1 //===- InstCombineCalls.cpp -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 using namespace PatternMatch
;
73 #define DEBUG_TYPE "instcombine"
75 STATISTIC(NumSimplified
, "Number of library calls simplified");
77 static cl::opt
<unsigned> GuardWideningWindow(
78 "instcombine-guard-widening-window",
80 cl::desc("How wide an instruction window to bypass looking for "
83 /// Return the specified type promoted as it would be to pass though a va_arg
85 static Type
*getPromotedType(Type
*Ty
) {
86 if (IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
)) {
87 if (ITy
->getBitWidth() < 32)
88 return Type::getInt32Ty(Ty
->getContext());
93 /// Return a constant boolean vector that has true elements in all positions
94 /// where the input constant data vector has an element with the sign bit set.
95 static Constant
*getNegativeIsTrueBoolVec(ConstantDataVector
*V
) {
96 SmallVector
<Constant
*, 32> BoolVec
;
97 IntegerType
*BoolTy
= Type::getInt1Ty(V
->getContext());
98 for (unsigned I
= 0, E
= V
->getNumElements(); I
!= E
; ++I
) {
99 Constant
*Elt
= V
->getElementAsConstant(I
);
100 assert((isa
<ConstantInt
>(Elt
) || isa
<ConstantFP
>(Elt
)) &&
101 "Unexpected constant data vector element type");
102 bool Sign
= V
->getElementType()->isIntegerTy()
103 ? cast
<ConstantInt
>(Elt
)->isNegative()
104 : cast
<ConstantFP
>(Elt
)->isNegative();
105 BoolVec
.push_back(ConstantInt::get(BoolTy
, Sign
));
107 return ConstantVector::get(BoolVec
);
110 Instruction
*InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst
*MI
) {
111 unsigned DstAlign
= getKnownAlignment(MI
->getRawDest(), DL
, MI
, &AC
, &DT
);
112 unsigned CopyDstAlign
= MI
->getDestAlignment();
113 if (CopyDstAlign
< DstAlign
){
114 MI
->setDestAlignment(DstAlign
);
118 unsigned SrcAlign
= getKnownAlignment(MI
->getRawSource(), DL
, MI
, &AC
, &DT
);
119 unsigned CopySrcAlign
= MI
->getSourceAlignment();
120 if (CopySrcAlign
< SrcAlign
) {
121 MI
->setSourceAlignment(SrcAlign
);
125 // If we have a store to a location which is known constant, we can conclude
126 // that the store must be storing the constant value (else the memory
127 // wouldn't be constant), and this must be a noop.
128 if (AA
->pointsToConstantMemory(MI
->getDest())) {
129 // Set the size of the copy to 0, it will be deleted on the next iteration.
130 MI
->setLength(Constant::getNullValue(MI
->getLength()->getType()));
134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
136 ConstantInt
*MemOpLength
= dyn_cast
<ConstantInt
>(MI
->getLength());
137 if (!MemOpLength
) return nullptr;
139 // Source and destination pointer types are always "i8*" for intrinsic. See
140 // if the size is something we can handle with a single primitive load/store.
141 // A single load+store correctly handles overlapping memory in the memmove
143 uint64_t Size
= MemOpLength
->getLimitedValue();
144 assert(Size
&& "0-sized memory transferring should be removed already.");
146 if (Size
> 8 || (Size
&(Size
-1)))
147 return nullptr; // If not 1/2/4/8 bytes, exit.
149 // If it is an atomic and alignment is less than the size then we will
150 // introduce the unaligned memory access which will be later transformed
151 // into libcall in CodeGen. This is not evident performance gain so disable
153 if (isa
<AtomicMemTransferInst
>(MI
))
154 if (CopyDstAlign
< Size
|| CopySrcAlign
< Size
)
157 // Use an integer load+store unless we can find something better.
159 cast
<PointerType
>(MI
->getArgOperand(1)->getType())->getAddressSpace();
161 cast
<PointerType
>(MI
->getArgOperand(0)->getType())->getAddressSpace();
163 IntegerType
* IntType
= IntegerType::get(MI
->getContext(), Size
<<3);
164 Type
*NewSrcPtrTy
= PointerType::get(IntType
, SrcAddrSp
);
165 Type
*NewDstPtrTy
= PointerType::get(IntType
, DstAddrSp
);
167 // If the memcpy has metadata describing the members, see if we can get the
168 // TBAA tag describing our copy.
169 MDNode
*CopyMD
= nullptr;
170 if (MDNode
*M
= MI
->getMetadata(LLVMContext::MD_tbaa
)) {
172 } else if (MDNode
*M
= MI
->getMetadata(LLVMContext::MD_tbaa_struct
)) {
173 if (M
->getNumOperands() == 3 && M
->getOperand(0) &&
174 mdconst::hasa
<ConstantInt
>(M
->getOperand(0)) &&
175 mdconst::extract
<ConstantInt
>(M
->getOperand(0))->isZero() &&
177 mdconst::hasa
<ConstantInt
>(M
->getOperand(1)) &&
178 mdconst::extract
<ConstantInt
>(M
->getOperand(1))->getValue() ==
180 M
->getOperand(2) && isa
<MDNode
>(M
->getOperand(2)))
181 CopyMD
= cast
<MDNode
>(M
->getOperand(2));
184 Value
*Src
= Builder
.CreateBitCast(MI
->getArgOperand(1), NewSrcPtrTy
);
185 Value
*Dest
= Builder
.CreateBitCast(MI
->getArgOperand(0), NewDstPtrTy
);
186 LoadInst
*L
= Builder
.CreateLoad(IntType
, Src
);
187 // Alignment from the mem intrinsic will be better, so use it.
188 L
->setAlignment(CopySrcAlign
);
190 L
->setMetadata(LLVMContext::MD_tbaa
, CopyMD
);
191 MDNode
*LoopMemParallelMD
=
192 MI
->getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
193 if (LoopMemParallelMD
)
194 L
->setMetadata(LLVMContext::MD_mem_parallel_loop_access
, LoopMemParallelMD
);
195 MDNode
*AccessGroupMD
= MI
->getMetadata(LLVMContext::MD_access_group
);
197 L
->setMetadata(LLVMContext::MD_access_group
, AccessGroupMD
);
199 StoreInst
*S
= Builder
.CreateStore(L
, Dest
);
200 // Alignment from the mem intrinsic will be better, so use it.
201 S
->setAlignment(CopyDstAlign
);
203 S
->setMetadata(LLVMContext::MD_tbaa
, CopyMD
);
204 if (LoopMemParallelMD
)
205 S
->setMetadata(LLVMContext::MD_mem_parallel_loop_access
, LoopMemParallelMD
);
207 S
->setMetadata(LLVMContext::MD_access_group
, AccessGroupMD
);
209 if (auto *MT
= dyn_cast
<MemTransferInst
>(MI
)) {
210 // non-atomics can be volatile
211 L
->setVolatile(MT
->isVolatile());
212 S
->setVolatile(MT
->isVolatile());
214 if (isa
<AtomicMemTransferInst
>(MI
)) {
215 // atomics have to be unordered
216 L
->setOrdering(AtomicOrdering::Unordered
);
217 S
->setOrdering(AtomicOrdering::Unordered
);
220 // Set the size of the copy to 0, it will be deleted on the next iteration.
221 MI
->setLength(Constant::getNullValue(MemOpLength
->getType()));
225 Instruction
*InstCombiner::SimplifyAnyMemSet(AnyMemSetInst
*MI
) {
226 unsigned Alignment
= getKnownAlignment(MI
->getDest(), DL
, MI
, &AC
, &DT
);
227 if (MI
->getDestAlignment() < Alignment
) {
228 MI
->setDestAlignment(Alignment
);
232 // If we have a store to a location which is known constant, we can conclude
233 // that the store must be storing the constant value (else the memory
234 // wouldn't be constant), and this must be a noop.
235 if (AA
->pointsToConstantMemory(MI
->getDest())) {
236 // Set the size of the copy to 0, it will be deleted on the next iteration.
237 MI
->setLength(Constant::getNullValue(MI
->getLength()->getType()));
241 // Extract the length and alignment and fill if they are constant.
242 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(MI
->getLength());
243 ConstantInt
*FillC
= dyn_cast
<ConstantInt
>(MI
->getValue());
244 if (!LenC
|| !FillC
|| !FillC
->getType()->isIntegerTy(8))
246 uint64_t Len
= LenC
->getLimitedValue();
247 Alignment
= MI
->getDestAlignment();
248 assert(Len
&& "0-sized memory setting should be removed already.");
250 // Alignment 0 is identity for alignment 1 for memset, but not store.
254 // If it is an atomic and alignment is less than the size then we will
255 // introduce the unaligned memory access which will be later transformed
256 // into libcall in CodeGen. This is not evident performance gain so disable
258 if (isa
<AtomicMemSetInst
>(MI
))
262 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
263 if (Len
<= 8 && isPowerOf2_32((uint32_t)Len
)) {
264 Type
*ITy
= IntegerType::get(MI
->getContext(), Len
*8); // n=1 -> i8.
266 Value
*Dest
= MI
->getDest();
267 unsigned DstAddrSp
= cast
<PointerType
>(Dest
->getType())->getAddressSpace();
268 Type
*NewDstPtrTy
= PointerType::get(ITy
, DstAddrSp
);
269 Dest
= Builder
.CreateBitCast(Dest
, NewDstPtrTy
);
271 // Extract the fill value and store.
272 uint64_t Fill
= FillC
->getZExtValue()*0x0101010101010101ULL
;
273 StoreInst
*S
= Builder
.CreateStore(ConstantInt::get(ITy
, Fill
), Dest
,
275 S
->setAlignment(Alignment
);
276 if (isa
<AtomicMemSetInst
>(MI
))
277 S
->setOrdering(AtomicOrdering::Unordered
);
279 // Set the size of the copy to 0, it will be deleted on the next iteration.
280 MI
->setLength(Constant::getNullValue(LenC
->getType()));
287 static Value
*simplifyX86immShift(const IntrinsicInst
&II
,
288 InstCombiner::BuilderTy
&Builder
) {
289 bool LogicalShift
= false;
290 bool ShiftLeft
= false;
292 switch (II
.getIntrinsicID()) {
293 default: llvm_unreachable("Unexpected intrinsic!");
294 case Intrinsic::x86_sse2_psra_d
:
295 case Intrinsic::x86_sse2_psra_w
:
296 case Intrinsic::x86_sse2_psrai_d
:
297 case Intrinsic::x86_sse2_psrai_w
:
298 case Intrinsic::x86_avx2_psra_d
:
299 case Intrinsic::x86_avx2_psra_w
:
300 case Intrinsic::x86_avx2_psrai_d
:
301 case Intrinsic::x86_avx2_psrai_w
:
302 case Intrinsic::x86_avx512_psra_q_128
:
303 case Intrinsic::x86_avx512_psrai_q_128
:
304 case Intrinsic::x86_avx512_psra_q_256
:
305 case Intrinsic::x86_avx512_psrai_q_256
:
306 case Intrinsic::x86_avx512_psra_d_512
:
307 case Intrinsic::x86_avx512_psra_q_512
:
308 case Intrinsic::x86_avx512_psra_w_512
:
309 case Intrinsic::x86_avx512_psrai_d_512
:
310 case Intrinsic::x86_avx512_psrai_q_512
:
311 case Intrinsic::x86_avx512_psrai_w_512
:
312 LogicalShift
= false; ShiftLeft
= false;
314 case Intrinsic::x86_sse2_psrl_d
:
315 case Intrinsic::x86_sse2_psrl_q
:
316 case Intrinsic::x86_sse2_psrl_w
:
317 case Intrinsic::x86_sse2_psrli_d
:
318 case Intrinsic::x86_sse2_psrli_q
:
319 case Intrinsic::x86_sse2_psrli_w
:
320 case Intrinsic::x86_avx2_psrl_d
:
321 case Intrinsic::x86_avx2_psrl_q
:
322 case Intrinsic::x86_avx2_psrl_w
:
323 case Intrinsic::x86_avx2_psrli_d
:
324 case Intrinsic::x86_avx2_psrli_q
:
325 case Intrinsic::x86_avx2_psrli_w
:
326 case Intrinsic::x86_avx512_psrl_d_512
:
327 case Intrinsic::x86_avx512_psrl_q_512
:
328 case Intrinsic::x86_avx512_psrl_w_512
:
329 case Intrinsic::x86_avx512_psrli_d_512
:
330 case Intrinsic::x86_avx512_psrli_q_512
:
331 case Intrinsic::x86_avx512_psrli_w_512
:
332 LogicalShift
= true; ShiftLeft
= false;
334 case Intrinsic::x86_sse2_psll_d
:
335 case Intrinsic::x86_sse2_psll_q
:
336 case Intrinsic::x86_sse2_psll_w
:
337 case Intrinsic::x86_sse2_pslli_d
:
338 case Intrinsic::x86_sse2_pslli_q
:
339 case Intrinsic::x86_sse2_pslli_w
:
340 case Intrinsic::x86_avx2_psll_d
:
341 case Intrinsic::x86_avx2_psll_q
:
342 case Intrinsic::x86_avx2_psll_w
:
343 case Intrinsic::x86_avx2_pslli_d
:
344 case Intrinsic::x86_avx2_pslli_q
:
345 case Intrinsic::x86_avx2_pslli_w
:
346 case Intrinsic::x86_avx512_psll_d_512
:
347 case Intrinsic::x86_avx512_psll_q_512
:
348 case Intrinsic::x86_avx512_psll_w_512
:
349 case Intrinsic::x86_avx512_pslli_d_512
:
350 case Intrinsic::x86_avx512_pslli_q_512
:
351 case Intrinsic::x86_avx512_pslli_w_512
:
352 LogicalShift
= true; ShiftLeft
= true;
355 assert((LogicalShift
|| !ShiftLeft
) && "Only logical shifts can shift left");
357 // Simplify if count is constant.
358 auto Arg1
= II
.getArgOperand(1);
359 auto CAZ
= dyn_cast
<ConstantAggregateZero
>(Arg1
);
360 auto CDV
= dyn_cast
<ConstantDataVector
>(Arg1
);
361 auto CInt
= dyn_cast
<ConstantInt
>(Arg1
);
362 if (!CAZ
&& !CDV
&& !CInt
)
367 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
368 // operand to compute the shift amount.
369 auto VT
= cast
<VectorType
>(CDV
->getType());
370 unsigned BitWidth
= VT
->getElementType()->getPrimitiveSizeInBits();
371 assert((64 % BitWidth
) == 0 && "Unexpected packed shift size");
372 unsigned NumSubElts
= 64 / BitWidth
;
374 // Concatenate the sub-elements to create the 64-bit value.
375 for (unsigned i
= 0; i
!= NumSubElts
; ++i
) {
376 unsigned SubEltIdx
= (NumSubElts
- 1) - i
;
377 auto SubElt
= cast
<ConstantInt
>(CDV
->getElementAsConstant(SubEltIdx
));
379 Count
|= SubElt
->getValue().zextOrTrunc(64);
383 Count
= CInt
->getValue();
385 auto Vec
= II
.getArgOperand(0);
386 auto VT
= cast
<VectorType
>(Vec
->getType());
387 auto SVT
= VT
->getElementType();
388 unsigned VWidth
= VT
->getNumElements();
389 unsigned BitWidth
= SVT
->getPrimitiveSizeInBits();
391 // If shift-by-zero then just return the original value.
392 if (Count
.isNullValue())
395 // Handle cases when Shift >= BitWidth.
396 if (Count
.uge(BitWidth
)) {
397 // If LogicalShift - just return zero.
399 return ConstantAggregateZero::get(VT
);
401 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
402 Count
= APInt(64, BitWidth
- 1);
405 // Get a constant vector of the same type as the first operand.
406 auto ShiftAmt
= ConstantInt::get(SVT
, Count
.zextOrTrunc(BitWidth
));
407 auto ShiftVec
= Builder
.CreateVectorSplat(VWidth
, ShiftAmt
);
410 return Builder
.CreateShl(Vec
, ShiftVec
);
413 return Builder
.CreateLShr(Vec
, ShiftVec
);
415 return Builder
.CreateAShr(Vec
, ShiftVec
);
418 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
419 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
420 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
421 static Value
*simplifyX86varShift(const IntrinsicInst
&II
,
422 InstCombiner::BuilderTy
&Builder
) {
423 bool LogicalShift
= false;
424 bool ShiftLeft
= false;
426 switch (II
.getIntrinsicID()) {
427 default: llvm_unreachable("Unexpected intrinsic!");
428 case Intrinsic::x86_avx2_psrav_d
:
429 case Intrinsic::x86_avx2_psrav_d_256
:
430 case Intrinsic::x86_avx512_psrav_q_128
:
431 case Intrinsic::x86_avx512_psrav_q_256
:
432 case Intrinsic::x86_avx512_psrav_d_512
:
433 case Intrinsic::x86_avx512_psrav_q_512
:
434 case Intrinsic::x86_avx512_psrav_w_128
:
435 case Intrinsic::x86_avx512_psrav_w_256
:
436 case Intrinsic::x86_avx512_psrav_w_512
:
437 LogicalShift
= false;
440 case Intrinsic::x86_avx2_psrlv_d
:
441 case Intrinsic::x86_avx2_psrlv_d_256
:
442 case Intrinsic::x86_avx2_psrlv_q
:
443 case Intrinsic::x86_avx2_psrlv_q_256
:
444 case Intrinsic::x86_avx512_psrlv_d_512
:
445 case Intrinsic::x86_avx512_psrlv_q_512
:
446 case Intrinsic::x86_avx512_psrlv_w_128
:
447 case Intrinsic::x86_avx512_psrlv_w_256
:
448 case Intrinsic::x86_avx512_psrlv_w_512
:
452 case Intrinsic::x86_avx2_psllv_d
:
453 case Intrinsic::x86_avx2_psllv_d_256
:
454 case Intrinsic::x86_avx2_psllv_q
:
455 case Intrinsic::x86_avx2_psllv_q_256
:
456 case Intrinsic::x86_avx512_psllv_d_512
:
457 case Intrinsic::x86_avx512_psllv_q_512
:
458 case Intrinsic::x86_avx512_psllv_w_128
:
459 case Intrinsic::x86_avx512_psllv_w_256
:
460 case Intrinsic::x86_avx512_psllv_w_512
:
465 assert((LogicalShift
|| !ShiftLeft
) && "Only logical shifts can shift left");
467 // Simplify if all shift amounts are constant/undef.
468 auto *CShift
= dyn_cast
<Constant
>(II
.getArgOperand(1));
472 auto Vec
= II
.getArgOperand(0);
473 auto VT
= cast
<VectorType
>(II
.getType());
474 auto SVT
= VT
->getVectorElementType();
475 int NumElts
= VT
->getNumElements();
476 int BitWidth
= SVT
->getIntegerBitWidth();
478 // Collect each element's shift amount.
479 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
480 bool AnyOutOfRange
= false;
481 SmallVector
<int, 8> ShiftAmts
;
482 for (int I
= 0; I
< NumElts
; ++I
) {
483 auto *CElt
= CShift
->getAggregateElement(I
);
484 if (CElt
&& isa
<UndefValue
>(CElt
)) {
485 ShiftAmts
.push_back(-1);
489 auto *COp
= dyn_cast_or_null
<ConstantInt
>(CElt
);
493 // Handle out of range shifts.
494 // If LogicalShift - set to BitWidth (special case).
495 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
496 APInt ShiftVal
= COp
->getValue();
497 if (ShiftVal
.uge(BitWidth
)) {
498 AnyOutOfRange
= LogicalShift
;
499 ShiftAmts
.push_back(LogicalShift
? BitWidth
: BitWidth
- 1);
503 ShiftAmts
.push_back((int)ShiftVal
.getZExtValue());
506 // If all elements out of range or UNDEF, return vector of zeros/undefs.
507 // ArithmeticShift should only hit this if they are all UNDEF.
508 auto OutOfRange
= [&](int Idx
) { return (Idx
< 0) || (BitWidth
<= Idx
); };
509 if (llvm::all_of(ShiftAmts
, OutOfRange
)) {
510 SmallVector
<Constant
*, 8> ConstantVec
;
511 for (int Idx
: ShiftAmts
) {
513 ConstantVec
.push_back(UndefValue::get(SVT
));
515 assert(LogicalShift
&& "Logical shift expected");
516 ConstantVec
.push_back(ConstantInt::getNullValue(SVT
));
519 return ConstantVector::get(ConstantVec
);
522 // We can't handle only some out of range values with generic logical shifts.
526 // Build the shift amount constant vector.
527 SmallVector
<Constant
*, 8> ShiftVecAmts
;
528 for (int Idx
: ShiftAmts
) {
530 ShiftVecAmts
.push_back(UndefValue::get(SVT
));
532 ShiftVecAmts
.push_back(ConstantInt::get(SVT
, Idx
));
534 auto ShiftVec
= ConstantVector::get(ShiftVecAmts
);
537 return Builder
.CreateShl(Vec
, ShiftVec
);
540 return Builder
.CreateLShr(Vec
, ShiftVec
);
542 return Builder
.CreateAShr(Vec
, ShiftVec
);
545 static Value
*simplifyX86pack(IntrinsicInst
&II
,
546 InstCombiner::BuilderTy
&Builder
, bool IsSigned
) {
547 Value
*Arg0
= II
.getArgOperand(0);
548 Value
*Arg1
= II
.getArgOperand(1);
549 Type
*ResTy
= II
.getType();
551 // Fast all undef handling.
552 if (isa
<UndefValue
>(Arg0
) && isa
<UndefValue
>(Arg1
))
553 return UndefValue::get(ResTy
);
555 Type
*ArgTy
= Arg0
->getType();
556 unsigned NumLanes
= ResTy
->getPrimitiveSizeInBits() / 128;
557 unsigned NumSrcElts
= ArgTy
->getVectorNumElements();
558 assert(ResTy
->getVectorNumElements() == (2 * NumSrcElts
) &&
559 "Unexpected packing types");
561 unsigned NumSrcEltsPerLane
= NumSrcElts
/ NumLanes
;
562 unsigned DstScalarSizeInBits
= ResTy
->getScalarSizeInBits();
563 unsigned SrcScalarSizeInBits
= ArgTy
->getScalarSizeInBits();
564 assert(SrcScalarSizeInBits
== (2 * DstScalarSizeInBits
) &&
565 "Unexpected packing types");
568 if (!isa
<Constant
>(Arg0
) || !isa
<Constant
>(Arg1
))
571 // Clamp Values - signed/unsigned both use signed clamp values, but they
572 // differ on the min/max values.
573 APInt MinValue
, MaxValue
;
575 // PACKSS: Truncate signed value with signed saturation.
576 // Source values less than dst minint are saturated to minint.
577 // Source values greater than dst maxint are saturated to maxint.
579 APInt::getSignedMinValue(DstScalarSizeInBits
).sext(SrcScalarSizeInBits
);
581 APInt::getSignedMaxValue(DstScalarSizeInBits
).sext(SrcScalarSizeInBits
);
583 // PACKUS: Truncate signed value with unsigned saturation.
584 // Source values less than zero are saturated to zero.
585 // Source values greater than dst maxuint are saturated to maxuint.
586 MinValue
= APInt::getNullValue(SrcScalarSizeInBits
);
587 MaxValue
= APInt::getLowBitsSet(SrcScalarSizeInBits
, DstScalarSizeInBits
);
590 auto *MinC
= Constant::getIntegerValue(ArgTy
, MinValue
);
591 auto *MaxC
= Constant::getIntegerValue(ArgTy
, MaxValue
);
592 Arg0
= Builder
.CreateSelect(Builder
.CreateICmpSLT(Arg0
, MinC
), MinC
, Arg0
);
593 Arg1
= Builder
.CreateSelect(Builder
.CreateICmpSLT(Arg1
, MinC
), MinC
, Arg1
);
594 Arg0
= Builder
.CreateSelect(Builder
.CreateICmpSGT(Arg0
, MaxC
), MaxC
, Arg0
);
595 Arg1
= Builder
.CreateSelect(Builder
.CreateICmpSGT(Arg1
, MaxC
), MaxC
, Arg1
);
597 // Shuffle clamped args together at the lane level.
598 SmallVector
<unsigned, 32> PackMask
;
599 for (unsigned Lane
= 0; Lane
!= NumLanes
; ++Lane
) {
600 for (unsigned Elt
= 0; Elt
!= NumSrcEltsPerLane
; ++Elt
)
601 PackMask
.push_back(Elt
+ (Lane
* NumSrcEltsPerLane
));
602 for (unsigned Elt
= 0; Elt
!= NumSrcEltsPerLane
; ++Elt
)
603 PackMask
.push_back(Elt
+ (Lane
* NumSrcEltsPerLane
) + NumSrcElts
);
605 auto *Shuffle
= Builder
.CreateShuffleVector(Arg0
, Arg1
, PackMask
);
607 // Truncate to dst size.
608 return Builder
.CreateTrunc(Shuffle
, ResTy
);
611 static Value
*simplifyX86movmsk(const IntrinsicInst
&II
,
612 InstCombiner::BuilderTy
&Builder
) {
613 Value
*Arg
= II
.getArgOperand(0);
614 Type
*ResTy
= II
.getType();
615 Type
*ArgTy
= Arg
->getType();
617 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
618 if (isa
<UndefValue
>(Arg
))
619 return Constant::getNullValue(ResTy
);
621 // We can't easily peek through x86_mmx types.
622 if (!ArgTy
->isVectorTy())
625 // Expand MOVMSK to compare/bitcast/zext:
626 // e.g. PMOVMSKB(v16i8 x):
627 // %cmp = icmp slt <16 x i8> %x, zeroinitializer
628 // %int = bitcast <16 x i1> %cmp to i16
629 // %res = zext i16 %int to i32
630 unsigned NumElts
= ArgTy
->getVectorNumElements();
631 Type
*IntegerVecTy
= VectorType::getInteger(cast
<VectorType
>(ArgTy
));
632 Type
*IntegerTy
= Builder
.getIntNTy(NumElts
);
634 Value
*Res
= Builder
.CreateBitCast(Arg
, IntegerVecTy
);
635 Res
= Builder
.CreateICmpSLT(Res
, Constant::getNullValue(IntegerVecTy
));
636 Res
= Builder
.CreateBitCast(Res
, IntegerTy
);
637 Res
= Builder
.CreateZExtOrTrunc(Res
, ResTy
);
641 static Value
*simplifyX86addcarry(const IntrinsicInst
&II
,
642 InstCombiner::BuilderTy
&Builder
) {
643 Value
*CarryIn
= II
.getArgOperand(0);
644 Value
*Op1
= II
.getArgOperand(1);
645 Value
*Op2
= II
.getArgOperand(2);
646 Type
*RetTy
= II
.getType();
647 Type
*OpTy
= Op1
->getType();
648 assert(RetTy
->getStructElementType(0)->isIntegerTy(8) &&
649 RetTy
->getStructElementType(1) == OpTy
&& OpTy
== Op2
->getType() &&
650 "Unexpected types for x86 addcarry");
652 // If carry-in is zero, this is just an unsigned add with overflow.
653 if (match(CarryIn
, m_ZeroInt())) {
654 Value
*UAdd
= Builder
.CreateIntrinsic(Intrinsic::uadd_with_overflow
, OpTy
,
656 // The types have to be adjusted to match the x86 call types.
657 Value
*UAddResult
= Builder
.CreateExtractValue(UAdd
, 0);
658 Value
*UAddOV
= Builder
.CreateZExt(Builder
.CreateExtractValue(UAdd
, 1),
659 Builder
.getInt8Ty());
660 Value
*Res
= UndefValue::get(RetTy
);
661 Res
= Builder
.CreateInsertValue(Res
, UAddOV
, 0);
662 return Builder
.CreateInsertValue(Res
, UAddResult
, 1);
668 static Value
*simplifyX86insertps(const IntrinsicInst
&II
,
669 InstCombiner::BuilderTy
&Builder
) {
670 auto *CInt
= dyn_cast
<ConstantInt
>(II
.getArgOperand(2));
674 VectorType
*VecTy
= cast
<VectorType
>(II
.getType());
675 assert(VecTy
->getNumElements() == 4 && "insertps with wrong vector type");
677 // The immediate permute control byte looks like this:
678 // [3:0] - zero mask for each 32-bit lane
679 // [5:4] - select one 32-bit destination lane
680 // [7:6] - select one 32-bit source lane
682 uint8_t Imm
= CInt
->getZExtValue();
683 uint8_t ZMask
= Imm
& 0xf;
684 uint8_t DestLane
= (Imm
>> 4) & 0x3;
685 uint8_t SourceLane
= (Imm
>> 6) & 0x3;
687 ConstantAggregateZero
*ZeroVector
= ConstantAggregateZero::get(VecTy
);
689 // If all zero mask bits are set, this was just a weird way to
690 // generate a zero vector.
694 // Initialize by passing all of the first source bits through.
695 uint32_t ShuffleMask
[4] = { 0, 1, 2, 3 };
697 // We may replace the second operand with the zero vector.
698 Value
*V1
= II
.getArgOperand(1);
701 // If the zero mask is being used with a single input or the zero mask
702 // overrides the destination lane, this is a shuffle with the zero vector.
703 if ((II
.getArgOperand(0) == II
.getArgOperand(1)) ||
704 (ZMask
& (1 << DestLane
))) {
706 // We may still move 32-bits of the first source vector from one lane
708 ShuffleMask
[DestLane
] = SourceLane
;
709 // The zero mask may override the previous insert operation.
710 for (unsigned i
= 0; i
< 4; ++i
)
711 if ((ZMask
>> i
) & 0x1)
712 ShuffleMask
[i
] = i
+ 4;
714 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
718 // Replace the selected destination lane with the selected source lane.
719 ShuffleMask
[DestLane
] = SourceLane
+ 4;
722 return Builder
.CreateShuffleVector(II
.getArgOperand(0), V1
, ShuffleMask
);
725 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
726 /// or conversion to a shuffle vector.
727 static Value
*simplifyX86extrq(IntrinsicInst
&II
, Value
*Op0
,
728 ConstantInt
*CILength
, ConstantInt
*CIIndex
,
729 InstCombiner::BuilderTy
&Builder
) {
730 auto LowConstantHighUndef
= [&](uint64_t Val
) {
731 Type
*IntTy64
= Type::getInt64Ty(II
.getContext());
732 Constant
*Args
[] = {ConstantInt::get(IntTy64
, Val
),
733 UndefValue::get(IntTy64
)};
734 return ConstantVector::get(Args
);
737 // See if we're dealing with constant values.
738 Constant
*C0
= dyn_cast
<Constant
>(Op0
);
740 C0
? dyn_cast_or_null
<ConstantInt
>(C0
->getAggregateElement((unsigned)0))
743 // Attempt to constant fold.
744 if (CILength
&& CIIndex
) {
745 // From AMD documentation: "The bit index and field length are each six
746 // bits in length other bits of the field are ignored."
747 APInt APIndex
= CIIndex
->getValue().zextOrTrunc(6);
748 APInt APLength
= CILength
->getValue().zextOrTrunc(6);
750 unsigned Index
= APIndex
.getZExtValue();
752 // From AMD documentation: "a value of zero in the field length is
753 // defined as length of 64".
754 unsigned Length
= APLength
== 0 ? 64 : APLength
.getZExtValue();
756 // From AMD documentation: "If the sum of the bit index + length field
757 // is greater than 64, the results are undefined".
758 unsigned End
= Index
+ Length
;
760 // Note that both field index and field length are 8-bit quantities.
761 // Since variables 'Index' and 'Length' are unsigned values
762 // obtained from zero-extending field index and field length
763 // respectively, their sum should never wrap around.
765 return UndefValue::get(II
.getType());
767 // If we are inserting whole bytes, we can convert this to a shuffle.
768 // Lowering can recognize EXTRQI shuffle masks.
769 if ((Length
% 8) == 0 && (Index
% 8) == 0) {
770 // Convert bit indices to byte indices.
774 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
775 Type
*IntTy32
= Type::getInt32Ty(II
.getContext());
776 VectorType
*ShufTy
= VectorType::get(IntTy8
, 16);
778 SmallVector
<Constant
*, 16> ShuffleMask
;
779 for (int i
= 0; i
!= (int)Length
; ++i
)
780 ShuffleMask
.push_back(
781 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ Index
)));
782 for (int i
= Length
; i
!= 8; ++i
)
783 ShuffleMask
.push_back(
784 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ 16)));
785 for (int i
= 8; i
!= 16; ++i
)
786 ShuffleMask
.push_back(UndefValue::get(IntTy32
));
788 Value
*SV
= Builder
.CreateShuffleVector(
789 Builder
.CreateBitCast(Op0
, ShufTy
),
790 ConstantAggregateZero::get(ShufTy
), ConstantVector::get(ShuffleMask
));
791 return Builder
.CreateBitCast(SV
, II
.getType());
794 // Constant Fold - shift Index'th bit to lowest position and mask off
797 APInt Elt
= CI0
->getValue();
798 Elt
.lshrInPlace(Index
);
799 Elt
= Elt
.zextOrTrunc(Length
);
800 return LowConstantHighUndef(Elt
.getZExtValue());
803 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
804 if (II
.getIntrinsicID() == Intrinsic::x86_sse4a_extrq
) {
805 Value
*Args
[] = {Op0
, CILength
, CIIndex
};
806 Module
*M
= II
.getModule();
807 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::x86_sse4a_extrqi
);
808 return Builder
.CreateCall(F
, Args
);
812 // Constant Fold - extraction from zero is always {zero, undef}.
813 if (CI0
&& CI0
->isZero())
814 return LowConstantHighUndef(0);
819 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
820 /// folding or conversion to a shuffle vector.
821 static Value
*simplifyX86insertq(IntrinsicInst
&II
, Value
*Op0
, Value
*Op1
,
822 APInt APLength
, APInt APIndex
,
823 InstCombiner::BuilderTy
&Builder
) {
824 // From AMD documentation: "The bit index and field length are each six bits
825 // in length other bits of the field are ignored."
826 APIndex
= APIndex
.zextOrTrunc(6);
827 APLength
= APLength
.zextOrTrunc(6);
829 // Attempt to constant fold.
830 unsigned Index
= APIndex
.getZExtValue();
832 // From AMD documentation: "a value of zero in the field length is
833 // defined as length of 64".
834 unsigned Length
= APLength
== 0 ? 64 : APLength
.getZExtValue();
836 // From AMD documentation: "If the sum of the bit index + length field
837 // is greater than 64, the results are undefined".
838 unsigned End
= Index
+ Length
;
840 // Note that both field index and field length are 8-bit quantities.
841 // Since variables 'Index' and 'Length' are unsigned values
842 // obtained from zero-extending field index and field length
843 // respectively, their sum should never wrap around.
845 return UndefValue::get(II
.getType());
847 // If we are inserting whole bytes, we can convert this to a shuffle.
848 // Lowering can recognize INSERTQI shuffle masks.
849 if ((Length
% 8) == 0 && (Index
% 8) == 0) {
850 // Convert bit indices to byte indices.
854 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
855 Type
*IntTy32
= Type::getInt32Ty(II
.getContext());
856 VectorType
*ShufTy
= VectorType::get(IntTy8
, 16);
858 SmallVector
<Constant
*, 16> ShuffleMask
;
859 for (int i
= 0; i
!= (int)Index
; ++i
)
860 ShuffleMask
.push_back(Constant::getIntegerValue(IntTy32
, APInt(32, i
)));
861 for (int i
= 0; i
!= (int)Length
; ++i
)
862 ShuffleMask
.push_back(
863 Constant::getIntegerValue(IntTy32
, APInt(32, i
+ 16)));
864 for (int i
= Index
+ Length
; i
!= 8; ++i
)
865 ShuffleMask
.push_back(Constant::getIntegerValue(IntTy32
, APInt(32, i
)));
866 for (int i
= 8; i
!= 16; ++i
)
867 ShuffleMask
.push_back(UndefValue::get(IntTy32
));
869 Value
*SV
= Builder
.CreateShuffleVector(Builder
.CreateBitCast(Op0
, ShufTy
),
870 Builder
.CreateBitCast(Op1
, ShufTy
),
871 ConstantVector::get(ShuffleMask
));
872 return Builder
.CreateBitCast(SV
, II
.getType());
875 // See if we're dealing with constant values.
876 Constant
*C0
= dyn_cast
<Constant
>(Op0
);
877 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
879 C0
? dyn_cast_or_null
<ConstantInt
>(C0
->getAggregateElement((unsigned)0))
882 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)0))
885 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
887 APInt V00
= CI00
->getValue();
888 APInt V10
= CI10
->getValue();
889 APInt Mask
= APInt::getLowBitsSet(64, Length
).shl(Index
);
891 V10
= V10
.zextOrTrunc(Length
).zextOrTrunc(64).shl(Index
);
892 APInt Val
= V00
| V10
;
893 Type
*IntTy64
= Type::getInt64Ty(II
.getContext());
894 Constant
*Args
[] = {ConstantInt::get(IntTy64
, Val
.getZExtValue()),
895 UndefValue::get(IntTy64
)};
896 return ConstantVector::get(Args
);
899 // If we were an INSERTQ call, we'll save demanded elements if we convert to
901 if (II
.getIntrinsicID() == Intrinsic::x86_sse4a_insertq
) {
902 Type
*IntTy8
= Type::getInt8Ty(II
.getContext());
903 Constant
*CILength
= ConstantInt::get(IntTy8
, Length
, false);
904 Constant
*CIIndex
= ConstantInt::get(IntTy8
, Index
, false);
906 Value
*Args
[] = {Op0
, Op1
, CILength
, CIIndex
};
907 Module
*M
= II
.getModule();
908 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::x86_sse4a_insertqi
);
909 return Builder
.CreateCall(F
, Args
);
915 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
916 static Value
*simplifyX86pshufb(const IntrinsicInst
&II
,
917 InstCombiner::BuilderTy
&Builder
) {
918 Constant
*V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
922 auto *VecTy
= cast
<VectorType
>(II
.getType());
923 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
924 unsigned NumElts
= VecTy
->getNumElements();
925 assert((NumElts
== 16 || NumElts
== 32 || NumElts
== 64) &&
926 "Unexpected number of elements in shuffle mask!");
928 // Construct a shuffle mask from constant integers or UNDEFs.
929 Constant
*Indexes
[64] = {nullptr};
931 // Each byte in the shuffle control mask forms an index to permute the
932 // corresponding byte in the destination operand.
933 for (unsigned I
= 0; I
< NumElts
; ++I
) {
934 Constant
*COp
= V
->getAggregateElement(I
);
935 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
938 if (isa
<UndefValue
>(COp
)) {
939 Indexes
[I
] = UndefValue::get(MaskEltTy
);
943 int8_t Index
= cast
<ConstantInt
>(COp
)->getValue().getZExtValue();
945 // If the most significant bit (bit[7]) of each byte of the shuffle
946 // control mask is set, then zero is written in the result byte.
947 // The zero vector is in the right-hand side of the resulting
950 // The value of each index for the high 128-bit lane is the least
951 // significant 4 bits of the respective shuffle control byte.
952 Index
= ((Index
< 0) ? NumElts
: Index
& 0x0F) + (I
& 0xF0);
953 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
956 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, NumElts
));
957 auto V1
= II
.getArgOperand(0);
958 auto V2
= Constant::getNullValue(VecTy
);
959 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
962 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
963 static Value
*simplifyX86vpermilvar(const IntrinsicInst
&II
,
964 InstCombiner::BuilderTy
&Builder
) {
965 Constant
*V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
969 auto *VecTy
= cast
<VectorType
>(II
.getType());
970 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
971 unsigned NumElts
= VecTy
->getVectorNumElements();
972 bool IsPD
= VecTy
->getScalarType()->isDoubleTy();
973 unsigned NumLaneElts
= IsPD
? 2 : 4;
974 assert(NumElts
== 16 || NumElts
== 8 || NumElts
== 4 || NumElts
== 2);
976 // Construct a shuffle mask from constant integers or UNDEFs.
977 Constant
*Indexes
[16] = {nullptr};
979 // The intrinsics only read one or two bits, clear the rest.
980 for (unsigned I
= 0; I
< NumElts
; ++I
) {
981 Constant
*COp
= V
->getAggregateElement(I
);
982 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
985 if (isa
<UndefValue
>(COp
)) {
986 Indexes
[I
] = UndefValue::get(MaskEltTy
);
990 APInt Index
= cast
<ConstantInt
>(COp
)->getValue();
991 Index
= Index
.zextOrTrunc(32).getLoBits(2);
993 // The PD variants uses bit 1 to select per-lane element index, so
994 // shift down to convert to generic shuffle mask index.
996 Index
.lshrInPlace(1);
998 // The _256 variants are a bit trickier since the mask bits always index
999 // into the corresponding 128 half. In order to convert to a generic
1000 // shuffle, we have to make that explicit.
1001 Index
+= APInt(32, (I
/ NumLaneElts
) * NumLaneElts
);
1003 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
1006 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, NumElts
));
1007 auto V1
= II
.getArgOperand(0);
1008 auto V2
= UndefValue::get(V1
->getType());
1009 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1012 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1013 static Value
*simplifyX86vpermv(const IntrinsicInst
&II
,
1014 InstCombiner::BuilderTy
&Builder
) {
1015 auto *V
= dyn_cast
<Constant
>(II
.getArgOperand(1));
1019 auto *VecTy
= cast
<VectorType
>(II
.getType());
1020 auto *MaskEltTy
= Type::getInt32Ty(II
.getContext());
1021 unsigned Size
= VecTy
->getNumElements();
1022 assert((Size
== 4 || Size
== 8 || Size
== 16 || Size
== 32 || Size
== 64) &&
1023 "Unexpected shuffle mask size");
1025 // Construct a shuffle mask from constant integers or UNDEFs.
1026 Constant
*Indexes
[64] = {nullptr};
1028 for (unsigned I
= 0; I
< Size
; ++I
) {
1029 Constant
*COp
= V
->getAggregateElement(I
);
1030 if (!COp
|| (!isa
<UndefValue
>(COp
) && !isa
<ConstantInt
>(COp
)))
1033 if (isa
<UndefValue
>(COp
)) {
1034 Indexes
[I
] = UndefValue::get(MaskEltTy
);
1038 uint32_t Index
= cast
<ConstantInt
>(COp
)->getZExtValue();
1040 Indexes
[I
] = ConstantInt::get(MaskEltTy
, Index
);
1043 auto ShuffleMask
= ConstantVector::get(makeArrayRef(Indexes
, Size
));
1044 auto V1
= II
.getArgOperand(0);
1045 auto V2
= UndefValue::get(VecTy
);
1046 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1049 // TODO, Obvious Missing Transforms:
1050 // * Narrow width by halfs excluding zero/undef lanes
1051 Value
*InstCombiner::simplifyMaskedLoad(IntrinsicInst
&II
) {
1052 Value
*LoadPtr
= II
.getArgOperand(0);
1053 unsigned Alignment
= cast
<ConstantInt
>(II
.getArgOperand(1))->getZExtValue();
1055 // If the mask is all ones or undefs, this is a plain vector load of the 1st
1057 if (maskIsAllOneOrUndef(II
.getArgOperand(2)))
1058 return Builder
.CreateAlignedLoad(II
.getType(), LoadPtr
, Alignment
,
1061 // If we can unconditionally load from this address, replace with a
1062 // load/select idiom. TODO: use DT for context sensitive query
1063 if (isDereferenceableAndAlignedPointer(LoadPtr
, II
.getType(), Alignment
,
1064 II
.getModule()->getDataLayout(),
1066 Value
*LI
= Builder
.CreateAlignedLoad(II
.getType(), LoadPtr
, Alignment
,
1068 return Builder
.CreateSelect(II
.getArgOperand(2), LI
, II
.getArgOperand(3));
1074 // TODO, Obvious Missing Transforms:
1075 // * Single constant active lane -> store
1076 // * Narrow width by halfs excluding zero/undef lanes
1077 Instruction
*InstCombiner::simplifyMaskedStore(IntrinsicInst
&II
) {
1078 auto *ConstMask
= dyn_cast
<Constant
>(II
.getArgOperand(3));
1082 // If the mask is all zeros, this instruction does nothing.
1083 if (ConstMask
->isNullValue())
1084 return eraseInstFromFunction(II
);
1086 // If the mask is all ones, this is a plain vector store of the 1st argument.
1087 if (ConstMask
->isAllOnesValue()) {
1088 Value
*StorePtr
= II
.getArgOperand(1);
1089 unsigned Alignment
= cast
<ConstantInt
>(II
.getArgOperand(2))->getZExtValue();
1090 return new StoreInst(II
.getArgOperand(0), StorePtr
, false, Alignment
);
1093 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1094 APInt DemandedElts
= possiblyDemandedEltsInMask(ConstMask
);
1095 APInt
UndefElts(DemandedElts
.getBitWidth(), 0);
1096 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(0),
1097 DemandedElts
, UndefElts
)) {
1098 II
.setOperand(0, V
);
1105 // TODO, Obvious Missing Transforms:
1106 // * Single constant active lane load -> load
1107 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1108 // * Adjacent vector addresses -> masked.load
1109 // * Narrow width by halfs excluding zero/undef lanes
1110 // * Vector splat address w/known mask -> scalar load
1111 // * Vector incrementing address -> vector masked load
1112 Instruction
*InstCombiner::simplifyMaskedGather(IntrinsicInst
&II
) {
1116 // TODO, Obvious Missing Transforms:
1117 // * Single constant active lane -> store
1118 // * Adjacent vector addresses -> masked.store
1119 // * Narrow store width by halfs excluding zero/undef lanes
1120 // * Vector splat address w/known mask -> scalar store
1121 // * Vector incrementing address -> vector masked store
1122 Instruction
*InstCombiner::simplifyMaskedScatter(IntrinsicInst
&II
) {
1123 auto *ConstMask
= dyn_cast
<Constant
>(II
.getArgOperand(3));
1127 // If the mask is all zeros, a scatter does nothing.
1128 if (ConstMask
->isNullValue())
1129 return eraseInstFromFunction(II
);
1131 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1132 APInt DemandedElts
= possiblyDemandedEltsInMask(ConstMask
);
1133 APInt
UndefElts(DemandedElts
.getBitWidth(), 0);
1134 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(0),
1135 DemandedElts
, UndefElts
)) {
1136 II
.setOperand(0, V
);
1139 if (Value
*V
= SimplifyDemandedVectorElts(II
.getOperand(1),
1140 DemandedElts
, UndefElts
)) {
1141 II
.setOperand(1, V
);
1148 /// This function transforms launder.invariant.group and strip.invariant.group
1150 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
1151 /// launder(strip(%x)) -> launder(%x)
1152 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
1153 /// strip(launder(%x)) -> strip(%x)
1154 /// This is legal because it preserves the most recent information about
1155 /// the presence or absence of invariant.group.
1156 static Instruction
*simplifyInvariantGroupIntrinsic(IntrinsicInst
&II
,
1158 auto *Arg
= II
.getArgOperand(0);
1159 auto *StrippedArg
= Arg
->stripPointerCasts();
1160 auto *StrippedInvariantGroupsArg
= Arg
->stripPointerCastsAndInvariantGroups();
1161 if (StrippedArg
== StrippedInvariantGroupsArg
)
1162 return nullptr; // No launders/strips to remove.
1164 Value
*Result
= nullptr;
1166 if (II
.getIntrinsicID() == Intrinsic::launder_invariant_group
)
1167 Result
= IC
.Builder
.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg
);
1168 else if (II
.getIntrinsicID() == Intrinsic::strip_invariant_group
)
1169 Result
= IC
.Builder
.CreateStripInvariantGroup(StrippedInvariantGroupsArg
);
1172 "simplifyInvariantGroupIntrinsic only handles launder and strip");
1173 if (Result
->getType()->getPointerAddressSpace() !=
1174 II
.getType()->getPointerAddressSpace())
1175 Result
= IC
.Builder
.CreateAddrSpaceCast(Result
, II
.getType());
1176 if (Result
->getType() != II
.getType())
1177 Result
= IC
.Builder
.CreateBitCast(Result
, II
.getType());
1179 return cast
<Instruction
>(Result
);
1182 static Instruction
*foldCttzCtlz(IntrinsicInst
&II
, InstCombiner
&IC
) {
1183 assert((II
.getIntrinsicID() == Intrinsic::cttz
||
1184 II
.getIntrinsicID() == Intrinsic::ctlz
) &&
1185 "Expected cttz or ctlz intrinsic");
1186 bool IsTZ
= II
.getIntrinsicID() == Intrinsic::cttz
;
1187 Value
*Op0
= II
.getArgOperand(0);
1189 // ctlz(bitreverse(x)) -> cttz(x)
1190 // cttz(bitreverse(x)) -> ctlz(x)
1191 if (match(Op0
, m_BitReverse(m_Value(X
)))) {
1192 Intrinsic::ID ID
= IsTZ
? Intrinsic::ctlz
: Intrinsic::cttz
;
1193 Function
*F
= Intrinsic::getDeclaration(II
.getModule(), ID
, II
.getType());
1194 return CallInst::Create(F
, {X
, II
.getArgOperand(1)});
1198 // cttz(-x) -> cttz(x)
1199 if (match(Op0
, m_Neg(m_Value(X
)))) {
1200 II
.setOperand(0, X
);
1204 // cttz(abs(x)) -> cttz(x)
1205 // cttz(nabs(x)) -> cttz(x)
1207 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, X
, Y
).Flavor
;
1208 if (SPF
== SPF_ABS
|| SPF
== SPF_NABS
) {
1209 II
.setOperand(0, X
);
1214 KnownBits Known
= IC
.computeKnownBits(Op0
, 0, &II
);
1216 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1217 unsigned PossibleZeros
= IsTZ
? Known
.countMaxTrailingZeros()
1218 : Known
.countMaxLeadingZeros();
1219 unsigned DefiniteZeros
= IsTZ
? Known
.countMinTrailingZeros()
1220 : Known
.countMinLeadingZeros();
1222 // If all bits above (ctlz) or below (cttz) the first known one are known
1223 // zero, this value is constant.
1224 // FIXME: This should be in InstSimplify because we're replacing an
1225 // instruction with a constant.
1226 if (PossibleZeros
== DefiniteZeros
) {
1227 auto *C
= ConstantInt::get(Op0
->getType(), DefiniteZeros
);
1228 return IC
.replaceInstUsesWith(II
, C
);
1231 // If the input to cttz/ctlz is known to be non-zero,
1232 // then change the 'ZeroIsUndef' parameter to 'true'
1233 // because we know the zero behavior can't affect the result.
1234 if (!Known
.One
.isNullValue() ||
1235 isKnownNonZero(Op0
, IC
.getDataLayout(), 0, &IC
.getAssumptionCache(), &II
,
1236 &IC
.getDominatorTree())) {
1237 if (!match(II
.getArgOperand(1), m_One())) {
1238 II
.setOperand(1, IC
.Builder
.getTrue());
1243 // Add range metadata since known bits can't completely reflect what we know.
1244 // TODO: Handle splat vectors.
1245 auto *IT
= dyn_cast
<IntegerType
>(Op0
->getType());
1246 if (IT
&& IT
->getBitWidth() != 1 && !II
.getMetadata(LLVMContext::MD_range
)) {
1247 Metadata
*LowAndHigh
[] = {
1248 ConstantAsMetadata::get(ConstantInt::get(IT
, DefiniteZeros
)),
1249 ConstantAsMetadata::get(ConstantInt::get(IT
, PossibleZeros
+ 1))};
1250 II
.setMetadata(LLVMContext::MD_range
,
1251 MDNode::get(II
.getContext(), LowAndHigh
));
1258 static Instruction
*foldCtpop(IntrinsicInst
&II
, InstCombiner
&IC
) {
1259 assert(II
.getIntrinsicID() == Intrinsic::ctpop
&&
1260 "Expected ctpop intrinsic");
1261 Value
*Op0
= II
.getArgOperand(0);
1263 // ctpop(bitreverse(x)) -> ctpop(x)
1264 // ctpop(bswap(x)) -> ctpop(x)
1265 if (match(Op0
, m_BitReverse(m_Value(X
))) || match(Op0
, m_BSwap(m_Value(X
)))) {
1266 II
.setOperand(0, X
);
1270 // FIXME: Try to simplify vectors of integers.
1271 auto *IT
= dyn_cast
<IntegerType
>(Op0
->getType());
1275 unsigned BitWidth
= IT
->getBitWidth();
1276 KnownBits
Known(BitWidth
);
1277 IC
.computeKnownBits(Op0
, Known
, 0, &II
);
1279 unsigned MinCount
= Known
.countMinPopulation();
1280 unsigned MaxCount
= Known
.countMaxPopulation();
1282 // Add range metadata since known bits can't completely reflect what we know.
1283 if (IT
->getBitWidth() != 1 && !II
.getMetadata(LLVMContext::MD_range
)) {
1284 Metadata
*LowAndHigh
[] = {
1285 ConstantAsMetadata::get(ConstantInt::get(IT
, MinCount
)),
1286 ConstantAsMetadata::get(ConstantInt::get(IT
, MaxCount
+ 1))};
1287 II
.setMetadata(LLVMContext::MD_range
,
1288 MDNode::get(II
.getContext(), LowAndHigh
));
1295 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1296 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1297 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1298 static Instruction
*simplifyX86MaskedLoad(IntrinsicInst
&II
, InstCombiner
&IC
) {
1299 Value
*Ptr
= II
.getOperand(0);
1300 Value
*Mask
= II
.getOperand(1);
1301 Constant
*ZeroVec
= Constant::getNullValue(II
.getType());
1303 // Special case a zero mask since that's not a ConstantDataVector.
1304 // This masked load instruction creates a zero vector.
1305 if (isa
<ConstantAggregateZero
>(Mask
))
1306 return IC
.replaceInstUsesWith(II
, ZeroVec
);
1308 auto *ConstMask
= dyn_cast
<ConstantDataVector
>(Mask
);
1312 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1313 // to allow target-independent optimizations.
1315 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1316 // the LLVM intrinsic definition for the pointer argument.
1317 unsigned AddrSpace
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1318 PointerType
*VecPtrTy
= PointerType::get(II
.getType(), AddrSpace
);
1319 Value
*PtrCast
= IC
.Builder
.CreateBitCast(Ptr
, VecPtrTy
, "castvec");
1321 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1322 // on each element's most significant bit (the sign bit).
1323 Constant
*BoolMask
= getNegativeIsTrueBoolVec(ConstMask
);
1325 // The pass-through vector for an x86 masked load is a zero vector.
1326 CallInst
*NewMaskedLoad
=
1327 IC
.Builder
.CreateMaskedLoad(PtrCast
, 1, BoolMask
, ZeroVec
);
1328 return IC
.replaceInstUsesWith(II
, NewMaskedLoad
);
1331 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1332 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1333 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1334 static bool simplifyX86MaskedStore(IntrinsicInst
&II
, InstCombiner
&IC
) {
1335 Value
*Ptr
= II
.getOperand(0);
1336 Value
*Mask
= II
.getOperand(1);
1337 Value
*Vec
= II
.getOperand(2);
1339 // Special case a zero mask since that's not a ConstantDataVector:
1340 // this masked store instruction does nothing.
1341 if (isa
<ConstantAggregateZero
>(Mask
)) {
1342 IC
.eraseInstFromFunction(II
);
1346 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1347 // anything else at this level.
1348 if (II
.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu
)
1351 auto *ConstMask
= dyn_cast
<ConstantDataVector
>(Mask
);
1355 // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1356 // to allow target-independent optimizations.
1358 // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1359 // the LLVM intrinsic definition for the pointer argument.
1360 unsigned AddrSpace
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1361 PointerType
*VecPtrTy
= PointerType::get(Vec
->getType(), AddrSpace
);
1362 Value
*PtrCast
= IC
.Builder
.CreateBitCast(Ptr
, VecPtrTy
, "castvec");
1364 // Second, convert the x86 XMM integer vector mask to a vector of bools based
1365 // on each element's most significant bit (the sign bit).
1366 Constant
*BoolMask
= getNegativeIsTrueBoolVec(ConstMask
);
1368 IC
.Builder
.CreateMaskedStore(Vec
, PtrCast
, 1, BoolMask
);
1370 // 'Replace uses' doesn't work for stores. Erase the original masked store.
1371 IC
.eraseInstFromFunction(II
);
1375 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1377 // A single NaN input is folded to minnum, so we rely on that folding for
1379 static APFloat
fmed3AMDGCN(const APFloat
&Src0
, const APFloat
&Src1
,
1380 const APFloat
&Src2
) {
1381 APFloat Max3
= maxnum(maxnum(Src0
, Src1
), Src2
);
1383 APFloat::cmpResult Cmp0
= Max3
.compare(Src0
);
1384 assert(Cmp0
!= APFloat::cmpUnordered
&& "nans handled separately");
1385 if (Cmp0
== APFloat::cmpEqual
)
1386 return maxnum(Src1
, Src2
);
1388 APFloat::cmpResult Cmp1
= Max3
.compare(Src1
);
1389 assert(Cmp1
!= APFloat::cmpUnordered
&& "nans handled separately");
1390 if (Cmp1
== APFloat::cmpEqual
)
1391 return maxnum(Src0
, Src2
);
1393 return maxnum(Src0
, Src1
);
1396 /// Convert a table lookup to shufflevector if the mask is constant.
1397 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1398 /// which case we could lower the shufflevector with rev64 instructions
1399 /// as it's actually a byte reverse.
1400 static Value
*simplifyNeonTbl1(const IntrinsicInst
&II
,
1401 InstCombiner::BuilderTy
&Builder
) {
1402 // Bail out if the mask is not a constant.
1403 auto *C
= dyn_cast
<Constant
>(II
.getArgOperand(1));
1407 auto *VecTy
= cast
<VectorType
>(II
.getType());
1408 unsigned NumElts
= VecTy
->getNumElements();
1410 // Only perform this transformation for <8 x i8> vector types.
1411 if (!VecTy
->getElementType()->isIntegerTy(8) || NumElts
!= 8)
1414 uint32_t Indexes
[8];
1416 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1417 Constant
*COp
= C
->getAggregateElement(I
);
1419 if (!COp
|| !isa
<ConstantInt
>(COp
))
1422 Indexes
[I
] = cast
<ConstantInt
>(COp
)->getLimitedValue();
1424 // Make sure the mask indices are in range.
1425 if (Indexes
[I
] >= NumElts
)
1429 auto *ShuffleMask
= ConstantDataVector::get(II
.getContext(),
1430 makeArrayRef(Indexes
));
1431 auto *V1
= II
.getArgOperand(0);
1432 auto *V2
= Constant::getNullValue(V1
->getType());
1433 return Builder
.CreateShuffleVector(V1
, V2
, ShuffleMask
);
1436 /// Convert a vector load intrinsic into a simple llvm load instruction.
1437 /// This is beneficial when the underlying object being addressed comes
1438 /// from a constant, since we get constant-folding for free.
1439 static Value
*simplifyNeonVld1(const IntrinsicInst
&II
,
1441 InstCombiner::BuilderTy
&Builder
) {
1442 auto *IntrAlign
= dyn_cast
<ConstantInt
>(II
.getArgOperand(1));
1447 unsigned Alignment
= IntrAlign
->getLimitedValue() < MemAlign
?
1448 MemAlign
: IntrAlign
->getLimitedValue();
1450 if (!isPowerOf2_32(Alignment
))
1453 auto *BCastInst
= Builder
.CreateBitCast(II
.getArgOperand(0),
1454 PointerType::get(II
.getType(), 0));
1455 return Builder
.CreateAlignedLoad(II
.getType(), BCastInst
, Alignment
);
1458 // Returns true iff the 2 intrinsics have the same operands, limiting the
1459 // comparison to the first NumOperands.
1460 static bool haveSameOperands(const IntrinsicInst
&I
, const IntrinsicInst
&E
,
1461 unsigned NumOperands
) {
1462 assert(I
.getNumArgOperands() >= NumOperands
&& "Not enough operands");
1463 assert(E
.getNumArgOperands() >= NumOperands
&& "Not enough operands");
1464 for (unsigned i
= 0; i
< NumOperands
; i
++)
1465 if (I
.getArgOperand(i
) != E
.getArgOperand(i
))
1470 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1471 // immediately followed by an end (ignoring debuginfo or other
1472 // start/end intrinsics in between). As this handles only the most trivial
1473 // cases, tracking the nesting level is not needed:
1475 // call @llvm.foo.start(i1 0) ; &I
1476 // call @llvm.foo.start(i1 0)
1477 // call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1478 // call @llvm.foo.end(i1 0)
1479 static bool removeTriviallyEmptyRange(IntrinsicInst
&I
, unsigned StartID
,
1480 unsigned EndID
, InstCombiner
&IC
) {
1481 assert(I
.getIntrinsicID() == StartID
&&
1482 "Start intrinsic does not have expected ID");
1483 BasicBlock::iterator
BI(I
), BE(I
.getParent()->end());
1484 for (++BI
; BI
!= BE
; ++BI
) {
1485 if (auto *E
= dyn_cast
<IntrinsicInst
>(BI
)) {
1486 if (isa
<DbgInfoIntrinsic
>(E
) || E
->getIntrinsicID() == StartID
)
1488 if (E
->getIntrinsicID() == EndID
&&
1489 haveSameOperands(I
, *E
, E
->getNumArgOperands())) {
1490 IC
.eraseInstFromFunction(*E
);
1491 IC
.eraseInstFromFunction(I
);
1501 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1502 static Instruction
*SimplifyNVVMIntrinsic(IntrinsicInst
*II
, InstCombiner
&IC
) {
1503 // Each NVVM intrinsic we can simplify can be replaced with one of:
1505 // * an LLVM intrinsic,
1506 // * an LLVM cast operation,
1507 // * an LLVM binary operation, or
1508 // * ad-hoc LLVM IR for the particular operation.
1510 // Some transformations are only valid when the module's
1511 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1512 // transformations are valid regardless of the module's ftz setting.
1513 enum FtzRequirementTy
{
1514 FTZ_Any
, // Any ftz setting is ok.
1515 FTZ_MustBeOn
, // Transformation is valid only if ftz is on.
1516 FTZ_MustBeOff
, // Transformation is valid only if ftz is off.
1518 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1519 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1525 // SimplifyAction is a poor-man's variant (plus an additional flag) that
1526 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1527 struct SimplifyAction
{
1528 // Invariant: At most one of these Optionals has a value.
1529 Optional
<Intrinsic::ID
> IID
;
1530 Optional
<Instruction::CastOps
> CastOp
;
1531 Optional
<Instruction::BinaryOps
> BinaryOp
;
1532 Optional
<SpecialCase
> Special
;
1534 FtzRequirementTy FtzRequirement
= FTZ_Any
;
1536 SimplifyAction() = default;
1538 SimplifyAction(Intrinsic::ID IID
, FtzRequirementTy FtzReq
)
1539 : IID(IID
), FtzRequirement(FtzReq
) {}
1541 // Cast operations don't have anything to do with FTZ, so we skip that
1543 SimplifyAction(Instruction::CastOps CastOp
) : CastOp(CastOp
) {}
1545 SimplifyAction(Instruction::BinaryOps BinaryOp
, FtzRequirementTy FtzReq
)
1546 : BinaryOp(BinaryOp
), FtzRequirement(FtzReq
) {}
1548 SimplifyAction(SpecialCase Special
, FtzRequirementTy FtzReq
)
1549 : Special(Special
), FtzRequirement(FtzReq
) {}
1552 // Try to generate a SimplifyAction describing how to replace our
1553 // IntrinsicInstr with target-generic LLVM IR.
1554 const SimplifyAction Action
= [II
]() -> SimplifyAction
{
1555 switch (II
->getIntrinsicID()) {
1556 // NVVM intrinsics that map directly to LLVM intrinsics.
1557 case Intrinsic::nvvm_ceil_d
:
1558 return {Intrinsic::ceil
, FTZ_Any
};
1559 case Intrinsic::nvvm_ceil_f
:
1560 return {Intrinsic::ceil
, FTZ_MustBeOff
};
1561 case Intrinsic::nvvm_ceil_ftz_f
:
1562 return {Intrinsic::ceil
, FTZ_MustBeOn
};
1563 case Intrinsic::nvvm_fabs_d
:
1564 return {Intrinsic::fabs
, FTZ_Any
};
1565 case Intrinsic::nvvm_fabs_f
:
1566 return {Intrinsic::fabs
, FTZ_MustBeOff
};
1567 case Intrinsic::nvvm_fabs_ftz_f
:
1568 return {Intrinsic::fabs
, FTZ_MustBeOn
};
1569 case Intrinsic::nvvm_floor_d
:
1570 return {Intrinsic::floor
, FTZ_Any
};
1571 case Intrinsic::nvvm_floor_f
:
1572 return {Intrinsic::floor
, FTZ_MustBeOff
};
1573 case Intrinsic::nvvm_floor_ftz_f
:
1574 return {Intrinsic::floor
, FTZ_MustBeOn
};
1575 case Intrinsic::nvvm_fma_rn_d
:
1576 return {Intrinsic::fma
, FTZ_Any
};
1577 case Intrinsic::nvvm_fma_rn_f
:
1578 return {Intrinsic::fma
, FTZ_MustBeOff
};
1579 case Intrinsic::nvvm_fma_rn_ftz_f
:
1580 return {Intrinsic::fma
, FTZ_MustBeOn
};
1581 case Intrinsic::nvvm_fmax_d
:
1582 return {Intrinsic::maxnum
, FTZ_Any
};
1583 case Intrinsic::nvvm_fmax_f
:
1584 return {Intrinsic::maxnum
, FTZ_MustBeOff
};
1585 case Intrinsic::nvvm_fmax_ftz_f
:
1586 return {Intrinsic::maxnum
, FTZ_MustBeOn
};
1587 case Intrinsic::nvvm_fmin_d
:
1588 return {Intrinsic::minnum
, FTZ_Any
};
1589 case Intrinsic::nvvm_fmin_f
:
1590 return {Intrinsic::minnum
, FTZ_MustBeOff
};
1591 case Intrinsic::nvvm_fmin_ftz_f
:
1592 return {Intrinsic::minnum
, FTZ_MustBeOn
};
1593 case Intrinsic::nvvm_round_d
:
1594 return {Intrinsic::round
, FTZ_Any
};
1595 case Intrinsic::nvvm_round_f
:
1596 return {Intrinsic::round
, FTZ_MustBeOff
};
1597 case Intrinsic::nvvm_round_ftz_f
:
1598 return {Intrinsic::round
, FTZ_MustBeOn
};
1599 case Intrinsic::nvvm_sqrt_rn_d
:
1600 return {Intrinsic::sqrt
, FTZ_Any
};
1601 case Intrinsic::nvvm_sqrt_f
:
1602 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
1603 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
1604 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
1605 // the versions with explicit ftz-ness.
1606 return {Intrinsic::sqrt
, FTZ_Any
};
1607 case Intrinsic::nvvm_sqrt_rn_f
:
1608 return {Intrinsic::sqrt
, FTZ_MustBeOff
};
1609 case Intrinsic::nvvm_sqrt_rn_ftz_f
:
1610 return {Intrinsic::sqrt
, FTZ_MustBeOn
};
1611 case Intrinsic::nvvm_trunc_d
:
1612 return {Intrinsic::trunc
, FTZ_Any
};
1613 case Intrinsic::nvvm_trunc_f
:
1614 return {Intrinsic::trunc
, FTZ_MustBeOff
};
1615 case Intrinsic::nvvm_trunc_ftz_f
:
1616 return {Intrinsic::trunc
, FTZ_MustBeOn
};
1618 // NVVM intrinsics that map to LLVM cast operations.
1620 // Note that llvm's target-generic conversion operators correspond to the rz
1621 // (round to zero) versions of the nvvm conversion intrinsics, even though
1622 // most everything else here uses the rn (round to nearest even) nvvm ops.
1623 case Intrinsic::nvvm_d2i_rz
:
1624 case Intrinsic::nvvm_f2i_rz
:
1625 case Intrinsic::nvvm_d2ll_rz
:
1626 case Intrinsic::nvvm_f2ll_rz
:
1627 return {Instruction::FPToSI
};
1628 case Intrinsic::nvvm_d2ui_rz
:
1629 case Intrinsic::nvvm_f2ui_rz
:
1630 case Intrinsic::nvvm_d2ull_rz
:
1631 case Intrinsic::nvvm_f2ull_rz
:
1632 return {Instruction::FPToUI
};
1633 case Intrinsic::nvvm_i2d_rz
:
1634 case Intrinsic::nvvm_i2f_rz
:
1635 case Intrinsic::nvvm_ll2d_rz
:
1636 case Intrinsic::nvvm_ll2f_rz
:
1637 return {Instruction::SIToFP
};
1638 case Intrinsic::nvvm_ui2d_rz
:
1639 case Intrinsic::nvvm_ui2f_rz
:
1640 case Intrinsic::nvvm_ull2d_rz
:
1641 case Intrinsic::nvvm_ull2f_rz
:
1642 return {Instruction::UIToFP
};
1644 // NVVM intrinsics that map to LLVM binary ops.
1645 case Intrinsic::nvvm_add_rn_d
:
1646 return {Instruction::FAdd
, FTZ_Any
};
1647 case Intrinsic::nvvm_add_rn_f
:
1648 return {Instruction::FAdd
, FTZ_MustBeOff
};
1649 case Intrinsic::nvvm_add_rn_ftz_f
:
1650 return {Instruction::FAdd
, FTZ_MustBeOn
};
1651 case Intrinsic::nvvm_mul_rn_d
:
1652 return {Instruction::FMul
, FTZ_Any
};
1653 case Intrinsic::nvvm_mul_rn_f
:
1654 return {Instruction::FMul
, FTZ_MustBeOff
};
1655 case Intrinsic::nvvm_mul_rn_ftz_f
:
1656 return {Instruction::FMul
, FTZ_MustBeOn
};
1657 case Intrinsic::nvvm_div_rn_d
:
1658 return {Instruction::FDiv
, FTZ_Any
};
1659 case Intrinsic::nvvm_div_rn_f
:
1660 return {Instruction::FDiv
, FTZ_MustBeOff
};
1661 case Intrinsic::nvvm_div_rn_ftz_f
:
1662 return {Instruction::FDiv
, FTZ_MustBeOn
};
1664 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1665 // need special handling.
1667 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1669 case Intrinsic::nvvm_rcp_rn_d
:
1670 return {SPC_Reciprocal
, FTZ_Any
};
1671 case Intrinsic::nvvm_rcp_rn_f
:
1672 return {SPC_Reciprocal
, FTZ_MustBeOff
};
1673 case Intrinsic::nvvm_rcp_rn_ftz_f
:
1674 return {SPC_Reciprocal
, FTZ_MustBeOn
};
1676 // We do not currently simplify intrinsics that give an approximate answer.
1679 // - nvvm_cos_approx_{f,ftz_f}
1680 // - nvvm_ex2_approx_{d,f,ftz_f}
1681 // - nvvm_lg2_approx_{d,f,ftz_f}
1682 // - nvvm_sin_approx_{f,ftz_f}
1683 // - nvvm_sqrt_approx_{f,ftz_f}
1684 // - nvvm_rsqrt_approx_{d,f,ftz_f}
1685 // - nvvm_div_approx_{ftz_d,ftz_f,f}
1686 // - nvvm_rcp_approx_ftz_d
1688 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1689 // means that fastmath is enabled in the intrinsic. Unfortunately only
1690 // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1691 // information gets lost and we can't select on it.
1693 // TODO: div and rcp are lowered to a binary op, so these we could in theory
1694 // lower them to "fast fdiv".
1701 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1702 // can bail out now. (Notice that in the case that IID is not an NVVM
1703 // intrinsic, we don't have to look up any module metadata, as
1704 // FtzRequirementTy will be FTZ_Any.)
1705 if (Action
.FtzRequirement
!= FTZ_Any
) {
1707 II
->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1710 if (FtzEnabled
!= (Action
.FtzRequirement
== FTZ_MustBeOn
))
1714 // Simplify to target-generic intrinsic.
1716 SmallVector
<Value
*, 4> Args(II
->arg_operands());
1717 // All the target-generic intrinsics currently of interest to us have one
1718 // type argument, equal to that of the nvvm intrinsic's argument.
1719 Type
*Tys
[] = {II
->getArgOperand(0)->getType()};
1720 return CallInst::Create(
1721 Intrinsic::getDeclaration(II
->getModule(), *Action
.IID
, Tys
), Args
);
1724 // Simplify to target-generic binary op.
1725 if (Action
.BinaryOp
)
1726 return BinaryOperator::Create(*Action
.BinaryOp
, II
->getArgOperand(0),
1727 II
->getArgOperand(1), II
->getName());
1729 // Simplify to target-generic cast op.
1731 return CastInst::Create(*Action
.CastOp
, II
->getArgOperand(0), II
->getType(),
1734 // All that's left are the special cases.
1735 if (!Action
.Special
)
1738 switch (*Action
.Special
) {
1739 case SPC_Reciprocal
:
1740 // Simplify reciprocal.
1741 return BinaryOperator::Create(
1742 Instruction::FDiv
, ConstantFP::get(II
->getArgOperand(0)->getType(), 1),
1743 II
->getArgOperand(0), II
->getName());
1745 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1748 Instruction
*InstCombiner::visitVAStartInst(VAStartInst
&I
) {
1749 removeTriviallyEmptyRange(I
, Intrinsic::vastart
, Intrinsic::vaend
, *this);
1753 Instruction
*InstCombiner::visitVACopyInst(VACopyInst
&I
) {
1754 removeTriviallyEmptyRange(I
, Intrinsic::vacopy
, Intrinsic::vaend
, *this);
1758 static Instruction
*canonicalizeConstantArg0ToArg1(CallInst
&Call
) {
1759 assert(Call
.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1760 Value
*Arg0
= Call
.getArgOperand(0), *Arg1
= Call
.getArgOperand(1);
1761 if (isa
<Constant
>(Arg0
) && !isa
<Constant
>(Arg1
)) {
1762 Call
.setArgOperand(0, Arg1
);
1763 Call
.setArgOperand(1, Arg0
);
1769 Instruction
*InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst
*II
) {
1770 WithOverflowInst
*WO
= cast
<WithOverflowInst
>(II
);
1771 Value
*OperationResult
= nullptr;
1772 Constant
*OverflowResult
= nullptr;
1773 if (OptimizeOverflowCheck(WO
->getBinaryOp(), WO
->isSigned(), WO
->getLHS(),
1774 WO
->getRHS(), *WO
, OperationResult
, OverflowResult
))
1775 return CreateOverflowTuple(WO
, OperationResult
, OverflowResult
);
1779 /// CallInst simplification. This mostly only handles folding of intrinsic
1780 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1782 Instruction
*InstCombiner::visitCallInst(CallInst
&CI
) {
1783 if (Value
*V
= SimplifyCall(&CI
, SQ
.getWithInstruction(&CI
)))
1784 return replaceInstUsesWith(CI
, V
);
1786 if (isFreeCall(&CI
, &TLI
))
1787 return visitFree(CI
);
1789 // If the caller function is nounwind, mark the call as nounwind, even if the
1791 if (CI
.getFunction()->doesNotThrow() && !CI
.doesNotThrow()) {
1792 CI
.setDoesNotThrow();
1796 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&CI
);
1797 if (!II
) return visitCallBase(CI
);
1799 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1800 // instead of in visitCallBase.
1801 if (auto *MI
= dyn_cast
<AnyMemIntrinsic
>(II
)) {
1802 bool Changed
= false;
1804 // memmove/cpy/set of zero bytes is a noop.
1805 if (Constant
*NumBytes
= dyn_cast
<Constant
>(MI
->getLength())) {
1806 if (NumBytes
->isNullValue())
1807 return eraseInstFromFunction(CI
);
1809 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NumBytes
))
1810 if (CI
->getZExtValue() == 1) {
1811 // Replace the instruction with just byte operations. We would
1812 // transform other cases to loads/stores, but we don't know if
1813 // alignment is sufficient.
1817 // No other transformations apply to volatile transfers.
1818 if (auto *M
= dyn_cast
<MemIntrinsic
>(MI
))
1819 if (M
->isVolatile())
1822 // If we have a memmove and the source operation is a constant global,
1823 // then the source and dest pointers can't alias, so we can change this
1824 // into a call to memcpy.
1825 if (auto *MMI
= dyn_cast
<AnyMemMoveInst
>(MI
)) {
1826 if (GlobalVariable
*GVSrc
= dyn_cast
<GlobalVariable
>(MMI
->getSource()))
1827 if (GVSrc
->isConstant()) {
1828 Module
*M
= CI
.getModule();
1829 Intrinsic::ID MemCpyID
=
1830 isa
<AtomicMemMoveInst
>(MMI
)
1831 ? Intrinsic::memcpy_element_unordered_atomic
1832 : Intrinsic::memcpy
;
1833 Type
*Tys
[3] = { CI
.getArgOperand(0)->getType(),
1834 CI
.getArgOperand(1)->getType(),
1835 CI
.getArgOperand(2)->getType() };
1836 CI
.setCalledFunction(Intrinsic::getDeclaration(M
, MemCpyID
, Tys
));
1841 if (AnyMemTransferInst
*MTI
= dyn_cast
<AnyMemTransferInst
>(MI
)) {
1842 // memmove(x,x,size) -> noop.
1843 if (MTI
->getSource() == MTI
->getDest())
1844 return eraseInstFromFunction(CI
);
1847 // If we can determine a pointer alignment that is bigger than currently
1848 // set, update the alignment.
1849 if (auto *MTI
= dyn_cast
<AnyMemTransferInst
>(MI
)) {
1850 if (Instruction
*I
= SimplifyAnyMemTransfer(MTI
))
1852 } else if (auto *MSI
= dyn_cast
<AnyMemSetInst
>(MI
)) {
1853 if (Instruction
*I
= SimplifyAnyMemSet(MSI
))
1857 if (Changed
) return II
;
1860 // For vector result intrinsics, use the generic demanded vector support.
1861 if (II
->getType()->isVectorTy()) {
1862 auto VWidth
= II
->getType()->getVectorNumElements();
1863 APInt
UndefElts(VWidth
, 0);
1864 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1865 if (Value
*V
= SimplifyDemandedVectorElts(II
, AllOnesEltMask
, UndefElts
)) {
1867 return replaceInstUsesWith(*II
, V
);
1872 if (Instruction
*I
= SimplifyNVVMIntrinsic(II
, *this))
1875 auto SimplifyDemandedVectorEltsLow
= [this](Value
*Op
, unsigned Width
,
1876 unsigned DemandedWidth
) {
1877 APInt
UndefElts(Width
, 0);
1878 APInt DemandedElts
= APInt::getLowBitsSet(Width
, DemandedWidth
);
1879 return SimplifyDemandedVectorElts(Op
, DemandedElts
, UndefElts
);
1882 Intrinsic::ID IID
= II
->getIntrinsicID();
1885 case Intrinsic::objectsize
:
1886 if (Value
*V
= lowerObjectSizeCall(II
, DL
, &TLI
, /*MustSucceed=*/false))
1887 return replaceInstUsesWith(CI
, V
);
1889 case Intrinsic::bswap
: {
1890 Value
*IIOperand
= II
->getArgOperand(0);
1893 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1894 if (match(IIOperand
, m_Trunc(m_BSwap(m_Value(X
))))) {
1895 unsigned C
= X
->getType()->getPrimitiveSizeInBits() -
1896 IIOperand
->getType()->getPrimitiveSizeInBits();
1897 Value
*CV
= ConstantInt::get(X
->getType(), C
);
1898 Value
*V
= Builder
.CreateLShr(X
, CV
);
1899 return new TruncInst(V
, IIOperand
->getType());
1903 case Intrinsic::masked_load
:
1904 if (Value
*SimplifiedMaskedOp
= simplifyMaskedLoad(*II
))
1905 return replaceInstUsesWith(CI
, SimplifiedMaskedOp
);
1907 case Intrinsic::masked_store
:
1908 return simplifyMaskedStore(*II
);
1909 case Intrinsic::masked_gather
:
1910 return simplifyMaskedGather(*II
);
1911 case Intrinsic::masked_scatter
:
1912 return simplifyMaskedScatter(*II
);
1913 case Intrinsic::launder_invariant_group
:
1914 case Intrinsic::strip_invariant_group
:
1915 if (auto *SkippedBarrier
= simplifyInvariantGroupIntrinsic(*II
, *this))
1916 return replaceInstUsesWith(*II
, SkippedBarrier
);
1918 case Intrinsic::powi
:
1919 if (ConstantInt
*Power
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
1920 // 0 and 1 are handled in instsimplify
1922 // powi(x, -1) -> 1/x
1923 if (Power
->isMinusOne())
1924 return BinaryOperator::CreateFDiv(ConstantFP::get(CI
.getType(), 1.0),
1925 II
->getArgOperand(0));
1926 // powi(x, 2) -> x*x
1927 if (Power
->equalsInt(2))
1928 return BinaryOperator::CreateFMul(II
->getArgOperand(0),
1929 II
->getArgOperand(0));
1933 case Intrinsic::cttz
:
1934 case Intrinsic::ctlz
:
1935 if (auto *I
= foldCttzCtlz(*II
, *this))
1939 case Intrinsic::ctpop
:
1940 if (auto *I
= foldCtpop(*II
, *this))
1944 case Intrinsic::fshl
:
1945 case Intrinsic::fshr
: {
1946 Value
*Op0
= II
->getArgOperand(0), *Op1
= II
->getArgOperand(1);
1947 Type
*Ty
= II
->getType();
1948 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1950 if (match(II
->getArgOperand(2), m_Constant(ShAmtC
)) &&
1951 !isa
<ConstantExpr
>(ShAmtC
) && !ShAmtC
->containsConstantExpression()) {
1952 // Canonicalize a shift amount constant operand to modulo the bit-width.
1953 Constant
*WidthC
= ConstantInt::get(Ty
, BitWidth
);
1954 Constant
*ModuloC
= ConstantExpr::getURem(ShAmtC
, WidthC
);
1955 if (ModuloC
!= ShAmtC
) {
1956 II
->setArgOperand(2, ModuloC
);
1959 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT
, WidthC
, ShAmtC
) ==
1960 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty
)) &&
1961 "Shift amount expected to be modulo bitwidth");
1963 // Canonicalize funnel shift right by constant to funnel shift left. This
1964 // is not entirely arbitrary. For historical reasons, the backend may
1965 // recognize rotate left patterns but miss rotate right patterns.
1966 if (IID
== Intrinsic::fshr
) {
1967 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1968 Constant
*LeftShiftC
= ConstantExpr::getSub(WidthC
, ShAmtC
);
1969 Module
*Mod
= II
->getModule();
1970 Function
*Fshl
= Intrinsic::getDeclaration(Mod
, Intrinsic::fshl
, Ty
);
1971 return CallInst::Create(Fshl
, { Op0
, Op1
, LeftShiftC
});
1973 assert(IID
== Intrinsic::fshl
&&
1974 "All funnel shifts by simple constants should go left");
1976 // fshl(X, 0, C) --> shl X, C
1977 // fshl(X, undef, C) --> shl X, C
1978 if (match(Op1
, m_ZeroInt()) || match(Op1
, m_Undef()))
1979 return BinaryOperator::CreateShl(Op0
, ShAmtC
);
1981 // fshl(0, X, C) --> lshr X, (BW-C)
1982 // fshl(undef, X, C) --> lshr X, (BW-C)
1983 if (match(Op0
, m_ZeroInt()) || match(Op0
, m_Undef()))
1984 return BinaryOperator::CreateLShr(Op1
,
1985 ConstantExpr::getSub(WidthC
, ShAmtC
));
1987 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1988 if (Op0
== Op1
&& BitWidth
== 16 && match(ShAmtC
, m_SpecificInt(8))) {
1989 Module
*Mod
= II
->getModule();
1990 Function
*Bswap
= Intrinsic::getDeclaration(Mod
, Intrinsic::bswap
, Ty
);
1991 return CallInst::Create(Bswap
, { Op0
});
1995 // Left or right might be masked.
1996 if (SimplifyDemandedInstructionBits(*II
))
1999 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2000 // so only the low bits of the shift amount are demanded if the bitwidth is
2002 if (!isPowerOf2_32(BitWidth
))
2004 APInt Op2Demanded
= APInt::getLowBitsSet(BitWidth
, Log2_32_Ceil(BitWidth
));
2005 KnownBits
Op2Known(BitWidth
);
2006 if (SimplifyDemandedBits(II
, 2, Op2Demanded
, Op2Known
))
2010 case Intrinsic::uadd_with_overflow
:
2011 case Intrinsic::sadd_with_overflow
: {
2012 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2014 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2017 // Given 2 constant operands whose sum does not overflow:
2018 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2019 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2021 const APInt
*C0
, *C1
;
2022 Value
*Arg0
= II
->getArgOperand(0);
2023 Value
*Arg1
= II
->getArgOperand(1);
2024 bool IsSigned
= IID
== Intrinsic::sadd_with_overflow
;
2025 bool HasNWAdd
= IsSigned
? match(Arg0
, m_NSWAdd(m_Value(X
), m_APInt(C0
)))
2026 : match(Arg0
, m_NUWAdd(m_Value(X
), m_APInt(C0
)));
2027 if (HasNWAdd
&& match(Arg1
, m_APInt(C1
))) {
2030 IsSigned
? C1
->sadd_ov(*C0
, Overflow
) : C1
->uadd_ov(*C0
, Overflow
);
2032 return replaceInstUsesWith(
2033 *II
, Builder
.CreateBinaryIntrinsic(
2034 IID
, X
, ConstantInt::get(Arg1
->getType(), NewC
)));
2039 case Intrinsic::umul_with_overflow
:
2040 case Intrinsic::smul_with_overflow
:
2041 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2045 case Intrinsic::usub_with_overflow
:
2046 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2050 case Intrinsic::ssub_with_overflow
: {
2051 if (Instruction
*I
= foldIntrinsicWithOverflowCommon(II
))
2055 Value
*Arg0
= II
->getArgOperand(0);
2056 Value
*Arg1
= II
->getArgOperand(1);
2057 // Given a constant C that is not the minimum signed value
2058 // for an integer of a given bit width:
2060 // ssubo X, C -> saddo X, -C
2061 if (match(Arg1
, m_Constant(C
)) && C
->isNotMinSignedValue()) {
2062 Value
*NegVal
= ConstantExpr::getNeg(C
);
2063 // Build a saddo call that is equivalent to the discovered
2065 return replaceInstUsesWith(
2066 *II
, Builder
.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow
,
2073 case Intrinsic::uadd_sat
:
2074 case Intrinsic::sadd_sat
:
2075 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2078 case Intrinsic::usub_sat
:
2079 case Intrinsic::ssub_sat
: {
2080 SaturatingInst
*SI
= cast
<SaturatingInst
>(II
);
2081 Type
*Ty
= SI
->getType();
2082 Value
*Arg0
= SI
->getLHS();
2083 Value
*Arg1
= SI
->getRHS();
2085 // Make use of known overflow information.
2086 OverflowResult OR
= computeOverflow(SI
->getBinaryOp(), SI
->isSigned(),
2089 case OverflowResult::MayOverflow
:
2091 case OverflowResult::NeverOverflows
:
2093 return BinaryOperator::CreateNSW(SI
->getBinaryOp(), Arg0
, Arg1
);
2095 return BinaryOperator::CreateNUW(SI
->getBinaryOp(), Arg0
, Arg1
);
2096 case OverflowResult::AlwaysOverflowsLow
: {
2097 unsigned BitWidth
= Ty
->getScalarSizeInBits();
2098 APInt Min
= APSInt::getMinValue(BitWidth
, !SI
->isSigned());
2099 return replaceInstUsesWith(*SI
, ConstantInt::get(Ty
, Min
));
2101 case OverflowResult::AlwaysOverflowsHigh
: {
2102 unsigned BitWidth
= Ty
->getScalarSizeInBits();
2103 APInt Max
= APSInt::getMaxValue(BitWidth
, !SI
->isSigned());
2104 return replaceInstUsesWith(*SI
, ConstantInt::get(Ty
, Max
));
2108 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2110 if (IID
== Intrinsic::ssub_sat
&& match(Arg1
, m_Constant(C
)) &&
2111 C
->isNotMinSignedValue()) {
2112 Value
*NegVal
= ConstantExpr::getNeg(C
);
2113 return replaceInstUsesWith(
2114 *II
, Builder
.CreateBinaryIntrinsic(
2115 Intrinsic::sadd_sat
, Arg0
, NegVal
));
2118 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2119 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2120 // if Val and Val2 have the same sign
2121 if (auto *Other
= dyn_cast
<IntrinsicInst
>(Arg0
)) {
2123 const APInt
*Val
, *Val2
;
2126 IID
== Intrinsic::uadd_sat
|| IID
== Intrinsic::usub_sat
;
2127 if (Other
->getIntrinsicID() == IID
&&
2128 match(Arg1
, m_APInt(Val
)) &&
2129 match(Other
->getArgOperand(0), m_Value(X
)) &&
2130 match(Other
->getArgOperand(1), m_APInt(Val2
))) {
2132 NewVal
= Val
->uadd_sat(*Val2
);
2133 else if (Val
->isNonNegative() == Val2
->isNonNegative()) {
2135 NewVal
= Val
->sadd_ov(*Val2
, Overflow
);
2137 // Both adds together may add more than SignedMaxValue
2138 // without saturating the final result.
2142 // Cannot fold saturated addition with different signs.
2146 return replaceInstUsesWith(
2147 *II
, Builder
.CreateBinaryIntrinsic(
2148 IID
, X
, ConstantInt::get(II
->getType(), NewVal
)));
2154 case Intrinsic::minnum
:
2155 case Intrinsic::maxnum
:
2156 case Intrinsic::minimum
:
2157 case Intrinsic::maximum
: {
2158 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2160 Value
*Arg0
= II
->getArgOperand(0);
2161 Value
*Arg1
= II
->getArgOperand(1);
2163 if (match(Arg0
, m_FNeg(m_Value(X
))) && match(Arg1
, m_FNeg(m_Value(Y
))) &&
2164 (Arg0
->hasOneUse() || Arg1
->hasOneUse())) {
2165 // If both operands are negated, invert the call and negate the result:
2166 // min(-X, -Y) --> -(max(X, Y))
2167 // max(-X, -Y) --> -(min(X, Y))
2168 Intrinsic::ID NewIID
;
2170 case Intrinsic::maxnum
:
2171 NewIID
= Intrinsic::minnum
;
2173 case Intrinsic::minnum
:
2174 NewIID
= Intrinsic::maxnum
;
2176 case Intrinsic::maximum
:
2177 NewIID
= Intrinsic::minimum
;
2179 case Intrinsic::minimum
:
2180 NewIID
= Intrinsic::maximum
;
2183 llvm_unreachable("unexpected intrinsic ID");
2185 Value
*NewCall
= Builder
.CreateBinaryIntrinsic(NewIID
, X
, Y
, II
);
2186 Instruction
*FNeg
= BinaryOperator::CreateFNeg(NewCall
);
2187 FNeg
->copyIRFlags(II
);
2191 // m(m(X, C2), C1) -> m(X, C)
2192 const APFloat
*C1
, *C2
;
2193 if (auto *M
= dyn_cast
<IntrinsicInst
>(Arg0
)) {
2194 if (M
->getIntrinsicID() == IID
&& match(Arg1
, m_APFloat(C1
)) &&
2195 ((match(M
->getArgOperand(0), m_Value(X
)) &&
2196 match(M
->getArgOperand(1), m_APFloat(C2
))) ||
2197 (match(M
->getArgOperand(1), m_Value(X
)) &&
2198 match(M
->getArgOperand(0), m_APFloat(C2
))))) {
2201 case Intrinsic::maxnum
:
2202 Res
= maxnum(*C1
, *C2
);
2204 case Intrinsic::minnum
:
2205 Res
= minnum(*C1
, *C2
);
2207 case Intrinsic::maximum
:
2208 Res
= maximum(*C1
, *C2
);
2210 case Intrinsic::minimum
:
2211 Res
= minimum(*C1
, *C2
);
2214 llvm_unreachable("unexpected intrinsic ID");
2216 Instruction
*NewCall
= Builder
.CreateBinaryIntrinsic(
2217 IID
, X
, ConstantFP::get(Arg0
->getType(), Res
));
2218 NewCall
->copyIRFlags(II
);
2219 return replaceInstUsesWith(*II
, NewCall
);
2225 case Intrinsic::fmuladd
: {
2226 // Canonicalize fast fmuladd to the separate fmul + fadd.
2228 BuilderTy::FastMathFlagGuard
Guard(Builder
);
2229 Builder
.setFastMathFlags(II
->getFastMathFlags());
2230 Value
*Mul
= Builder
.CreateFMul(II
->getArgOperand(0),
2231 II
->getArgOperand(1));
2232 Value
*Add
= Builder
.CreateFAdd(Mul
, II
->getArgOperand(2));
2234 return replaceInstUsesWith(*II
, Add
);
2239 case Intrinsic::fma
: {
2240 if (Instruction
*I
= canonicalizeConstantArg0ToArg1(CI
))
2243 // fma fneg(x), fneg(y), z -> fma x, y, z
2244 Value
*Src0
= II
->getArgOperand(0);
2245 Value
*Src1
= II
->getArgOperand(1);
2247 if (match(Src0
, m_FNeg(m_Value(X
))) && match(Src1
, m_FNeg(m_Value(Y
)))) {
2248 II
->setArgOperand(0, X
);
2249 II
->setArgOperand(1, Y
);
2253 // fma fabs(x), fabs(x), z -> fma x, x, z
2254 if (match(Src0
, m_FAbs(m_Value(X
))) &&
2255 match(Src1
, m_FAbs(m_Specific(X
)))) {
2256 II
->setArgOperand(0, X
);
2257 II
->setArgOperand(1, X
);
2261 // fma x, 1, z -> fadd x, z
2262 if (match(Src1
, m_FPOne())) {
2263 auto *FAdd
= BinaryOperator::CreateFAdd(Src0
, II
->getArgOperand(2));
2264 FAdd
->copyFastMathFlags(II
);
2270 case Intrinsic::fabs
: {
2272 Constant
*LHS
, *RHS
;
2273 if (match(II
->getArgOperand(0),
2274 m_Select(m_Value(Cond
), m_Constant(LHS
), m_Constant(RHS
)))) {
2275 CallInst
*Call0
= Builder
.CreateCall(II
->getCalledFunction(), {LHS
});
2276 CallInst
*Call1
= Builder
.CreateCall(II
->getCalledFunction(), {RHS
});
2277 return SelectInst::Create(Cond
, Call0
, Call1
);
2282 case Intrinsic::ceil
:
2283 case Intrinsic::floor
:
2284 case Intrinsic::round
:
2285 case Intrinsic::nearbyint
:
2286 case Intrinsic::rint
:
2287 case Intrinsic::trunc
: {
2289 if (match(II
->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc
))))) {
2290 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2291 Value
*NarrowII
= Builder
.CreateUnaryIntrinsic(IID
, ExtSrc
, II
);
2292 return new FPExtInst(NarrowII
, II
->getType());
2296 case Intrinsic::cos
:
2297 case Intrinsic::amdgcn_cos
: {
2299 Value
*Src
= II
->getArgOperand(0);
2300 if (match(Src
, m_FNeg(m_Value(X
))) || match(Src
, m_FAbs(m_Value(X
)))) {
2301 // cos(-x) -> cos(x)
2302 // cos(fabs(x)) -> cos(x)
2303 II
->setArgOperand(0, X
);
2308 case Intrinsic::sin
: {
2310 if (match(II
->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X
))))) {
2311 // sin(-x) --> -sin(x)
2312 Value
*NewSin
= Builder
.CreateUnaryIntrinsic(Intrinsic::sin
, X
, II
);
2313 Instruction
*FNeg
= BinaryOperator::CreateFNeg(NewSin
);
2314 FNeg
->copyFastMathFlags(II
);
2319 case Intrinsic::ppc_altivec_lvx
:
2320 case Intrinsic::ppc_altivec_lvxl
:
2321 // Turn PPC lvx -> load if the pointer is known aligned.
2322 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 16, DL
, II
, &AC
,
2324 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2325 PointerType::getUnqual(II
->getType()));
2326 return new LoadInst(II
->getType(), Ptr
);
2329 case Intrinsic::ppc_vsx_lxvw4x
:
2330 case Intrinsic::ppc_vsx_lxvd2x
: {
2331 // Turn PPC VSX loads into normal loads.
2332 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2333 PointerType::getUnqual(II
->getType()));
2334 return new LoadInst(II
->getType(), Ptr
, Twine(""), false, 1);
2336 case Intrinsic::ppc_altivec_stvx
:
2337 case Intrinsic::ppc_altivec_stvxl
:
2338 // Turn stvx -> store if the pointer is known aligned.
2339 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 16, DL
, II
, &AC
,
2342 PointerType::getUnqual(II
->getArgOperand(0)->getType());
2343 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2344 return new StoreInst(II
->getArgOperand(0), Ptr
);
2347 case Intrinsic::ppc_vsx_stxvw4x
:
2348 case Intrinsic::ppc_vsx_stxvd2x
: {
2349 // Turn PPC VSX stores into normal stores.
2350 Type
*OpPtrTy
= PointerType::getUnqual(II
->getArgOperand(0)->getType());
2351 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2352 return new StoreInst(II
->getArgOperand(0), Ptr
, false, 1);
2354 case Intrinsic::ppc_qpx_qvlfs
:
2355 // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2356 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 16, DL
, II
, &AC
,
2358 Type
*VTy
= VectorType::get(Builder
.getFloatTy(),
2359 II
->getType()->getVectorNumElements());
2360 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2361 PointerType::getUnqual(VTy
));
2362 Value
*Load
= Builder
.CreateLoad(VTy
, Ptr
);
2363 return new FPExtInst(Load
, II
->getType());
2366 case Intrinsic::ppc_qpx_qvlfd
:
2367 // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2368 if (getOrEnforceKnownAlignment(II
->getArgOperand(0), 32, DL
, II
, &AC
,
2370 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(0),
2371 PointerType::getUnqual(II
->getType()));
2372 return new LoadInst(II
->getType(), Ptr
);
2375 case Intrinsic::ppc_qpx_qvstfs
:
2376 // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2377 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 16, DL
, II
, &AC
,
2379 Type
*VTy
= VectorType::get(Builder
.getFloatTy(),
2380 II
->getArgOperand(0)->getType()->getVectorNumElements());
2381 Value
*TOp
= Builder
.CreateFPTrunc(II
->getArgOperand(0), VTy
);
2382 Type
*OpPtrTy
= PointerType::getUnqual(VTy
);
2383 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2384 return new StoreInst(TOp
, Ptr
);
2387 case Intrinsic::ppc_qpx_qvstfd
:
2388 // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2389 if (getOrEnforceKnownAlignment(II
->getArgOperand(1), 32, DL
, II
, &AC
,
2392 PointerType::getUnqual(II
->getArgOperand(0)->getType());
2393 Value
*Ptr
= Builder
.CreateBitCast(II
->getArgOperand(1), OpPtrTy
);
2394 return new StoreInst(II
->getArgOperand(0), Ptr
);
2398 case Intrinsic::x86_bmi_bextr_32
:
2399 case Intrinsic::x86_bmi_bextr_64
:
2400 case Intrinsic::x86_tbm_bextri_u32
:
2401 case Intrinsic::x86_tbm_bextri_u64
:
2402 // If the RHS is a constant we can try some simplifications.
2403 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
2404 uint64_t Shift
= C
->getZExtValue();
2405 uint64_t Length
= (Shift
>> 8) & 0xff;
2407 unsigned BitWidth
= II
->getType()->getIntegerBitWidth();
2408 // If the length is 0 or the shift is out of range, replace with zero.
2409 if (Length
== 0 || Shift
>= BitWidth
)
2410 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), 0));
2411 // If the LHS is also a constant, we can completely constant fold this.
2412 if (auto *InC
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0))) {
2413 uint64_t Result
= InC
->getZExtValue() >> Shift
;
2414 if (Length
> BitWidth
)
2416 Result
&= maskTrailingOnes
<uint64_t>(Length
);
2417 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Result
));
2419 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2420 // are only masking bits that a shift already cleared?
2424 case Intrinsic::x86_bmi_bzhi_32
:
2425 case Intrinsic::x86_bmi_bzhi_64
:
2426 // If the RHS is a constant we can try some simplifications.
2427 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1))) {
2428 uint64_t Index
= C
->getZExtValue() & 0xff;
2429 unsigned BitWidth
= II
->getType()->getIntegerBitWidth();
2430 if (Index
>= BitWidth
)
2431 return replaceInstUsesWith(CI
, II
->getArgOperand(0));
2433 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), 0));
2434 // If the LHS is also a constant, we can completely constant fold this.
2435 if (auto *InC
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0))) {
2436 uint64_t Result
= InC
->getZExtValue();
2437 Result
&= maskTrailingOnes
<uint64_t>(Index
);
2438 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Result
));
2440 // TODO should we convert this to an AND if the RHS is constant?
2444 case Intrinsic::x86_vcvtph2ps_128
:
2445 case Intrinsic::x86_vcvtph2ps_256
: {
2446 auto Arg
= II
->getArgOperand(0);
2447 auto ArgType
= cast
<VectorType
>(Arg
->getType());
2448 auto RetType
= cast
<VectorType
>(II
->getType());
2449 unsigned ArgWidth
= ArgType
->getNumElements();
2450 unsigned RetWidth
= RetType
->getNumElements();
2451 assert(RetWidth
<= ArgWidth
&& "Unexpected input/return vector widths");
2452 assert(ArgType
->isIntOrIntVectorTy() &&
2453 ArgType
->getScalarSizeInBits() == 16 &&
2454 "CVTPH2PS input type should be 16-bit integer vector");
2455 assert(RetType
->getScalarType()->isFloatTy() &&
2456 "CVTPH2PS output type should be 32-bit float vector");
2458 // Constant folding: Convert to generic half to single conversion.
2459 if (isa
<ConstantAggregateZero
>(Arg
))
2460 return replaceInstUsesWith(*II
, ConstantAggregateZero::get(RetType
));
2462 if (isa
<ConstantDataVector
>(Arg
)) {
2463 auto VectorHalfAsShorts
= Arg
;
2464 if (RetWidth
< ArgWidth
) {
2465 SmallVector
<uint32_t, 8> SubVecMask
;
2466 for (unsigned i
= 0; i
!= RetWidth
; ++i
)
2467 SubVecMask
.push_back((int)i
);
2468 VectorHalfAsShorts
= Builder
.CreateShuffleVector(
2469 Arg
, UndefValue::get(ArgType
), SubVecMask
);
2472 auto VectorHalfType
=
2473 VectorType::get(Type::getHalfTy(II
->getContext()), RetWidth
);
2475 Builder
.CreateBitCast(VectorHalfAsShorts
, VectorHalfType
);
2476 auto VectorFloats
= Builder
.CreateFPExt(VectorHalfs
, RetType
);
2477 return replaceInstUsesWith(*II
, VectorFloats
);
2480 // We only use the lowest lanes of the argument.
2481 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg
, ArgWidth
, RetWidth
)) {
2482 II
->setArgOperand(0, V
);
2488 case Intrinsic::x86_sse_cvtss2si
:
2489 case Intrinsic::x86_sse_cvtss2si64
:
2490 case Intrinsic::x86_sse_cvttss2si
:
2491 case Intrinsic::x86_sse_cvttss2si64
:
2492 case Intrinsic::x86_sse2_cvtsd2si
:
2493 case Intrinsic::x86_sse2_cvtsd2si64
:
2494 case Intrinsic::x86_sse2_cvttsd2si
:
2495 case Intrinsic::x86_sse2_cvttsd2si64
:
2496 case Intrinsic::x86_avx512_vcvtss2si32
:
2497 case Intrinsic::x86_avx512_vcvtss2si64
:
2498 case Intrinsic::x86_avx512_vcvtss2usi32
:
2499 case Intrinsic::x86_avx512_vcvtss2usi64
:
2500 case Intrinsic::x86_avx512_vcvtsd2si32
:
2501 case Intrinsic::x86_avx512_vcvtsd2si64
:
2502 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2503 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2504 case Intrinsic::x86_avx512_cvttss2si
:
2505 case Intrinsic::x86_avx512_cvttss2si64
:
2506 case Intrinsic::x86_avx512_cvttss2usi
:
2507 case Intrinsic::x86_avx512_cvttss2usi64
:
2508 case Intrinsic::x86_avx512_cvttsd2si
:
2509 case Intrinsic::x86_avx512_cvttsd2si64
:
2510 case Intrinsic::x86_avx512_cvttsd2usi
:
2511 case Intrinsic::x86_avx512_cvttsd2usi64
: {
2512 // These intrinsics only demand the 0th element of their input vectors. If
2513 // we can simplify the input based on that, do so now.
2514 Value
*Arg
= II
->getArgOperand(0);
2515 unsigned VWidth
= Arg
->getType()->getVectorNumElements();
2516 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg
, VWidth
, 1)) {
2517 II
->setArgOperand(0, V
);
2523 case Intrinsic::x86_mmx_pmovmskb
:
2524 case Intrinsic::x86_sse_movmsk_ps
:
2525 case Intrinsic::x86_sse2_movmsk_pd
:
2526 case Intrinsic::x86_sse2_pmovmskb_128
:
2527 case Intrinsic::x86_avx_movmsk_pd_256
:
2528 case Intrinsic::x86_avx_movmsk_ps_256
:
2529 case Intrinsic::x86_avx2_pmovmskb
:
2530 if (Value
*V
= simplifyX86movmsk(*II
, Builder
))
2531 return replaceInstUsesWith(*II
, V
);
2534 case Intrinsic::x86_sse_comieq_ss
:
2535 case Intrinsic::x86_sse_comige_ss
:
2536 case Intrinsic::x86_sse_comigt_ss
:
2537 case Intrinsic::x86_sse_comile_ss
:
2538 case Intrinsic::x86_sse_comilt_ss
:
2539 case Intrinsic::x86_sse_comineq_ss
:
2540 case Intrinsic::x86_sse_ucomieq_ss
:
2541 case Intrinsic::x86_sse_ucomige_ss
:
2542 case Intrinsic::x86_sse_ucomigt_ss
:
2543 case Intrinsic::x86_sse_ucomile_ss
:
2544 case Intrinsic::x86_sse_ucomilt_ss
:
2545 case Intrinsic::x86_sse_ucomineq_ss
:
2546 case Intrinsic::x86_sse2_comieq_sd
:
2547 case Intrinsic::x86_sse2_comige_sd
:
2548 case Intrinsic::x86_sse2_comigt_sd
:
2549 case Intrinsic::x86_sse2_comile_sd
:
2550 case Intrinsic::x86_sse2_comilt_sd
:
2551 case Intrinsic::x86_sse2_comineq_sd
:
2552 case Intrinsic::x86_sse2_ucomieq_sd
:
2553 case Intrinsic::x86_sse2_ucomige_sd
:
2554 case Intrinsic::x86_sse2_ucomigt_sd
:
2555 case Intrinsic::x86_sse2_ucomile_sd
:
2556 case Intrinsic::x86_sse2_ucomilt_sd
:
2557 case Intrinsic::x86_sse2_ucomineq_sd
:
2558 case Intrinsic::x86_avx512_vcomi_ss
:
2559 case Intrinsic::x86_avx512_vcomi_sd
:
2560 case Intrinsic::x86_avx512_mask_cmp_ss
:
2561 case Intrinsic::x86_avx512_mask_cmp_sd
: {
2562 // These intrinsics only demand the 0th element of their input vectors. If
2563 // we can simplify the input based on that, do so now.
2564 bool MadeChange
= false;
2565 Value
*Arg0
= II
->getArgOperand(0);
2566 Value
*Arg1
= II
->getArgOperand(1);
2567 unsigned VWidth
= Arg0
->getType()->getVectorNumElements();
2568 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg0
, VWidth
, 1)) {
2569 II
->setArgOperand(0, V
);
2572 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg1
, VWidth
, 1)) {
2573 II
->setArgOperand(1, V
);
2580 case Intrinsic::x86_avx512_cmp_pd_128
:
2581 case Intrinsic::x86_avx512_cmp_pd_256
:
2582 case Intrinsic::x86_avx512_cmp_pd_512
:
2583 case Intrinsic::x86_avx512_cmp_ps_128
:
2584 case Intrinsic::x86_avx512_cmp_ps_256
:
2585 case Intrinsic::x86_avx512_cmp_ps_512
: {
2586 // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2587 Value
*Arg0
= II
->getArgOperand(0);
2588 Value
*Arg1
= II
->getArgOperand(1);
2589 bool Arg0IsZero
= match(Arg0
, m_PosZeroFP());
2591 std::swap(Arg0
, Arg1
);
2593 // This fold requires only the NINF(not +/- inf) since inf minus
2595 // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2596 // equal for both compares.
2597 // NNAN is not needed because nans compare the same for both compares.
2598 // The compare intrinsic uses the above assumptions and therefore
2599 // doesn't require additional flags.
2600 if ((match(Arg0
, m_OneUse(m_FSub(m_Value(A
), m_Value(B
)))) &&
2601 match(Arg1
, m_PosZeroFP()) && isa
<Instruction
>(Arg0
) &&
2602 cast
<Instruction
>(Arg0
)->getFastMathFlags().noInfs())) {
2605 II
->setArgOperand(0, A
);
2606 II
->setArgOperand(1, B
);
2612 case Intrinsic::x86_avx512_add_ps_512
:
2613 case Intrinsic::x86_avx512_div_ps_512
:
2614 case Intrinsic::x86_avx512_mul_ps_512
:
2615 case Intrinsic::x86_avx512_sub_ps_512
:
2616 case Intrinsic::x86_avx512_add_pd_512
:
2617 case Intrinsic::x86_avx512_div_pd_512
:
2618 case Intrinsic::x86_avx512_mul_pd_512
:
2619 case Intrinsic::x86_avx512_sub_pd_512
:
2620 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2622 if (auto *R
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2))) {
2623 if (R
->getValue() == 4) {
2624 Value
*Arg0
= II
->getArgOperand(0);
2625 Value
*Arg1
= II
->getArgOperand(1);
2629 default: llvm_unreachable("Case stmts out of sync!");
2630 case Intrinsic::x86_avx512_add_ps_512
:
2631 case Intrinsic::x86_avx512_add_pd_512
:
2632 V
= Builder
.CreateFAdd(Arg0
, Arg1
);
2634 case Intrinsic::x86_avx512_sub_ps_512
:
2635 case Intrinsic::x86_avx512_sub_pd_512
:
2636 V
= Builder
.CreateFSub(Arg0
, Arg1
);
2638 case Intrinsic::x86_avx512_mul_ps_512
:
2639 case Intrinsic::x86_avx512_mul_pd_512
:
2640 V
= Builder
.CreateFMul(Arg0
, Arg1
);
2642 case Intrinsic::x86_avx512_div_ps_512
:
2643 case Intrinsic::x86_avx512_div_pd_512
:
2644 V
= Builder
.CreateFDiv(Arg0
, Arg1
);
2648 return replaceInstUsesWith(*II
, V
);
2653 case Intrinsic::x86_avx512_mask_add_ss_round
:
2654 case Intrinsic::x86_avx512_mask_div_ss_round
:
2655 case Intrinsic::x86_avx512_mask_mul_ss_round
:
2656 case Intrinsic::x86_avx512_mask_sub_ss_round
:
2657 case Intrinsic::x86_avx512_mask_add_sd_round
:
2658 case Intrinsic::x86_avx512_mask_div_sd_round
:
2659 case Intrinsic::x86_avx512_mask_mul_sd_round
:
2660 case Intrinsic::x86_avx512_mask_sub_sd_round
:
2661 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2663 if (auto *R
= dyn_cast
<ConstantInt
>(II
->getArgOperand(4))) {
2664 if (R
->getValue() == 4) {
2665 // Extract the element as scalars.
2666 Value
*Arg0
= II
->getArgOperand(0);
2667 Value
*Arg1
= II
->getArgOperand(1);
2668 Value
*LHS
= Builder
.CreateExtractElement(Arg0
, (uint64_t)0);
2669 Value
*RHS
= Builder
.CreateExtractElement(Arg1
, (uint64_t)0);
2673 default: llvm_unreachable("Case stmts out of sync!");
2674 case Intrinsic::x86_avx512_mask_add_ss_round
:
2675 case Intrinsic::x86_avx512_mask_add_sd_round
:
2676 V
= Builder
.CreateFAdd(LHS
, RHS
);
2678 case Intrinsic::x86_avx512_mask_sub_ss_round
:
2679 case Intrinsic::x86_avx512_mask_sub_sd_round
:
2680 V
= Builder
.CreateFSub(LHS
, RHS
);
2682 case Intrinsic::x86_avx512_mask_mul_ss_round
:
2683 case Intrinsic::x86_avx512_mask_mul_sd_round
:
2684 V
= Builder
.CreateFMul(LHS
, RHS
);
2686 case Intrinsic::x86_avx512_mask_div_ss_round
:
2687 case Intrinsic::x86_avx512_mask_div_sd_round
:
2688 V
= Builder
.CreateFDiv(LHS
, RHS
);
2692 // Handle the masking aspect of the intrinsic.
2693 Value
*Mask
= II
->getArgOperand(3);
2694 auto *C
= dyn_cast
<ConstantInt
>(Mask
);
2695 // We don't need a select if we know the mask bit is a 1.
2696 if (!C
|| !C
->getValue()[0]) {
2697 // Cast the mask to an i1 vector and then extract the lowest element.
2698 auto *MaskTy
= VectorType::get(Builder
.getInt1Ty(),
2699 cast
<IntegerType
>(Mask
->getType())->getBitWidth());
2700 Mask
= Builder
.CreateBitCast(Mask
, MaskTy
);
2701 Mask
= Builder
.CreateExtractElement(Mask
, (uint64_t)0);
2702 // Extract the lowest element from the passthru operand.
2703 Value
*Passthru
= Builder
.CreateExtractElement(II
->getArgOperand(2),
2705 V
= Builder
.CreateSelect(Mask
, V
, Passthru
);
2708 // Insert the result back into the original argument 0.
2709 V
= Builder
.CreateInsertElement(Arg0
, V
, (uint64_t)0);
2711 return replaceInstUsesWith(*II
, V
);
2716 // Constant fold ashr( <A x Bi>, Ci ).
2717 // Constant fold lshr( <A x Bi>, Ci ).
2718 // Constant fold shl( <A x Bi>, Ci ).
2719 case Intrinsic::x86_sse2_psrai_d
:
2720 case Intrinsic::x86_sse2_psrai_w
:
2721 case Intrinsic::x86_avx2_psrai_d
:
2722 case Intrinsic::x86_avx2_psrai_w
:
2723 case Intrinsic::x86_avx512_psrai_q_128
:
2724 case Intrinsic::x86_avx512_psrai_q_256
:
2725 case Intrinsic::x86_avx512_psrai_d_512
:
2726 case Intrinsic::x86_avx512_psrai_q_512
:
2727 case Intrinsic::x86_avx512_psrai_w_512
:
2728 case Intrinsic::x86_sse2_psrli_d
:
2729 case Intrinsic::x86_sse2_psrli_q
:
2730 case Intrinsic::x86_sse2_psrli_w
:
2731 case Intrinsic::x86_avx2_psrli_d
:
2732 case Intrinsic::x86_avx2_psrli_q
:
2733 case Intrinsic::x86_avx2_psrli_w
:
2734 case Intrinsic::x86_avx512_psrli_d_512
:
2735 case Intrinsic::x86_avx512_psrli_q_512
:
2736 case Intrinsic::x86_avx512_psrli_w_512
:
2737 case Intrinsic::x86_sse2_pslli_d
:
2738 case Intrinsic::x86_sse2_pslli_q
:
2739 case Intrinsic::x86_sse2_pslli_w
:
2740 case Intrinsic::x86_avx2_pslli_d
:
2741 case Intrinsic::x86_avx2_pslli_q
:
2742 case Intrinsic::x86_avx2_pslli_w
:
2743 case Intrinsic::x86_avx512_pslli_d_512
:
2744 case Intrinsic::x86_avx512_pslli_q_512
:
2745 case Intrinsic::x86_avx512_pslli_w_512
:
2746 if (Value
*V
= simplifyX86immShift(*II
, Builder
))
2747 return replaceInstUsesWith(*II
, V
);
2750 case Intrinsic::x86_sse2_psra_d
:
2751 case Intrinsic::x86_sse2_psra_w
:
2752 case Intrinsic::x86_avx2_psra_d
:
2753 case Intrinsic::x86_avx2_psra_w
:
2754 case Intrinsic::x86_avx512_psra_q_128
:
2755 case Intrinsic::x86_avx512_psra_q_256
:
2756 case Intrinsic::x86_avx512_psra_d_512
:
2757 case Intrinsic::x86_avx512_psra_q_512
:
2758 case Intrinsic::x86_avx512_psra_w_512
:
2759 case Intrinsic::x86_sse2_psrl_d
:
2760 case Intrinsic::x86_sse2_psrl_q
:
2761 case Intrinsic::x86_sse2_psrl_w
:
2762 case Intrinsic::x86_avx2_psrl_d
:
2763 case Intrinsic::x86_avx2_psrl_q
:
2764 case Intrinsic::x86_avx2_psrl_w
:
2765 case Intrinsic::x86_avx512_psrl_d_512
:
2766 case Intrinsic::x86_avx512_psrl_q_512
:
2767 case Intrinsic::x86_avx512_psrl_w_512
:
2768 case Intrinsic::x86_sse2_psll_d
:
2769 case Intrinsic::x86_sse2_psll_q
:
2770 case Intrinsic::x86_sse2_psll_w
:
2771 case Intrinsic::x86_avx2_psll_d
:
2772 case Intrinsic::x86_avx2_psll_q
:
2773 case Intrinsic::x86_avx2_psll_w
:
2774 case Intrinsic::x86_avx512_psll_d_512
:
2775 case Intrinsic::x86_avx512_psll_q_512
:
2776 case Intrinsic::x86_avx512_psll_w_512
: {
2777 if (Value
*V
= simplifyX86immShift(*II
, Builder
))
2778 return replaceInstUsesWith(*II
, V
);
2780 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2781 // operand to compute the shift amount.
2782 Value
*Arg1
= II
->getArgOperand(1);
2783 assert(Arg1
->getType()->getPrimitiveSizeInBits() == 128 &&
2784 "Unexpected packed shift size");
2785 unsigned VWidth
= Arg1
->getType()->getVectorNumElements();
2787 if (Value
*V
= SimplifyDemandedVectorEltsLow(Arg1
, VWidth
, VWidth
/ 2)) {
2788 II
->setArgOperand(1, V
);
2794 case Intrinsic::x86_avx2_psllv_d
:
2795 case Intrinsic::x86_avx2_psllv_d_256
:
2796 case Intrinsic::x86_avx2_psllv_q
:
2797 case Intrinsic::x86_avx2_psllv_q_256
:
2798 case Intrinsic::x86_avx512_psllv_d_512
:
2799 case Intrinsic::x86_avx512_psllv_q_512
:
2800 case Intrinsic::x86_avx512_psllv_w_128
:
2801 case Intrinsic::x86_avx512_psllv_w_256
:
2802 case Intrinsic::x86_avx512_psllv_w_512
:
2803 case Intrinsic::x86_avx2_psrav_d
:
2804 case Intrinsic::x86_avx2_psrav_d_256
:
2805 case Intrinsic::x86_avx512_psrav_q_128
:
2806 case Intrinsic::x86_avx512_psrav_q_256
:
2807 case Intrinsic::x86_avx512_psrav_d_512
:
2808 case Intrinsic::x86_avx512_psrav_q_512
:
2809 case Intrinsic::x86_avx512_psrav_w_128
:
2810 case Intrinsic::x86_avx512_psrav_w_256
:
2811 case Intrinsic::x86_avx512_psrav_w_512
:
2812 case Intrinsic::x86_avx2_psrlv_d
:
2813 case Intrinsic::x86_avx2_psrlv_d_256
:
2814 case Intrinsic::x86_avx2_psrlv_q
:
2815 case Intrinsic::x86_avx2_psrlv_q_256
:
2816 case Intrinsic::x86_avx512_psrlv_d_512
:
2817 case Intrinsic::x86_avx512_psrlv_q_512
:
2818 case Intrinsic::x86_avx512_psrlv_w_128
:
2819 case Intrinsic::x86_avx512_psrlv_w_256
:
2820 case Intrinsic::x86_avx512_psrlv_w_512
:
2821 if (Value
*V
= simplifyX86varShift(*II
, Builder
))
2822 return replaceInstUsesWith(*II
, V
);
2825 case Intrinsic::x86_sse2_packssdw_128
:
2826 case Intrinsic::x86_sse2_packsswb_128
:
2827 case Intrinsic::x86_avx2_packssdw
:
2828 case Intrinsic::x86_avx2_packsswb
:
2829 case Intrinsic::x86_avx512_packssdw_512
:
2830 case Intrinsic::x86_avx512_packsswb_512
:
2831 if (Value
*V
= simplifyX86pack(*II
, Builder
, true))
2832 return replaceInstUsesWith(*II
, V
);
2835 case Intrinsic::x86_sse2_packuswb_128
:
2836 case Intrinsic::x86_sse41_packusdw
:
2837 case Intrinsic::x86_avx2_packusdw
:
2838 case Intrinsic::x86_avx2_packuswb
:
2839 case Intrinsic::x86_avx512_packusdw_512
:
2840 case Intrinsic::x86_avx512_packuswb_512
:
2841 if (Value
*V
= simplifyX86pack(*II
, Builder
, false))
2842 return replaceInstUsesWith(*II
, V
);
2845 case Intrinsic::x86_pclmulqdq
:
2846 case Intrinsic::x86_pclmulqdq_256
:
2847 case Intrinsic::x86_pclmulqdq_512
: {
2848 if (auto *C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2))) {
2849 unsigned Imm
= C
->getZExtValue();
2851 bool MadeChange
= false;
2852 Value
*Arg0
= II
->getArgOperand(0);
2853 Value
*Arg1
= II
->getArgOperand(1);
2854 unsigned VWidth
= Arg0
->getType()->getVectorNumElements();
2856 APInt
UndefElts1(VWidth
, 0);
2857 APInt DemandedElts1
= APInt::getSplat(VWidth
,
2858 APInt(2, (Imm
& 0x01) ? 2 : 1));
2859 if (Value
*V
= SimplifyDemandedVectorElts(Arg0
, DemandedElts1
,
2861 II
->setArgOperand(0, V
);
2865 APInt
UndefElts2(VWidth
, 0);
2866 APInt DemandedElts2
= APInt::getSplat(VWidth
,
2867 APInt(2, (Imm
& 0x10) ? 2 : 1));
2868 if (Value
*V
= SimplifyDemandedVectorElts(Arg1
, DemandedElts2
,
2870 II
->setArgOperand(1, V
);
2874 // If either input elements are undef, the result is zero.
2875 if (DemandedElts1
.isSubsetOf(UndefElts1
) ||
2876 DemandedElts2
.isSubsetOf(UndefElts2
))
2877 return replaceInstUsesWith(*II
,
2878 ConstantAggregateZero::get(II
->getType()));
2886 case Intrinsic::x86_sse41_insertps
:
2887 if (Value
*V
= simplifyX86insertps(*II
, Builder
))
2888 return replaceInstUsesWith(*II
, V
);
2891 case Intrinsic::x86_sse4a_extrq
: {
2892 Value
*Op0
= II
->getArgOperand(0);
2893 Value
*Op1
= II
->getArgOperand(1);
2894 unsigned VWidth0
= Op0
->getType()->getVectorNumElements();
2895 unsigned VWidth1
= Op1
->getType()->getVectorNumElements();
2896 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
2897 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth0
== 2 &&
2898 VWidth1
== 16 && "Unexpected operand sizes");
2900 // See if we're dealing with constant values.
2901 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
2902 ConstantInt
*CILength
=
2903 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)0))
2905 ConstantInt
*CIIndex
=
2906 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)1))
2909 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2910 if (Value
*V
= simplifyX86extrq(*II
, Op0
, CILength
, CIIndex
, Builder
))
2911 return replaceInstUsesWith(*II
, V
);
2913 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2914 // operands and the lowest 16-bits of the second.
2915 bool MadeChange
= false;
2916 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth0
, 1)) {
2917 II
->setArgOperand(0, V
);
2920 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op1
, VWidth1
, 2)) {
2921 II
->setArgOperand(1, V
);
2929 case Intrinsic::x86_sse4a_extrqi
: {
2930 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2931 // bits of the lower 64-bits. The upper 64-bits are undefined.
2932 Value
*Op0
= II
->getArgOperand(0);
2933 unsigned VWidth
= Op0
->getType()->getVectorNumElements();
2934 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 && VWidth
== 2 &&
2935 "Unexpected operand size");
2937 // See if we're dealing with constant values.
2938 ConstantInt
*CILength
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1));
2939 ConstantInt
*CIIndex
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
2941 // Attempt to simplify to a constant or shuffle vector.
2942 if (Value
*V
= simplifyX86extrq(*II
, Op0
, CILength
, CIIndex
, Builder
))
2943 return replaceInstUsesWith(*II
, V
);
2945 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2947 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth
, 1)) {
2948 II
->setArgOperand(0, V
);
2954 case Intrinsic::x86_sse4a_insertq
: {
2955 Value
*Op0
= II
->getArgOperand(0);
2956 Value
*Op1
= II
->getArgOperand(1);
2957 unsigned VWidth
= Op0
->getType()->getVectorNumElements();
2958 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
2959 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth
== 2 &&
2960 Op1
->getType()->getVectorNumElements() == 2 &&
2961 "Unexpected operand size");
2963 // See if we're dealing with constant values.
2964 Constant
*C1
= dyn_cast
<Constant
>(Op1
);
2966 C1
? dyn_cast_or_null
<ConstantInt
>(C1
->getAggregateElement((unsigned)1))
2969 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2971 const APInt
&V11
= CI11
->getValue();
2972 APInt Len
= V11
.zextOrTrunc(6);
2973 APInt Idx
= V11
.lshr(8).zextOrTrunc(6);
2974 if (Value
*V
= simplifyX86insertq(*II
, Op0
, Op1
, Len
, Idx
, Builder
))
2975 return replaceInstUsesWith(*II
, V
);
2978 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2980 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth
, 1)) {
2981 II
->setArgOperand(0, V
);
2987 case Intrinsic::x86_sse4a_insertqi
: {
2988 // INSERTQI: Extract lowest Length bits from lower half of second source and
2989 // insert over first source starting at Index bit. The upper 64-bits are
2991 Value
*Op0
= II
->getArgOperand(0);
2992 Value
*Op1
= II
->getArgOperand(1);
2993 unsigned VWidth0
= Op0
->getType()->getVectorNumElements();
2994 unsigned VWidth1
= Op1
->getType()->getVectorNumElements();
2995 assert(Op0
->getType()->getPrimitiveSizeInBits() == 128 &&
2996 Op1
->getType()->getPrimitiveSizeInBits() == 128 && VWidth0
== 2 &&
2997 VWidth1
== 2 && "Unexpected operand sizes");
2999 // See if we're dealing with constant values.
3000 ConstantInt
*CILength
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
3001 ConstantInt
*CIIndex
= dyn_cast
<ConstantInt
>(II
->getArgOperand(3));
3003 // Attempt to simplify to a constant or shuffle vector.
3004 if (CILength
&& CIIndex
) {
3005 APInt Len
= CILength
->getValue().zextOrTrunc(6);
3006 APInt Idx
= CIIndex
->getValue().zextOrTrunc(6);
3007 if (Value
*V
= simplifyX86insertq(*II
, Op0
, Op1
, Len
, Idx
, Builder
))
3008 return replaceInstUsesWith(*II
, V
);
3011 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3013 bool MadeChange
= false;
3014 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op0
, VWidth0
, 1)) {
3015 II
->setArgOperand(0, V
);
3018 if (Value
*V
= SimplifyDemandedVectorEltsLow(Op1
, VWidth1
, 1)) {
3019 II
->setArgOperand(1, V
);
3027 case Intrinsic::x86_sse41_pblendvb
:
3028 case Intrinsic::x86_sse41_blendvps
:
3029 case Intrinsic::x86_sse41_blendvpd
:
3030 case Intrinsic::x86_avx_blendv_ps_256
:
3031 case Intrinsic::x86_avx_blendv_pd_256
:
3032 case Intrinsic::x86_avx2_pblendvb
: {
3033 // fold (blend A, A, Mask) -> A
3034 Value
*Op0
= II
->getArgOperand(0);
3035 Value
*Op1
= II
->getArgOperand(1);
3036 Value
*Mask
= II
->getArgOperand(2);
3038 return replaceInstUsesWith(CI
, Op0
);
3040 // Zero Mask - select 1st argument.
3041 if (isa
<ConstantAggregateZero
>(Mask
))
3042 return replaceInstUsesWith(CI
, Op0
);
3044 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3045 if (auto *ConstantMask
= dyn_cast
<ConstantDataVector
>(Mask
)) {
3046 Constant
*NewSelector
= getNegativeIsTrueBoolVec(ConstantMask
);
3047 return SelectInst::Create(NewSelector
, Op1
, Op0
, "blendv");
3050 // Convert to a vector select if we can bypass casts and find a boolean
3051 // vector condition value.
3053 Mask
= peekThroughBitcast(Mask
);
3054 if (match(Mask
, m_SExt(m_Value(BoolVec
))) &&
3055 BoolVec
->getType()->isVectorTy() &&
3056 BoolVec
->getType()->getScalarSizeInBits() == 1) {
3057 assert(Mask
->getType()->getPrimitiveSizeInBits() ==
3058 II
->getType()->getPrimitiveSizeInBits() &&
3059 "Not expecting mask and operands with different sizes");
3061 unsigned NumMaskElts
= Mask
->getType()->getVectorNumElements();
3062 unsigned NumOperandElts
= II
->getType()->getVectorNumElements();
3063 if (NumMaskElts
== NumOperandElts
)
3064 return SelectInst::Create(BoolVec
, Op1
, Op0
);
3066 // If the mask has less elements than the operands, each mask bit maps to
3067 // multiple elements of the operands. Bitcast back and forth.
3068 if (NumMaskElts
< NumOperandElts
) {
3069 Value
*CastOp0
= Builder
.CreateBitCast(Op0
, Mask
->getType());
3070 Value
*CastOp1
= Builder
.CreateBitCast(Op1
, Mask
->getType());
3071 Value
*Sel
= Builder
.CreateSelect(BoolVec
, CastOp1
, CastOp0
);
3072 return new BitCastInst(Sel
, II
->getType());
3079 case Intrinsic::x86_ssse3_pshuf_b_128
:
3080 case Intrinsic::x86_avx2_pshuf_b
:
3081 case Intrinsic::x86_avx512_pshuf_b_512
:
3082 if (Value
*V
= simplifyX86pshufb(*II
, Builder
))
3083 return replaceInstUsesWith(*II
, V
);
3086 case Intrinsic::x86_avx_vpermilvar_ps
:
3087 case Intrinsic::x86_avx_vpermilvar_ps_256
:
3088 case Intrinsic::x86_avx512_vpermilvar_ps_512
:
3089 case Intrinsic::x86_avx_vpermilvar_pd
:
3090 case Intrinsic::x86_avx_vpermilvar_pd_256
:
3091 case Intrinsic::x86_avx512_vpermilvar_pd_512
:
3092 if (Value
*V
= simplifyX86vpermilvar(*II
, Builder
))
3093 return replaceInstUsesWith(*II
, V
);
3096 case Intrinsic::x86_avx2_permd
:
3097 case Intrinsic::x86_avx2_permps
:
3098 case Intrinsic::x86_avx512_permvar_df_256
:
3099 case Intrinsic::x86_avx512_permvar_df_512
:
3100 case Intrinsic::x86_avx512_permvar_di_256
:
3101 case Intrinsic::x86_avx512_permvar_di_512
:
3102 case Intrinsic::x86_avx512_permvar_hi_128
:
3103 case Intrinsic::x86_avx512_permvar_hi_256
:
3104 case Intrinsic::x86_avx512_permvar_hi_512
:
3105 case Intrinsic::x86_avx512_permvar_qi_128
:
3106 case Intrinsic::x86_avx512_permvar_qi_256
:
3107 case Intrinsic::x86_avx512_permvar_qi_512
:
3108 case Intrinsic::x86_avx512_permvar_sf_512
:
3109 case Intrinsic::x86_avx512_permvar_si_512
:
3110 if (Value
*V
= simplifyX86vpermv(*II
, Builder
))
3111 return replaceInstUsesWith(*II
, V
);
3114 case Intrinsic::x86_avx_maskload_ps
:
3115 case Intrinsic::x86_avx_maskload_pd
:
3116 case Intrinsic::x86_avx_maskload_ps_256
:
3117 case Intrinsic::x86_avx_maskload_pd_256
:
3118 case Intrinsic::x86_avx2_maskload_d
:
3119 case Intrinsic::x86_avx2_maskload_q
:
3120 case Intrinsic::x86_avx2_maskload_d_256
:
3121 case Intrinsic::x86_avx2_maskload_q_256
:
3122 if (Instruction
*I
= simplifyX86MaskedLoad(*II
, *this))
3126 case Intrinsic::x86_sse2_maskmov_dqu
:
3127 case Intrinsic::x86_avx_maskstore_ps
:
3128 case Intrinsic::x86_avx_maskstore_pd
:
3129 case Intrinsic::x86_avx_maskstore_ps_256
:
3130 case Intrinsic::x86_avx_maskstore_pd_256
:
3131 case Intrinsic::x86_avx2_maskstore_d
:
3132 case Intrinsic::x86_avx2_maskstore_q
:
3133 case Intrinsic::x86_avx2_maskstore_d_256
:
3134 case Intrinsic::x86_avx2_maskstore_q_256
:
3135 if (simplifyX86MaskedStore(*II
, *this))
3139 case Intrinsic::x86_addcarry_32
:
3140 case Intrinsic::x86_addcarry_64
:
3141 if (Value
*V
= simplifyX86addcarry(*II
, Builder
))
3142 return replaceInstUsesWith(*II
, V
);
3145 case Intrinsic::ppc_altivec_vperm
:
3146 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3147 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3148 // a vectorshuffle for little endian, we must undo the transformation
3149 // performed on vec_perm in altivec.h. That is, we must complement
3150 // the permutation mask with respect to 31 and reverse the order of
3152 if (Constant
*Mask
= dyn_cast
<Constant
>(II
->getArgOperand(2))) {
3153 assert(Mask
->getType()->getVectorNumElements() == 16 &&
3154 "Bad type for intrinsic!");
3156 // Check that all of the elements are integer constants or undefs.
3157 bool AllEltsOk
= true;
3158 for (unsigned i
= 0; i
!= 16; ++i
) {
3159 Constant
*Elt
= Mask
->getAggregateElement(i
);
3160 if (!Elt
|| !(isa
<ConstantInt
>(Elt
) || isa
<UndefValue
>(Elt
))) {
3167 // Cast the input vectors to byte vectors.
3168 Value
*Op0
= Builder
.CreateBitCast(II
->getArgOperand(0),
3170 Value
*Op1
= Builder
.CreateBitCast(II
->getArgOperand(1),
3172 Value
*Result
= UndefValue::get(Op0
->getType());
3174 // Only extract each element once.
3175 Value
*ExtractedElts
[32];
3176 memset(ExtractedElts
, 0, sizeof(ExtractedElts
));
3178 for (unsigned i
= 0; i
!= 16; ++i
) {
3179 if (isa
<UndefValue
>(Mask
->getAggregateElement(i
)))
3182 cast
<ConstantInt
>(Mask
->getAggregateElement(i
))->getZExtValue();
3183 Idx
&= 31; // Match the hardware behavior.
3184 if (DL
.isLittleEndian())
3187 if (!ExtractedElts
[Idx
]) {
3188 Value
*Op0ToUse
= (DL
.isLittleEndian()) ? Op1
: Op0
;
3189 Value
*Op1ToUse
= (DL
.isLittleEndian()) ? Op0
: Op1
;
3190 ExtractedElts
[Idx
] =
3191 Builder
.CreateExtractElement(Idx
< 16 ? Op0ToUse
: Op1ToUse
,
3192 Builder
.getInt32(Idx
&15));
3195 // Insert this value into the result vector.
3196 Result
= Builder
.CreateInsertElement(Result
, ExtractedElts
[Idx
],
3197 Builder
.getInt32(i
));
3199 return CastInst::Create(Instruction::BitCast
, Result
, CI
.getType());
3204 case Intrinsic::arm_neon_vld1
: {
3205 unsigned MemAlign
= getKnownAlignment(II
->getArgOperand(0),
3207 if (Value
*V
= simplifyNeonVld1(*II
, MemAlign
, Builder
))
3208 return replaceInstUsesWith(*II
, V
);
3212 case Intrinsic::arm_neon_vld2
:
3213 case Intrinsic::arm_neon_vld3
:
3214 case Intrinsic::arm_neon_vld4
:
3215 case Intrinsic::arm_neon_vld2lane
:
3216 case Intrinsic::arm_neon_vld3lane
:
3217 case Intrinsic::arm_neon_vld4lane
:
3218 case Intrinsic::arm_neon_vst1
:
3219 case Intrinsic::arm_neon_vst2
:
3220 case Intrinsic::arm_neon_vst3
:
3221 case Intrinsic::arm_neon_vst4
:
3222 case Intrinsic::arm_neon_vst2lane
:
3223 case Intrinsic::arm_neon_vst3lane
:
3224 case Intrinsic::arm_neon_vst4lane
: {
3226 getKnownAlignment(II
->getArgOperand(0), DL
, II
, &AC
, &DT
);
3227 unsigned AlignArg
= II
->getNumArgOperands() - 1;
3228 ConstantInt
*IntrAlign
= dyn_cast
<ConstantInt
>(II
->getArgOperand(AlignArg
));
3229 if (IntrAlign
&& IntrAlign
->getZExtValue() < MemAlign
) {
3230 II
->setArgOperand(AlignArg
,
3231 ConstantInt::get(Type::getInt32Ty(II
->getContext()),
3238 case Intrinsic::arm_neon_vtbl1
:
3239 case Intrinsic::aarch64_neon_tbl1
:
3240 if (Value
*V
= simplifyNeonTbl1(*II
, Builder
))
3241 return replaceInstUsesWith(*II
, V
);
3244 case Intrinsic::arm_neon_vmulls
:
3245 case Intrinsic::arm_neon_vmullu
:
3246 case Intrinsic::aarch64_neon_smull
:
3247 case Intrinsic::aarch64_neon_umull
: {
3248 Value
*Arg0
= II
->getArgOperand(0);
3249 Value
*Arg1
= II
->getArgOperand(1);
3251 // Handle mul by zero first:
3252 if (isa
<ConstantAggregateZero
>(Arg0
) || isa
<ConstantAggregateZero
>(Arg1
)) {
3253 return replaceInstUsesWith(CI
, ConstantAggregateZero::get(II
->getType()));
3256 // Check for constant LHS & RHS - in this case we just simplify.
3257 bool Zext
= (IID
== Intrinsic::arm_neon_vmullu
||
3258 IID
== Intrinsic::aarch64_neon_umull
);
3259 VectorType
*NewVT
= cast
<VectorType
>(II
->getType());
3260 if (Constant
*CV0
= dyn_cast
<Constant
>(Arg0
)) {
3261 if (Constant
*CV1
= dyn_cast
<Constant
>(Arg1
)) {
3262 CV0
= ConstantExpr::getIntegerCast(CV0
, NewVT
, /*isSigned=*/!Zext
);
3263 CV1
= ConstantExpr::getIntegerCast(CV1
, NewVT
, /*isSigned=*/!Zext
);
3265 return replaceInstUsesWith(CI
, ConstantExpr::getMul(CV0
, CV1
));
3268 // Couldn't simplify - canonicalize constant to the RHS.
3269 std::swap(Arg0
, Arg1
);
3272 // Handle mul by one:
3273 if (Constant
*CV1
= dyn_cast
<Constant
>(Arg1
))
3274 if (ConstantInt
*Splat
=
3275 dyn_cast_or_null
<ConstantInt
>(CV1
->getSplatValue()))
3277 return CastInst::CreateIntegerCast(Arg0
, II
->getType(),
3278 /*isSigned=*/!Zext
);
3282 case Intrinsic::arm_neon_aesd
:
3283 case Intrinsic::arm_neon_aese
:
3284 case Intrinsic::aarch64_crypto_aesd
:
3285 case Intrinsic::aarch64_crypto_aese
: {
3286 Value
*DataArg
= II
->getArgOperand(0);
3287 Value
*KeyArg
= II
->getArgOperand(1);
3289 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3291 if (match(KeyArg
, m_ZeroInt()) &&
3292 match(DataArg
, m_Xor(m_Value(Data
), m_Value(Key
)))) {
3293 II
->setArgOperand(0, Data
);
3294 II
->setArgOperand(1, Key
);
3299 case Intrinsic::amdgcn_rcp
: {
3300 Value
*Src
= II
->getArgOperand(0);
3302 // TODO: Move to ConstantFolding/InstSimplify?
3303 if (isa
<UndefValue
>(Src
))
3304 return replaceInstUsesWith(CI
, Src
);
3306 if (const ConstantFP
*C
= dyn_cast
<ConstantFP
>(Src
)) {
3307 const APFloat
&ArgVal
= C
->getValueAPF();
3308 APFloat
Val(ArgVal
.getSemantics(), 1.0);
3309 APFloat::opStatus Status
= Val
.divide(ArgVal
,
3310 APFloat::rmNearestTiesToEven
);
3311 // Only do this if it was exact and therefore not dependent on the
3313 if (Status
== APFloat::opOK
)
3314 return replaceInstUsesWith(CI
, ConstantFP::get(II
->getContext(), Val
));
3319 case Intrinsic::amdgcn_rsq
: {
3320 Value
*Src
= II
->getArgOperand(0);
3322 // TODO: Move to ConstantFolding/InstSimplify?
3323 if (isa
<UndefValue
>(Src
))
3324 return replaceInstUsesWith(CI
, Src
);
3327 case Intrinsic::amdgcn_frexp_mant
:
3328 case Intrinsic::amdgcn_frexp_exp
: {
3329 Value
*Src
= II
->getArgOperand(0);
3330 if (const ConstantFP
*C
= dyn_cast
<ConstantFP
>(Src
)) {
3332 APFloat Significand
= frexp(C
->getValueAPF(), Exp
,
3333 APFloat::rmNearestTiesToEven
);
3335 if (IID
== Intrinsic::amdgcn_frexp_mant
) {
3336 return replaceInstUsesWith(CI
, ConstantFP::get(II
->getContext(),
3340 // Match instruction special case behavior.
3341 if (Exp
== APFloat::IEK_NaN
|| Exp
== APFloat::IEK_Inf
)
3344 return replaceInstUsesWith(CI
, ConstantInt::get(II
->getType(), Exp
));
3347 if (isa
<UndefValue
>(Src
))
3348 return replaceInstUsesWith(CI
, UndefValue::get(II
->getType()));
3352 case Intrinsic::amdgcn_class
: {
3354 S_NAN
= 1 << 0, // Signaling NaN
3355 Q_NAN
= 1 << 1, // Quiet NaN
3356 N_INFINITY
= 1 << 2, // Negative infinity
3357 N_NORMAL
= 1 << 3, // Negative normal
3358 N_SUBNORMAL
= 1 << 4, // Negative subnormal
3359 N_ZERO
= 1 << 5, // Negative zero
3360 P_ZERO
= 1 << 6, // Positive zero
3361 P_SUBNORMAL
= 1 << 7, // Positive subnormal
3362 P_NORMAL
= 1 << 8, // Positive normal
3363 P_INFINITY
= 1 << 9 // Positive infinity
3366 const uint32_t FullMask
= S_NAN
| Q_NAN
| N_INFINITY
| N_NORMAL
|
3367 N_SUBNORMAL
| N_ZERO
| P_ZERO
| P_SUBNORMAL
| P_NORMAL
| P_INFINITY
;
3369 Value
*Src0
= II
->getArgOperand(0);
3370 Value
*Src1
= II
->getArgOperand(1);
3371 const ConstantInt
*CMask
= dyn_cast
<ConstantInt
>(Src1
);
3373 if (isa
<UndefValue
>(Src0
))
3374 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3376 if (isa
<UndefValue
>(Src1
))
3377 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), false));
3381 uint32_t Mask
= CMask
->getZExtValue();
3383 // If all tests are made, it doesn't matter what the value is.
3384 if ((Mask
& FullMask
) == FullMask
)
3385 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), true));
3387 if ((Mask
& FullMask
) == 0)
3388 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), false));
3390 if (Mask
== (S_NAN
| Q_NAN
)) {
3391 // Equivalent of isnan. Replace with standard fcmp.
3392 Value
*FCmp
= Builder
.CreateFCmpUNO(Src0
, Src0
);
3394 return replaceInstUsesWith(*II
, FCmp
);
3397 if (Mask
== (N_ZERO
| P_ZERO
)) {
3398 // Equivalent of == 0.
3399 Value
*FCmp
= Builder
.CreateFCmpOEQ(
3400 Src0
, ConstantFP::get(Src0
->getType(), 0.0));
3403 return replaceInstUsesWith(*II
, FCmp
);
3406 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3407 if (((Mask
& S_NAN
) || (Mask
& Q_NAN
)) && isKnownNeverNaN(Src0
, &TLI
)) {
3408 II
->setArgOperand(1, ConstantInt::get(Src1
->getType(),
3409 Mask
& ~(S_NAN
| Q_NAN
)));
3413 const ConstantFP
*CVal
= dyn_cast
<ConstantFP
>(Src0
);
3415 if (isa
<UndefValue
>(Src0
))
3416 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3418 // Clamp mask to used bits
3419 if ((Mask
& FullMask
) != Mask
) {
3420 CallInst
*NewCall
= Builder
.CreateCall(II
->getCalledFunction(),
3421 { Src0
, ConstantInt::get(Src1
->getType(), Mask
& FullMask
) }
3424 NewCall
->takeName(II
);
3425 return replaceInstUsesWith(*II
, NewCall
);
3431 const APFloat
&Val
= CVal
->getValueAPF();
3434 ((Mask
& S_NAN
) && Val
.isNaN() && Val
.isSignaling()) ||
3435 ((Mask
& Q_NAN
) && Val
.isNaN() && !Val
.isSignaling()) ||
3436 ((Mask
& N_INFINITY
) && Val
.isInfinity() && Val
.isNegative()) ||
3437 ((Mask
& N_NORMAL
) && Val
.isNormal() && Val
.isNegative()) ||
3438 ((Mask
& N_SUBNORMAL
) && Val
.isDenormal() && Val
.isNegative()) ||
3439 ((Mask
& N_ZERO
) && Val
.isZero() && Val
.isNegative()) ||
3440 ((Mask
& P_ZERO
) && Val
.isZero() && !Val
.isNegative()) ||
3441 ((Mask
& P_SUBNORMAL
) && Val
.isDenormal() && !Val
.isNegative()) ||
3442 ((Mask
& P_NORMAL
) && Val
.isNormal() && !Val
.isNegative()) ||
3443 ((Mask
& P_INFINITY
) && Val
.isInfinity() && !Val
.isNegative());
3445 return replaceInstUsesWith(*II
, ConstantInt::get(II
->getType(), Result
));
3447 case Intrinsic::amdgcn_cvt_pkrtz
: {
3448 Value
*Src0
= II
->getArgOperand(0);
3449 Value
*Src1
= II
->getArgOperand(1);
3450 if (const ConstantFP
*C0
= dyn_cast
<ConstantFP
>(Src0
)) {
3451 if (const ConstantFP
*C1
= dyn_cast
<ConstantFP
>(Src1
)) {
3452 const fltSemantics
&HalfSem
3453 = II
->getType()->getScalarType()->getFltSemantics();
3455 APFloat Val0
= C0
->getValueAPF();
3456 APFloat Val1
= C1
->getValueAPF();
3457 Val0
.convert(HalfSem
, APFloat::rmTowardZero
, &LosesInfo
);
3458 Val1
.convert(HalfSem
, APFloat::rmTowardZero
, &LosesInfo
);
3460 Constant
*Folded
= ConstantVector::get({
3461 ConstantFP::get(II
->getContext(), Val0
),
3462 ConstantFP::get(II
->getContext(), Val1
) });
3463 return replaceInstUsesWith(*II
, Folded
);
3467 if (isa
<UndefValue
>(Src0
) && isa
<UndefValue
>(Src1
))
3468 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3472 case Intrinsic::amdgcn_cvt_pknorm_i16
:
3473 case Intrinsic::amdgcn_cvt_pknorm_u16
:
3474 case Intrinsic::amdgcn_cvt_pk_i16
:
3475 case Intrinsic::amdgcn_cvt_pk_u16
: {
3476 Value
*Src0
= II
->getArgOperand(0);
3477 Value
*Src1
= II
->getArgOperand(1);
3479 if (isa
<UndefValue
>(Src0
) && isa
<UndefValue
>(Src1
))
3480 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3484 case Intrinsic::amdgcn_ubfe
:
3485 case Intrinsic::amdgcn_sbfe
: {
3486 // Decompose simple cases into standard shifts.
3487 Value
*Src
= II
->getArgOperand(0);
3488 if (isa
<UndefValue
>(Src
))
3489 return replaceInstUsesWith(*II
, Src
);
3492 Type
*Ty
= II
->getType();
3493 unsigned IntSize
= Ty
->getIntegerBitWidth();
3495 ConstantInt
*CWidth
= dyn_cast
<ConstantInt
>(II
->getArgOperand(2));
3497 Width
= CWidth
->getZExtValue();
3498 if ((Width
& (IntSize
- 1)) == 0)
3499 return replaceInstUsesWith(*II
, ConstantInt::getNullValue(Ty
));
3501 if (Width
>= IntSize
) {
3502 // Hardware ignores high bits, so remove those.
3503 II
->setArgOperand(2, ConstantInt::get(CWidth
->getType(),
3504 Width
& (IntSize
- 1)));
3510 ConstantInt
*COffset
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1));
3512 Offset
= COffset
->getZExtValue();
3513 if (Offset
>= IntSize
) {
3514 II
->setArgOperand(1, ConstantInt::get(COffset
->getType(),
3515 Offset
& (IntSize
- 1)));
3520 bool Signed
= IID
== Intrinsic::amdgcn_sbfe
;
3522 if (!CWidth
|| !COffset
)
3525 // The case of Width == 0 is handled above, which makes this tranformation
3526 // safe. If Width == 0, then the ashr and lshr instructions become poison
3527 // value since the shift amount would be equal to the bit size.
3530 // TODO: This allows folding to undef when the hardware has specific
3532 if (Offset
+ Width
< IntSize
) {
3533 Value
*Shl
= Builder
.CreateShl(Src
, IntSize
- Offset
- Width
);
3534 Value
*RightShift
= Signed
? Builder
.CreateAShr(Shl
, IntSize
- Width
)
3535 : Builder
.CreateLShr(Shl
, IntSize
- Width
);
3536 RightShift
->takeName(II
);
3537 return replaceInstUsesWith(*II
, RightShift
);
3540 Value
*RightShift
= Signed
? Builder
.CreateAShr(Src
, Offset
)
3541 : Builder
.CreateLShr(Src
, Offset
);
3543 RightShift
->takeName(II
);
3544 return replaceInstUsesWith(*II
, RightShift
);
3546 case Intrinsic::amdgcn_exp
:
3547 case Intrinsic::amdgcn_exp_compr
: {
3548 ConstantInt
*En
= cast
<ConstantInt
>(II
->getArgOperand(1));
3549 unsigned EnBits
= En
->getZExtValue();
3551 break; // All inputs enabled.
3553 bool IsCompr
= IID
== Intrinsic::amdgcn_exp_compr
;
3554 bool Changed
= false;
3555 for (int I
= 0; I
< (IsCompr
? 2 : 4); ++I
) {
3556 if ((!IsCompr
&& (EnBits
& (1 << I
)) == 0) ||
3557 (IsCompr
&& ((EnBits
& (0x3 << (2 * I
))) == 0))) {
3558 Value
*Src
= II
->getArgOperand(I
+ 2);
3559 if (!isa
<UndefValue
>(Src
)) {
3560 II
->setArgOperand(I
+ 2, UndefValue::get(Src
->getType()));
3571 case Intrinsic::amdgcn_fmed3
: {
3572 // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3575 Value
*Src0
= II
->getArgOperand(0);
3576 Value
*Src1
= II
->getArgOperand(1);
3577 Value
*Src2
= II
->getArgOperand(2);
3579 // Checking for NaN before canonicalization provides better fidelity when
3580 // mapping other operations onto fmed3 since the order of operands is
3582 CallInst
*NewCall
= nullptr;
3583 if (match(Src0
, m_NaN()) || isa
<UndefValue
>(Src0
)) {
3584 NewCall
= Builder
.CreateMinNum(Src1
, Src2
);
3585 } else if (match(Src1
, m_NaN()) || isa
<UndefValue
>(Src1
)) {
3586 NewCall
= Builder
.CreateMinNum(Src0
, Src2
);
3587 } else if (match(Src2
, m_NaN()) || isa
<UndefValue
>(Src2
)) {
3588 NewCall
= Builder
.CreateMaxNum(Src0
, Src1
);
3592 NewCall
->copyFastMathFlags(II
);
3593 NewCall
->takeName(II
);
3594 return replaceInstUsesWith(*II
, NewCall
);
3598 // Canonicalize constants to RHS operands.
3600 // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3601 if (isa
<Constant
>(Src0
) && !isa
<Constant
>(Src1
)) {
3602 std::swap(Src0
, Src1
);
3606 if (isa
<Constant
>(Src1
) && !isa
<Constant
>(Src2
)) {
3607 std::swap(Src1
, Src2
);
3611 if (isa
<Constant
>(Src0
) && !isa
<Constant
>(Src1
)) {
3612 std::swap(Src0
, Src1
);
3617 II
->setArgOperand(0, Src0
);
3618 II
->setArgOperand(1, Src1
);
3619 II
->setArgOperand(2, Src2
);
3623 if (const ConstantFP
*C0
= dyn_cast
<ConstantFP
>(Src0
)) {
3624 if (const ConstantFP
*C1
= dyn_cast
<ConstantFP
>(Src1
)) {
3625 if (const ConstantFP
*C2
= dyn_cast
<ConstantFP
>(Src2
)) {
3626 APFloat Result
= fmed3AMDGCN(C0
->getValueAPF(), C1
->getValueAPF(),
3628 return replaceInstUsesWith(*II
,
3629 ConstantFP::get(Builder
.getContext(), Result
));
3636 case Intrinsic::amdgcn_icmp
:
3637 case Intrinsic::amdgcn_fcmp
: {
3638 const ConstantInt
*CC
= cast
<ConstantInt
>(II
->getArgOperand(2));
3639 // Guard against invalid arguments.
3640 int64_t CCVal
= CC
->getZExtValue();
3641 bool IsInteger
= IID
== Intrinsic::amdgcn_icmp
;
3642 if ((IsInteger
&& (CCVal
< CmpInst::FIRST_ICMP_PREDICATE
||
3643 CCVal
> CmpInst::LAST_ICMP_PREDICATE
)) ||
3644 (!IsInteger
&& (CCVal
< CmpInst::FIRST_FCMP_PREDICATE
||
3645 CCVal
> CmpInst::LAST_FCMP_PREDICATE
)))
3648 Value
*Src0
= II
->getArgOperand(0);
3649 Value
*Src1
= II
->getArgOperand(1);
3651 if (auto *CSrc0
= dyn_cast
<Constant
>(Src0
)) {
3652 if (auto *CSrc1
= dyn_cast
<Constant
>(Src1
)) {
3653 Constant
*CCmp
= ConstantExpr::getCompare(CCVal
, CSrc0
, CSrc1
);
3654 if (CCmp
->isNullValue()) {
3655 return replaceInstUsesWith(
3656 *II
, ConstantExpr::getSExt(CCmp
, II
->getType()));
3659 // The result of V_ICMP/V_FCMP assembly instructions (which this
3660 // intrinsic exposes) is one bit per thread, masked with the EXEC
3661 // register (which contains the bitmask of live threads). So a
3662 // comparison that always returns true is the same as a read of the
3664 Function
*NewF
= Intrinsic::getDeclaration(
3665 II
->getModule(), Intrinsic::read_register
, II
->getType());
3666 Metadata
*MDArgs
[] = {MDString::get(II
->getContext(), "exec")};
3667 MDNode
*MD
= MDNode::get(II
->getContext(), MDArgs
);
3668 Value
*Args
[] = {MetadataAsValue::get(II
->getContext(), MD
)};
3669 CallInst
*NewCall
= Builder
.CreateCall(NewF
, Args
);
3670 NewCall
->addAttribute(AttributeList::FunctionIndex
,
3671 Attribute::Convergent
);
3672 NewCall
->takeName(II
);
3673 return replaceInstUsesWith(*II
, NewCall
);
3676 // Canonicalize constants to RHS.
3677 CmpInst::Predicate SwapPred
3678 = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate
>(CCVal
));
3679 II
->setArgOperand(0, Src1
);
3680 II
->setArgOperand(1, Src0
);
3681 II
->setArgOperand(2, ConstantInt::get(CC
->getType(),
3682 static_cast<int>(SwapPred
)));
3686 if (CCVal
!= CmpInst::ICMP_EQ
&& CCVal
!= CmpInst::ICMP_NE
)
3689 // Canonicalize compare eq with true value to compare != 0
3690 // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3691 // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3692 // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3693 // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3695 if (CCVal
== CmpInst::ICMP_EQ
&&
3696 ((match(Src1
, m_One()) && match(Src0
, m_ZExt(m_Value(ExtSrc
)))) ||
3697 (match(Src1
, m_AllOnes()) && match(Src0
, m_SExt(m_Value(ExtSrc
))))) &&
3698 ExtSrc
->getType()->isIntegerTy(1)) {
3699 II
->setArgOperand(1, ConstantInt::getNullValue(Src1
->getType()));
3700 II
->setArgOperand(2, ConstantInt::get(CC
->getType(), CmpInst::ICMP_NE
));
3704 CmpInst::Predicate SrcPred
;
3708 // Fold compare eq/ne with 0 from a compare result as the predicate to the
3709 // intrinsic. The typical use is a wave vote function in the library, which
3710 // will be fed from a user code condition compared with 0. Fold in the
3711 // redundant compare.
3713 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3714 // -> llvm.amdgcn.[if]cmp(a, b, pred)
3716 // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3717 // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3718 if (match(Src1
, m_Zero()) &&
3720 m_ZExtOrSExt(m_Cmp(SrcPred
, m_Value(SrcLHS
), m_Value(SrcRHS
))))) {
3721 if (CCVal
== CmpInst::ICMP_EQ
)
3722 SrcPred
= CmpInst::getInversePredicate(SrcPred
);
3724 Intrinsic::ID NewIID
= CmpInst::isFPPredicate(SrcPred
) ?
3725 Intrinsic::amdgcn_fcmp
: Intrinsic::amdgcn_icmp
;
3727 Type
*Ty
= SrcLHS
->getType();
3728 if (auto *CmpType
= dyn_cast
<IntegerType
>(Ty
)) {
3729 // Promote to next legal integer type.
3730 unsigned Width
= CmpType
->getBitWidth();
3731 unsigned NewWidth
= Width
;
3733 // Don't do anything for i1 comparisons.
3739 else if (Width
<= 32)
3741 else if (Width
<= 64)
3743 else if (Width
> 64)
3744 break; // Can't handle this.
3746 if (Width
!= NewWidth
) {
3747 IntegerType
*CmpTy
= Builder
.getIntNTy(NewWidth
);
3748 if (CmpInst::isSigned(SrcPred
)) {
3749 SrcLHS
= Builder
.CreateSExt(SrcLHS
, CmpTy
);
3750 SrcRHS
= Builder
.CreateSExt(SrcRHS
, CmpTy
);
3752 SrcLHS
= Builder
.CreateZExt(SrcLHS
, CmpTy
);
3753 SrcRHS
= Builder
.CreateZExt(SrcRHS
, CmpTy
);
3756 } else if (!Ty
->isFloatTy() && !Ty
->isDoubleTy() && !Ty
->isHalfTy())
3760 Intrinsic::getDeclaration(II
->getModule(), NewIID
,
3762 SrcLHS
->getType() });
3763 Value
*Args
[] = { SrcLHS
, SrcRHS
,
3764 ConstantInt::get(CC
->getType(), SrcPred
) };
3765 CallInst
*NewCall
= Builder
.CreateCall(NewF
, Args
);
3766 NewCall
->takeName(II
);
3767 return replaceInstUsesWith(*II
, NewCall
);
3772 case Intrinsic::amdgcn_wqm_vote
: {
3773 // wqm_vote is identity when the argument is constant.
3774 if (!isa
<Constant
>(II
->getArgOperand(0)))
3777 return replaceInstUsesWith(*II
, II
->getArgOperand(0));
3779 case Intrinsic::amdgcn_kill
: {
3780 const ConstantInt
*C
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0));
3781 if (!C
|| !C
->getZExtValue())
3784 // amdgcn.kill(i1 1) is a no-op
3785 return eraseInstFromFunction(CI
);
3787 case Intrinsic::amdgcn_update_dpp
: {
3788 Value
*Old
= II
->getArgOperand(0);
3790 auto BC
= cast
<ConstantInt
>(II
->getArgOperand(5));
3791 auto RM
= cast
<ConstantInt
>(II
->getArgOperand(3));
3792 auto BM
= cast
<ConstantInt
>(II
->getArgOperand(4));
3793 if (BC
->isZeroValue() ||
3794 RM
->getZExtValue() != 0xF ||
3795 BM
->getZExtValue() != 0xF ||
3796 isa
<UndefValue
>(Old
))
3799 // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3800 II
->setOperand(0, UndefValue::get(Old
->getType()));
3803 case Intrinsic::amdgcn_readfirstlane
:
3804 case Intrinsic::amdgcn_readlane
: {
3805 // A constant value is trivially uniform.
3806 if (Constant
*C
= dyn_cast
<Constant
>(II
->getArgOperand(0)))
3807 return replaceInstUsesWith(*II
, C
);
3809 // The rest of these may not be safe if the exec may not be the same between
3811 Value
*Src
= II
->getArgOperand(0);
3812 Instruction
*SrcInst
= dyn_cast
<Instruction
>(Src
);
3813 if (SrcInst
&& SrcInst
->getParent() != II
->getParent())
3816 // readfirstlane (readfirstlane x) -> readfirstlane x
3817 // readlane (readfirstlane x), y -> readfirstlane x
3818 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readfirstlane
>()))
3819 return replaceInstUsesWith(*II
, Src
);
3821 if (IID
== Intrinsic::amdgcn_readfirstlane
) {
3822 // readfirstlane (readlane x, y) -> readlane x, y
3823 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readlane
>()))
3824 return replaceInstUsesWith(*II
, Src
);
3826 // readlane (readlane x, y), y -> readlane x, y
3827 if (match(Src
, m_Intrinsic
<Intrinsic::amdgcn_readlane
>(
3828 m_Value(), m_Specific(II
->getArgOperand(1)))))
3829 return replaceInstUsesWith(*II
, Src
);
3834 case Intrinsic::stackrestore
: {
3835 // If the save is right next to the restore, remove the restore. This can
3836 // happen when variable allocas are DCE'd.
3837 if (IntrinsicInst
*SS
= dyn_cast
<IntrinsicInst
>(II
->getArgOperand(0))) {
3838 if (SS
->getIntrinsicID() == Intrinsic::stacksave
) {
3839 // Skip over debug info.
3840 if (SS
->getNextNonDebugInstruction() == II
) {
3841 return eraseInstFromFunction(CI
);
3846 // Scan down this block to see if there is another stack restore in the
3847 // same block without an intervening call/alloca.
3848 BasicBlock::iterator
BI(II
);
3849 Instruction
*TI
= II
->getParent()->getTerminator();
3850 bool CannotRemove
= false;
3851 for (++BI
; &*BI
!= TI
; ++BI
) {
3852 if (isa
<AllocaInst
>(BI
)) {
3853 CannotRemove
= true;
3856 if (CallInst
*BCI
= dyn_cast
<CallInst
>(BI
)) {
3857 if (auto *II2
= dyn_cast
<IntrinsicInst
>(BCI
)) {
3858 // If there is a stackrestore below this one, remove this one.
3859 if (II2
->getIntrinsicID() == Intrinsic::stackrestore
)
3860 return eraseInstFromFunction(CI
);
3862 // Bail if we cross over an intrinsic with side effects, such as
3863 // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3864 if (II2
->mayHaveSideEffects()) {
3865 CannotRemove
= true;
3869 // If we found a non-intrinsic call, we can't remove the stack
3871 CannotRemove
= true;
3877 // If the stack restore is in a return, resume, or unwind block and if there
3878 // are no allocas or calls between the restore and the return, nuke the
3880 if (!CannotRemove
&& (isa
<ReturnInst
>(TI
) || isa
<ResumeInst
>(TI
)))
3881 return eraseInstFromFunction(CI
);
3884 case Intrinsic::lifetime_start
:
3885 // Asan needs to poison memory to detect invalid access which is possible
3886 // even for empty lifetime range.
3887 if (II
->getFunction()->hasFnAttribute(Attribute::SanitizeAddress
) ||
3888 II
->getFunction()->hasFnAttribute(Attribute::SanitizeMemory
) ||
3889 II
->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress
))
3892 if (removeTriviallyEmptyRange(*II
, Intrinsic::lifetime_start
,
3893 Intrinsic::lifetime_end
, *this))
3896 case Intrinsic::assume
: {
3897 Value
*IIOperand
= II
->getArgOperand(0);
3898 // Remove an assume if it is followed by an identical assume.
3899 // TODO: Do we need this? Unless there are conflicting assumptions, the
3900 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3901 Instruction
*Next
= II
->getNextNonDebugInstruction();
3902 if (match(Next
, m_Intrinsic
<Intrinsic::assume
>(m_Specific(IIOperand
))))
3903 return eraseInstFromFunction(CI
);
3905 // Canonicalize assume(a && b) -> assume(a); assume(b);
3906 // Note: New assumption intrinsics created here are registered by
3907 // the InstCombineIRInserter object.
3908 FunctionType
*AssumeIntrinsicTy
= II
->getFunctionType();
3909 Value
*AssumeIntrinsic
= II
->getCalledValue();
3911 if (match(IIOperand
, m_And(m_Value(A
), m_Value(B
)))) {
3912 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
, A
, II
->getName());
3913 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
, B
, II
->getName());
3914 return eraseInstFromFunction(*II
);
3916 // assume(!(a || b)) -> assume(!a); assume(!b);
3917 if (match(IIOperand
, m_Not(m_Or(m_Value(A
), m_Value(B
))))) {
3918 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
,
3919 Builder
.CreateNot(A
), II
->getName());
3920 Builder
.CreateCall(AssumeIntrinsicTy
, AssumeIntrinsic
,
3921 Builder
.CreateNot(B
), II
->getName());
3922 return eraseInstFromFunction(*II
);
3925 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3926 // (if assume is valid at the load)
3927 CmpInst::Predicate Pred
;
3929 if (match(IIOperand
, m_ICmp(Pred
, m_Instruction(LHS
), m_Zero())) &&
3930 Pred
== ICmpInst::ICMP_NE
&& LHS
->getOpcode() == Instruction::Load
&&
3931 LHS
->getType()->isPointerTy() &&
3932 isValidAssumeForContext(II
, LHS
, &DT
)) {
3933 MDNode
*MD
= MDNode::get(II
->getContext(), None
);
3934 LHS
->setMetadata(LLVMContext::MD_nonnull
, MD
);
3935 return eraseInstFromFunction(*II
);
3937 // TODO: apply nonnull return attributes to calls and invokes
3938 // TODO: apply range metadata for range check patterns?
3941 // If there is a dominating assume with the same condition as this one,
3942 // then this one is redundant, and should be removed.
3944 computeKnownBits(IIOperand
, Known
, 0, II
);
3945 if (Known
.isAllOnes())
3946 return eraseInstFromFunction(*II
);
3948 // Update the cache of affected values for this assumption (we might be
3949 // here because we just simplified the condition).
3950 AC
.updateAffectedValues(II
);
3953 case Intrinsic::experimental_gc_relocate
: {
3954 // Translate facts known about a pointer before relocating into
3955 // facts about the relocate value, while being careful to
3956 // preserve relocation semantics.
3957 Value
*DerivedPtr
= cast
<GCRelocateInst
>(II
)->getDerivedPtr();
3959 // Remove the relocation if unused, note that this check is required
3960 // to prevent the cases below from looping forever.
3961 if (II
->use_empty())
3962 return eraseInstFromFunction(*II
);
3964 // Undef is undef, even after relocation.
3965 // TODO: provide a hook for this in GCStrategy. This is clearly legal for
3966 // most practical collectors, but there was discussion in the review thread
3967 // about whether it was legal for all possible collectors.
3968 if (isa
<UndefValue
>(DerivedPtr
))
3969 // Use undef of gc_relocate's type to replace it.
3970 return replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
3972 if (auto *PT
= dyn_cast
<PointerType
>(II
->getType())) {
3973 // The relocation of null will be null for most any collector.
3974 // TODO: provide a hook for this in GCStrategy. There might be some
3975 // weird collector this property does not hold for.
3976 if (isa
<ConstantPointerNull
>(DerivedPtr
))
3977 // Use null-pointer of gc_relocate's type to replace it.
3978 return replaceInstUsesWith(*II
, ConstantPointerNull::get(PT
));
3980 // isKnownNonNull -> nonnull attribute
3981 if (!II
->hasRetAttr(Attribute::NonNull
) &&
3982 isKnownNonZero(DerivedPtr
, DL
, 0, &AC
, II
, &DT
)) {
3983 II
->addAttribute(AttributeList::ReturnIndex
, Attribute::NonNull
);
3988 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3989 // Canonicalize on the type from the uses to the defs
3991 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3995 case Intrinsic::experimental_guard
: {
3996 // Is this guard followed by another guard? We scan forward over a small
3997 // fixed window of instructions to handle common cases with conditions
3998 // computed between guards.
3999 Instruction
*NextInst
= II
->getNextNode();
4000 for (unsigned i
= 0; i
< GuardWideningWindow
; i
++) {
4001 // Note: Using context-free form to avoid compile time blow up
4002 if (!isSafeToSpeculativelyExecute(NextInst
))
4004 NextInst
= NextInst
->getNextNode();
4006 Value
*NextCond
= nullptr;
4008 m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(NextCond
)))) {
4009 Value
*CurrCond
= II
->getArgOperand(0);
4011 // Remove a guard that it is immediately preceded by an identical guard.
4012 if (CurrCond
== NextCond
)
4013 return eraseInstFromFunction(*NextInst
);
4015 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4016 Instruction
* MoveI
= II
->getNextNode();
4017 while (MoveI
!= NextInst
) {
4019 MoveI
= MoveI
->getNextNode();
4020 Temp
->moveBefore(II
);
4022 II
->setArgOperand(0, Builder
.CreateAnd(CurrCond
, NextCond
));
4023 return eraseInstFromFunction(*NextInst
);
4028 return visitCallBase(*II
);
4031 // Fence instruction simplification
4032 Instruction
*InstCombiner::visitFenceInst(FenceInst
&FI
) {
4033 // Remove identical consecutive fences.
4034 Instruction
*Next
= FI
.getNextNonDebugInstruction();
4035 if (auto *NFI
= dyn_cast
<FenceInst
>(Next
))
4036 if (FI
.isIdenticalTo(NFI
))
4037 return eraseInstFromFunction(FI
);
4041 // InvokeInst simplification
4042 Instruction
*InstCombiner::visitInvokeInst(InvokeInst
&II
) {
4043 return visitCallBase(II
);
4046 // CallBrInst simplification
4047 Instruction
*InstCombiner::visitCallBrInst(CallBrInst
&CBI
) {
4048 return visitCallBase(CBI
);
4051 /// If this cast does not affect the value passed through the varargs area, we
4052 /// can eliminate the use of the cast.
4053 static bool isSafeToEliminateVarargsCast(const CallBase
&Call
,
4054 const DataLayout
&DL
,
4055 const CastInst
*const CI
,
4057 if (!CI
->isLosslessCast())
4060 // If this is a GC intrinsic, avoid munging types. We need types for
4061 // statepoint reconstruction in SelectionDAG.
4062 // TODO: This is probably something which should be expanded to all
4063 // intrinsics since the entire point of intrinsics is that
4064 // they are understandable by the optimizer.
4065 if (isStatepoint(&Call
) || isGCRelocate(&Call
) || isGCResult(&Call
))
4068 // The size of ByVal or InAlloca arguments is derived from the type, so we
4069 // can't change to a type with a different size. If the size were
4070 // passed explicitly we could avoid this check.
4071 if (!Call
.isByValOrInAllocaArgument(ix
))
4075 cast
<PointerType
>(CI
->getOperand(0)->getType())->getElementType();
4076 Type
*DstTy
= Call
.isByValArgument(ix
)
4077 ? Call
.getParamByValType(ix
)
4078 : cast
<PointerType
>(CI
->getType())->getElementType();
4079 if (!SrcTy
->isSized() || !DstTy
->isSized())
4081 if (DL
.getTypeAllocSize(SrcTy
) != DL
.getTypeAllocSize(DstTy
))
4086 Instruction
*InstCombiner::tryOptimizeCall(CallInst
*CI
) {
4087 if (!CI
->getCalledFunction()) return nullptr;
4089 auto InstCombineRAUW
= [this](Instruction
*From
, Value
*With
) {
4090 replaceInstUsesWith(*From
, With
);
4092 auto InstCombineErase
= [this](Instruction
*I
) {
4093 eraseInstFromFunction(*I
);
4095 LibCallSimplifier
Simplifier(DL
, &TLI
, ORE
, BFI
, PSI
, InstCombineRAUW
,
4097 if (Value
*With
= Simplifier
.optimizeCall(CI
)) {
4099 return CI
->use_empty() ? CI
: replaceInstUsesWith(*CI
, With
);
4105 static IntrinsicInst
*findInitTrampolineFromAlloca(Value
*TrampMem
) {
4106 // Strip off at most one level of pointer casts, looking for an alloca. This
4107 // is good enough in practice and simpler than handling any number of casts.
4108 Value
*Underlying
= TrampMem
->stripPointerCasts();
4109 if (Underlying
!= TrampMem
&&
4110 (!Underlying
->hasOneUse() || Underlying
->user_back() != TrampMem
))
4112 if (!isa
<AllocaInst
>(Underlying
))
4115 IntrinsicInst
*InitTrampoline
= nullptr;
4116 for (User
*U
: TrampMem
->users()) {
4117 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
);
4120 if (II
->getIntrinsicID() == Intrinsic::init_trampoline
) {
4122 // More than one init_trampoline writes to this value. Give up.
4124 InitTrampoline
= II
;
4127 if (II
->getIntrinsicID() == Intrinsic::adjust_trampoline
)
4128 // Allow any number of calls to adjust.trampoline.
4133 // No call to init.trampoline found.
4134 if (!InitTrampoline
)
4137 // Check that the alloca is being used in the expected way.
4138 if (InitTrampoline
->getOperand(0) != TrampMem
)
4141 return InitTrampoline
;
4144 static IntrinsicInst
*findInitTrampolineFromBB(IntrinsicInst
*AdjustTramp
,
4146 // Visit all the previous instructions in the basic block, and try to find a
4147 // init.trampoline which has a direct path to the adjust.trampoline.
4148 for (BasicBlock::iterator I
= AdjustTramp
->getIterator(),
4149 E
= AdjustTramp
->getParent()->begin();
4151 Instruction
*Inst
= &*--I
;
4152 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
4153 if (II
->getIntrinsicID() == Intrinsic::init_trampoline
&&
4154 II
->getOperand(0) == TrampMem
)
4156 if (Inst
->mayWriteToMemory())
4162 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4163 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4164 // to a direct call to a function. Otherwise return NULL.
4165 static IntrinsicInst
*findInitTrampoline(Value
*Callee
) {
4166 Callee
= Callee
->stripPointerCasts();
4167 IntrinsicInst
*AdjustTramp
= dyn_cast
<IntrinsicInst
>(Callee
);
4169 AdjustTramp
->getIntrinsicID() != Intrinsic::adjust_trampoline
)
4172 Value
*TrampMem
= AdjustTramp
->getOperand(0);
4174 if (IntrinsicInst
*IT
= findInitTrampolineFromAlloca(TrampMem
))
4176 if (IntrinsicInst
*IT
= findInitTrampolineFromBB(AdjustTramp
, TrampMem
))
4181 static void annotateAnyAllocSite(CallBase
&Call
, const TargetLibraryInfo
*TLI
) {
4182 ConstantInt
*Op0C
= dyn_cast
<ConstantInt
>(Call
.getOperand(0));
4183 ConstantInt
*Op1C
= (Call
.getNumArgOperands() == 1)
4185 : dyn_cast
<ConstantInt
>(Call
.getOperand(1));
4186 // Bail out if the allocation size is zero.
4187 if ((Op0C
&& Op0C
->isNullValue()) || (Op1C
&& Op1C
->isNullValue()))
4190 if (isMallocLikeFn(&Call
, TLI
) && Op0C
) {
4191 Call
.addAttribute(AttributeList::ReturnIndex
,
4192 Attribute::getWithDereferenceableOrNullBytes(
4193 Call
.getContext(), Op0C
->getZExtValue()));
4194 } else if (isOpNewLikeFn(&Call
, TLI
) && Op0C
) {
4195 Call
.addAttribute(AttributeList::ReturnIndex
,
4196 Attribute::getWithDereferenceableBytes(
4197 Call
.getContext(), Op0C
->getZExtValue()));
4198 } else if (isReallocLikeFn(&Call
, TLI
) && Op1C
) {
4199 Call
.addAttribute(AttributeList::ReturnIndex
,
4200 Attribute::getWithDereferenceableOrNullBytes(
4201 Call
.getContext(), Op1C
->getZExtValue()));
4202 } else if (isCallocLikeFn(&Call
, TLI
) && Op0C
&& Op1C
) {
4204 const APInt
&N
= Op0C
->getValue();
4205 APInt Size
= N
.umul_ov(Op1C
->getValue(), Overflow
);
4207 Call
.addAttribute(AttributeList::ReturnIndex
,
4208 Attribute::getWithDereferenceableOrNullBytes(
4209 Call
.getContext(), Size
.getZExtValue()));
4213 /// Improvements for call, callbr and invoke instructions.
4214 Instruction
*InstCombiner::visitCallBase(CallBase
&Call
) {
4215 if (isAllocationFn(&Call
, &TLI
))
4216 annotateAnyAllocSite(Call
, &TLI
);
4218 if (isAllocLikeFn(&Call
, &TLI
))
4219 return visitAllocSite(Call
);
4221 bool Changed
= false;
4223 // Mark any parameters that are known to be non-null with the nonnull
4224 // attribute. This is helpful for inlining calls to functions with null
4225 // checks on their arguments.
4226 SmallVector
<unsigned, 4> ArgNos
;
4229 for (Value
*V
: Call
.args()) {
4230 if (V
->getType()->isPointerTy() &&
4231 !Call
.paramHasAttr(ArgNo
, Attribute::NonNull
) &&
4232 isKnownNonZero(V
, DL
, 0, &AC
, &Call
, &DT
))
4233 ArgNos
.push_back(ArgNo
);
4237 assert(ArgNo
== Call
.arg_size() && "sanity check");
4239 if (!ArgNos
.empty()) {
4240 AttributeList AS
= Call
.getAttributes();
4241 LLVMContext
&Ctx
= Call
.getContext();
4242 AS
= AS
.addParamAttribute(Ctx
, ArgNos
,
4243 Attribute::get(Ctx
, Attribute::NonNull
));
4244 Call
.setAttributes(AS
);
4248 // If the callee is a pointer to a function, attempt to move any casts to the
4249 // arguments of the call/callbr/invoke.
4250 Value
*Callee
= Call
.getCalledValue();
4251 if (!isa
<Function
>(Callee
) && transformConstExprCastCall(Call
))
4254 if (Function
*CalleeF
= dyn_cast
<Function
>(Callee
)) {
4255 // Remove the convergent attr on calls when the callee is not convergent.
4256 if (Call
.isConvergent() && !CalleeF
->isConvergent() &&
4257 !CalleeF
->isIntrinsic()) {
4258 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4260 Call
.setNotConvergent();
4264 // If the call and callee calling conventions don't match, this call must
4265 // be unreachable, as the call is undefined.
4266 if (CalleeF
->getCallingConv() != Call
.getCallingConv() &&
4267 // Only do this for calls to a function with a body. A prototype may
4268 // not actually end up matching the implementation's calling conv for a
4269 // variety of reasons (e.g. it may be written in assembly).
4270 !CalleeF
->isDeclaration()) {
4271 Instruction
*OldCall
= &Call
;
4272 CreateNonTerminatorUnreachable(OldCall
);
4273 // If OldCall does not return void then replaceAllUsesWith undef.
4274 // This allows ValueHandlers and custom metadata to adjust itself.
4275 if (!OldCall
->getType()->isVoidTy())
4276 replaceInstUsesWith(*OldCall
, UndefValue::get(OldCall
->getType()));
4277 if (isa
<CallInst
>(OldCall
))
4278 return eraseInstFromFunction(*OldCall
);
4280 // We cannot remove an invoke or a callbr, because it would change thexi
4281 // CFG, just change the callee to a null pointer.
4282 cast
<CallBase
>(OldCall
)->setCalledFunction(
4283 CalleeF
->getFunctionType(),
4284 Constant::getNullValue(CalleeF
->getType()));
4289 if ((isa
<ConstantPointerNull
>(Callee
) &&
4290 !NullPointerIsDefined(Call
.getFunction())) ||
4291 isa
<UndefValue
>(Callee
)) {
4292 // If Call does not return void then replaceAllUsesWith undef.
4293 // This allows ValueHandlers and custom metadata to adjust itself.
4294 if (!Call
.getType()->isVoidTy())
4295 replaceInstUsesWith(Call
, UndefValue::get(Call
.getType()));
4297 if (Call
.isTerminator()) {
4298 // Can't remove an invoke or callbr because we cannot change the CFG.
4302 // This instruction is not reachable, just remove it.
4303 CreateNonTerminatorUnreachable(&Call
);
4304 return eraseInstFromFunction(Call
);
4307 if (IntrinsicInst
*II
= findInitTrampoline(Callee
))
4308 return transformCallThroughTrampoline(Call
, *II
);
4310 PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
4311 FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
4312 if (FTy
->isVarArg()) {
4313 int ix
= FTy
->getNumParams();
4314 // See if we can optimize any arguments passed through the varargs area of
4316 for (auto I
= Call
.arg_begin() + FTy
->getNumParams(), E
= Call
.arg_end();
4317 I
!= E
; ++I
, ++ix
) {
4318 CastInst
*CI
= dyn_cast
<CastInst
>(*I
);
4319 if (CI
&& isSafeToEliminateVarargsCast(Call
, DL
, CI
, ix
)) {
4320 *I
= CI
->getOperand(0);
4322 // Update the byval type to match the argument type.
4323 if (Call
.isByValArgument(ix
)) {
4324 Call
.removeParamAttr(ix
, Attribute::ByVal
);
4326 ix
, Attribute::getWithByValType(
4328 CI
->getOperand(0)->getType()->getPointerElementType()));
4335 if (isa
<InlineAsm
>(Callee
) && !Call
.doesNotThrow()) {
4336 // Inline asm calls cannot throw - mark them 'nounwind'.
4337 Call
.setDoesNotThrow();
4341 // Try to optimize the call if possible, we require DataLayout for most of
4342 // this. None of these calls are seen as possibly dead so go ahead and
4343 // delete the instruction now.
4344 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Call
)) {
4345 Instruction
*I
= tryOptimizeCall(CI
);
4346 // If we changed something return the result, etc. Otherwise let
4347 // the fallthrough check.
4348 if (I
) return eraseInstFromFunction(*I
);
4351 return Changed
? &Call
: nullptr;
4354 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4355 /// the arguments of the call/callbr/invoke.
4356 bool InstCombiner::transformConstExprCastCall(CallBase
&Call
) {
4357 auto *Callee
= dyn_cast
<Function
>(Call
.getCalledValue()->stripPointerCasts());
4361 // If this is a call to a thunk function, don't remove the cast. Thunks are
4362 // used to transparently forward all incoming parameters and outgoing return
4363 // values, so it's important to leave the cast in place.
4364 if (Callee
->hasFnAttribute("thunk"))
4367 // If this is a musttail call, the callee's prototype must match the caller's
4368 // prototype with the exception of pointee types. The code below doesn't
4369 // implement that, so we can't do this transform.
4370 // TODO: Do the transform if it only requires adding pointer casts.
4371 if (Call
.isMustTailCall())
4374 Instruction
*Caller
= &Call
;
4375 const AttributeList
&CallerPAL
= Call
.getAttributes();
4377 // Okay, this is a cast from a function to a different type. Unless doing so
4378 // would cause a type conversion of one of our arguments, change this call to
4379 // be a direct call with arguments casted to the appropriate types.
4380 FunctionType
*FT
= Callee
->getFunctionType();
4381 Type
*OldRetTy
= Caller
->getType();
4382 Type
*NewRetTy
= FT
->getReturnType();
4384 // Check to see if we are changing the return type...
4385 if (OldRetTy
!= NewRetTy
) {
4387 if (NewRetTy
->isStructTy())
4388 return false; // TODO: Handle multiple return values.
4390 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy
, OldRetTy
, DL
)) {
4391 if (Callee
->isDeclaration())
4392 return false; // Cannot transform this return value.
4394 if (!Caller
->use_empty() &&
4395 // void -> non-void is handled specially
4396 !NewRetTy
->isVoidTy())
4397 return false; // Cannot transform this return value.
4400 if (!CallerPAL
.isEmpty() && !Caller
->use_empty()) {
4401 AttrBuilder
RAttrs(CallerPAL
, AttributeList::ReturnIndex
);
4402 if (RAttrs
.overlaps(AttributeFuncs::typeIncompatible(NewRetTy
)))
4403 return false; // Attribute not compatible with transformed value.
4406 // If the callbase is an invoke/callbr instruction, and the return value is
4407 // used by a PHI node in a successor, we cannot change the return type of
4408 // the call because there is no place to put the cast instruction (without
4409 // breaking the critical edge). Bail out in this case.
4410 if (!Caller
->use_empty()) {
4411 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
))
4412 for (User
*U
: II
->users())
4413 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
4414 if (PN
->getParent() == II
->getNormalDest() ||
4415 PN
->getParent() == II
->getUnwindDest())
4417 // FIXME: Be conservative for callbr to avoid a quadratic search.
4418 if (isa
<CallBrInst
>(Caller
))
4423 unsigned NumActualArgs
= Call
.arg_size();
4424 unsigned NumCommonArgs
= std::min(FT
->getNumParams(), NumActualArgs
);
4426 // Prevent us turning:
4427 // declare void @takes_i32_inalloca(i32* inalloca)
4428 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4431 // call void @takes_i32_inalloca(i32* null)
4433 // Similarly, avoid folding away bitcasts of byval calls.
4434 if (Callee
->getAttributes().hasAttrSomewhere(Attribute::InAlloca
) ||
4435 Callee
->getAttributes().hasAttrSomewhere(Attribute::ByVal
))
4438 auto AI
= Call
.arg_begin();
4439 for (unsigned i
= 0, e
= NumCommonArgs
; i
!= e
; ++i
, ++AI
) {
4440 Type
*ParamTy
= FT
->getParamType(i
);
4441 Type
*ActTy
= (*AI
)->getType();
4443 if (!CastInst::isBitOrNoopPointerCastable(ActTy
, ParamTy
, DL
))
4444 return false; // Cannot transform this parameter value.
4446 if (AttrBuilder(CallerPAL
.getParamAttributes(i
))
4447 .overlaps(AttributeFuncs::typeIncompatible(ParamTy
)))
4448 return false; // Attribute not compatible with transformed value.
4450 if (Call
.isInAllocaArgument(i
))
4451 return false; // Cannot transform to and from inalloca.
4453 // If the parameter is passed as a byval argument, then we have to have a
4454 // sized type and the sized type has to have the same size as the old type.
4455 if (ParamTy
!= ActTy
&& CallerPAL
.hasParamAttribute(i
, Attribute::ByVal
)) {
4456 PointerType
*ParamPTy
= dyn_cast
<PointerType
>(ParamTy
);
4457 if (!ParamPTy
|| !ParamPTy
->getElementType()->isSized())
4460 Type
*CurElTy
= Call
.getParamByValType(i
);
4461 if (DL
.getTypeAllocSize(CurElTy
) !=
4462 DL
.getTypeAllocSize(ParamPTy
->getElementType()))
4467 if (Callee
->isDeclaration()) {
4468 // Do not delete arguments unless we have a function body.
4469 if (FT
->getNumParams() < NumActualArgs
&& !FT
->isVarArg())
4472 // If the callee is just a declaration, don't change the varargsness of the
4473 // call. We don't want to introduce a varargs call where one doesn't
4475 PointerType
*APTy
= cast
<PointerType
>(Call
.getCalledValue()->getType());
4476 if (FT
->isVarArg()!=cast
<FunctionType
>(APTy
->getElementType())->isVarArg())
4479 // If both the callee and the cast type are varargs, we still have to make
4480 // sure the number of fixed parameters are the same or we have the same
4481 // ABI issues as if we introduce a varargs call.
4482 if (FT
->isVarArg() &&
4483 cast
<FunctionType
>(APTy
->getElementType())->isVarArg() &&
4484 FT
->getNumParams() !=
4485 cast
<FunctionType
>(APTy
->getElementType())->getNumParams())
4489 if (FT
->getNumParams() < NumActualArgs
&& FT
->isVarArg() &&
4490 !CallerPAL
.isEmpty()) {
4491 // In this case we have more arguments than the new function type, but we
4492 // won't be dropping them. Check that these extra arguments have attributes
4493 // that are compatible with being a vararg call argument.
4495 if (CallerPAL
.hasAttrSomewhere(Attribute::StructRet
, &SRetIdx
) &&
4496 SRetIdx
> FT
->getNumParams())
4500 // Okay, we decided that this is a safe thing to do: go ahead and start
4501 // inserting cast instructions as necessary.
4502 SmallVector
<Value
*, 8> Args
;
4503 SmallVector
<AttributeSet
, 8> ArgAttrs
;
4504 Args
.reserve(NumActualArgs
);
4505 ArgAttrs
.reserve(NumActualArgs
);
4507 // Get any return attributes.
4508 AttrBuilder
RAttrs(CallerPAL
, AttributeList::ReturnIndex
);
4510 // If the return value is not being used, the type may not be compatible
4511 // with the existing attributes. Wipe out any problematic attributes.
4512 RAttrs
.remove(AttributeFuncs::typeIncompatible(NewRetTy
));
4514 LLVMContext
&Ctx
= Call
.getContext();
4515 AI
= Call
.arg_begin();
4516 for (unsigned i
= 0; i
!= NumCommonArgs
; ++i
, ++AI
) {
4517 Type
*ParamTy
= FT
->getParamType(i
);
4519 Value
*NewArg
= *AI
;
4520 if ((*AI
)->getType() != ParamTy
)
4521 NewArg
= Builder
.CreateBitOrPointerCast(*AI
, ParamTy
);
4522 Args
.push_back(NewArg
);
4524 // Add any parameter attributes.
4525 if (CallerPAL
.hasParamAttribute(i
, Attribute::ByVal
)) {
4526 AttrBuilder
AB(CallerPAL
.getParamAttributes(i
));
4527 AB
.addByValAttr(NewArg
->getType()->getPointerElementType());
4528 ArgAttrs
.push_back(AttributeSet::get(Ctx
, AB
));
4530 ArgAttrs
.push_back(CallerPAL
.getParamAttributes(i
));
4533 // If the function takes more arguments than the call was taking, add them
4535 for (unsigned i
= NumCommonArgs
; i
!= FT
->getNumParams(); ++i
) {
4536 Args
.push_back(Constant::getNullValue(FT
->getParamType(i
)));
4537 ArgAttrs
.push_back(AttributeSet());
4540 // If we are removing arguments to the function, emit an obnoxious warning.
4541 if (FT
->getNumParams() < NumActualArgs
) {
4542 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4543 if (FT
->isVarArg()) {
4544 // Add all of the arguments in their promoted form to the arg list.
4545 for (unsigned i
= FT
->getNumParams(); i
!= NumActualArgs
; ++i
, ++AI
) {
4546 Type
*PTy
= getPromotedType((*AI
)->getType());
4547 Value
*NewArg
= *AI
;
4548 if (PTy
!= (*AI
)->getType()) {
4549 // Must promote to pass through va_arg area!
4550 Instruction::CastOps opcode
=
4551 CastInst::getCastOpcode(*AI
, false, PTy
, false);
4552 NewArg
= Builder
.CreateCast(opcode
, *AI
, PTy
);
4554 Args
.push_back(NewArg
);
4556 // Add any parameter attributes.
4557 ArgAttrs
.push_back(CallerPAL
.getParamAttributes(i
));
4562 AttributeSet FnAttrs
= CallerPAL
.getFnAttributes();
4564 if (NewRetTy
->isVoidTy())
4565 Caller
->setName(""); // Void type should not have a name.
4567 assert((ArgAttrs
.size() == FT
->getNumParams() || FT
->isVarArg()) &&
4568 "missing argument attributes");
4569 AttributeList NewCallerPAL
= AttributeList::get(
4570 Ctx
, FnAttrs
, AttributeSet::get(Ctx
, RAttrs
), ArgAttrs
);
4572 SmallVector
<OperandBundleDef
, 1> OpBundles
;
4573 Call
.getOperandBundlesAsDefs(OpBundles
);
4576 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
4577 NewCall
= Builder
.CreateInvoke(Callee
, II
->getNormalDest(),
4578 II
->getUnwindDest(), Args
, OpBundles
);
4579 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(Caller
)) {
4580 NewCall
= Builder
.CreateCallBr(Callee
, CBI
->getDefaultDest(),
4581 CBI
->getIndirectDests(), Args
, OpBundles
);
4583 NewCall
= Builder
.CreateCall(Callee
, Args
, OpBundles
);
4584 cast
<CallInst
>(NewCall
)->setTailCallKind(
4585 cast
<CallInst
>(Caller
)->getTailCallKind());
4587 NewCall
->takeName(Caller
);
4588 NewCall
->setCallingConv(Call
.getCallingConv());
4589 NewCall
->setAttributes(NewCallerPAL
);
4591 // Preserve the weight metadata for the new call instruction. The metadata
4592 // is used by SamplePGO to check callsite's hotness.
4594 if (Caller
->extractProfTotalWeight(W
))
4595 NewCall
->setProfWeight(W
);
4597 // Insert a cast of the return type as necessary.
4598 Instruction
*NC
= NewCall
;
4600 if (OldRetTy
!= NV
->getType() && !Caller
->use_empty()) {
4601 if (!NV
->getType()->isVoidTy()) {
4602 NV
= NC
= CastInst::CreateBitOrPointerCast(NC
, OldRetTy
);
4603 NC
->setDebugLoc(Caller
->getDebugLoc());
4605 // If this is an invoke/callbr instruction, we should insert it after the
4606 // first non-phi instruction in the normal successor block.
4607 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
4608 BasicBlock::iterator I
= II
->getNormalDest()->getFirstInsertionPt();
4609 InsertNewInstBefore(NC
, *I
);
4610 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(Caller
)) {
4611 BasicBlock::iterator I
= CBI
->getDefaultDest()->getFirstInsertionPt();
4612 InsertNewInstBefore(NC
, *I
);
4614 // Otherwise, it's a call, just insert cast right after the call.
4615 InsertNewInstBefore(NC
, *Caller
);
4617 Worklist
.AddUsersToWorkList(*Caller
);
4619 NV
= UndefValue::get(Caller
->getType());
4623 if (!Caller
->use_empty())
4624 replaceInstUsesWith(*Caller
, NV
);
4625 else if (Caller
->hasValueHandle()) {
4626 if (OldRetTy
== NV
->getType())
4627 ValueHandleBase::ValueIsRAUWd(Caller
, NV
);
4629 // We cannot call ValueIsRAUWd with a different type, and the
4630 // actual tracked value will disappear.
4631 ValueHandleBase::ValueIsDeleted(Caller
);
4634 eraseInstFromFunction(*Caller
);
4638 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4639 /// intrinsic pair into a direct call to the underlying function.
4641 InstCombiner::transformCallThroughTrampoline(CallBase
&Call
,
4642 IntrinsicInst
&Tramp
) {
4643 Value
*Callee
= Call
.getCalledValue();
4644 Type
*CalleeTy
= Callee
->getType();
4645 FunctionType
*FTy
= Call
.getFunctionType();
4646 AttributeList Attrs
= Call
.getAttributes();
4648 // If the call already has the 'nest' attribute somewhere then give up -
4649 // otherwise 'nest' would occur twice after splicing in the chain.
4650 if (Attrs
.hasAttrSomewhere(Attribute::Nest
))
4653 Function
*NestF
= cast
<Function
>(Tramp
.getArgOperand(1)->stripPointerCasts());
4654 FunctionType
*NestFTy
= NestF
->getFunctionType();
4656 AttributeList NestAttrs
= NestF
->getAttributes();
4657 if (!NestAttrs
.isEmpty()) {
4658 unsigned NestArgNo
= 0;
4659 Type
*NestTy
= nullptr;
4660 AttributeSet NestAttr
;
4662 // Look for a parameter marked with the 'nest' attribute.
4663 for (FunctionType::param_iterator I
= NestFTy
->param_begin(),
4664 E
= NestFTy
->param_end();
4665 I
!= E
; ++NestArgNo
, ++I
) {
4666 AttributeSet AS
= NestAttrs
.getParamAttributes(NestArgNo
);
4667 if (AS
.hasAttribute(Attribute::Nest
)) {
4668 // Record the parameter type and any other attributes.
4676 std::vector
<Value
*> NewArgs
;
4677 std::vector
<AttributeSet
> NewArgAttrs
;
4678 NewArgs
.reserve(Call
.arg_size() + 1);
4679 NewArgAttrs
.reserve(Call
.arg_size());
4681 // Insert the nest argument into the call argument list, which may
4682 // mean appending it. Likewise for attributes.
4686 auto I
= Call
.arg_begin(), E
= Call
.arg_end();
4688 if (ArgNo
== NestArgNo
) {
4689 // Add the chain argument and attributes.
4690 Value
*NestVal
= Tramp
.getArgOperand(2);
4691 if (NestVal
->getType() != NestTy
)
4692 NestVal
= Builder
.CreateBitCast(NestVal
, NestTy
, "nest");
4693 NewArgs
.push_back(NestVal
);
4694 NewArgAttrs
.push_back(NestAttr
);
4700 // Add the original argument and attributes.
4701 NewArgs
.push_back(*I
);
4702 NewArgAttrs
.push_back(Attrs
.getParamAttributes(ArgNo
));
4709 // The trampoline may have been bitcast to a bogus type (FTy).
4710 // Handle this by synthesizing a new function type, equal to FTy
4711 // with the chain parameter inserted.
4713 std::vector
<Type
*> NewTypes
;
4714 NewTypes
.reserve(FTy
->getNumParams()+1);
4716 // Insert the chain's type into the list of parameter types, which may
4717 // mean appending it.
4720 FunctionType::param_iterator I
= FTy
->param_begin(),
4721 E
= FTy
->param_end();
4724 if (ArgNo
== NestArgNo
)
4725 // Add the chain's type.
4726 NewTypes
.push_back(NestTy
);
4731 // Add the original type.
4732 NewTypes
.push_back(*I
);
4739 // Replace the trampoline call with a direct call. Let the generic
4740 // code sort out any function type mismatches.
4741 FunctionType
*NewFTy
= FunctionType::get(FTy
->getReturnType(), NewTypes
,
4743 Constant
*NewCallee
=
4744 NestF
->getType() == PointerType::getUnqual(NewFTy
) ?
4745 NestF
: ConstantExpr::getBitCast(NestF
,
4746 PointerType::getUnqual(NewFTy
));
4747 AttributeList NewPAL
=
4748 AttributeList::get(FTy
->getContext(), Attrs
.getFnAttributes(),
4749 Attrs
.getRetAttributes(), NewArgAttrs
);
4751 SmallVector
<OperandBundleDef
, 1> OpBundles
;
4752 Call
.getOperandBundlesAsDefs(OpBundles
);
4754 Instruction
*NewCaller
;
4755 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&Call
)) {
4756 NewCaller
= InvokeInst::Create(NewFTy
, NewCallee
,
4757 II
->getNormalDest(), II
->getUnwindDest(),
4758 NewArgs
, OpBundles
);
4759 cast
<InvokeInst
>(NewCaller
)->setCallingConv(II
->getCallingConv());
4760 cast
<InvokeInst
>(NewCaller
)->setAttributes(NewPAL
);
4761 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(&Call
)) {
4763 CallBrInst::Create(NewFTy
, NewCallee
, CBI
->getDefaultDest(),
4764 CBI
->getIndirectDests(), NewArgs
, OpBundles
);
4765 cast
<CallBrInst
>(NewCaller
)->setCallingConv(CBI
->getCallingConv());
4766 cast
<CallBrInst
>(NewCaller
)->setAttributes(NewPAL
);
4768 NewCaller
= CallInst::Create(NewFTy
, NewCallee
, NewArgs
, OpBundles
);
4769 cast
<CallInst
>(NewCaller
)->setTailCallKind(
4770 cast
<CallInst
>(Call
).getTailCallKind());
4771 cast
<CallInst
>(NewCaller
)->setCallingConv(
4772 cast
<CallInst
>(Call
).getCallingConv());
4773 cast
<CallInst
>(NewCaller
)->setAttributes(NewPAL
);
4775 NewCaller
->setDebugLoc(Call
.getDebugLoc());
4781 // Replace the trampoline call with a direct call. Since there is no 'nest'
4782 // parameter, there is no need to adjust the argument list. Let the generic
4783 // code sort out any function type mismatches.
4784 Constant
*NewCallee
= ConstantExpr::getBitCast(NestF
, CalleeTy
);
4785 Call
.setCalledFunction(FTy
, NewCallee
);