1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/Transforms/IPO.h"
27 #define DEBUG_TYPE "called-value-propagation"
29 /// The maximum number of functions to track per lattice value. Once the number
30 /// of functions a call site can possibly target exceeds this threshold, it's
31 /// lattice value becomes overdefined. The number of possible lattice values is
32 /// bounded by Ch(F, M), where F is the number of functions in the module and M
33 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
34 /// likely can't do anything useful for call sites with a large number of
35 /// possible targets, anyway.
36 static cl::opt
<unsigned> MaxFunctionsPerValue(
37 "cvp-max-functions-per-value", cl::Hidden
, cl::init(4),
38 cl::desc("The maximum number of functions to track per lattice value"));
41 /// To enable interprocedural analysis, we assign LLVM values to the following
42 /// groups. The register group represents SSA registers, the return group
43 /// represents the return values of functions, and the memory group represents
44 /// in-memory values. An LLVM Value can technically be in more than one group.
45 /// It's necessary to distinguish these groups so we can, for example, track a
46 /// global variable separately from the value stored at its location.
47 enum class IPOGrouping
{ Register
, Return
, Memory
};
49 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
50 using CVPLatticeKey
= PointerIntPair
<Value
*, 2, IPOGrouping
>;
52 /// The lattice value type used by our custom lattice function. It holds the
53 /// lattice state, and a set of functions.
56 /// The states of the lattice values. Only the FunctionSet state is
57 /// interesting. It indicates the set of functions to which an LLVM value may
59 enum CVPLatticeStateTy
{ Undefined
, FunctionSet
, Overdefined
, Untracked
};
61 /// Comparator for sorting the functions set. We want to keep the order
62 /// deterministic for testing, etc.
64 bool operator()(const Function
*LHS
, const Function
*RHS
) const {
65 return LHS
->getName() < RHS
->getName();
69 CVPLatticeVal() : LatticeState(Undefined
) {}
70 CVPLatticeVal(CVPLatticeStateTy LatticeState
) : LatticeState(LatticeState
) {}
71 CVPLatticeVal(std::vector
<Function
*> &&Functions
)
72 : LatticeState(FunctionSet
), Functions(std::move(Functions
)) {
73 assert(std::is_sorted(this->Functions
.begin(), this->Functions
.end(),
77 /// Get a reference to the functions held by this lattice value. The number
78 /// of functions will be zero for states other than FunctionSet.
79 const std::vector
<Function
*> &getFunctions() const {
83 /// Returns true if the lattice value is in the FunctionSet state.
84 bool isFunctionSet() const { return LatticeState
== FunctionSet
; }
86 bool operator==(const CVPLatticeVal
&RHS
) const {
87 return LatticeState
== RHS
.LatticeState
&& Functions
== RHS
.Functions
;
90 bool operator!=(const CVPLatticeVal
&RHS
) const {
91 return LatticeState
!= RHS
.LatticeState
|| Functions
!= RHS
.Functions
;
95 /// Holds the state this lattice value is in.
96 CVPLatticeStateTy LatticeState
;
98 /// Holds functions indicating the possible targets of call sites. This set
99 /// is empty for lattice values in the undefined, overdefined, and untracked
100 /// states. The maximum size of the set is controlled by
101 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103 /// small and efficiently copyable.
104 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105 std::vector
<Function
*> Functions
;
108 /// The custom lattice function used by the generic sparse propagation solver.
109 /// It handles merging lattice values and computing new lattice values for
110 /// constants, arguments, values returned from trackable functions, and values
111 /// located in trackable global variables. It also computes the lattice values
112 /// that change as a result of executing instructions.
114 : public AbstractLatticeFunction
<CVPLatticeKey
, CVPLatticeVal
> {
117 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined
),
118 CVPLatticeVal(CVPLatticeVal::Overdefined
),
119 CVPLatticeVal(CVPLatticeVal::Untracked
)) {}
121 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122 CVPLatticeVal
ComputeLatticeVal(CVPLatticeKey Key
) override
{
123 switch (Key
.getInt()) {
124 case IPOGrouping::Register
:
125 if (isa
<Instruction
>(Key
.getPointer())) {
126 return getUndefVal();
127 } else if (auto *A
= dyn_cast
<Argument
>(Key
.getPointer())) {
128 if (canTrackArgumentsInterprocedurally(A
->getParent()))
129 return getUndefVal();
130 } else if (auto *C
= dyn_cast
<Constant
>(Key
.getPointer())) {
131 return computeConstant(C
);
133 return getOverdefinedVal();
134 case IPOGrouping::Memory
:
135 case IPOGrouping::Return
:
136 if (auto *GV
= dyn_cast
<GlobalVariable
>(Key
.getPointer())) {
137 if (canTrackGlobalVariableInterprocedurally(GV
))
138 return computeConstant(GV
->getInitializer());
139 } else if (auto *F
= cast
<Function
>(Key
.getPointer()))
140 if (canTrackReturnsInterprocedurally(F
))
141 return getUndefVal();
143 return getOverdefinedVal();
146 /// Merge the two given lattice values. The interesting cases are merging two
147 /// FunctionSet values and a FunctionSet value with an Undefined value. For
148 /// these cases, we simply union the function sets. If the size of the union
149 /// is greater than the maximum functions we track, the merged value is
151 CVPLatticeVal
MergeValues(CVPLatticeVal X
, CVPLatticeVal Y
) override
{
152 if (X
== getOverdefinedVal() || Y
== getOverdefinedVal())
153 return getOverdefinedVal();
154 if (X
== getUndefVal() && Y
== getUndefVal())
155 return getUndefVal();
156 std::vector
<Function
*> Union
;
157 std::set_union(X
.getFunctions().begin(), X
.getFunctions().end(),
158 Y
.getFunctions().begin(), Y
.getFunctions().end(),
159 std::back_inserter(Union
), CVPLatticeVal::Compare
{});
160 if (Union
.size() > MaxFunctionsPerValue
)
161 return getOverdefinedVal();
162 return CVPLatticeVal(std::move(Union
));
165 /// Compute the lattice values that change as a result of executing the given
166 /// instruction. The changed values are stored in \p ChangedValues. We handle
167 /// just a few kinds of instructions since we're only propagating values that
169 void ComputeInstructionState(
170 Instruction
&I
, DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
171 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) override
{
172 switch (I
.getOpcode()) {
173 case Instruction::Call
:
174 return visitCallSite(cast
<CallInst
>(&I
), ChangedValues
, SS
);
175 case Instruction::Invoke
:
176 return visitCallSite(cast
<InvokeInst
>(&I
), ChangedValues
, SS
);
177 case Instruction::Load
:
178 return visitLoad(*cast
<LoadInst
>(&I
), ChangedValues
, SS
);
179 case Instruction::Ret
:
180 return visitReturn(*cast
<ReturnInst
>(&I
), ChangedValues
, SS
);
181 case Instruction::Select
:
182 return visitSelect(*cast
<SelectInst
>(&I
), ChangedValues
, SS
);
183 case Instruction::Store
:
184 return visitStore(*cast
<StoreInst
>(&I
), ChangedValues
, SS
);
186 return visitInst(I
, ChangedValues
, SS
);
190 /// Print the given CVPLatticeVal to the specified stream.
191 void PrintLatticeVal(CVPLatticeVal LV
, raw_ostream
&OS
) override
{
192 if (LV
== getUndefVal())
194 else if (LV
== getOverdefinedVal())
196 else if (LV
== getUntrackedVal())
202 /// Print the given CVPLatticeKey to the specified stream.
203 void PrintLatticeKey(CVPLatticeKey Key
, raw_ostream
&OS
) override
{
204 if (Key
.getInt() == IPOGrouping::Register
)
206 else if (Key
.getInt() == IPOGrouping::Memory
)
208 else if (Key
.getInt() == IPOGrouping::Return
)
210 if (isa
<Function
>(Key
.getPointer()))
211 OS
<< Key
.getPointer()->getName();
213 OS
<< *Key
.getPointer();
216 /// We collect a set of indirect calls when visiting call sites. This method
217 /// returns a reference to that set.
218 SmallPtrSetImpl
<Instruction
*> &getIndirectCalls() { return IndirectCalls
; }
221 /// Holds the indirect calls we encounter during the analysis. We will attach
222 /// metadata to these calls after the analysis indicating the functions the
223 /// calls can possibly target.
224 SmallPtrSet
<Instruction
*, 32> IndirectCalls
;
226 /// Compute a new lattice value for the given constant. The constant, after
227 /// stripping any pointer casts, should be a Function. We ignore null
228 /// pointers as an optimization, since calling these values is undefined
230 CVPLatticeVal
computeConstant(Constant
*C
) {
231 if (isa
<ConstantPointerNull
>(C
))
232 return CVPLatticeVal(CVPLatticeVal::FunctionSet
);
233 if (auto *F
= dyn_cast
<Function
>(C
->stripPointerCasts()))
234 return CVPLatticeVal({F
});
235 return getOverdefinedVal();
238 /// Handle return instructions. The function's return state is the merge of
239 /// the returned value state and the function's return state.
240 void visitReturn(ReturnInst
&I
,
241 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
242 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
243 Function
*F
= I
.getParent()->getParent();
244 if (F
->getReturnType()->isVoidTy())
246 auto RegI
= CVPLatticeKey(I
.getReturnValue(), IPOGrouping::Register
);
247 auto RetF
= CVPLatticeKey(F
, IPOGrouping::Return
);
248 ChangedValues
[RetF
] =
249 MergeValues(SS
.getValueState(RegI
), SS
.getValueState(RetF
));
252 /// Handle call sites. The state of a called function's formal arguments is
253 /// the merge of the argument state with the call sites corresponding actual
254 /// argument state. The call site state is the merge of the call site state
255 /// with the returned value state of the called function.
256 void visitCallSite(CallSite CS
,
257 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
258 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
259 Function
*F
= CS
.getCalledFunction();
260 Instruction
*I
= CS
.getInstruction();
261 auto RegI
= CVPLatticeKey(I
, IPOGrouping::Register
);
263 // If this is an indirect call, save it so we can quickly revisit it when
264 // attaching metadata.
266 IndirectCalls
.insert(I
);
268 // If we can't track the function's return values, there's nothing to do.
269 if (!F
|| !canTrackReturnsInterprocedurally(F
)) {
270 // Void return, No need to create and update CVPLattice state as no one
272 if (I
->getType()->isVoidTy())
274 ChangedValues
[RegI
] = getOverdefinedVal();
278 // Inform the solver that the called function is executable, and perform
279 // the merges for the arguments and return value.
280 SS
.MarkBlockExecutable(&F
->front());
281 auto RetF
= CVPLatticeKey(F
, IPOGrouping::Return
);
282 for (Argument
&A
: F
->args()) {
283 auto RegFormal
= CVPLatticeKey(&A
, IPOGrouping::Register
);
285 CVPLatticeKey(CS
.getArgument(A
.getArgNo()), IPOGrouping::Register
);
286 ChangedValues
[RegFormal
] =
287 MergeValues(SS
.getValueState(RegFormal
), SS
.getValueState(RegActual
));
290 // Void return, No need to create and update CVPLattice state as no one can
292 if (I
->getType()->isVoidTy())
295 ChangedValues
[RegI
] =
296 MergeValues(SS
.getValueState(RegI
), SS
.getValueState(RetF
));
299 /// Handle select instructions. The select instruction state is the merge the
300 /// true and false value states.
301 void visitSelect(SelectInst
&I
,
302 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
303 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
304 auto RegI
= CVPLatticeKey(&I
, IPOGrouping::Register
);
305 auto RegT
= CVPLatticeKey(I
.getTrueValue(), IPOGrouping::Register
);
306 auto RegF
= CVPLatticeKey(I
.getFalseValue(), IPOGrouping::Register
);
307 ChangedValues
[RegI
] =
308 MergeValues(SS
.getValueState(RegT
), SS
.getValueState(RegF
));
311 /// Handle load instructions. If the pointer operand of the load is a global
312 /// variable, we attempt to track the value. The loaded value state is the
313 /// merge of the loaded value state with the global variable state.
314 void visitLoad(LoadInst
&I
,
315 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
316 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
317 auto RegI
= CVPLatticeKey(&I
, IPOGrouping::Register
);
318 if (auto *GV
= dyn_cast
<GlobalVariable
>(I
.getPointerOperand())) {
319 auto MemGV
= CVPLatticeKey(GV
, IPOGrouping::Memory
);
320 ChangedValues
[RegI
] =
321 MergeValues(SS
.getValueState(RegI
), SS
.getValueState(MemGV
));
323 ChangedValues
[RegI
] = getOverdefinedVal();
327 /// Handle store instructions. If the pointer operand of the store is a
328 /// global variable, we attempt to track the value. The global variable state
329 /// is the merge of the stored value state with the global variable state.
330 void visitStore(StoreInst
&I
,
331 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
332 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
333 auto *GV
= dyn_cast
<GlobalVariable
>(I
.getPointerOperand());
336 auto RegI
= CVPLatticeKey(I
.getValueOperand(), IPOGrouping::Register
);
337 auto MemGV
= CVPLatticeKey(GV
, IPOGrouping::Memory
);
338 ChangedValues
[MemGV
] =
339 MergeValues(SS
.getValueState(RegI
), SS
.getValueState(MemGV
));
342 /// Handle all other instructions. All other instructions are marked
344 void visitInst(Instruction
&I
,
345 DenseMap
<CVPLatticeKey
, CVPLatticeVal
> &ChangedValues
,
346 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> &SS
) {
347 // Simply bail if this instruction has no user.
350 auto RegI
= CVPLatticeKey(&I
, IPOGrouping::Register
);
351 ChangedValues
[RegI
] = getOverdefinedVal();
357 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
358 /// must translate between LatticeKeys and LLVM Values when adding Values to
359 /// its work list and inspecting the state of control-flow related values.
360 template <> struct LatticeKeyInfo
<CVPLatticeKey
> {
361 static inline Value
*getValueFromLatticeKey(CVPLatticeKey Key
) {
362 return Key
.getPointer();
364 static inline CVPLatticeKey
getLatticeKeyFromValue(Value
*V
) {
365 return CVPLatticeKey(V
, IPOGrouping::Register
);
370 static bool runCVP(Module
&M
) {
371 // Our custom lattice function and generic sparse propagation solver.
372 CVPLatticeFunc Lattice
;
373 SparseSolver
<CVPLatticeKey
, CVPLatticeVal
> Solver(&Lattice
);
375 // For each function in the module, if we can't track its arguments, let the
376 // generic solver assume it is executable.
377 for (Function
&F
: M
)
378 if (!F
.isDeclaration() && !canTrackArgumentsInterprocedurally(&F
))
379 Solver
.MarkBlockExecutable(&F
.front());
381 // Solver our custom lattice. In doing so, we will also build a set of
382 // indirect call sites.
385 // Attach metadata to the indirect call sites that were collected indicating
386 // the set of functions they can possibly target.
387 bool Changed
= false;
388 MDBuilder
MDB(M
.getContext());
389 for (Instruction
*C
: Lattice
.getIndirectCalls()) {
391 auto RegI
= CVPLatticeKey(CS
.getCalledValue(), IPOGrouping::Register
);
392 CVPLatticeVal LV
= Solver
.getExistingValueState(RegI
);
393 if (!LV
.isFunctionSet() || LV
.getFunctions().empty())
395 MDNode
*Callees
= MDB
.createCallees(LV
.getFunctions());
396 C
->setMetadata(LLVMContext::MD_callees
, Callees
);
403 PreservedAnalyses
CalledValuePropagationPass::run(Module
&M
,
404 ModuleAnalysisManager
&) {
406 return PreservedAnalyses::all();
410 class CalledValuePropagationLegacyPass
: public ModulePass
{
414 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
415 AU
.setPreservesAll();
418 CalledValuePropagationLegacyPass() : ModulePass(ID
) {
419 initializeCalledValuePropagationLegacyPassPass(
420 *PassRegistry::getPassRegistry());
423 bool runOnModule(Module
&M
) override
{
431 char CalledValuePropagationLegacyPass::ID
= 0;
432 INITIALIZE_PASS(CalledValuePropagationLegacyPass
, "called-value-propagation",
433 "Called Value Propagation", false, false)
435 ModulePass
*llvm::createCalledValuePropagationPass() {
436 return new CalledValuePropagationLegacyPass();