1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements ELF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/Error.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Host.h"
46 #include "llvm/Support/LEB128.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/SMLoc.h"
49 #include "llvm/Support/StringSaver.h"
50 #include "llvm/Support/SwapByteOrder.h"
51 #include "llvm/Support/raw_ostream.h"
65 #define DEBUG_TYPE "reloc-info"
69 using SectionIndexMapTy
= DenseMap
<const MCSectionELF
*, uint32_t>;
71 class ELFObjectWriter
;
74 bool isDwoSection(const MCSectionELF
&Sec
) {
75 return Sec
.getSectionName().endswith(".dwo");
78 class SymbolTableWriter
{
82 // indexes we are going to write to .symtab_shndx.
83 std::vector
<uint32_t> ShndxIndexes
;
85 // The numbel of symbols written so far.
88 void createSymtabShndx();
90 template <typename T
> void write(T Value
);
93 SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
);
95 void writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
, uint64_t size
,
96 uint8_t other
, uint32_t shndx
, bool Reserved
);
98 ArrayRef
<uint32_t> getShndxIndexes() const { return ShndxIndexes
; }
102 ELFObjectWriter
&OWriter
;
103 support::endian::Writer W
;
111 static uint64_t SymbolValue(const MCSymbol
&Sym
, const MCAsmLayout
&Layout
);
112 static bool isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
113 bool Used
, bool Renamed
);
115 /// Helper struct for containing some precomputed information on symbols.
116 struct ELFSymbolData
{
117 const MCSymbolELF
*Symbol
;
118 uint32_t SectionIndex
;
121 // Support lexicographic sorting.
122 bool operator<(const ELFSymbolData
&RHS
) const {
123 unsigned LHSType
= Symbol
->getType();
124 unsigned RHSType
= RHS
.Symbol
->getType();
125 if (LHSType
== ELF::STT_SECTION
&& RHSType
!= ELF::STT_SECTION
)
127 if (LHSType
!= ELF::STT_SECTION
&& RHSType
== ELF::STT_SECTION
)
129 if (LHSType
== ELF::STT_SECTION
&& RHSType
== ELF::STT_SECTION
)
130 return SectionIndex
< RHS
.SectionIndex
;
131 return Name
< RHS
.Name
;
136 /// @name Symbol Table Data
139 StringTableBuilder StrTabBuilder
{StringTableBuilder::ELF
};
143 // This holds the symbol table index of the last local symbol.
144 unsigned LastLocalSymbolIndex
;
145 // This holds the .strtab section index.
146 unsigned StringTableIndex
;
147 // This holds the .symtab section index.
148 unsigned SymbolTableIndex
;
150 // Sections in the order they are to be output in the section table.
151 std::vector
<const MCSectionELF
*> SectionTable
;
152 unsigned addToSectionTable(const MCSectionELF
*Sec
);
154 // TargetObjectWriter wrappers.
155 bool is64Bit() const;
156 bool hasRelocationAddend() const;
158 void align(unsigned Alignment
);
160 bool maybeWriteCompression(uint64_t Size
,
161 SmallVectorImpl
<char> &CompressedContents
,
162 bool ZLibStyle
, unsigned Alignment
);
165 ELFWriter(ELFObjectWriter
&OWriter
, raw_pwrite_stream
&OS
,
166 bool IsLittleEndian
, DwoMode Mode
)
168 W(OS
, IsLittleEndian
? support::little
: support::big
), Mode(Mode
) {}
170 void WriteWord(uint64_t Word
) {
172 W
.write
<uint64_t>(Word
);
174 W
.write
<uint32_t>(Word
);
177 template <typename T
> void write(T Val
) {
181 void writeHeader(const MCAssembler
&Asm
);
183 void writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
184 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
);
186 // Start and end offset of each section
187 using SectionOffsetsTy
=
188 std::map
<const MCSectionELF
*, std::pair
<uint64_t, uint64_t>>;
190 // Map from a signature symbol to the group section index
191 using RevGroupMapTy
= DenseMap
<const MCSymbol
*, unsigned>;
193 /// Compute the symbol table data
195 /// \param Asm - The assembler.
196 /// \param SectionIndexMap - Maps a section to its index.
197 /// \param RevGroupMap - Maps a signature symbol to the group section.
198 void computeSymbolTable(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
199 const SectionIndexMapTy
&SectionIndexMap
,
200 const RevGroupMapTy
&RevGroupMap
,
201 SectionOffsetsTy
&SectionOffsets
);
203 void writeAddrsigSection();
205 MCSectionELF
*createRelocationSection(MCContext
&Ctx
,
206 const MCSectionELF
&Sec
);
208 const MCSectionELF
*createStringTable(MCContext
&Ctx
);
210 void writeSectionHeader(const MCAsmLayout
&Layout
,
211 const SectionIndexMapTy
&SectionIndexMap
,
212 const SectionOffsetsTy
&SectionOffsets
);
214 void writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
215 const MCAsmLayout
&Layout
);
217 void WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
218 uint64_t Address
, uint64_t Offset
, uint64_t Size
,
219 uint32_t Link
, uint32_t Info
, uint64_t Alignment
,
222 void writeRelocations(const MCAssembler
&Asm
, const MCSectionELF
&Sec
);
224 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
);
225 void writeSection(const SectionIndexMapTy
&SectionIndexMap
,
226 uint32_t GroupSymbolIndex
, uint64_t Offset
, uint64_t Size
,
227 const MCSectionELF
&Section
);
230 class ELFObjectWriter
: public MCObjectWriter
{
231 /// The target specific ELF writer instance.
232 std::unique_ptr
<MCELFObjectTargetWriter
> TargetObjectWriter
;
234 DenseMap
<const MCSectionELF
*, std::vector
<ELFRelocationEntry
>> Relocations
;
236 DenseMap
<const MCSymbolELF
*, const MCSymbolELF
*> Renames
;
238 bool EmitAddrsigSection
= false;
239 std::vector
<const MCSymbol
*> AddrsigSyms
;
241 bool hasRelocationAddend() const;
243 bool shouldRelocateWithSymbol(const MCAssembler
&Asm
,
244 const MCSymbolRefExpr
*RefA
,
245 const MCSymbolELF
*Sym
, uint64_t C
,
246 unsigned Type
) const;
249 ELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
)
250 : TargetObjectWriter(std::move(MOTW
)) {}
252 void reset() override
{
255 MCObjectWriter::reset();
258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler
&Asm
,
259 const MCSymbol
&SymA
,
260 const MCFragment
&FB
, bool InSet
,
261 bool IsPCRel
) const override
;
263 virtual bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
,
264 const MCSectionELF
*From
,
265 const MCSectionELF
*To
) {
269 void recordRelocation(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
270 const MCFragment
*Fragment
, const MCFixup
&Fixup
,
271 MCValue Target
, uint64_t &FixedValue
) override
;
273 void executePostLayoutBinding(MCAssembler
&Asm
,
274 const MCAsmLayout
&Layout
) override
;
276 void emitAddrsigSection() override
{ EmitAddrsigSection
= true; }
277 void addAddrsigSymbol(const MCSymbol
*Sym
) override
{
278 AddrsigSyms
.push_back(Sym
);
281 friend struct ELFWriter
;
284 class ELFSingleObjectWriter
: public ELFObjectWriter
{
285 raw_pwrite_stream
&OS
;
289 ELFSingleObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
290 raw_pwrite_stream
&OS
, bool IsLittleEndian
)
291 : ELFObjectWriter(std::move(MOTW
)), OS(OS
),
292 IsLittleEndian(IsLittleEndian
) {}
294 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
295 return ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::AllSections
)
296 .writeObject(Asm
, Layout
);
299 friend struct ELFWriter
;
302 class ELFDwoObjectWriter
: public ELFObjectWriter
{
303 raw_pwrite_stream
&OS
, &DwoOS
;
307 ELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
308 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
310 : ELFObjectWriter(std::move(MOTW
)), OS(OS
), DwoOS(DwoOS
),
311 IsLittleEndian(IsLittleEndian
) {}
313 virtual bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
,
314 const MCSectionELF
*From
,
315 const MCSectionELF
*To
) override
{
316 if (isDwoSection(*From
)) {
317 Ctx
.reportError(Loc
, "A dwo section may not contain relocations");
320 if (To
&& isDwoSection(*To
)) {
321 Ctx
.reportError(Loc
, "A relocation may not refer to a dwo section");
327 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
328 uint64_t Size
= ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::NonDwoOnly
)
329 .writeObject(Asm
, Layout
);
330 Size
+= ELFWriter(*this, DwoOS
, IsLittleEndian
, ELFWriter::DwoOnly
)
331 .writeObject(Asm
, Layout
);
336 } // end anonymous namespace
338 void ELFWriter::align(unsigned Alignment
) {
339 uint64_t Padding
= OffsetToAlignment(W
.OS
.tell(), Alignment
);
340 W
.OS
.write_zeros(Padding
);
343 unsigned ELFWriter::addToSectionTable(const MCSectionELF
*Sec
) {
344 SectionTable
.push_back(Sec
);
345 StrTabBuilder
.add(Sec
->getSectionName());
346 return SectionTable
.size();
349 void SymbolTableWriter::createSymtabShndx() {
350 if (!ShndxIndexes
.empty())
353 ShndxIndexes
.resize(NumWritten
);
356 template <typename T
> void SymbolTableWriter::write(T Value
) {
357 EWriter
.write(Value
);
360 SymbolTableWriter::SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
)
361 : EWriter(EWriter
), Is64Bit(Is64Bit
), NumWritten(0) {}
363 void SymbolTableWriter::writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
,
364 uint64_t size
, uint8_t other
,
365 uint32_t shndx
, bool Reserved
) {
366 bool LargeIndex
= shndx
>= ELF::SHN_LORESERVE
&& !Reserved
;
371 if (!ShndxIndexes
.empty()) {
373 ShndxIndexes
.push_back(shndx
);
375 ShndxIndexes
.push_back(0);
378 uint16_t Index
= LargeIndex
? uint16_t(ELF::SHN_XINDEX
) : shndx
;
381 write(name
); // st_name
382 write(info
); // st_info
383 write(other
); // st_other
384 write(Index
); // st_shndx
385 write(value
); // st_value
386 write(size
); // st_size
388 write(name
); // st_name
389 write(uint32_t(value
)); // st_value
390 write(uint32_t(size
)); // st_size
391 write(info
); // st_info
392 write(other
); // st_other
393 write(Index
); // st_shndx
399 bool ELFWriter::is64Bit() const {
400 return OWriter
.TargetObjectWriter
->is64Bit();
403 bool ELFWriter::hasRelocationAddend() const {
404 return OWriter
.hasRelocationAddend();
407 // Emit the ELF header.
408 void ELFWriter::writeHeader(const MCAssembler
&Asm
) {
414 // emitWord method behaves differently for ELF32 and ELF64, writing
415 // 4 bytes in the former and 8 in the latter.
417 W
.OS
<< ELF::ElfMagic
; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
419 W
.OS
<< char(is64Bit() ? ELF::ELFCLASS64
: ELF::ELFCLASS32
); // e_ident[EI_CLASS]
422 W
.OS
<< char(W
.Endian
== support::little
? ELF::ELFDATA2LSB
425 W
.OS
<< char(ELF::EV_CURRENT
); // e_ident[EI_VERSION]
427 W
.OS
<< char(OWriter
.TargetObjectWriter
->getOSABI());
428 // e_ident[EI_ABIVERSION]
429 W
.OS
<< char(OWriter
.TargetObjectWriter
->getABIVersion());
431 W
.OS
.write_zeros(ELF::EI_NIDENT
- ELF::EI_PAD
);
433 W
.write
<uint16_t>(ELF::ET_REL
); // e_type
435 W
.write
<uint16_t>(OWriter
.TargetObjectWriter
->getEMachine()); // e_machine = target
437 W
.write
<uint32_t>(ELF::EV_CURRENT
); // e_version
438 WriteWord(0); // e_entry, no entry point in .o file
439 WriteWord(0); // e_phoff, no program header for .o
440 WriteWord(0); // e_shoff = sec hdr table off in bytes
442 // e_flags = whatever the target wants
443 W
.write
<uint32_t>(Asm
.getELFHeaderEFlags());
445 // e_ehsize = ELF header size
446 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr
)
447 : sizeof(ELF::Elf32_Ehdr
));
449 W
.write
<uint16_t>(0); // e_phentsize = prog header entry size
450 W
.write
<uint16_t>(0); // e_phnum = # prog header entries = 0
452 // e_shentsize = Section header entry size
453 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr
)
454 : sizeof(ELF::Elf32_Shdr
));
456 // e_shnum = # of section header ents
457 W
.write
<uint16_t>(0);
459 // e_shstrndx = Section # of '.shstrtab'
460 assert(StringTableIndex
< ELF::SHN_LORESERVE
);
461 W
.write
<uint16_t>(StringTableIndex
);
464 uint64_t ELFWriter::SymbolValue(const MCSymbol
&Sym
,
465 const MCAsmLayout
&Layout
) {
466 if (Sym
.isCommon() && (Sym
.isTargetCommon() || Sym
.isExternal()))
467 return Sym
.getCommonAlignment();
470 if (!Layout
.getSymbolOffset(Sym
, Res
))
473 if (Layout
.getAssembler().isThumbFunc(&Sym
))
479 static uint8_t mergeTypeForSet(uint8_t origType
, uint8_t newType
) {
480 uint8_t Type
= newType
;
482 // Propagation rules:
483 // IFUNC > FUNC > OBJECT > NOTYPE
484 // TLS_OBJECT > OBJECT > NOTYPE
486 // dont let the new type degrade the old type
490 case ELF::STT_GNU_IFUNC
:
491 if (Type
== ELF::STT_FUNC
|| Type
== ELF::STT_OBJECT
||
492 Type
== ELF::STT_NOTYPE
|| Type
== ELF::STT_TLS
)
493 Type
= ELF::STT_GNU_IFUNC
;
496 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
497 Type
== ELF::STT_TLS
)
498 Type
= ELF::STT_FUNC
;
500 case ELF::STT_OBJECT
:
501 if (Type
== ELF::STT_NOTYPE
)
502 Type
= ELF::STT_OBJECT
;
505 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
506 Type
== ELF::STT_GNU_IFUNC
|| Type
== ELF::STT_FUNC
)
514 void ELFWriter::writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
515 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
) {
516 const auto &Symbol
= cast
<MCSymbolELF
>(*MSD
.Symbol
);
517 const MCSymbolELF
*Base
=
518 cast_or_null
<MCSymbolELF
>(Layout
.getBaseSymbol(Symbol
));
520 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
522 bool IsReserved
= !Base
|| Symbol
.isCommon();
524 // Binding and Type share the same byte as upper and lower nibbles
525 uint8_t Binding
= Symbol
.getBinding();
526 uint8_t Type
= Symbol
.getType();
528 Type
= mergeTypeForSet(Type
, Base
->getType());
530 uint8_t Info
= (Binding
<< 4) | Type
;
532 // Other and Visibility share the same byte with Visibility using the lower
534 uint8_t Visibility
= Symbol
.getVisibility();
535 uint8_t Other
= Symbol
.getOther() | Visibility
;
537 uint64_t Value
= SymbolValue(*MSD
.Symbol
, Layout
);
540 const MCExpr
*ESize
= MSD
.Symbol
->getSize();
542 ESize
= Base
->getSize();
546 if (!ESize
->evaluateKnownAbsolute(Res
, Layout
))
547 report_fatal_error("Size expression must be absolute.");
551 // Write out the symbol table entry
552 Writer
.writeSymbol(StringIndex
, Info
, Value
, Size
, Other
, MSD
.SectionIndex
,
556 // True if the assembler knows nothing about the final value of the symbol.
557 // This doesn't cover the comdat issues, since in those cases the assembler
558 // can at least know that all symbols in the section will move together.
559 static bool isWeak(const MCSymbolELF
&Sym
) {
560 if (Sym
.getType() == ELF::STT_GNU_IFUNC
)
563 switch (Sym
.getBinding()) {
565 llvm_unreachable("Unknown binding");
568 case ELF::STB_GLOBAL
:
571 case ELF::STB_GNU_UNIQUE
:
576 bool ELFWriter::isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
577 bool Used
, bool Renamed
) {
578 if (Symbol
.isVariable()) {
579 const MCExpr
*Expr
= Symbol
.getVariableValue();
580 // Target Expressions that are always inlined do not appear in the symtab
581 if (const auto *T
= dyn_cast
<MCTargetExpr
>(Expr
))
582 if (T
->inlineAssignedExpr())
584 if (const MCSymbolRefExpr
*Ref
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
585 if (Ref
->getKind() == MCSymbolRefExpr::VK_WEAKREF
)
596 if (Symbol
.isVariable() && Symbol
.isUndefined()) {
597 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
598 Layout
.getBaseSymbol(Symbol
);
602 if (Symbol
.isUndefined() && !Symbol
.isBindingSet())
605 if (Symbol
.isTemporary())
608 if (Symbol
.getType() == ELF::STT_SECTION
)
614 void ELFWriter::computeSymbolTable(
615 MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
616 const SectionIndexMapTy
&SectionIndexMap
, const RevGroupMapTy
&RevGroupMap
,
617 SectionOffsetsTy
&SectionOffsets
) {
618 MCContext
&Ctx
= Asm
.getContext();
619 SymbolTableWriter
Writer(*this, is64Bit());
622 unsigned EntrySize
= is64Bit() ? ELF::SYMENTRY_SIZE64
: ELF::SYMENTRY_SIZE32
;
623 MCSectionELF
*SymtabSection
=
624 Ctx
.getELFSection(".symtab", ELF::SHT_SYMTAB
, 0, EntrySize
, "");
625 SymtabSection
->setAlignment(is64Bit() ? 8 : 4);
626 SymbolTableIndex
= addToSectionTable(SymtabSection
);
628 align(SymtabSection
->getAlignment());
629 uint64_t SecStart
= W
.OS
.tell();
631 // The first entry is the undefined symbol entry.
632 Writer
.writeSymbol(0, 0, 0, 0, 0, 0, false);
634 std::vector
<ELFSymbolData
> LocalSymbolData
;
635 std::vector
<ELFSymbolData
> ExternalSymbolData
;
637 // Add the data for the symbols.
638 bool HasLargeSectionIndex
= false;
639 for (const MCSymbol
&S
: Asm
.symbols()) {
640 const auto &Symbol
= cast
<MCSymbolELF
>(S
);
641 bool Used
= Symbol
.isUsedInReloc();
642 bool WeakrefUsed
= Symbol
.isWeakrefUsedInReloc();
643 bool isSignature
= Symbol
.isSignature();
645 if (!isInSymtab(Layout
, Symbol
, Used
|| WeakrefUsed
|| isSignature
,
646 OWriter
.Renames
.count(&Symbol
)))
649 if (Symbol
.isTemporary() && Symbol
.isUndefined()) {
650 Ctx
.reportError(SMLoc(), "Undefined temporary symbol");
655 MSD
.Symbol
= cast
<MCSymbolELF
>(&Symbol
);
657 bool Local
= Symbol
.getBinding() == ELF::STB_LOCAL
;
658 assert(Local
|| !Symbol
.isTemporary());
660 if (Symbol
.isAbsolute()) {
661 MSD
.SectionIndex
= ELF::SHN_ABS
;
662 } else if (Symbol
.isCommon()) {
663 if (Symbol
.isTargetCommon()) {
664 MSD
.SectionIndex
= Symbol
.getIndex();
667 MSD
.SectionIndex
= ELF::SHN_COMMON
;
669 } else if (Symbol
.isUndefined()) {
670 if (isSignature
&& !Used
) {
671 MSD
.SectionIndex
= RevGroupMap
.lookup(&Symbol
);
672 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
673 HasLargeSectionIndex
= true;
675 MSD
.SectionIndex
= ELF::SHN_UNDEF
;
678 const MCSectionELF
&Section
=
679 static_cast<const MCSectionELF
&>(Symbol
.getSection());
681 // We may end up with a situation when section symbol is technically
682 // defined, but should not be. That happens because we explicitly
683 // pre-create few .debug_* sections to have accessors.
684 // And if these sections were not really defined in the code, but were
685 // referenced, we simply error out.
686 if (!Section
.isRegistered()) {
687 assert(static_cast<const MCSymbolELF
&>(Symbol
).getType() ==
689 Ctx
.reportError(SMLoc(),
690 "Undefined section reference: " + Symbol
.getName());
694 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
696 MSD
.SectionIndex
= SectionIndexMap
.lookup(&Section
);
697 assert(MSD
.SectionIndex
&& "Invalid section index!");
698 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
699 HasLargeSectionIndex
= true;
702 StringRef Name
= Symbol
.getName();
704 // Sections have their own string table
705 if (Symbol
.getType() != ELF::STT_SECTION
) {
707 StrTabBuilder
.add(Name
);
711 LocalSymbolData
.push_back(MSD
);
713 ExternalSymbolData
.push_back(MSD
);
716 // This holds the .symtab_shndx section index.
717 unsigned SymtabShndxSectionIndex
= 0;
719 if (HasLargeSectionIndex
) {
720 MCSectionELF
*SymtabShndxSection
=
721 Ctx
.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX
, 0, 4, "");
722 SymtabShndxSectionIndex
= addToSectionTable(SymtabShndxSection
);
723 SymtabShndxSection
->setAlignment(4);
726 ArrayRef
<std::string
> FileNames
= Asm
.getFileNames();
727 for (const std::string
&Name
: FileNames
)
728 StrTabBuilder
.add(Name
);
730 StrTabBuilder
.finalize();
732 // File symbols are emitted first and handled separately from normal symbols,
733 // i.e. a non-STT_FILE symbol with the same name may appear.
734 for (const std::string
&Name
: FileNames
)
735 Writer
.writeSymbol(StrTabBuilder
.getOffset(Name
),
736 ELF::STT_FILE
| ELF::STB_LOCAL
, 0, 0, ELF::STV_DEFAULT
,
739 // Symbols are required to be in lexicographic order.
740 array_pod_sort(LocalSymbolData
.begin(), LocalSymbolData
.end());
741 array_pod_sort(ExternalSymbolData
.begin(), ExternalSymbolData
.end());
743 // Set the symbol indices. Local symbols must come before all other
744 // symbols with non-local bindings.
745 unsigned Index
= FileNames
.size() + 1;
747 for (ELFSymbolData
&MSD
: LocalSymbolData
) {
748 unsigned StringIndex
= MSD
.Symbol
->getType() == ELF::STT_SECTION
750 : StrTabBuilder
.getOffset(MSD
.Name
);
751 MSD
.Symbol
->setIndex(Index
++);
752 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
755 // Write the symbol table entries.
756 LastLocalSymbolIndex
= Index
;
758 for (ELFSymbolData
&MSD
: ExternalSymbolData
) {
759 unsigned StringIndex
= StrTabBuilder
.getOffset(MSD
.Name
);
760 MSD
.Symbol
->setIndex(Index
++);
761 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
762 assert(MSD
.Symbol
->getBinding() != ELF::STB_LOCAL
);
765 uint64_t SecEnd
= W
.OS
.tell();
766 SectionOffsets
[SymtabSection
] = std::make_pair(SecStart
, SecEnd
);
768 ArrayRef
<uint32_t> ShndxIndexes
= Writer
.getShndxIndexes();
769 if (ShndxIndexes
.empty()) {
770 assert(SymtabShndxSectionIndex
== 0);
773 assert(SymtabShndxSectionIndex
!= 0);
775 SecStart
= W
.OS
.tell();
776 const MCSectionELF
*SymtabShndxSection
=
777 SectionTable
[SymtabShndxSectionIndex
- 1];
778 for (uint32_t Index
: ShndxIndexes
)
780 SecEnd
= W
.OS
.tell();
781 SectionOffsets
[SymtabShndxSection
] = std::make_pair(SecStart
, SecEnd
);
784 void ELFWriter::writeAddrsigSection() {
785 for (const MCSymbol
*Sym
: OWriter
.AddrsigSyms
)
786 encodeULEB128(Sym
->getIndex(), W
.OS
);
789 MCSectionELF
*ELFWriter::createRelocationSection(MCContext
&Ctx
,
790 const MCSectionELF
&Sec
) {
791 if (OWriter
.Relocations
[&Sec
].empty())
794 const StringRef SectionName
= Sec
.getSectionName();
795 std::string RelaSectionName
= hasRelocationAddend() ? ".rela" : ".rel";
796 RelaSectionName
+= SectionName
;
799 if (hasRelocationAddend())
800 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rela
) : sizeof(ELF::Elf32_Rela
);
802 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rel
) : sizeof(ELF::Elf32_Rel
);
805 if (Sec
.getFlags() & ELF::SHF_GROUP
)
806 Flags
= ELF::SHF_GROUP
;
808 MCSectionELF
*RelaSection
= Ctx
.createELFRelSection(
809 RelaSectionName
, hasRelocationAddend() ? ELF::SHT_RELA
: ELF::SHT_REL
,
810 Flags
, EntrySize
, Sec
.getGroup(), &Sec
);
811 RelaSection
->setAlignment(is64Bit() ? 8 : 4);
815 // Include the debug info compression header.
816 bool ELFWriter::maybeWriteCompression(
817 uint64_t Size
, SmallVectorImpl
<char> &CompressedContents
, bool ZLibStyle
,
818 unsigned Alignment
) {
821 is64Bit() ? sizeof(ELF::Elf32_Chdr
) : sizeof(ELF::Elf64_Chdr
);
822 if (Size
<= HdrSize
+ CompressedContents
.size())
824 // Platform specific header is followed by compressed data.
826 // Write Elf64_Chdr header.
827 write(static_cast<ELF::Elf64_Word
>(ELF::ELFCOMPRESS_ZLIB
));
828 write(static_cast<ELF::Elf64_Word
>(0)); // ch_reserved field.
829 write(static_cast<ELF::Elf64_Xword
>(Size
));
830 write(static_cast<ELF::Elf64_Xword
>(Alignment
));
832 // Write Elf32_Chdr header otherwise.
833 write(static_cast<ELF::Elf32_Word
>(ELF::ELFCOMPRESS_ZLIB
));
834 write(static_cast<ELF::Elf32_Word
>(Size
));
835 write(static_cast<ELF::Elf32_Word
>(Alignment
));
840 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
841 // useful for consumers to preallocate a buffer to decompress into.
842 const StringRef Magic
= "ZLIB";
843 if (Size
<= Magic
.size() + sizeof(Size
) + CompressedContents
.size())
846 support::endian::write(W
.OS
, Size
, support::big
);
850 void ELFWriter::writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
851 const MCAsmLayout
&Layout
) {
852 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
853 StringRef SectionName
= Section
.getSectionName();
855 auto &MC
= Asm
.getContext();
856 const auto &MAI
= MC
.getAsmInfo();
858 // Compressing debug_frame requires handling alignment fragments which is
859 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
860 // for writing to arbitrary buffers) for little benefit.
861 bool CompressionEnabled
=
862 MAI
->compressDebugSections() != DebugCompressionType::None
;
863 if (!CompressionEnabled
|| !SectionName
.startswith(".debug_") ||
864 SectionName
== ".debug_frame") {
865 Asm
.writeSectionData(W
.OS
, &Section
, Layout
);
869 assert((MAI
->compressDebugSections() == DebugCompressionType::Z
||
870 MAI
->compressDebugSections() == DebugCompressionType::GNU
) &&
871 "expected zlib or zlib-gnu style compression");
873 SmallVector
<char, 128> UncompressedData
;
874 raw_svector_ostream
VecOS(UncompressedData
);
875 Asm
.writeSectionData(VecOS
, &Section
, Layout
);
877 SmallVector
<char, 128> CompressedContents
;
878 if (Error E
= zlib::compress(
879 StringRef(UncompressedData
.data(), UncompressedData
.size()),
880 CompressedContents
)) {
881 consumeError(std::move(E
));
882 W
.OS
<< UncompressedData
;
886 bool ZlibStyle
= MAI
->compressDebugSections() == DebugCompressionType::Z
;
887 if (!maybeWriteCompression(UncompressedData
.size(), CompressedContents
,
888 ZlibStyle
, Sec
.getAlignment())) {
889 W
.OS
<< UncompressedData
;
894 // Set the compressed flag. That is zlib style.
895 Section
.setFlags(Section
.getFlags() | ELF::SHF_COMPRESSED
);
896 // Alignment field should reflect the requirements of
897 // the compressed section header.
898 Section
.setAlignment(is64Bit() ? 8 : 4);
900 // Add "z" prefix to section name. This is zlib-gnu style.
901 MC
.renameELFSection(&Section
, (".z" + SectionName
.drop_front(1)).str());
903 W
.OS
<< CompressedContents
;
906 void ELFWriter::WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
907 uint64_t Address
, uint64_t Offset
,
908 uint64_t Size
, uint32_t Link
, uint32_t Info
,
909 uint64_t Alignment
, uint64_t EntrySize
) {
910 W
.write
<uint32_t>(Name
); // sh_name: index into string table
911 W
.write
<uint32_t>(Type
); // sh_type
912 WriteWord(Flags
); // sh_flags
913 WriteWord(Address
); // sh_addr
914 WriteWord(Offset
); // sh_offset
915 WriteWord(Size
); // sh_size
916 W
.write
<uint32_t>(Link
); // sh_link
917 W
.write
<uint32_t>(Info
); // sh_info
918 WriteWord(Alignment
); // sh_addralign
919 WriteWord(EntrySize
); // sh_entsize
922 void ELFWriter::writeRelocations(const MCAssembler
&Asm
,
923 const MCSectionELF
&Sec
) {
924 std::vector
<ELFRelocationEntry
> &Relocs
= OWriter
.Relocations
[&Sec
];
926 // We record relocations by pushing to the end of a vector. Reverse the vector
927 // to get the relocations in the order they were created.
928 // In most cases that is not important, but it can be for special sections
929 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
930 std::reverse(Relocs
.begin(), Relocs
.end());
932 // Sort the relocation entries. MIPS needs this.
933 OWriter
.TargetObjectWriter
->sortRelocs(Asm
, Relocs
);
935 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
936 const ELFRelocationEntry
&Entry
= Relocs
[e
- i
- 1];
937 unsigned Index
= Entry
.Symbol
? Entry
.Symbol
->getIndex() : 0;
941 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
942 write(uint32_t(Index
));
944 write(OWriter
.TargetObjectWriter
->getRSsym(Entry
.Type
));
945 write(OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
));
946 write(OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
));
947 write(OWriter
.TargetObjectWriter
->getRType(Entry
.Type
));
949 struct ELF::Elf64_Rela ERE64
;
950 ERE64
.setSymbolAndType(Index
, Entry
.Type
);
953 if (hasRelocationAddend())
956 write(uint32_t(Entry
.Offset
));
958 struct ELF::Elf32_Rela ERE32
;
959 ERE32
.setSymbolAndType(Index
, Entry
.Type
);
962 if (hasRelocationAddend())
963 write(uint32_t(Entry
.Addend
));
965 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
967 OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
)) {
968 write(uint32_t(Entry
.Offset
));
970 ERE32
.setSymbolAndType(0, RType
);
975 OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
)) {
976 write(uint32_t(Entry
.Offset
));
978 ERE32
.setSymbolAndType(0, RType
);
987 const MCSectionELF
*ELFWriter::createStringTable(MCContext
&Ctx
) {
988 const MCSectionELF
*StrtabSection
= SectionTable
[StringTableIndex
- 1];
989 StrTabBuilder
.write(W
.OS
);
990 return StrtabSection
;
993 void ELFWriter::writeSection(const SectionIndexMapTy
&SectionIndexMap
,
994 uint32_t GroupSymbolIndex
, uint64_t Offset
,
995 uint64_t Size
, const MCSectionELF
&Section
) {
996 uint64_t sh_link
= 0;
997 uint64_t sh_info
= 0;
999 switch(Section
.getType()) {
1004 case ELF::SHT_DYNAMIC
:
1005 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1008 case ELF::SHT_RELA
: {
1009 sh_link
= SymbolTableIndex
;
1010 assert(sh_link
&& ".symtab not found");
1011 const MCSection
*InfoSection
= Section
.getAssociatedSection();
1012 sh_info
= SectionIndexMap
.lookup(cast
<MCSectionELF
>(InfoSection
));
1016 case ELF::SHT_SYMTAB
:
1017 sh_link
= StringTableIndex
;
1018 sh_info
= LastLocalSymbolIndex
;
1021 case ELF::SHT_SYMTAB_SHNDX
:
1022 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1023 case ELF::SHT_LLVM_ADDRSIG
:
1024 sh_link
= SymbolTableIndex
;
1027 case ELF::SHT_GROUP
:
1028 sh_link
= SymbolTableIndex
;
1029 sh_info
= GroupSymbolIndex
;
1033 if (Section
.getFlags() & ELF::SHF_LINK_ORDER
) {
1034 const MCSymbol
*Sym
= Section
.getAssociatedSymbol();
1035 const MCSectionELF
*Sec
= cast
<MCSectionELF
>(&Sym
->getSection());
1036 sh_link
= SectionIndexMap
.lookup(Sec
);
1039 WriteSecHdrEntry(StrTabBuilder
.getOffset(Section
.getSectionName()),
1040 Section
.getType(), Section
.getFlags(), 0, Offset
, Size
,
1041 sh_link
, sh_info
, Section
.getAlignment(),
1042 Section
.getEntrySize());
1045 void ELFWriter::writeSectionHeader(
1046 const MCAsmLayout
&Layout
, const SectionIndexMapTy
&SectionIndexMap
,
1047 const SectionOffsetsTy
&SectionOffsets
) {
1048 const unsigned NumSections
= SectionTable
.size();
1050 // Null section first.
1051 uint64_t FirstSectionSize
=
1052 (NumSections
+ 1) >= ELF::SHN_LORESERVE
? NumSections
+ 1 : 0;
1053 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize
, 0, 0, 0, 0);
1055 for (const MCSectionELF
*Section
: SectionTable
) {
1056 uint32_t GroupSymbolIndex
;
1057 unsigned Type
= Section
->getType();
1058 if (Type
!= ELF::SHT_GROUP
)
1059 GroupSymbolIndex
= 0;
1061 GroupSymbolIndex
= Section
->getGroup()->getIndex();
1063 const std::pair
<uint64_t, uint64_t> &Offsets
=
1064 SectionOffsets
.find(Section
)->second
;
1066 if (Type
== ELF::SHT_NOBITS
)
1067 Size
= Layout
.getSectionAddressSize(Section
);
1069 Size
= Offsets
.second
- Offsets
.first
;
1071 writeSection(SectionIndexMap
, GroupSymbolIndex
, Offsets
.first
, Size
,
1076 uint64_t ELFWriter::writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) {
1077 uint64_t StartOffset
= W
.OS
.tell();
1079 MCContext
&Ctx
= Asm
.getContext();
1080 MCSectionELF
*StrtabSection
=
1081 Ctx
.getELFSection(".strtab", ELF::SHT_STRTAB
, 0);
1082 StringTableIndex
= addToSectionTable(StrtabSection
);
1084 RevGroupMapTy RevGroupMap
;
1085 SectionIndexMapTy SectionIndexMap
;
1087 std::map
<const MCSymbol
*, std::vector
<const MCSectionELF
*>> GroupMembers
;
1089 // Write out the ELF header ...
1092 // ... then the sections ...
1093 SectionOffsetsTy SectionOffsets
;
1094 std::vector
<MCSectionELF
*> Groups
;
1095 std::vector
<MCSectionELF
*> Relocations
;
1096 for (MCSection
&Sec
: Asm
) {
1097 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
1098 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
1100 if (Mode
== DwoOnly
&& !isDwoSection(Section
))
1103 align(Section
.getAlignment());
1105 // Remember the offset into the file for this section.
1106 uint64_t SecStart
= W
.OS
.tell();
1108 const MCSymbolELF
*SignatureSymbol
= Section
.getGroup();
1109 writeSectionData(Asm
, Section
, Layout
);
1111 uint64_t SecEnd
= W
.OS
.tell();
1112 SectionOffsets
[&Section
] = std::make_pair(SecStart
, SecEnd
);
1114 MCSectionELF
*RelSection
= createRelocationSection(Ctx
, Section
);
1116 if (SignatureSymbol
) {
1117 Asm
.registerSymbol(*SignatureSymbol
);
1118 unsigned &GroupIdx
= RevGroupMap
[SignatureSymbol
];
1120 MCSectionELF
*Group
= Ctx
.createELFGroupSection(SignatureSymbol
);
1121 GroupIdx
= addToSectionTable(Group
);
1122 Group
->setAlignment(4);
1123 Groups
.push_back(Group
);
1125 std::vector
<const MCSectionELF
*> &Members
=
1126 GroupMembers
[SignatureSymbol
];
1127 Members
.push_back(&Section
);
1129 Members
.push_back(RelSection
);
1132 SectionIndexMap
[&Section
] = addToSectionTable(&Section
);
1134 SectionIndexMap
[RelSection
] = addToSectionTable(RelSection
);
1135 Relocations
.push_back(RelSection
);
1138 OWriter
.TargetObjectWriter
->addTargetSectionFlags(Ctx
, Section
);
1141 MCSectionELF
*CGProfileSection
= nullptr;
1142 if (!Asm
.CGProfile
.empty()) {
1143 CGProfileSection
= Ctx
.getELFSection(".llvm.call-graph-profile",
1144 ELF::SHT_LLVM_CALL_GRAPH_PROFILE
,
1145 ELF::SHF_EXCLUDE
, 16, "");
1146 SectionIndexMap
[CGProfileSection
] = addToSectionTable(CGProfileSection
);
1149 for (MCSectionELF
*Group
: Groups
) {
1150 align(Group
->getAlignment());
1152 // Remember the offset into the file for this section.
1153 uint64_t SecStart
= W
.OS
.tell();
1155 const MCSymbol
*SignatureSymbol
= Group
->getGroup();
1156 assert(SignatureSymbol
);
1157 write(uint32_t(ELF::GRP_COMDAT
));
1158 for (const MCSectionELF
*Member
: GroupMembers
[SignatureSymbol
]) {
1159 uint32_t SecIndex
= SectionIndexMap
.lookup(Member
);
1163 uint64_t SecEnd
= W
.OS
.tell();
1164 SectionOffsets
[Group
] = std::make_pair(SecStart
, SecEnd
);
1167 if (Mode
== DwoOnly
) {
1168 // dwo files don't have symbol tables or relocations, but they do have
1170 StrTabBuilder
.finalize();
1172 MCSectionELF
*AddrsigSection
;
1173 if (OWriter
.EmitAddrsigSection
) {
1174 AddrsigSection
= Ctx
.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG
,
1176 addToSectionTable(AddrsigSection
);
1179 // Compute symbol table information.
1180 computeSymbolTable(Asm
, Layout
, SectionIndexMap
, RevGroupMap
,
1183 for (MCSectionELF
*RelSection
: Relocations
) {
1184 align(RelSection
->getAlignment());
1186 // Remember the offset into the file for this section.
1187 uint64_t SecStart
= W
.OS
.tell();
1189 writeRelocations(Asm
,
1190 cast
<MCSectionELF
>(*RelSection
->getAssociatedSection()));
1192 uint64_t SecEnd
= W
.OS
.tell();
1193 SectionOffsets
[RelSection
] = std::make_pair(SecStart
, SecEnd
);
1196 if (OWriter
.EmitAddrsigSection
) {
1197 uint64_t SecStart
= W
.OS
.tell();
1198 writeAddrsigSection();
1199 uint64_t SecEnd
= W
.OS
.tell();
1200 SectionOffsets
[AddrsigSection
] = std::make_pair(SecStart
, SecEnd
);
1204 if (CGProfileSection
) {
1205 uint64_t SecStart
= W
.OS
.tell();
1206 for (const MCAssembler::CGProfileEntry
&CGPE
: Asm
.CGProfile
) {
1207 W
.write
<uint32_t>(CGPE
.From
->getSymbol().getIndex());
1208 W
.write
<uint32_t>(CGPE
.To
->getSymbol().getIndex());
1209 W
.write
<uint64_t>(CGPE
.Count
);
1211 uint64_t SecEnd
= W
.OS
.tell();
1212 SectionOffsets
[CGProfileSection
] = std::make_pair(SecStart
, SecEnd
);
1216 uint64_t SecStart
= W
.OS
.tell();
1217 const MCSectionELF
*Sec
= createStringTable(Ctx
);
1218 uint64_t SecEnd
= W
.OS
.tell();
1219 SectionOffsets
[Sec
] = std::make_pair(SecStart
, SecEnd
);
1222 uint64_t NaturalAlignment
= is64Bit() ? 8 : 4;
1223 align(NaturalAlignment
);
1225 const uint64_t SectionHeaderOffset
= W
.OS
.tell();
1227 // ... then the section header table ...
1228 writeSectionHeader(Layout
, SectionIndexMap
, SectionOffsets
);
1230 uint16_t NumSections
= support::endian::byte_swap
<uint16_t>(
1231 (SectionTable
.size() + 1 >= ELF::SHN_LORESERVE
) ? (uint16_t)ELF::SHN_UNDEF
1232 : SectionTable
.size() + 1,
1234 unsigned NumSectionsOffset
;
1236 auto &Stream
= static_cast<raw_pwrite_stream
&>(W
.OS
);
1239 support::endian::byte_swap
<uint64_t>(SectionHeaderOffset
, W
.Endian
);
1240 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1241 offsetof(ELF::Elf64_Ehdr
, e_shoff
));
1242 NumSectionsOffset
= offsetof(ELF::Elf64_Ehdr
, e_shnum
);
1245 support::endian::byte_swap
<uint32_t>(SectionHeaderOffset
, W
.Endian
);
1246 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1247 offsetof(ELF::Elf32_Ehdr
, e_shoff
));
1248 NumSectionsOffset
= offsetof(ELF::Elf32_Ehdr
, e_shnum
);
1250 Stream
.pwrite(reinterpret_cast<char *>(&NumSections
), sizeof(NumSections
),
1253 return W
.OS
.tell() - StartOffset
;
1256 bool ELFObjectWriter::hasRelocationAddend() const {
1257 return TargetObjectWriter
->hasRelocationAddend();
1260 void ELFObjectWriter::executePostLayoutBinding(MCAssembler
&Asm
,
1261 const MCAsmLayout
&Layout
) {
1262 // The presence of symbol versions causes undefined symbols and
1263 // versions declared with @@@ to be renamed.
1264 for (const std::pair
<StringRef
, const MCSymbol
*> &P
: Asm
.Symvers
) {
1265 StringRef AliasName
= P
.first
;
1266 const auto &Symbol
= cast
<MCSymbolELF
>(*P
.second
);
1267 size_t Pos
= AliasName
.find('@');
1268 assert(Pos
!= StringRef::npos
);
1270 StringRef Prefix
= AliasName
.substr(0, Pos
);
1271 StringRef Rest
= AliasName
.substr(Pos
);
1272 StringRef Tail
= Rest
;
1273 if (Rest
.startswith("@@@"))
1274 Tail
= Rest
.substr(Symbol
.isUndefined() ? 2 : 1);
1277 cast
<MCSymbolELF
>(Asm
.getContext().getOrCreateSymbol(Prefix
+ Tail
));
1278 Asm
.registerSymbol(*Alias
);
1279 const MCExpr
*Value
= MCSymbolRefExpr::create(&Symbol
, Asm
.getContext());
1280 Alias
->setVariableValue(Value
);
1282 // Aliases defined with .symvar copy the binding from the symbol they alias.
1283 // This is the first place we are able to copy this information.
1284 Alias
->setExternal(Symbol
.isExternal());
1285 Alias
->setBinding(Symbol
.getBinding());
1286 Alias
->setOther(Symbol
.getOther());
1288 if (!Symbol
.isUndefined() && !Rest
.startswith("@@@"))
1291 // FIXME: Get source locations for these errors or diagnose them earlier.
1292 if (Symbol
.isUndefined() && Rest
.startswith("@@") &&
1293 !Rest
.startswith("@@@")) {
1294 Asm
.getContext().reportError(SMLoc(), "versioned symbol " + AliasName
+
1295 " must be defined");
1299 if (Renames
.count(&Symbol
) && Renames
[&Symbol
] != Alias
) {
1300 Asm
.getContext().reportError(
1301 SMLoc(), llvm::Twine("multiple symbol versions defined for ") +
1306 Renames
.insert(std::make_pair(&Symbol
, Alias
));
1309 for (const MCSymbol
*&Sym
: AddrsigSyms
) {
1310 if (const MCSymbol
*R
= Renames
.lookup(cast
<MCSymbolELF
>(Sym
)))
1312 if (Sym
->isInSection() && Sym
->getName().startswith(".L"))
1313 Sym
= Sym
->getSection().getBeginSymbol();
1314 Sym
->setUsedInReloc();
1318 // It is always valid to create a relocation with a symbol. It is preferable
1319 // to use a relocation with a section if that is possible. Using the section
1320 // allows us to omit some local symbols from the symbol table.
1321 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler
&Asm
,
1322 const MCSymbolRefExpr
*RefA
,
1323 const MCSymbolELF
*Sym
,
1325 unsigned Type
) const {
1326 // A PCRel relocation to an absolute value has no symbol (or section). We
1327 // represent that with a relocation to a null section.
1331 MCSymbolRefExpr::VariantKind Kind
= RefA
->getKind();
1335 // The .odp creation emits a relocation against the symbol ".TOC." which
1336 // create a R_PPC64_TOC relocation. However the relocation symbol name
1337 // in final object creation should be NULL, since the symbol does not
1338 // really exist, it is just the reference to TOC base for the current
1339 // object file. Since the symbol is undefined, returning false results
1340 // in a relocation with a null section which is the desired result.
1341 case MCSymbolRefExpr::VK_PPC_TOCBASE
:
1344 // These VariantKind cause the relocation to refer to something other than
1345 // the symbol itself, like a linker generated table. Since the address of
1346 // symbol is not relevant, we cannot replace the symbol with the
1347 // section and patch the difference in the addend.
1348 case MCSymbolRefExpr::VK_GOT
:
1349 case MCSymbolRefExpr::VK_PLT
:
1350 case MCSymbolRefExpr::VK_GOTPCREL
:
1351 case MCSymbolRefExpr::VK_PPC_GOT_LO
:
1352 case MCSymbolRefExpr::VK_PPC_GOT_HI
:
1353 case MCSymbolRefExpr::VK_PPC_GOT_HA
:
1357 // An undefined symbol is not in any section, so the relocation has to point
1358 // to the symbol itself.
1359 assert(Sym
&& "Expected a symbol");
1360 if (Sym
->isUndefined())
1363 unsigned Binding
= Sym
->getBinding();
1366 llvm_unreachable("Invalid Binding");
1367 case ELF::STB_LOCAL
:
1370 // If the symbol is weak, it might be overridden by a symbol in another
1371 // file. The relocation has to point to the symbol so that the linker
1374 case ELF::STB_GLOBAL
:
1375 // Global ELF symbols can be preempted by the dynamic linker. The relocation
1376 // has to point to the symbol for a reason analogous to the STB_WEAK case.
1380 // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1381 // reloc that the dynamic loader will use to resolve the address at startup
1383 if (Sym
->getType() == ELF::STT_GNU_IFUNC
)
1386 // If a relocation points to a mergeable section, we have to be careful.
1387 // If the offset is zero, a relocation with the section will encode the
1388 // same information. With a non-zero offset, the situation is different.
1389 // For example, a relocation can point 42 bytes past the end of a string.
1390 // If we change such a relocation to use the section, the linker would think
1391 // that it pointed to another string and subtracting 42 at runtime will
1392 // produce the wrong value.
1393 if (Sym
->isInSection()) {
1394 auto &Sec
= cast
<MCSectionELF
>(Sym
->getSection());
1395 unsigned Flags
= Sec
.getFlags();
1396 if (Flags
& ELF::SHF_MERGE
) {
1400 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1401 // only handle section relocations to mergeable sections if using RELA.
1402 if (!hasRelocationAddend())
1406 // Most TLS relocations use a got, so they need the symbol. Even those that
1407 // are just an offset (@tpoff), require a symbol in gold versions before
1408 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1409 // http://sourceware.org/PR16773.
1410 if (Flags
& ELF::SHF_TLS
)
1414 // If the symbol is a thumb function the final relocation must set the lowest
1415 // bit. With a symbol that is done by just having the symbol have that bit
1416 // set, so we would lose the bit if we relocated with the section.
1417 // FIXME: We could use the section but add the bit to the relocation value.
1418 if (Asm
.isThumbFunc(Sym
))
1421 if (TargetObjectWriter
->needsRelocateWithSymbol(*Sym
, Type
))
1426 void ELFObjectWriter::recordRelocation(MCAssembler
&Asm
,
1427 const MCAsmLayout
&Layout
,
1428 const MCFragment
*Fragment
,
1429 const MCFixup
&Fixup
, MCValue Target
,
1430 uint64_t &FixedValue
) {
1431 MCAsmBackend
&Backend
= Asm
.getBackend();
1432 bool IsPCRel
= Backend
.getFixupKindInfo(Fixup
.getKind()).Flags
&
1433 MCFixupKindInfo::FKF_IsPCRel
;
1434 const MCSectionELF
&FixupSection
= cast
<MCSectionELF
>(*Fragment
->getParent());
1435 uint64_t C
= Target
.getConstant();
1436 uint64_t FixupOffset
= Layout
.getFragmentOffset(Fragment
) + Fixup
.getOffset();
1437 MCContext
&Ctx
= Asm
.getContext();
1439 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
1440 const auto &SymB
= cast
<MCSymbolELF
>(RefB
->getSymbol());
1441 if (SymB
.isUndefined()) {
1442 Ctx
.reportError(Fixup
.getLoc(),
1443 Twine("symbol '") + SymB
.getName() +
1444 "' can not be undefined in a subtraction expression");
1448 assert(!SymB
.isAbsolute() && "Should have been folded");
1449 const MCSection
&SecB
= SymB
.getSection();
1450 if (&SecB
!= &FixupSection
) {
1451 Ctx
.reportError(Fixup
.getLoc(),
1452 "Cannot represent a difference across sections");
1456 assert(!IsPCRel
&& "should have been folded");
1458 C
+= FixupOffset
- Layout
.getSymbolOffset(SymB
);
1461 // We either rejected the fixup or folded B into C at this point.
1462 const MCSymbolRefExpr
*RefA
= Target
.getSymA();
1463 const auto *SymA
= RefA
? cast
<MCSymbolELF
>(&RefA
->getSymbol()) : nullptr;
1465 bool ViaWeakRef
= false;
1466 if (SymA
&& SymA
->isVariable()) {
1467 const MCExpr
*Expr
= SymA
->getVariableValue();
1468 if (const auto *Inner
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
1469 if (Inner
->getKind() == MCSymbolRefExpr::VK_WEAKREF
) {
1470 SymA
= cast
<MCSymbolELF
>(&Inner
->getSymbol());
1476 const MCSectionELF
*SecA
= (SymA
&& SymA
->isInSection())
1477 ? cast
<MCSectionELF
>(&SymA
->getSection())
1479 if (!checkRelocation(Ctx
, Fixup
.getLoc(), &FixupSection
, SecA
))
1482 unsigned Type
= TargetObjectWriter
->getRelocType(Ctx
, Target
, Fixup
, IsPCRel
);
1483 bool RelocateWithSymbol
= shouldRelocateWithSymbol(Asm
, RefA
, SymA
, C
, Type
);
1484 uint64_t Addend
= 0;
1486 FixedValue
= !RelocateWithSymbol
&& SymA
&& !SymA
->isUndefined()
1487 ? C
+ Layout
.getSymbolOffset(*SymA
)
1489 if (hasRelocationAddend()) {
1490 Addend
= FixedValue
;
1494 if (!RelocateWithSymbol
) {
1495 const auto *SectionSymbol
=
1496 SecA
? cast
<MCSymbolELF
>(SecA
->getBeginSymbol()) : nullptr;
1498 SectionSymbol
->setUsedInReloc();
1499 ELFRelocationEntry
Rec(FixupOffset
, SectionSymbol
, Type
, Addend
, SymA
, C
);
1500 Relocations
[&FixupSection
].push_back(Rec
);
1504 const MCSymbolELF
*RenamedSymA
= SymA
;
1506 if (const MCSymbolELF
*R
= Renames
.lookup(SymA
))
1510 RenamedSymA
->setIsWeakrefUsedInReloc();
1512 RenamedSymA
->setUsedInReloc();
1514 ELFRelocationEntry
Rec(FixupOffset
, RenamedSymA
, Type
, Addend
, SymA
, C
);
1515 Relocations
[&FixupSection
].push_back(Rec
);
1518 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1519 const MCAssembler
&Asm
, const MCSymbol
&SA
, const MCFragment
&FB
,
1520 bool InSet
, bool IsPCRel
) const {
1521 const auto &SymA
= cast
<MCSymbolELF
>(SA
);
1527 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm
, SymA
, FB
,
1531 std::unique_ptr
<MCObjectWriter
>
1532 llvm::createELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1533 raw_pwrite_stream
&OS
, bool IsLittleEndian
) {
1534 return std::make_unique
<ELFSingleObjectWriter
>(std::move(MOTW
), OS
,
1538 std::unique_ptr
<MCObjectWriter
>
1539 llvm::createELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1540 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
1541 bool IsLittleEndian
) {
1542 return std::make_unique
<ELFDwoObjectWriter
>(std::move(MOTW
), OS
, DwoOS
,