[PowerPC] Generate Power9 extswsli extend sign and shift immediate instruction
[llvm-core.git] / lib / Target / PowerPC / PPCVSXSwapRemoval.cpp
blob1be193e08c014945d3c4ea91cd1c371fed749a50
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass analyzes vector computations and removes unnecessary
11 // doubleword swaps (xxswapd instructions). This pass is performed
12 // only for little-endian VSX code generation.
14 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
15 // and v2f64 vectors are inefficient. These are implemented using
16 // the lxvd2x and stxvd2x instructions, which invert the order of
17 // doublewords in a vector register. Thus code generation inserts
18 // an xxswapd after each such load, and prior to each such store.
20 // The extra xxswapd instructions reduce performance. The purpose
21 // of this pass is to reduce the number of xxswapd instructions
22 // required for correctness.
24 // The primary insight is that much code that operates on vectors
25 // does not care about the relative order of elements in a register,
26 // so long as the correct memory order is preserved. If we have a
27 // computation where all input values are provided by lxvd2x/xxswapd,
28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
29 // computations are lane-insensitive (independent of element order),
30 // then all the xxswapd instructions associated with the loads and
31 // stores may be removed without changing observable semantics.
33 // This pass uses standard equivalence class infrastructure to create
34 // maximal webs of computations fitting the above description. Each
35 // such web is then optimized by removing its unnecessary xxswapd
36 // instructions.
38 // There are some lane-sensitive operations for which we can still
39 // permit the optimization, provided we modify those operations
40 // accordingly. Such operations are identified as using "special
41 // handling" within this module.
43 //===---------------------------------------------------------------------===//
45 #include "PPC.h"
46 #include "PPCInstrBuilder.h"
47 #include "PPCInstrInfo.h"
48 #include "PPCTargetMachine.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/Format.h"
57 #include "llvm/Support/raw_ostream.h"
59 using namespace llvm;
61 #define DEBUG_TYPE "ppc-vsx-swaps"
63 namespace llvm {
64 void initializePPCVSXSwapRemovalPass(PassRegistry&);
67 namespace {
69 // A PPCVSXSwapEntry is created for each machine instruction that
70 // is relevant to a vector computation.
71 struct PPCVSXSwapEntry {
72 // Pointer to the instruction.
73 MachineInstr *VSEMI;
75 // Unique ID (position in the swap vector).
76 int VSEId;
78 // Attributes of this node.
79 unsigned int IsLoad : 1;
80 unsigned int IsStore : 1;
81 unsigned int IsSwap : 1;
82 unsigned int MentionsPhysVR : 1;
83 unsigned int IsSwappable : 1;
84 unsigned int MentionsPartialVR : 1;
85 unsigned int SpecialHandling : 3;
86 unsigned int WebRejected : 1;
87 unsigned int WillRemove : 1;
90 enum SHValues {
91 SH_NONE = 0,
92 SH_EXTRACT,
93 SH_INSERT,
94 SH_NOSWAP_LD,
95 SH_NOSWAP_ST,
96 SH_SPLAT,
97 SH_XXPERMDI,
98 SH_COPYWIDEN
101 struct PPCVSXSwapRemoval : public MachineFunctionPass {
103 static char ID;
104 const PPCInstrInfo *TII;
105 MachineFunction *MF;
106 MachineRegisterInfo *MRI;
108 // Swap entries are allocated in a vector for better performance.
109 std::vector<PPCVSXSwapEntry> SwapVector;
111 // A mapping is maintained between machine instructions and
112 // their swap entries. The key is the address of the MI.
113 DenseMap<MachineInstr*, int> SwapMap;
115 // Equivalence classes are used to gather webs of related computation.
116 // Swap entries are represented by their VSEId fields.
117 EquivalenceClasses<int> *EC;
119 PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
120 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
123 private:
124 // Initialize data structures.
125 void initialize(MachineFunction &MFParm);
127 // Walk the machine instructions to gather vector usage information.
128 // Return true iff vector mentions are present.
129 bool gatherVectorInstructions();
131 // Add an entry to the swap vector and swap map.
132 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
134 // Hunt backwards through COPY and SUBREG_TO_REG chains for a
135 // source register. VecIdx indicates the swap vector entry to
136 // mark as mentioning a physical register if the search leads
137 // to one.
138 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
140 // Generate equivalence classes for related computations (webs).
141 void formWebs();
143 // Analyze webs and determine those that cannot be optimized.
144 void recordUnoptimizableWebs();
146 // Record which swap instructions can be safely removed.
147 void markSwapsForRemoval();
149 // Remove swaps and update other instructions requiring special
150 // handling. Return true iff any changes are made.
151 bool removeSwaps();
153 // Insert a swap instruction from SrcReg to DstReg at the given
154 // InsertPoint.
155 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
156 unsigned DstReg, unsigned SrcReg);
158 // Update instructions requiring special handling.
159 void handleSpecialSwappables(int EntryIdx);
161 // Dump a description of the entries in the swap vector.
162 void dumpSwapVector();
164 // Return true iff the given register is in the given class.
165 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
166 if (TargetRegisterInfo::isVirtualRegister(Reg))
167 return RC->hasSubClassEq(MRI->getRegClass(Reg));
168 return RC->contains(Reg);
171 // Return true iff the given register is a full vector register.
172 bool isVecReg(unsigned Reg) {
173 return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
174 isRegInClass(Reg, &PPC::VRRCRegClass));
177 // Return true iff the given register is a partial vector register.
178 bool isScalarVecReg(unsigned Reg) {
179 return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
180 isRegInClass(Reg, &PPC::VSSRCRegClass));
183 // Return true iff the given register mentions all or part of a
184 // vector register. Also sets Partial to true if the mention
185 // is for just the floating-point register overlap of the register.
186 bool isAnyVecReg(unsigned Reg, bool &Partial) {
187 if (isScalarVecReg(Reg))
188 Partial = true;
189 return isScalarVecReg(Reg) || isVecReg(Reg);
192 public:
193 // Main entry point for this pass.
194 bool runOnMachineFunction(MachineFunction &MF) override {
195 if (skipFunction(MF.getFunction()))
196 return false;
198 // If we don't have VSX on the subtarget, don't do anything.
199 // Also, on Power 9 the load and store ops preserve element order and so
200 // the swaps are not required.
201 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
202 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
203 return false;
205 bool Changed = false;
206 initialize(MF);
208 if (gatherVectorInstructions()) {
209 formWebs();
210 recordUnoptimizableWebs();
211 markSwapsForRemoval();
212 Changed = removeSwaps();
215 // FIXME: See the allocation of EC in initialize().
216 delete EC;
217 return Changed;
221 // Initialize data structures for this pass. In particular, clear the
222 // swap vector and allocate the equivalence class mapping before
223 // processing each function.
224 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
225 MF = &MFParm;
226 MRI = &MF->getRegInfo();
227 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
229 // An initial vector size of 256 appears to work well in practice.
230 // Small/medium functions with vector content tend not to incur a
231 // reallocation at this size. Three of the vector tests in
232 // projects/test-suite reallocate, which seems like a reasonable rate.
233 const int InitialVectorSize(256);
234 SwapVector.clear();
235 SwapVector.reserve(InitialVectorSize);
237 // FIXME: Currently we allocate EC each time because we don't have
238 // access to the set representation on which to call clear(). Should
239 // consider adding a clear() method to the EquivalenceClasses class.
240 EC = new EquivalenceClasses<int>;
243 // Create an entry in the swap vector for each instruction that mentions
244 // a full vector register, recording various characteristics of the
245 // instructions there.
246 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
247 bool RelevantFunction = false;
249 for (MachineBasicBlock &MBB : *MF) {
250 for (MachineInstr &MI : MBB) {
252 if (MI.isDebugInstr())
253 continue;
255 bool RelevantInstr = false;
256 bool Partial = false;
258 for (const MachineOperand &MO : MI.operands()) {
259 if (!MO.isReg())
260 continue;
261 unsigned Reg = MO.getReg();
262 if (isAnyVecReg(Reg, Partial)) {
263 RelevantInstr = true;
264 break;
268 if (!RelevantInstr)
269 continue;
271 RelevantFunction = true;
273 // Create a SwapEntry initialized to zeros, then fill in the
274 // instruction and ID fields before pushing it to the back
275 // of the swap vector.
276 PPCVSXSwapEntry SwapEntry{};
277 int VecIdx = addSwapEntry(&MI, SwapEntry);
279 switch(MI.getOpcode()) {
280 default:
281 // Unless noted otherwise, an instruction is considered
282 // safe for the optimization. There are a large number of
283 // such true-SIMD instructions (all vector math, logical,
284 // select, compare, etc.). However, if the instruction
285 // mentions a partial vector register and does not have
286 // special handling defined, it is not swappable.
287 if (Partial)
288 SwapVector[VecIdx].MentionsPartialVR = 1;
289 else
290 SwapVector[VecIdx].IsSwappable = 1;
291 break;
292 case PPC::XXPERMDI: {
293 // This is a swap if it is of the form XXPERMDI t, s, s, 2.
294 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
295 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
296 // for example. We have to look through chains of COPY and
297 // SUBREG_TO_REG to find the real source value for comparison.
298 // If the real source value is a physical register, then mark the
299 // XXPERMDI as mentioning a physical register.
300 int immed = MI.getOperand(3).getImm();
301 if (immed == 2) {
302 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
303 VecIdx);
304 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
305 VecIdx);
306 if (trueReg1 == trueReg2)
307 SwapVector[VecIdx].IsSwap = 1;
308 else {
309 // We can still handle these if the two registers are not
310 // identical, by adjusting the form of the XXPERMDI.
311 SwapVector[VecIdx].IsSwappable = 1;
312 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
314 // This is a doubleword splat if it is of the form
315 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
316 // must look through chains of copy-likes to find the source
317 // register. We turn off the marking for mention of a physical
318 // register, because splatting it is safe; the optimization
319 // will not swap the value in the physical register. Whether
320 // or not the two input registers are identical, we can handle
321 // these by adjusting the form of the XXPERMDI.
322 } else if (immed == 0 || immed == 3) {
324 SwapVector[VecIdx].IsSwappable = 1;
325 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
327 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
328 VecIdx);
329 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
330 VecIdx);
331 if (trueReg1 == trueReg2)
332 SwapVector[VecIdx].MentionsPhysVR = 0;
334 } else {
335 // We can still handle these by adjusting the form of the XXPERMDI.
336 SwapVector[VecIdx].IsSwappable = 1;
337 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
339 break;
341 case PPC::LVX:
342 // Non-permuting loads are currently unsafe. We can use special
343 // handling for this in the future. By not marking these as
344 // IsSwap, we ensure computations containing them will be rejected
345 // for now.
346 SwapVector[VecIdx].IsLoad = 1;
347 break;
348 case PPC::LXVD2X:
349 case PPC::LXVW4X:
350 // Permuting loads are marked as both load and swap, and are
351 // safe for optimization.
352 SwapVector[VecIdx].IsLoad = 1;
353 SwapVector[VecIdx].IsSwap = 1;
354 break;
355 case PPC::LXSDX:
356 case PPC::LXSSPX:
357 case PPC::XFLOADf64:
358 case PPC::XFLOADf32:
359 // A load of a floating-point value into the high-order half of
360 // a vector register is safe, provided that we introduce a swap
361 // following the load, which will be done by the SUBREG_TO_REG
362 // support. So just mark these as safe.
363 SwapVector[VecIdx].IsLoad = 1;
364 SwapVector[VecIdx].IsSwappable = 1;
365 break;
366 case PPC::STVX:
367 // Non-permuting stores are currently unsafe. We can use special
368 // handling for this in the future. By not marking these as
369 // IsSwap, we ensure computations containing them will be rejected
370 // for now.
371 SwapVector[VecIdx].IsStore = 1;
372 break;
373 case PPC::STXVD2X:
374 case PPC::STXVW4X:
375 // Permuting stores are marked as both store and swap, and are
376 // safe for optimization.
377 SwapVector[VecIdx].IsStore = 1;
378 SwapVector[VecIdx].IsSwap = 1;
379 break;
380 case PPC::COPY:
381 // These are fine provided they are moving between full vector
382 // register classes.
383 if (isVecReg(MI.getOperand(0).getReg()) &&
384 isVecReg(MI.getOperand(1).getReg()))
385 SwapVector[VecIdx].IsSwappable = 1;
386 // If we have a copy from one scalar floating-point register
387 // to another, we can accept this even if it is a physical
388 // register. The only way this gets involved is if it feeds
389 // a SUBREG_TO_REG, which is handled by introducing a swap.
390 else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
391 isScalarVecReg(MI.getOperand(1).getReg()))
392 SwapVector[VecIdx].IsSwappable = 1;
393 break;
394 case PPC::SUBREG_TO_REG: {
395 // These are fine provided they are moving between full vector
396 // register classes. If they are moving from a scalar
397 // floating-point class to a vector class, we can handle those
398 // as well, provided we introduce a swap. It is generally the
399 // case that we will introduce fewer swaps than we remove, but
400 // (FIXME) a cost model could be used. However, introduced
401 // swaps could potentially be CSEd, so this is not trivial.
402 if (isVecReg(MI.getOperand(0).getReg()) &&
403 isVecReg(MI.getOperand(2).getReg()))
404 SwapVector[VecIdx].IsSwappable = 1;
405 else if (isVecReg(MI.getOperand(0).getReg()) &&
406 isScalarVecReg(MI.getOperand(2).getReg())) {
407 SwapVector[VecIdx].IsSwappable = 1;
408 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
410 break;
412 case PPC::VSPLTB:
413 case PPC::VSPLTH:
414 case PPC::VSPLTW:
415 case PPC::XXSPLTW:
416 // Splats are lane-sensitive, but we can use special handling
417 // to adjust the source lane for the splat.
418 SwapVector[VecIdx].IsSwappable = 1;
419 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
420 break;
421 // The presence of the following lane-sensitive operations in a
422 // web will kill the optimization, at least for now. For these
423 // we do nothing, causing the optimization to fail.
424 // FIXME: Some of these could be permitted with special handling,
425 // and will be phased in as time permits.
426 // FIXME: There is no simple and maintainable way to express a set
427 // of opcodes having a common attribute in TableGen. Should this
428 // change, this is a prime candidate to use such a mechanism.
429 case PPC::INLINEASM:
430 case PPC::EXTRACT_SUBREG:
431 case PPC::INSERT_SUBREG:
432 case PPC::COPY_TO_REGCLASS:
433 case PPC::LVEBX:
434 case PPC::LVEHX:
435 case PPC::LVEWX:
436 case PPC::LVSL:
437 case PPC::LVSR:
438 case PPC::LVXL:
439 case PPC::STVEBX:
440 case PPC::STVEHX:
441 case PPC::STVEWX:
442 case PPC::STVXL:
443 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
444 // by adding special handling for narrowing copies as well as
445 // widening ones. However, I've experimented with this, and in
446 // practice we currently do not appear to use STXSDX fed by
447 // a narrowing copy from a full vector register. Since I can't
448 // generate any useful test cases, I've left this alone for now.
449 case PPC::STXSDX:
450 case PPC::STXSSPX:
451 case PPC::VCIPHER:
452 case PPC::VCIPHERLAST:
453 case PPC::VMRGHB:
454 case PPC::VMRGHH:
455 case PPC::VMRGHW:
456 case PPC::VMRGLB:
457 case PPC::VMRGLH:
458 case PPC::VMRGLW:
459 case PPC::VMULESB:
460 case PPC::VMULESH:
461 case PPC::VMULESW:
462 case PPC::VMULEUB:
463 case PPC::VMULEUH:
464 case PPC::VMULEUW:
465 case PPC::VMULOSB:
466 case PPC::VMULOSH:
467 case PPC::VMULOSW:
468 case PPC::VMULOUB:
469 case PPC::VMULOUH:
470 case PPC::VMULOUW:
471 case PPC::VNCIPHER:
472 case PPC::VNCIPHERLAST:
473 case PPC::VPERM:
474 case PPC::VPERMXOR:
475 case PPC::VPKPX:
476 case PPC::VPKSHSS:
477 case PPC::VPKSHUS:
478 case PPC::VPKSDSS:
479 case PPC::VPKSDUS:
480 case PPC::VPKSWSS:
481 case PPC::VPKSWUS:
482 case PPC::VPKUDUM:
483 case PPC::VPKUDUS:
484 case PPC::VPKUHUM:
485 case PPC::VPKUHUS:
486 case PPC::VPKUWUM:
487 case PPC::VPKUWUS:
488 case PPC::VPMSUMB:
489 case PPC::VPMSUMD:
490 case PPC::VPMSUMH:
491 case PPC::VPMSUMW:
492 case PPC::VRLB:
493 case PPC::VRLD:
494 case PPC::VRLH:
495 case PPC::VRLW:
496 case PPC::VSBOX:
497 case PPC::VSHASIGMAD:
498 case PPC::VSHASIGMAW:
499 case PPC::VSL:
500 case PPC::VSLDOI:
501 case PPC::VSLO:
502 case PPC::VSR:
503 case PPC::VSRO:
504 case PPC::VSUM2SWS:
505 case PPC::VSUM4SBS:
506 case PPC::VSUM4SHS:
507 case PPC::VSUM4UBS:
508 case PPC::VSUMSWS:
509 case PPC::VUPKHPX:
510 case PPC::VUPKHSB:
511 case PPC::VUPKHSH:
512 case PPC::VUPKHSW:
513 case PPC::VUPKLPX:
514 case PPC::VUPKLSB:
515 case PPC::VUPKLSH:
516 case PPC::VUPKLSW:
517 case PPC::XXMRGHW:
518 case PPC::XXMRGLW:
519 // XXSLDWI could be replaced by a general permute with one of three
520 // permute control vectors (for shift values 1, 2, 3). However,
521 // VPERM has a more restrictive register class.
522 case PPC::XXSLDWI:
523 case PPC::XSCVDPSPN:
524 case PPC::XSCVSPDPN:
525 break;
530 if (RelevantFunction) {
531 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
532 LLVM_DEBUG(dumpSwapVector());
535 return RelevantFunction;
538 // Add an entry to the swap vector and swap map, and make a
539 // singleton equivalence class for the entry.
540 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
541 PPCVSXSwapEntry& SwapEntry) {
542 SwapEntry.VSEMI = MI;
543 SwapEntry.VSEId = SwapVector.size();
544 SwapVector.push_back(SwapEntry);
545 EC->insert(SwapEntry.VSEId);
546 SwapMap[MI] = SwapEntry.VSEId;
547 return SwapEntry.VSEId;
550 // This is used to find the "true" source register for an
551 // XXPERMDI instruction, since MachineCSE does not handle the
552 // "copy-like" operations (Copy and SubregToReg). Returns
553 // the original SrcReg unless it is the target of a copy-like
554 // operation, in which case we chain backwards through all
555 // such operations to the ultimate source register. If a
556 // physical register is encountered, we stop the search and
557 // flag the swap entry indicated by VecIdx (the original
558 // XXPERMDI) as mentioning a physical register.
559 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
560 unsigned VecIdx) {
561 MachineInstr *MI = MRI->getVRegDef(SrcReg);
562 if (!MI->isCopyLike())
563 return SrcReg;
565 unsigned CopySrcReg;
566 if (MI->isCopy())
567 CopySrcReg = MI->getOperand(1).getReg();
568 else {
569 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
570 CopySrcReg = MI->getOperand(2).getReg();
573 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
574 if (!isScalarVecReg(CopySrcReg))
575 SwapVector[VecIdx].MentionsPhysVR = 1;
576 return CopySrcReg;
579 return lookThruCopyLike(CopySrcReg, VecIdx);
582 // Generate equivalence classes for related computations (webs) by
583 // def-use relationships of virtual registers. Mention of a physical
584 // register terminates the generation of equivalence classes as this
585 // indicates a use of a parameter, definition of a return value, use
586 // of a value returned from a call, or definition of a parameter to a
587 // call. Computations with physical register mentions are flagged
588 // as such so their containing webs will not be optimized.
589 void PPCVSXSwapRemoval::formWebs() {
591 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
593 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
595 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
597 LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
598 LLVM_DEBUG(MI->dump());
600 // It's sufficient to walk vector uses and join them to their unique
601 // definitions. In addition, check full vector register operands
602 // for physical regs. We exclude partial-vector register operands
603 // because we can handle them if copied to a full vector.
604 for (const MachineOperand &MO : MI->operands()) {
605 if (!MO.isReg())
606 continue;
608 unsigned Reg = MO.getReg();
609 if (!isVecReg(Reg) && !isScalarVecReg(Reg))
610 continue;
612 if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
613 if (!(MI->isCopy() && isScalarVecReg(Reg)))
614 SwapVector[EntryIdx].MentionsPhysVR = 1;
615 continue;
618 if (!MO.isUse())
619 continue;
621 MachineInstr* DefMI = MRI->getVRegDef(Reg);
622 assert(SwapMap.find(DefMI) != SwapMap.end() &&
623 "Inconsistency: def of vector reg not found in swap map!");
624 int DefIdx = SwapMap[DefMI];
625 (void)EC->unionSets(SwapVector[DefIdx].VSEId,
626 SwapVector[EntryIdx].VSEId);
628 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
629 SwapVector[DefIdx].VSEId,
630 SwapVector[EntryIdx].VSEId));
631 LLVM_DEBUG(dbgs() << " Def: ");
632 LLVM_DEBUG(DefMI->dump());
637 // Walk the swap vector entries looking for conditions that prevent their
638 // containing computations from being optimized. When such conditions are
639 // found, mark the representative of the computation's equivalence class
640 // as rejected.
641 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
643 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
645 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
646 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
648 // If representative is already rejected, don't waste further time.
649 if (SwapVector[Repr].WebRejected)
650 continue;
652 // Reject webs containing mentions of physical or partial registers, or
653 // containing operations that we don't know how to handle in a lane-
654 // permuted region.
655 if (SwapVector[EntryIdx].MentionsPhysVR ||
656 SwapVector[EntryIdx].MentionsPartialVR ||
657 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
659 SwapVector[Repr].WebRejected = 1;
661 LLVM_DEBUG(
662 dbgs() << format("Web %d rejected for physreg, partial reg, or not "
663 "swap[pable]\n",
664 Repr));
665 LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": ");
666 LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
667 LLVM_DEBUG(dbgs() << "\n");
670 // Reject webs than contain swapping loads that feed something other
671 // than a swap instruction.
672 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
673 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
674 unsigned DefReg = MI->getOperand(0).getReg();
676 // We skip debug instructions in the analysis. (Note that debug
677 // location information is still maintained by this optimization
678 // because it remains on the LXVD2X and STXVD2X instructions after
679 // the XXPERMDIs are removed.)
680 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
681 int UseIdx = SwapMap[&UseMI];
683 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
684 SwapVector[UseIdx].IsStore) {
686 SwapVector[Repr].WebRejected = 1;
688 LLVM_DEBUG(dbgs() << format(
689 "Web %d rejected for load not feeding swap\n", Repr));
690 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": ");
691 LLVM_DEBUG(MI->dump());
692 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
693 LLVM_DEBUG(UseMI.dump());
694 LLVM_DEBUG(dbgs() << "\n");
698 // Reject webs that contain swapping stores that are fed by something
699 // other than a swap instruction.
700 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
701 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
702 unsigned UseReg = MI->getOperand(0).getReg();
703 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
704 unsigned DefReg = DefMI->getOperand(0).getReg();
705 int DefIdx = SwapMap[DefMI];
707 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
708 SwapVector[DefIdx].IsStore) {
710 SwapVector[Repr].WebRejected = 1;
712 LLVM_DEBUG(dbgs() << format(
713 "Web %d rejected for store not fed by swap\n", Repr));
714 LLVM_DEBUG(dbgs() << " def " << DefIdx << ": ");
715 LLVM_DEBUG(DefMI->dump());
716 LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": ");
717 LLVM_DEBUG(MI->dump());
718 LLVM_DEBUG(dbgs() << "\n");
721 // Ensure all uses of the register defined by DefMI feed store
722 // instructions
723 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
724 int UseIdx = SwapMap[&UseMI];
726 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
727 SwapVector[Repr].WebRejected = 1;
729 LLVM_DEBUG(
730 dbgs() << format(
731 "Web %d rejected for swap not feeding only stores\n", Repr));
732 LLVM_DEBUG(dbgs() << " def "
733 << " : ");
734 LLVM_DEBUG(DefMI->dump());
735 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
736 LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
737 LLVM_DEBUG(dbgs() << "\n");
743 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
744 LLVM_DEBUG(dumpSwapVector());
747 // Walk the swap vector entries looking for swaps fed by permuting loads
748 // and swaps that feed permuting stores. If the containing computation
749 // has not been marked rejected, mark each such swap for removal.
750 // (Removal is delayed in case optimization has disturbed the pattern,
751 // such that multiple loads feed the same swap, etc.)
752 void PPCVSXSwapRemoval::markSwapsForRemoval() {
754 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
756 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
758 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
759 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
761 if (!SwapVector[Repr].WebRejected) {
762 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
763 unsigned DefReg = MI->getOperand(0).getReg();
765 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
766 int UseIdx = SwapMap[&UseMI];
767 SwapVector[UseIdx].WillRemove = 1;
769 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
770 LLVM_DEBUG(UseMI.dump());
774 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
775 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
777 if (!SwapVector[Repr].WebRejected) {
778 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
779 unsigned UseReg = MI->getOperand(0).getReg();
780 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
781 int DefIdx = SwapMap[DefMI];
782 SwapVector[DefIdx].WillRemove = 1;
784 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
785 LLVM_DEBUG(DefMI->dump());
788 } else if (SwapVector[EntryIdx].IsSwappable &&
789 SwapVector[EntryIdx].SpecialHandling != 0) {
790 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
792 if (!SwapVector[Repr].WebRejected)
793 handleSpecialSwappables(EntryIdx);
798 // Create an xxswapd instruction and insert it prior to the given point.
799 // MI is used to determine basic block and debug loc information.
800 // FIXME: When inserting a swap, we should check whether SrcReg is
801 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
802 // then instead we should generate a copy from Reg to DstReg.
803 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
804 MachineBasicBlock::iterator InsertPoint,
805 unsigned DstReg, unsigned SrcReg) {
806 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
807 TII->get(PPC::XXPERMDI), DstReg)
808 .addReg(SrcReg)
809 .addReg(SrcReg)
810 .addImm(2);
813 // The identified swap entry requires special handling to allow its
814 // containing computation to be optimized. Perform that handling
815 // here.
816 // FIXME: Additional opportunities will be phased in with subsequent
817 // patches.
818 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
819 switch (SwapVector[EntryIdx].SpecialHandling) {
821 default:
822 llvm_unreachable("Unexpected special handling type");
824 // For splats based on an index into a vector, add N/2 modulo N
825 // to the index, where N is the number of vector elements.
826 case SHValues::SH_SPLAT: {
827 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
828 unsigned NElts;
830 LLVM_DEBUG(dbgs() << "Changing splat: ");
831 LLVM_DEBUG(MI->dump());
833 switch (MI->getOpcode()) {
834 default:
835 llvm_unreachable("Unexpected splat opcode");
836 case PPC::VSPLTB: NElts = 16; break;
837 case PPC::VSPLTH: NElts = 8; break;
838 case PPC::VSPLTW:
839 case PPC::XXSPLTW: NElts = 4; break;
842 unsigned EltNo;
843 if (MI->getOpcode() == PPC::XXSPLTW)
844 EltNo = MI->getOperand(2).getImm();
845 else
846 EltNo = MI->getOperand(1).getImm();
848 EltNo = (EltNo + NElts / 2) % NElts;
849 if (MI->getOpcode() == PPC::XXSPLTW)
850 MI->getOperand(2).setImm(EltNo);
851 else
852 MI->getOperand(1).setImm(EltNo);
854 LLVM_DEBUG(dbgs() << " Into: ");
855 LLVM_DEBUG(MI->dump());
856 break;
859 // For an XXPERMDI that isn't handled otherwise, we need to
860 // reverse the order of the operands. If the selector operand
861 // has a value of 0 or 3, we need to change it to 3 or 0,
862 // respectively. Otherwise we should leave it alone. (This
863 // is equivalent to reversing the two bits of the selector
864 // operand and complementing the result.)
865 case SHValues::SH_XXPERMDI: {
866 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
868 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
869 LLVM_DEBUG(MI->dump());
871 unsigned Selector = MI->getOperand(3).getImm();
872 if (Selector == 0 || Selector == 3)
873 Selector = 3 - Selector;
874 MI->getOperand(3).setImm(Selector);
876 unsigned Reg1 = MI->getOperand(1).getReg();
877 unsigned Reg2 = MI->getOperand(2).getReg();
878 MI->getOperand(1).setReg(Reg2);
879 MI->getOperand(2).setReg(Reg1);
881 // We also need to swap kill flag associated with the register.
882 bool IsKill1 = MI->getOperand(1).isKill();
883 bool IsKill2 = MI->getOperand(2).isKill();
884 MI->getOperand(1).setIsKill(IsKill2);
885 MI->getOperand(2).setIsKill(IsKill1);
887 LLVM_DEBUG(dbgs() << " Into: ");
888 LLVM_DEBUG(MI->dump());
889 break;
892 // For a copy from a scalar floating-point register to a vector
893 // register, removing swaps will leave the copied value in the
894 // wrong lane. Insert a swap following the copy to fix this.
895 case SHValues::SH_COPYWIDEN: {
896 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
898 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
899 LLVM_DEBUG(MI->dump());
901 unsigned DstReg = MI->getOperand(0).getReg();
902 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
903 unsigned NewVReg = MRI->createVirtualRegister(DstRC);
905 MI->getOperand(0).setReg(NewVReg);
906 LLVM_DEBUG(dbgs() << " Into: ");
907 LLVM_DEBUG(MI->dump());
909 auto InsertPoint = ++MachineBasicBlock::iterator(MI);
911 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
912 // is copying to a VRRC, we need to be careful to avoid a register
913 // assignment problem. In this case we must copy from VRRC to VSRC
914 // prior to the swap, and from VSRC to VRRC following the swap.
915 // Coalescing will usually remove all this mess.
916 if (DstRC == &PPC::VRRCRegClass) {
917 unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
918 unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
920 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
921 TII->get(PPC::COPY), VSRCTmp1)
922 .addReg(NewVReg);
923 LLVM_DEBUG(std::prev(InsertPoint)->dump());
925 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
926 LLVM_DEBUG(std::prev(InsertPoint)->dump());
928 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
929 TII->get(PPC::COPY), DstReg)
930 .addReg(VSRCTmp2);
931 LLVM_DEBUG(std::prev(InsertPoint)->dump());
933 } else {
934 insertSwap(MI, InsertPoint, DstReg, NewVReg);
935 LLVM_DEBUG(std::prev(InsertPoint)->dump());
937 break;
942 // Walk the swap vector and replace each entry marked for removal with
943 // a copy operation.
944 bool PPCVSXSwapRemoval::removeSwaps() {
946 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
948 bool Changed = false;
950 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
951 if (SwapVector[EntryIdx].WillRemove) {
952 Changed = true;
953 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
954 MachineBasicBlock *MBB = MI->getParent();
955 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
956 MI->getOperand(0).getReg())
957 .add(MI->getOperand(1));
959 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
960 SwapVector[EntryIdx].VSEId));
961 LLVM_DEBUG(MI->dump());
963 MI->eraseFromParent();
967 return Changed;
970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
971 // For debug purposes, dump the contents of the swap vector.
972 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
974 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
976 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
977 int ID = SwapVector[EntryIdx].VSEId;
979 dbgs() << format("%6d", ID);
980 dbgs() << format("%6d", EC->getLeaderValue(ID));
981 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
982 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str());
984 if (SwapVector[EntryIdx].IsLoad)
985 dbgs() << "load ";
986 if (SwapVector[EntryIdx].IsStore)
987 dbgs() << "store ";
988 if (SwapVector[EntryIdx].IsSwap)
989 dbgs() << "swap ";
990 if (SwapVector[EntryIdx].MentionsPhysVR)
991 dbgs() << "physreg ";
992 if (SwapVector[EntryIdx].MentionsPartialVR)
993 dbgs() << "partialreg ";
995 if (SwapVector[EntryIdx].IsSwappable) {
996 dbgs() << "swappable ";
997 switch(SwapVector[EntryIdx].SpecialHandling) {
998 default:
999 dbgs() << "special:**unknown**";
1000 break;
1001 case SH_NONE:
1002 break;
1003 case SH_EXTRACT:
1004 dbgs() << "special:extract ";
1005 break;
1006 case SH_INSERT:
1007 dbgs() << "special:insert ";
1008 break;
1009 case SH_NOSWAP_LD:
1010 dbgs() << "special:load ";
1011 break;
1012 case SH_NOSWAP_ST:
1013 dbgs() << "special:store ";
1014 break;
1015 case SH_SPLAT:
1016 dbgs() << "special:splat ";
1017 break;
1018 case SH_XXPERMDI:
1019 dbgs() << "special:xxpermdi ";
1020 break;
1021 case SH_COPYWIDEN:
1022 dbgs() << "special:copywiden ";
1023 break;
1027 if (SwapVector[EntryIdx].WebRejected)
1028 dbgs() << "rejected ";
1029 if (SwapVector[EntryIdx].WillRemove)
1030 dbgs() << "remove ";
1032 dbgs() << "\n";
1034 // For no-asserts builds.
1035 (void)MI;
1036 (void)ID;
1039 dbgs() << "\n";
1041 #endif
1043 } // end default namespace
1045 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1046 "PowerPC VSX Swap Removal", false, false)
1047 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1048 "PowerPC VSX Swap Removal", false, false)
1050 char PPCVSXSwapRemoval::ID = 0;
1051 FunctionPass*
1052 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }