1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the InstrBuilder interface.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
22 #define DEBUG_TYPE "llvm-mca"
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo
&sti
,
28 const llvm::MCInstrInfo
&mcii
,
29 const llvm::MCRegisterInfo
&mri
,
30 const llvm::MCInstrAnalysis
*mcia
)
31 : STI(sti
), MCII(mcii
), MRI(mri
), MCIA(mcia
), FirstCallInst(true),
32 FirstReturnInst(true) {
33 const MCSchedModel
&SM
= STI
.getSchedModel();
34 ProcResourceMasks
.resize(SM
.getNumProcResourceKinds());
35 computeProcResourceMasks(STI
.getSchedModel(), ProcResourceMasks
);
38 static void initializeUsedResources(InstrDesc
&ID
,
39 const MCSchedClassDesc
&SCDesc
,
40 const MCSubtargetInfo
&STI
,
41 ArrayRef
<uint64_t> ProcResourceMasks
) {
42 const MCSchedModel
&SM
= STI
.getSchedModel();
44 // Populate resources consumed.
45 using ResourcePlusCycles
= std::pair
<uint64_t, ResourceUsage
>;
46 std::vector
<ResourcePlusCycles
> Worklist
;
48 // Track cycles contributed by resources that are in a "Super" relationship.
49 // This is required if we want to correctly match the behavior of method
50 // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51 // of "consumed" processor resources and resource cycles, the logic in
52 // ExpandProcResource() doesn't update the number of resource cycles
53 // contributed by a "Super" resource to a group.
54 // We need to take this into account when we find that a processor resource is
55 // part of a group, and it is also used as the "Super" of other resources.
56 // This map stores the number of cycles contributed by sub-resources that are
57 // part of a "Super" resource. The key value is the "Super" resource mask ID.
58 DenseMap
<uint64_t, unsigned> SuperResources
;
60 unsigned NumProcResources
= SM
.getNumProcResourceKinds();
61 APInt
Buffers(NumProcResources
, 0);
63 bool AllInOrderResources
= true;
64 bool AnyDispatchHazards
= false;
65 for (unsigned I
= 0, E
= SCDesc
.NumWriteProcResEntries
; I
< E
; ++I
) {
66 const MCWriteProcResEntry
*PRE
= STI
.getWriteProcResBegin(&SCDesc
) + I
;
67 const MCProcResourceDesc
&PR
= *SM
.getProcResource(PRE
->ProcResourceIdx
);
71 << "Ignoring invalid write of zero cycles on processor resource "
73 WithColor::note() << "found in scheduling class " << SCDesc
.Name
74 << " (write index #" << I
<< ")\n";
79 uint64_t Mask
= ProcResourceMasks
[PRE
->ProcResourceIdx
];
80 if (PR
.BufferSize
< 0) {
81 AllInOrderResources
= false;
83 Buffers
.setBit(getResourceStateIndex(Mask
));
84 AnyDispatchHazards
|= (PR
.BufferSize
== 0);
85 AllInOrderResources
&= (PR
.BufferSize
<= 1);
88 CycleSegment
RCy(0, PRE
->Cycles
, false);
89 Worklist
.emplace_back(ResourcePlusCycles(Mask
, ResourceUsage(RCy
)));
91 uint64_t Super
= ProcResourceMasks
[PR
.SuperIdx
];
92 SuperResources
[Super
] += PRE
->Cycles
;
96 ID
.MustIssueImmediately
= AllInOrderResources
&& AnyDispatchHazards
;
98 // Sort elements by mask popcount, so that we prioritize resource units over
99 // resource groups, and smaller groups over larger groups.
100 sort(Worklist
, [](const ResourcePlusCycles
&A
, const ResourcePlusCycles
&B
) {
101 unsigned popcntA
= countPopulation(A
.first
);
102 unsigned popcntB
= countPopulation(B
.first
);
103 if (popcntA
< popcntB
)
105 if (popcntA
> popcntB
)
107 return A
.first
< B
.first
;
110 uint64_t UsedResourceUnits
= 0;
111 uint64_t UsedResourceGroups
= 0;
113 // Remove cycles contributed by smaller resources.
114 for (unsigned I
= 0, E
= Worklist
.size(); I
< E
; ++I
) {
115 ResourcePlusCycles
&A
= Worklist
[I
];
116 if (!A
.second
.size()) {
117 assert(countPopulation(A
.first
) > 1 && "Expected a group!");
118 UsedResourceGroups
|= PowerOf2Floor(A
.first
);
122 ID
.Resources
.emplace_back(A
);
123 uint64_t NormalizedMask
= A
.first
;
124 if (countPopulation(A
.first
) == 1) {
125 UsedResourceUnits
|= A
.first
;
127 // Remove the leading 1 from the resource group mask.
128 NormalizedMask
^= PowerOf2Floor(NormalizedMask
);
129 UsedResourceGroups
|= (A
.first
^ NormalizedMask
);
132 for (unsigned J
= I
+ 1; J
< E
; ++J
) {
133 ResourcePlusCycles
&B
= Worklist
[J
];
134 if ((NormalizedMask
& B
.first
) == NormalizedMask
) {
135 B
.second
.CS
.subtract(A
.second
.size() - SuperResources
[A
.first
]);
136 if (countPopulation(B
.first
) > 1)
142 // A SchedWrite may specify a number of cycles in which a resource group
143 // is reserved. For example (on target x86; cpu Haswell):
145 // SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
146 // let ResourceCycles = [2, 2, 3];
150 // Resource units HWPort0 and HWPort1 are both used for 2cy.
151 // Resource group HWPort01 is the union of HWPort0 and HWPort1.
152 // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
153 // will not be usable for 2 entire cycles from instruction issue.
155 // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
156 // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
157 // extra delay on top of the 2 cycles latency.
158 // During those extra cycles, HWPort01 is not usable by other instructions.
159 for (ResourcePlusCycles
&RPC
: ID
.Resources
) {
160 if (countPopulation(RPC
.first
) > 1 && !RPC
.second
.isReserved()) {
161 // Remove the leading 1 from the resource group mask.
162 uint64_t Mask
= RPC
.first
^ PowerOf2Floor(RPC
.first
);
163 if ((Mask
& UsedResourceUnits
) == Mask
)
164 RPC
.second
.setReserved();
168 // Identify extra buffers that are consumed through super resources.
169 for (const std::pair
<uint64_t, unsigned> &SR
: SuperResources
) {
170 for (unsigned I
= 1, E
= NumProcResources
; I
< E
; ++I
) {
171 const MCProcResourceDesc
&PR
= *SM
.getProcResource(I
);
172 if (PR
.BufferSize
== -1)
175 uint64_t Mask
= ProcResourceMasks
[I
];
176 if (Mask
!= SR
.first
&& ((Mask
& SR
.first
) == SR
.first
))
177 Buffers
.setBit(getResourceStateIndex(Mask
));
181 ID
.UsedBuffers
= Buffers
.getZExtValue();
182 ID
.UsedProcResUnits
= UsedResourceUnits
;
183 ID
.UsedProcResGroups
= UsedResourceGroups
;
186 for (const std::pair
<uint64_t, ResourceUsage
> &R
: ID
.Resources
)
187 dbgs() << "\t\tResource Mask=" << format_hex(R
.first
, 16) << ", "
188 << "Reserved=" << R
.second
.isReserved() << ", "
189 << "#Units=" << R
.second
.NumUnits
<< ", "
190 << "cy=" << R
.second
.size() << '\n';
191 uint64_t BufferIDs
= ID
.UsedBuffers
;
193 uint64_t Current
= BufferIDs
& (-BufferIDs
);
194 dbgs() << "\t\tBuffer Mask=" << format_hex(Current
, 16) << '\n';
195 BufferIDs
^= Current
;
197 dbgs() << "\t\t Used Units=" << format_hex(ID
.UsedProcResUnits
, 16) << '\n';
198 dbgs() << "\t\tUsed Groups=" << format_hex(ID
.UsedProcResGroups
, 16)
203 static void computeMaxLatency(InstrDesc
&ID
, const MCInstrDesc
&MCDesc
,
204 const MCSchedClassDesc
&SCDesc
,
205 const MCSubtargetInfo
&STI
) {
206 if (MCDesc
.isCall()) {
207 // We cannot estimate how long this call will take.
208 // Artificially set an arbitrarily high latency (100cy).
209 ID
.MaxLatency
= 100U;
213 int Latency
= MCSchedModel::computeInstrLatency(STI
, SCDesc
);
214 // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
215 ID
.MaxLatency
= Latency
< 0 ? 100U : static_cast<unsigned>(Latency
);
218 static Error
verifyOperands(const MCInstrDesc
&MCDesc
, const MCInst
&MCI
) {
219 // Count register definitions, and skip non register operands in the process.
221 unsigned NumExplicitDefs
= MCDesc
.getNumDefs();
222 for (I
= 0, E
= MCI
.getNumOperands(); NumExplicitDefs
&& I
< E
; ++I
) {
223 const MCOperand
&Op
= MCI
.getOperand(I
);
228 if (NumExplicitDefs
) {
229 return make_error
<InstructionError
<MCInst
>>(
230 "Expected more register operand definitions.", MCI
);
233 if (MCDesc
.hasOptionalDef()) {
234 // Always assume that the optional definition is the last operand.
235 const MCOperand
&Op
= MCI
.getOperand(MCDesc
.getNumOperands() - 1);
236 if (I
== MCI
.getNumOperands() || !Op
.isReg()) {
237 std::string Message
=
238 "expected a register operand for an optional definition. Instruction "
239 "has not been correctly analyzed.";
240 return make_error
<InstructionError
<MCInst
>>(Message
, MCI
);
244 return ErrorSuccess();
247 void InstrBuilder::populateWrites(InstrDesc
&ID
, const MCInst
&MCI
,
248 unsigned SchedClassID
) {
249 const MCInstrDesc
&MCDesc
= MCII
.get(MCI
.getOpcode());
250 const MCSchedModel
&SM
= STI
.getSchedModel();
251 const MCSchedClassDesc
&SCDesc
= *SM
.getSchedClassDesc(SchedClassID
);
253 // Assumptions made by this algorithm:
254 // 1. The number of explicit and implicit register definitions in a MCInst
255 // matches the number of explicit and implicit definitions according to
256 // the opcode descriptor (MCInstrDesc).
257 // 2. Uses start at index #(MCDesc.getNumDefs()).
258 // 3. There can only be a single optional register definition, an it is
259 // always the last operand of the sequence (excluding extra operands
260 // contributed by variadic opcodes).
262 // These assumptions work quite well for most out-of-order in-tree targets
263 // like x86. This is mainly because the vast majority of instructions is
264 // expanded to MCInst using a straightforward lowering logic that preserves
265 // the ordering of the operands.
267 // About assumption 1.
268 // The algorithm allows non-register operands between register operand
269 // definitions. This helps to handle some special ARM instructions with
270 // implicit operand increment (-mtriple=armv7):
272 // vld1.32 {d18, d19}, [r1]! @ <MCInst #1463 VLD1q32wb_fixed
273 // @ <MCOperand Reg:59>
274 // @ <MCOperand Imm:0> (!!)
275 // @ <MCOperand Reg:67>
276 // @ <MCOperand Imm:0>
277 // @ <MCOperand Imm:14>
278 // @ <MCOperand Reg:0>>
281 // 6 explicit operands.
282 // 1 optional definition
283 // 2 explicit definitions (!!)
285 // The presence of an 'Imm' operand between the two register definitions
286 // breaks the assumption that "register definitions are always at the
287 // beginning of the operand sequence".
289 // To workaround this issue, this algorithm ignores (i.e. skips) any
290 // non-register operands between register definitions. The optional
291 // definition is still at index #(NumOperands-1).
293 // According to assumption 2. register reads start at #(NumExplicitDefs-1).
294 // That means, register R1 from the example is both read and written.
295 unsigned NumExplicitDefs
= MCDesc
.getNumDefs();
296 unsigned NumImplicitDefs
= MCDesc
.getNumImplicitDefs();
297 unsigned NumWriteLatencyEntries
= SCDesc
.NumWriteLatencyEntries
;
298 unsigned TotalDefs
= NumExplicitDefs
+ NumImplicitDefs
;
299 if (MCDesc
.hasOptionalDef())
302 unsigned NumVariadicOps
= MCI
.getNumOperands() - MCDesc
.getNumOperands();
303 ID
.Writes
.resize(TotalDefs
+ NumVariadicOps
);
304 // Iterate over the operands list, and skip non-register operands.
305 // The first NumExplictDefs register operands are expected to be register
307 unsigned CurrentDef
= 0;
309 for (; i
< MCI
.getNumOperands() && CurrentDef
< NumExplicitDefs
; ++i
) {
310 const MCOperand
&Op
= MCI
.getOperand(i
);
314 WriteDescriptor
&Write
= ID
.Writes
[CurrentDef
];
316 if (CurrentDef
< NumWriteLatencyEntries
) {
317 const MCWriteLatencyEntry
&WLE
=
318 *STI
.getWriteLatencyEntry(&SCDesc
, CurrentDef
);
319 // Conservatively default to MaxLatency.
321 WLE
.Cycles
< 0 ? ID
.MaxLatency
: static_cast<unsigned>(WLE
.Cycles
);
322 Write
.SClassOrWriteResourceID
= WLE
.WriteResourceID
;
324 // Assign a default latency for this write.
325 Write
.Latency
= ID
.MaxLatency
;
326 Write
.SClassOrWriteResourceID
= 0;
328 Write
.IsOptionalDef
= false;
330 dbgs() << "\t\t[Def] OpIdx=" << Write
.OpIndex
331 << ", Latency=" << Write
.Latency
332 << ", WriteResourceID=" << Write
.SClassOrWriteResourceID
<< '\n';
337 assert(CurrentDef
== NumExplicitDefs
&&
338 "Expected more register operand definitions.");
339 for (CurrentDef
= 0; CurrentDef
< NumImplicitDefs
; ++CurrentDef
) {
340 unsigned Index
= NumExplicitDefs
+ CurrentDef
;
341 WriteDescriptor
&Write
= ID
.Writes
[Index
];
342 Write
.OpIndex
= ~CurrentDef
;
343 Write
.RegisterID
= MCDesc
.getImplicitDefs()[CurrentDef
];
344 if (Index
< NumWriteLatencyEntries
) {
345 const MCWriteLatencyEntry
&WLE
=
346 *STI
.getWriteLatencyEntry(&SCDesc
, Index
);
347 // Conservatively default to MaxLatency.
349 WLE
.Cycles
< 0 ? ID
.MaxLatency
: static_cast<unsigned>(WLE
.Cycles
);
350 Write
.SClassOrWriteResourceID
= WLE
.WriteResourceID
;
352 // Assign a default latency for this write.
353 Write
.Latency
= ID
.MaxLatency
;
354 Write
.SClassOrWriteResourceID
= 0;
357 Write
.IsOptionalDef
= false;
358 assert(Write
.RegisterID
!= 0 && "Expected a valid phys register!");
360 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write
.OpIndex
361 << ", PhysReg=" << MRI
.getName(Write
.RegisterID
)
362 << ", Latency=" << Write
.Latency
363 << ", WriteResourceID=" << Write
.SClassOrWriteResourceID
<< '\n';
367 if (MCDesc
.hasOptionalDef()) {
368 WriteDescriptor
&Write
= ID
.Writes
[NumExplicitDefs
+ NumImplicitDefs
];
369 Write
.OpIndex
= MCDesc
.getNumOperands() - 1;
370 // Assign a default latency for this write.
371 Write
.Latency
= ID
.MaxLatency
;
372 Write
.SClassOrWriteResourceID
= 0;
373 Write
.IsOptionalDef
= true;
375 dbgs() << "\t\t[Def][O] OpIdx=" << Write
.OpIndex
376 << ", Latency=" << Write
.Latency
377 << ", WriteResourceID=" << Write
.SClassOrWriteResourceID
<< '\n';
384 // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
385 // "unmodeledSideEffects', then this logic optimistically assumes that any
386 // extra register operands in the variadic sequence is not a register
389 // Otherwise, we conservatively assume that any register operand from the
390 // variadic sequence is both a register read and a register write.
391 bool AssumeUsesOnly
= MCDesc
.mayStore() && !MCDesc
.mayLoad() &&
392 !MCDesc
.hasUnmodeledSideEffects();
393 CurrentDef
= NumExplicitDefs
+ NumImplicitDefs
+ MCDesc
.hasOptionalDef();
394 for (unsigned I
= 0, OpIndex
= MCDesc
.getNumOperands();
395 I
< NumVariadicOps
&& !AssumeUsesOnly
; ++I
, ++OpIndex
) {
396 const MCOperand
&Op
= MCI
.getOperand(OpIndex
);
400 WriteDescriptor
&Write
= ID
.Writes
[CurrentDef
];
401 Write
.OpIndex
= OpIndex
;
402 // Assign a default latency for this write.
403 Write
.Latency
= ID
.MaxLatency
;
404 Write
.SClassOrWriteResourceID
= 0;
405 Write
.IsOptionalDef
= false;
408 dbgs() << "\t\t[Def][V] OpIdx=" << Write
.OpIndex
409 << ", Latency=" << Write
.Latency
410 << ", WriteResourceID=" << Write
.SClassOrWriteResourceID
<< '\n';
414 ID
.Writes
.resize(CurrentDef
);
417 void InstrBuilder::populateReads(InstrDesc
&ID
, const MCInst
&MCI
,
418 unsigned SchedClassID
) {
419 const MCInstrDesc
&MCDesc
= MCII
.get(MCI
.getOpcode());
420 unsigned NumExplicitUses
= MCDesc
.getNumOperands() - MCDesc
.getNumDefs();
421 unsigned NumImplicitUses
= MCDesc
.getNumImplicitUses();
422 // Remove the optional definition.
423 if (MCDesc
.hasOptionalDef())
425 unsigned NumVariadicOps
= MCI
.getNumOperands() - MCDesc
.getNumOperands();
426 unsigned TotalUses
= NumExplicitUses
+ NumImplicitUses
+ NumVariadicOps
;
427 ID
.Reads
.resize(TotalUses
);
428 unsigned CurrentUse
= 0;
429 for (unsigned I
= 0, OpIndex
= MCDesc
.getNumDefs(); I
< NumExplicitUses
;
431 const MCOperand
&Op
= MCI
.getOperand(OpIndex
);
435 ReadDescriptor
&Read
= ID
.Reads
[CurrentUse
];
436 Read
.OpIndex
= OpIndex
;
438 Read
.SchedClassID
= SchedClassID
;
440 LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read
.OpIndex
441 << ", UseIndex=" << Read
.UseIndex
<< '\n');
444 // For the purpose of ReadAdvance, implicit uses come directly after explicit
445 // uses. The "UseIndex" must be updated according to that implicit layout.
446 for (unsigned I
= 0; I
< NumImplicitUses
; ++I
) {
447 ReadDescriptor
&Read
= ID
.Reads
[CurrentUse
+ I
];
449 Read
.UseIndex
= NumExplicitUses
+ I
;
450 Read
.RegisterID
= MCDesc
.getImplicitUses()[I
];
451 Read
.SchedClassID
= SchedClassID
;
452 LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read
.OpIndex
453 << ", UseIndex=" << Read
.UseIndex
<< ", RegisterID="
454 << MRI
.getName(Read
.RegisterID
) << '\n');
457 CurrentUse
+= NumImplicitUses
;
459 // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
460 // "unmodeledSideEffects", then this logic optimistically assumes that any
461 // extra register operand in the variadic sequence is not a register
463 bool AssumeDefsOnly
= !MCDesc
.mayStore() && MCDesc
.mayLoad() &&
464 !MCDesc
.hasUnmodeledSideEffects();
465 for (unsigned I
= 0, OpIndex
= MCDesc
.getNumOperands();
466 I
< NumVariadicOps
&& !AssumeDefsOnly
; ++I
, ++OpIndex
) {
467 const MCOperand
&Op
= MCI
.getOperand(OpIndex
);
471 ReadDescriptor
&Read
= ID
.Reads
[CurrentUse
];
472 Read
.OpIndex
= OpIndex
;
473 Read
.UseIndex
= NumExplicitUses
+ NumImplicitUses
+ I
;
474 Read
.SchedClassID
= SchedClassID
;
476 LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read
.OpIndex
477 << ", UseIndex=" << Read
.UseIndex
<< '\n');
480 ID
.Reads
.resize(CurrentUse
);
483 Error
InstrBuilder::verifyInstrDesc(const InstrDesc
&ID
,
484 const MCInst
&MCI
) const {
485 if (ID
.NumMicroOps
!= 0)
486 return ErrorSuccess();
488 bool UsesMemory
= ID
.MayLoad
|| ID
.MayStore
;
489 bool UsesBuffers
= ID
.UsedBuffers
;
490 bool UsesResources
= !ID
.Resources
.empty();
491 if (!UsesMemory
&& !UsesBuffers
&& !UsesResources
)
492 return ErrorSuccess();
496 Message
= "found an inconsistent instruction that decodes "
497 "into zero opcodes and that consumes load/store "
500 Message
= "found an inconsistent instruction that decodes "
501 "to zero opcodes and that consumes scheduler "
505 return make_error
<InstructionError
<MCInst
>>(Message
, MCI
);
508 Expected
<const InstrDesc
&>
509 InstrBuilder::createInstrDescImpl(const MCInst
&MCI
) {
510 assert(STI
.getSchedModel().hasInstrSchedModel() &&
511 "Itineraries are not yet supported!");
513 // Obtain the instruction descriptor from the opcode.
514 unsigned short Opcode
= MCI
.getOpcode();
515 const MCInstrDesc
&MCDesc
= MCII
.get(Opcode
);
516 const MCSchedModel
&SM
= STI
.getSchedModel();
518 // Then obtain the scheduling class information from the instruction.
519 unsigned SchedClassID
= MCDesc
.getSchedClass();
520 bool IsVariant
= SM
.getSchedClassDesc(SchedClassID
)->isVariant();
522 // Try to solve variant scheduling classes.
524 unsigned CPUID
= SM
.getProcessorID();
525 while (SchedClassID
&& SM
.getSchedClassDesc(SchedClassID
)->isVariant())
526 SchedClassID
= STI
.resolveVariantSchedClass(SchedClassID
, &MCI
, CPUID
);
529 return make_error
<InstructionError
<MCInst
>>(
530 "unable to resolve scheduling class for write variant.", MCI
);
534 // Check if this instruction is supported. Otherwise, report an error.
535 const MCSchedClassDesc
&SCDesc
= *SM
.getSchedClassDesc(SchedClassID
);
536 if (SCDesc
.NumMicroOps
== MCSchedClassDesc::InvalidNumMicroOps
) {
537 return make_error
<InstructionError
<MCInst
>>(
538 "found an unsupported instruction in the input assembly sequence.",
542 LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII
.getName(Opcode
) << '\n');
543 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID
<< '\n');
545 // Create a new empty descriptor.
546 std::unique_ptr
<InstrDesc
> ID
= std::make_unique
<InstrDesc
>();
547 ID
->NumMicroOps
= SCDesc
.NumMicroOps
;
548 ID
->SchedClassID
= SchedClassID
;
550 if (MCDesc
.isCall() && FirstCallInst
) {
551 // We don't correctly model calls.
552 WithColor::warning() << "found a call in the input assembly sequence.\n";
553 WithColor::note() << "call instructions are not correctly modeled. "
554 << "Assume a latency of 100cy.\n";
555 FirstCallInst
= false;
558 if (MCDesc
.isReturn() && FirstReturnInst
) {
559 WithColor::warning() << "found a return instruction in the input"
560 << " assembly sequence.\n";
561 WithColor::note() << "program counter updates are ignored.\n";
562 FirstReturnInst
= false;
565 ID
->MayLoad
= MCDesc
.mayLoad();
566 ID
->MayStore
= MCDesc
.mayStore();
567 ID
->HasSideEffects
= MCDesc
.hasUnmodeledSideEffects();
568 ID
->BeginGroup
= SCDesc
.BeginGroup
;
569 ID
->EndGroup
= SCDesc
.EndGroup
;
571 initializeUsedResources(*ID
, SCDesc
, STI
, ProcResourceMasks
);
572 computeMaxLatency(*ID
, MCDesc
, SCDesc
, STI
);
574 if (Error Err
= verifyOperands(MCDesc
, MCI
))
575 return std::move(Err
);
577 populateWrites(*ID
, MCI
, SchedClassID
);
578 populateReads(*ID
, MCI
, SchedClassID
);
580 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID
->MaxLatency
<< '\n');
581 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID
->NumMicroOps
<< '\n');
583 // Sanity check on the instruction descriptor.
584 if (Error Err
= verifyInstrDesc(*ID
, MCI
))
585 return std::move(Err
);
587 // Now add the new descriptor.
588 bool IsVariadic
= MCDesc
.isVariadic();
589 if (!IsVariadic
&& !IsVariant
) {
590 Descriptors
[MCI
.getOpcode()] = std::move(ID
);
591 return *Descriptors
[MCI
.getOpcode()];
594 VariantDescriptors
[&MCI
] = std::move(ID
);
595 return *VariantDescriptors
[&MCI
];
598 Expected
<const InstrDesc
&>
599 InstrBuilder::getOrCreateInstrDesc(const MCInst
&MCI
) {
600 if (Descriptors
.find_as(MCI
.getOpcode()) != Descriptors
.end())
601 return *Descriptors
[MCI
.getOpcode()];
603 if (VariantDescriptors
.find(&MCI
) != VariantDescriptors
.end())
604 return *VariantDescriptors
[&MCI
];
606 return createInstrDescImpl(MCI
);
609 Expected
<std::unique_ptr
<Instruction
>>
610 InstrBuilder::createInstruction(const MCInst
&MCI
) {
611 Expected
<const InstrDesc
&> DescOrErr
= getOrCreateInstrDesc(MCI
);
613 return DescOrErr
.takeError();
614 const InstrDesc
&D
= *DescOrErr
;
615 std::unique_ptr
<Instruction
> NewIS
= std::make_unique
<Instruction
>(D
);
617 // Check if this is a dependency breaking instruction.
620 bool IsZeroIdiom
= false;
621 bool IsDepBreaking
= false;
623 unsigned ProcID
= STI
.getSchedModel().getProcessorID();
624 IsZeroIdiom
= MCIA
->isZeroIdiom(MCI
, Mask
, ProcID
);
626 IsZeroIdiom
|| MCIA
->isDependencyBreaking(MCI
, Mask
, ProcID
);
627 if (MCIA
->isOptimizableRegisterMove(MCI
, ProcID
))
628 NewIS
->setOptimizableMove();
631 // Initialize Reads first.
633 for (const ReadDescriptor
&RD
: D
.Reads
) {
634 if (!RD
.isImplicitRead()) {
636 const MCOperand
&Op
= MCI
.getOperand(RD
.OpIndex
);
637 // Skip non-register operands.
643 RegID
= RD
.RegisterID
;
646 // Skip invalid register operands.
650 // Okay, this is a register operand. Create a ReadState for it.
651 NewIS
->getUses().emplace_back(RD
, RegID
);
652 ReadState
&RS
= NewIS
->getUses().back();
655 // A mask of all zeroes means: explicit input operands are not
657 if (Mask
.isNullValue()) {
658 if (!RD
.isImplicitRead())
659 RS
.setIndependentFromDef();
661 // Check if this register operand is independent according to `Mask`.
662 // Note that Mask may not have enough bits to describe all explicit and
663 // implicit input operands. If this register operand doesn't have a
664 // corresponding bit in Mask, then conservatively assume that it is
666 if (Mask
.getBitWidth() > RD
.UseIndex
) {
667 // Okay. This map describe register use `RD.UseIndex`.
668 if (Mask
[RD
.UseIndex
])
669 RS
.setIndependentFromDef();
675 // Early exit if there are no writes.
676 if (D
.Writes
.empty())
677 return std::move(NewIS
);
679 // Track register writes that implicitly clear the upper portion of the
680 // underlying super-registers using an APInt.
681 APInt
WriteMask(D
.Writes
.size(), 0);
683 // Now query the MCInstrAnalysis object to obtain information about which
684 // register writes implicitly clear the upper portion of a super-register.
686 MCIA
->clearsSuperRegisters(MRI
, MCI
, WriteMask
);
688 // Initialize writes.
689 unsigned WriteIndex
= 0;
690 for (const WriteDescriptor
&WD
: D
.Writes
) {
691 RegID
= WD
.isImplicitWrite() ? WD
.RegisterID
692 : MCI
.getOperand(WD
.OpIndex
).getReg();
693 // Check if this is a optional definition that references NoReg.
694 if (WD
.IsOptionalDef
&& !RegID
) {
699 assert(RegID
&& "Expected a valid register ID!");
700 NewIS
->getDefs().emplace_back(WD
, RegID
,
701 /* ClearsSuperRegs */ WriteMask
[WriteIndex
],
702 /* WritesZero */ IsZeroIdiom
);
706 return std::move(NewIS
);