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
176 /// instruction and the TOC reload required on SVR4 PPC64.
179 /// Return with a flag operand, matched by 'blr'
182 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
183 /// This copies the bits corresponding to the specified CRREG into the
184 /// resultant GPR. Bits corresponding to other CR regs are undefined.
187 /// Direct move from a VSX register to a GPR
190 /// Direct move from a GPR to a VSX register (algebraic)
193 /// Direct move from a GPR to a VSX register (zero)
196 /// Direct move of 2 consective GPR to a VSX register.
199 /// Extract a subvector from signed integer vector and convert to FP.
200 /// It is primarily used to convert a (widened) illegal integer vector
201 /// type to a legal floating point vector type.
202 /// For example v2i32 -> widened to v4i32 -> v2f64
205 /// Extract a subvector from unsigned integer vector and convert to FP.
206 /// As with SINT_VEC_TO_FP, used for converting illegal types.
209 // FIXME: Remove these once the ANDI glue bug is fixed:
210 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
211 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
212 /// implement truncation of i32 or i64 to i1.
213 ANDIo_1_EQ_BIT
, ANDIo_1_GT_BIT
,
215 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
216 // target (returns (Lo, Hi)). It takes a chain operand.
219 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
222 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
225 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
226 /// instructions. For lack of better number, we use the opcode number
227 /// encoding for the OPC field to identify the compare. For example, 838
231 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
232 /// altivec VCMP*o instructions. For lack of better number, we use the
233 /// opcode number encoding for the OPC field to identify the compare. For
234 /// example, 838 is VCMPGTSH.
237 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
238 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
239 /// condition register to branch on, OPC is the branch opcode to use (e.g.
240 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
241 /// an optional input flag argument.
244 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
248 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
249 /// towards zero. Used only as part of the long double-to-int
250 /// conversion sequence.
253 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
256 /// TC_RETURN - A tail call return.
258 /// operand #1 callee (register or absolute)
259 /// operand #2 stack adjustment
260 /// operand #3 optional in flag
263 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
267 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
271 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
272 /// local dynamic TLS on PPC32.
275 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
276 /// TLS model, produces an ADDIS8 instruction that adds the GOT
277 /// base to sym\@got\@tprel\@ha.
280 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
281 /// TLS model, produces a LD instruction with base register G8RReg
282 /// and offset sym\@got\@tprel\@l. This completes the addition that
283 /// finds the offset of "sym" relative to the thread pointer.
286 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
287 /// model, produces an ADD instruction that adds the contents of
288 /// G8RReg to the thread pointer. Symbol contains a relocation
289 /// sym\@tls which is to be replaced by the thread pointer and
290 /// identifies to the linker that the instruction is part of a
294 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
295 /// model, produces an ADDIS8 instruction that adds the GOT base
296 /// register to sym\@got\@tlsgd\@ha.
299 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
300 /// model, produces an ADDI8 instruction that adds G8RReg to
301 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
302 /// ADDIS_TLSGD_L_ADDR until after register assignment.
305 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
306 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
307 /// ADDIS_TLSGD_L_ADDR until after register assignment.
310 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
311 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
312 /// register assignment.
315 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
316 /// model, produces an ADDIS8 instruction that adds the GOT base
317 /// register to sym\@got\@tlsld\@ha.
320 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
321 /// model, produces an ADDI8 instruction that adds G8RReg to
322 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
323 /// ADDIS_TLSLD_L_ADDR until after register assignment.
326 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
327 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
328 /// ADDIS_TLSLD_L_ADDR until after register assignment.
331 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
332 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
333 /// following register assignment.
336 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
337 /// model, produces an ADDIS8 instruction that adds X3 to
341 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
342 /// model, produces an ADDI8 instruction that adds G8RReg to
343 /// sym\@got\@dtprel\@l.
346 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
347 /// during instruction selection to optimize a BUILD_VECTOR into
348 /// operations on splats. This is necessary to avoid losing these
349 /// optimizations due to constant folding.
352 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
353 /// operand identifies the operating system entry point.
356 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
359 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
360 /// history rolling buffer entry.
363 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
366 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
367 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
368 /// or stxvd2x instruction. The chain is necessary because the
369 /// sequence replaces a load and needs to provide the same number
373 /// An SDNode for swaps that are not associated with any loads/stores
374 /// and thereby have no chain.
377 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
380 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
383 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
386 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
389 /// QBFLT = Access the underlying QPX floating-point boolean
393 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
394 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
395 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
397 STBRX
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
399 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
400 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
401 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
405 /// STFIWX - The STFIWX instruction. The first operand is an input token
406 /// chain, then an f64 value to store, then an address to store it to.
409 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
410 /// load which sign-extends from a 32-bit integer value into the
411 /// destination 64-bit register.
414 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
415 /// load which zero-extends from a 32-bit integer value into the
416 /// destination 64-bit register.
419 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
420 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
421 /// This can be used for converting loaded integers to floating point.
424 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
425 /// chain, then an f64 value to store, then an address to store it to,
426 /// followed by a byte-width for the store.
429 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
430 /// Maps directly to an lxvd2x instruction that will be followed by
434 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
435 /// Maps directly to an stxvd2x instruction that will be preceded by
439 /// Store scalar integers from VSR.
442 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
443 /// The 4xf32 load used for v4i1 constants.
446 /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
447 /// except they ensure that the compare input is zero-extended for
448 /// sub-word versions because the atomic loads zero-extend.
449 ATOMIC_CMP_SWAP_8
, ATOMIC_CMP_SWAP_16
,
451 /// GPRC = TOC_ENTRY GA, TOC
452 /// Loads the entry for GA from the TOC, where the TOC base is given by
453 /// the last operand.
457 } // end namespace PPCISD
459 /// Define some predicates that are used for node matching.
462 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
463 /// VPKUHUM instruction.
464 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
467 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
468 /// VPKUWUM instruction.
469 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
472 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
473 /// VPKUDUM instruction.
474 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
477 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
478 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
479 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
480 unsigned ShuffleKind
, SelectionDAG
&DAG
);
482 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
483 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
484 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
485 unsigned ShuffleKind
, SelectionDAG
&DAG
);
487 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
488 /// a VMRGEW or VMRGOW instruction
489 bool isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
490 unsigned ShuffleKind
, SelectionDAG
&DAG
);
491 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
492 /// for a XXSLDWI instruction.
493 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
494 bool &Swap
, bool IsLE
);
496 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
497 /// for a XXBRH instruction.
498 bool isXXBRHShuffleMask(ShuffleVectorSDNode
*N
);
500 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
501 /// for a XXBRW instruction.
502 bool isXXBRWShuffleMask(ShuffleVectorSDNode
*N
);
504 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
505 /// for a XXBRD instruction.
506 bool isXXBRDShuffleMask(ShuffleVectorSDNode
*N
);
508 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
509 /// for a XXBRQ instruction.
510 bool isXXBRQShuffleMask(ShuffleVectorSDNode
*N
);
512 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
513 /// for a XXPERMDI instruction.
514 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
515 bool &Swap
, bool IsLE
);
517 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
518 /// shift amount, otherwise return -1.
519 int isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
522 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
523 /// specifies a splat of a single element that is suitable for input to
524 /// VSPLTB/VSPLTH/VSPLTW.
525 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
527 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
528 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
529 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
530 /// vector into the other. This function will also set a couple of
531 /// output parameters for how much the source vector needs to be shifted and
532 /// what byte number needs to be specified for the instruction to put the
533 /// element in the desired location of the target vector.
534 bool isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
535 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
);
537 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
538 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
539 unsigned getVSPLTImmediate(SDNode
*N
, unsigned EltSize
, SelectionDAG
&DAG
);
541 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
542 /// formed by using a vspltis[bhw] instruction of the specified element
543 /// size, return the constant being splatted. The ByteSize field indicates
544 /// the number of bytes of each element [124] -> [bhw].
545 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
547 /// If this is a qvaligni shuffle mask, return the shift
548 /// amount, otherwise return -1.
549 int isQVALIGNIShuffleMask(SDNode
*N
);
551 } // end namespace PPC
553 class PPCTargetLowering
: public TargetLowering
{
554 const PPCSubtarget
&Subtarget
;
557 explicit PPCTargetLowering(const PPCTargetMachine
&TM
,
558 const PPCSubtarget
&STI
);
560 /// getTargetNodeName() - This method returns the name of a target specific
562 const char *getTargetNodeName(unsigned Opcode
) const override
;
564 /// getPreferredVectorAction - The code we generate when vector types are
565 /// legalized by promoting the integer element type is often much worse
566 /// than code we generate if we widen the type for applicable vector types.
567 /// The issue with promoting is that the vector is scalaraized, individual
568 /// elements promoted and then the vector is rebuilt. So say we load a pair
569 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
570 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
571 /// then the VPERM for the shuffle. All in all a very slow sequence.
572 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT
)
574 if (VT
.getScalarSizeInBits() % 8 == 0)
575 return TypeWidenVector
;
576 return TargetLoweringBase::getPreferredVectorAction(VT
);
579 bool useSoftFloat() const override
;
583 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
587 bool isCheapToSpeculateCttz() const override
{
591 bool isCheapToSpeculateCtlz() const override
{
595 bool isCtlzFast() const override
{
599 bool hasAndNotCompare(SDValue
) const override
{
603 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
604 return VT
.isScalarInteger();
607 bool supportSplitCSR(MachineFunction
*MF
) const override
{
609 MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
610 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
613 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
615 void insertCopiesSplitCSR(
616 MachineBasicBlock
*Entry
,
617 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
619 /// getSetCCResultType - Return the ISD::SETCC ValueType
620 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
621 EVT VT
) const override
;
623 /// Return true if target always beneficiates from combining into FMA for a
624 /// given value type. This must typically return false on targets where FMA
625 /// takes more cycles to execute than FADD.
626 bool enableAggressiveFMAFusion(EVT VT
) const override
;
628 /// getPreIndexedAddressParts - returns true by value, base pointer and
629 /// offset pointer and addressing mode by reference if the node's address
630 /// can be legally represented as pre-indexed load / store address.
631 bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
633 ISD::MemIndexedMode
&AM
,
634 SelectionDAG
&DAG
) const override
;
636 /// SelectAddressRegReg - Given the specified addressed, check to see if it
637 /// can be represented as an indexed [r+r] operation. Returns false if it
638 /// can be more efficiently represented with [r+imm].
639 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
640 SelectionDAG
&DAG
) const;
642 /// SelectAddressRegImm - Returns true if the address N can be represented
643 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
644 /// is not better represented as reg+reg. If Aligned is true, only accept
645 /// displacements suitable for STD and friends, i.e. multiples of 4.
646 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
647 SelectionDAG
&DAG
, unsigned Alignment
) const;
649 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
650 /// represented as an indexed [r+r] operation.
651 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
652 SelectionDAG
&DAG
) const;
654 Sched::Preference
getSchedulingPreference(SDNode
*N
) const override
;
656 /// LowerOperation - Provide custom lowering hooks for some operations.
658 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
660 /// ReplaceNodeResults - Replace the results of node with an illegal result
661 /// type with new values built out of custom code.
663 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
664 SelectionDAG
&DAG
) const override
;
666 SDValue
expandVSXLoadForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
667 SDValue
expandVSXStoreForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
669 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
671 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
672 SmallVectorImpl
<SDNode
*> &Created
) const override
;
674 unsigned getRegisterByName(const char* RegName
, EVT VT
,
675 SelectionDAG
&DAG
) const override
;
677 void computeKnownBitsForTargetNode(const SDValue Op
,
679 const APInt
&DemandedElts
,
680 const SelectionDAG
&DAG
,
681 unsigned Depth
= 0) const override
;
683 unsigned getPrefLoopAlignment(MachineLoop
*ML
) const override
;
685 bool shouldInsertFencesForAtomic(const Instruction
*I
) const override
{
689 Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
690 AtomicOrdering Ord
) const override
;
691 Instruction
*emitTrailingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
692 AtomicOrdering Ord
) const override
;
695 EmitInstrWithCustomInserter(MachineInstr
&MI
,
696 MachineBasicBlock
*MBB
) const override
;
697 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
&MI
,
698 MachineBasicBlock
*MBB
,
701 unsigned CmpOpcode
= 0,
702 unsigned CmpPred
= 0) const;
703 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
&MI
,
704 MachineBasicBlock
*MBB
,
707 unsigned CmpOpcode
= 0,
708 unsigned CmpPred
= 0) const;
710 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
711 MachineBasicBlock
*MBB
) const;
713 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
714 MachineBasicBlock
*MBB
) const;
716 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
718 /// Examine constraint string and operand type and determine a weight value.
719 /// The operand object must already have been set up with the operand type.
720 ConstraintWeight
getSingleConstraintMatchWeight(
721 AsmOperandInfo
&info
, const char *constraint
) const override
;
723 std::pair
<unsigned, const TargetRegisterClass
*>
724 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
725 StringRef Constraint
, MVT VT
) const override
;
727 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
728 /// function arguments in the caller parameter area. This is the actual
729 /// alignment, not its logarithm.
730 unsigned getByValTypeAlignment(Type
*Ty
,
731 const DataLayout
&DL
) const override
;
733 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
734 /// vector. If it is invalid, don't add anything to Ops.
735 void LowerAsmOperandForConstraint(SDValue Op
,
736 std::string
&Constraint
,
737 std::vector
<SDValue
> &Ops
,
738 SelectionDAG
&DAG
) const override
;
741 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
742 if (ConstraintCode
== "es")
743 return InlineAsm::Constraint_es
;
744 else if (ConstraintCode
== "o")
745 return InlineAsm::Constraint_o
;
746 else if (ConstraintCode
== "Q")
747 return InlineAsm::Constraint_Q
;
748 else if (ConstraintCode
== "Z")
749 return InlineAsm::Constraint_Z
;
750 else if (ConstraintCode
== "Zy")
751 return InlineAsm::Constraint_Zy
;
752 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
755 /// isLegalAddressingMode - Return true if the addressing mode represented
756 /// by AM is legal for this target, for a load/store of the specified type.
757 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
758 Type
*Ty
, unsigned AS
,
759 Instruction
*I
= nullptr) const override
;
761 /// isLegalICmpImmediate - Return true if the specified immediate is legal
762 /// icmp immediate, that is the target has icmp instructions which can
763 /// compare a register against the immediate without having to materialize
764 /// the immediate into a register.
765 bool isLegalICmpImmediate(int64_t Imm
) const override
;
767 /// isLegalAddImmediate - Return true if the specified immediate is legal
768 /// add immediate, that is the target has add instructions which can
769 /// add a register and the immediate without having to materialize
770 /// the immediate into a register.
771 bool isLegalAddImmediate(int64_t Imm
) const override
;
773 /// isTruncateFree - Return true if it's free to truncate a value of
774 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
775 /// register X1 to i32 by referencing its sub-register R1.
776 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
777 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
779 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
781 bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const override
;
783 /// Returns true if it is beneficial to convert a load of a constant
784 /// to just the constant itself.
785 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
786 Type
*Ty
) const override
;
788 bool convertSelectOfConstantsToMath(EVT VT
) const override
{
792 bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const override
;
794 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
,
797 unsigned Intrinsic
) const override
;
799 /// getOptimalMemOpType - Returns the target specific optimal type for load
800 /// and store operations as a result of memset, memcpy, and memmove
801 /// lowering. If DstAlign is zero that means it's safe to destination
802 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
803 /// means there isn't a need to check it against alignment requirement,
804 /// probably because the source does not need to be loaded. If 'IsMemset' is
805 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
806 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
807 /// source is constant so it does not need to be loaded.
808 /// It returns EVT::Other if the type should be determined using generic
809 /// target-independent logic.
811 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
812 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
813 MachineFunction
&MF
) const override
;
815 /// Is unaligned memory access allowed for the given type, and is it fast
816 /// relative to software emulation.
817 bool allowsMisalignedMemoryAccesses(EVT VT
,
820 bool *Fast
= nullptr) const override
;
822 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
823 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
824 /// expanded to FMAs when this method returns true, otherwise fmuladd is
825 /// expanded to fmul + fadd.
826 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
828 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
830 // Should we expand the build vector with shuffles?
832 shouldExpandBuildVectorWithShuffles(EVT VT
,
833 unsigned DefinedValues
) const override
;
835 /// createFastISel - This method returns a target-specific FastISel object,
836 /// or null if the target does not support "fast" instruction selection.
837 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
838 const TargetLibraryInfo
*LibInfo
) const override
;
840 /// Returns true if an argument of type Ty needs to be passed in a
841 /// contiguous block of registers in calling convention CallConv.
842 bool functionArgumentNeedsConsecutiveRegisters(
843 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const override
{
844 // We support any array type as "consecutive" block in the parameter
845 // save area. The element type defines the alignment requirement and
846 // whether the argument should go in GPRs, FPRs, or VRs if available.
848 // Note that clang uses this capability both to implement the ELFv2
849 // homogeneous float/vector aggregate ABI, and to avoid having to use
850 // "byval" when passing aggregates that might fully fit in registers.
851 return Ty
->isArrayTy();
854 /// If a physical register, this returns the register that receives the
855 /// exception address on entry to an EH pad.
857 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
859 /// If a physical register, this returns the register that receives the
860 /// exception typeid on entry to a landing pad.
862 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
864 /// Override to support customized stack guard loading.
865 bool useLoadStackGuardNode() const override
;
866 void insertSSPDeclarations(Module
&M
) const override
;
868 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const override
;
870 unsigned getJumpTableEncoding() const override
;
871 bool isJumpTableRelative() const override
;
872 SDValue
getPICJumpTableRelocBase(SDValue Table
,
873 SelectionDAG
&DAG
) const override
;
874 const MCExpr
*getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
876 MCContext
&Ctx
) const override
;
878 unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
880 EVT VT
) const override
;
882 MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
,
884 EVT VT
) const override
;
887 struct ReuseLoadInfo
{
891 MachinePointerInfo MPI
;
892 bool IsDereferenceable
= false;
893 bool IsInvariant
= false;
894 unsigned Alignment
= 0;
896 const MDNode
*Ranges
= nullptr;
898 ReuseLoadInfo() = default;
900 MachineMemOperand::Flags
MMOFlags() const {
901 MachineMemOperand::Flags F
= MachineMemOperand::MONone
;
902 if (IsDereferenceable
)
903 F
|= MachineMemOperand::MODereferenceable
;
905 F
|= MachineMemOperand::MOInvariant
;
910 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
{
911 // Addrspacecasts are always noops.
915 bool canReuseLoadAddress(SDValue Op
, EVT MemVT
, ReuseLoadInfo
&RLI
,
917 ISD::LoadExtType ET
= ISD::NON_EXTLOAD
) const;
918 void spliceIntoChain(SDValue ResChain
, SDValue NewResChain
,
919 SelectionDAG
&DAG
) const;
921 void LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
922 SelectionDAG
&DAG
, const SDLoc
&dl
) const;
923 SDValue
LowerFP_TO_INTDirectMove(SDValue Op
, SelectionDAG
&DAG
,
924 const SDLoc
&dl
) const;
926 bool directMoveIsProfitable(const SDValue
&Op
) const;
927 SDValue
LowerINT_TO_FPDirectMove(SDValue Op
, SelectionDAG
&DAG
,
928 const SDLoc
&dl
) const;
930 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
931 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
934 IsEligibleForTailCallOptimization(SDValue Callee
,
935 CallingConv::ID CalleeCC
,
937 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
938 SelectionDAG
& DAG
) const;
941 IsEligibleForTailCallOptimization_64SVR4(
943 CallingConv::ID CalleeCC
,
944 ImmutableCallSite CS
,
946 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
947 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
948 SelectionDAG
& DAG
) const;
950 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
&DAG
, int SPDiff
,
951 SDValue Chain
, SDValue
&LROpOut
,
953 const SDLoc
&dl
) const;
955 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
956 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
957 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
958 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
959 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
960 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
961 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
962 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
963 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
964 SDValue
LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
965 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
966 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
967 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
968 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
969 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
970 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
971 SDValue
LowerEH_DWARF_CFA(SDValue Op
, SelectionDAG
&DAG
) const;
972 SDValue
LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const;
973 SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const;
974 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
975 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
976 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
977 const SDLoc
&dl
) const;
978 SDValue
LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
979 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
980 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
981 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
982 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
983 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
984 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
985 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
986 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
987 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
988 SDValue
LowerINTRINSIC_VOID(SDValue Op
, SelectionDAG
&DAG
) const;
989 SDValue
LowerREM(SDValue Op
, SelectionDAG
&DAG
) const;
990 SDValue
LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const;
991 SDValue
LowerATOMIC_CMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
992 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
993 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
994 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
996 SDValue
LowerVectorLoad(SDValue Op
, SelectionDAG
&DAG
) const;
997 SDValue
LowerVectorStore(SDValue Op
, SelectionDAG
&DAG
) const;
999 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1000 CallingConv::ID CallConv
, bool isVarArg
,
1001 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1002 const SDLoc
&dl
, SelectionDAG
&DAG
,
1003 SmallVectorImpl
<SDValue
> &InVals
) const;
1004 SDValue
FinishCall(CallingConv::ID CallConv
, const SDLoc
&dl
,
1005 bool isTailCall
, bool isVarArg
, bool isPatchPoint
,
1006 bool hasNest
, SelectionDAG
&DAG
,
1007 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
1008 SDValue InFlag
, SDValue Chain
, SDValue CallSeqStart
,
1009 SDValue
&Callee
, int SPDiff
, unsigned NumBytes
,
1010 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1011 SmallVectorImpl
<SDValue
> &InVals
,
1012 ImmutableCallSite CS
) const;
1015 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1016 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1017 const SDLoc
&dl
, SelectionDAG
&DAG
,
1018 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1020 SDValue
LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1021 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1023 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1025 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1026 LLVMContext
&Context
) const override
;
1028 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1029 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1030 const SmallVectorImpl
<SDValue
> &OutVals
,
1031 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1033 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags
, EVT ObjectVT
,
1034 SelectionDAG
&DAG
, SDValue ArgVal
,
1035 const SDLoc
&dl
) const;
1037 SDValue
LowerFormalArguments_Darwin(
1038 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1039 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1040 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1041 SDValue
LowerFormalArguments_64SVR4(
1042 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1043 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1044 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1045 SDValue
LowerFormalArguments_32SVR4(
1046 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1047 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1048 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1050 SDValue
createMemcpyOutsideCallSeq(SDValue Arg
, SDValue PtrOff
,
1051 SDValue CallSeqStart
,
1052 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1053 const SDLoc
&dl
) const;
1055 SDValue
LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
1056 CallingConv::ID CallConv
, bool isVarArg
,
1057 bool isTailCall
, bool isPatchPoint
,
1058 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1059 const SmallVectorImpl
<SDValue
> &OutVals
,
1060 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1061 const SDLoc
&dl
, SelectionDAG
&DAG
,
1062 SmallVectorImpl
<SDValue
> &InVals
,
1063 ImmutableCallSite CS
) const;
1064 SDValue
LowerCall_64SVR4(SDValue Chain
, SDValue Callee
,
1065 CallingConv::ID CallConv
, bool isVarArg
,
1066 bool isTailCall
, bool isPatchPoint
,
1067 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1068 const SmallVectorImpl
<SDValue
> &OutVals
,
1069 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1070 const SDLoc
&dl
, SelectionDAG
&DAG
,
1071 SmallVectorImpl
<SDValue
> &InVals
,
1072 ImmutableCallSite CS
) const;
1073 SDValue
LowerCall_32SVR4(SDValue Chain
, SDValue Callee
,
1074 CallingConv::ID CallConv
, bool isVarArg
,
1075 bool isTailCall
, bool isPatchPoint
,
1076 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1077 const SmallVectorImpl
<SDValue
> &OutVals
,
1078 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1079 const SDLoc
&dl
, SelectionDAG
&DAG
,
1080 SmallVectorImpl
<SDValue
> &InVals
,
1081 ImmutableCallSite CS
) const;
1083 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1084 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1085 SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const;
1087 SDValue
DAGCombineExtBoolTrunc(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1088 SDValue
DAGCombineBuildVector(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1089 SDValue
DAGCombineTruncBoolExt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1090 SDValue
combineStoreFPToInt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1091 SDValue
combineFPToIntToFP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1092 SDValue
combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1093 SDValue
combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1094 SDValue
combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1096 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1097 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1098 /// (2) keeping the result of comparison in GPR has performance benefit.
1099 SDValue
ConvertSETCCToSubtract(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1101 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1102 int &RefinementSteps
, bool &UseOneConstNR
,
1103 bool Reciprocal
) const override
;
1104 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1105 int &RefinementSteps
) const override
;
1106 unsigned combineRepeatedFPDivisors() const override
;
1108 CCAssignFn
*useFastISelCCs(unsigned Flag
) const;
1111 combineElementTruncationToVectorTruncation(SDNode
*N
,
1112 DAGCombinerInfo
&DCI
) const;
1114 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1115 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1116 /// essentially any shuffle of v8i16 vectors that just inserts one element
1117 /// from one vector into the other.
1118 SDValue
lowerToVINSERTH(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1120 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1121 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1122 /// essentially v16i8 vector version of VINSERTH.
1123 SDValue
lowerToVINSERTB(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1125 // Return whether the call instruction can potentially be optimized to a
1126 // tail call. This will cause the optimizers to attempt to move, or
1127 // duplicate return instructions to help enable tail call optimizations.
1128 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1129 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
1130 }; // end class PPCTargetLowering
1134 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
1135 const TargetLibraryInfo
*LibInfo
);
1137 } // end namespace PPC
1139 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo
, MVT
&ValVT
, MVT
&LocVT
,
1140 CCValAssign::LocInfo
&LocInfo
,
1141 ISD::ArgFlagsTy
&ArgFlags
,
1144 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1146 CCValAssign::LocInfo
&LocInfo
,
1147 ISD::ArgFlagsTy
&ArgFlags
,
1151 CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo
, MVT
&ValVT
,
1153 CCValAssign::LocInfo
&LocInfo
,
1154 ISD::ArgFlagsTy
&ArgFlags
,
1157 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1159 CCValAssign::LocInfo
&LocInfo
,
1160 ISD::ArgFlagsTy
&ArgFlags
,
1163 bool isIntS16Immediate(SDNode
*N
, int16_t &Imm
);
1164 bool isIntS16Immediate(SDValue Op
, int16_t &Imm
);
1166 } // end namespace llvm
1168 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H