1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements instcombine for ExtractElement, InsertElement and
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
43 using namespace PatternMatch
;
45 #define DEBUG_TYPE "instcombine"
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value
*V
, bool IsConstantExtractIndex
) {
53 // If we can pick a scalar constant value out of a vector, that is free.
54 if (auto *C
= dyn_cast
<Constant
>(V
))
55 return IsConstantExtractIndex
|| C
->getSplatValue();
57 // An insertelement to the same constant index as our extract will simplify
58 // to the scalar inserted element. An insertelement to a different constant
59 // index is irrelevant to our extract.
60 if (match(V
, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61 return IsConstantExtractIndex
;
63 if (match(V
, m_OneUse(m_Load(m_Value()))))
67 if (match(V
, m_OneUse(m_BinOp(m_Value(V0
), m_Value(V1
)))))
68 if (cheapToScalarize(V0
, IsConstantExtractIndex
) ||
69 cheapToScalarize(V1
, IsConstantExtractIndex
))
72 CmpInst::Predicate UnusedPred
;
73 if (match(V
, m_OneUse(m_Cmp(UnusedPred
, m_Value(V0
), m_Value(V1
)))))
74 if (cheapToScalarize(V0
, IsConstantExtractIndex
) ||
75 cheapToScalarize(V1
, IsConstantExtractIndex
))
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction
*InstCombiner::scalarizePHI(ExtractElementInst
&EI
, PHINode
*PN
) {
85 SmallVector
<Instruction
*, 2> Extracts
;
86 // The users we want the PHI to have are:
87 // 1) The EI ExtractElement (we already know this)
88 // 2) Possibly more ExtractElements with the same index.
89 // 3) Another operand, which will feed back into the PHI.
90 Instruction
*PHIUser
= nullptr;
91 for (auto U
: PN
->users()) {
92 if (ExtractElementInst
*EU
= dyn_cast
<ExtractElementInst
>(U
)) {
93 if (EI
.getIndexOperand() == EU
->getIndexOperand())
94 Extracts
.push_back(EU
);
97 } else if (!PHIUser
) {
98 PHIUser
= cast
<Instruction
>(U
);
107 // Verify that this PHI user has one use, which is the PHI itself,
108 // and that it is a binary operation which is cheap to scalarize.
109 // otherwise return nullptr.
110 if (!PHIUser
->hasOneUse() || !(PHIUser
->user_back() == PN
) ||
111 !(isa
<BinaryOperator
>(PHIUser
)) || !cheapToScalarize(PHIUser
, true))
114 // Create a scalar PHI node that will replace the vector PHI node
115 // just before the current PHI node.
116 PHINode
*scalarPHI
= cast
<PHINode
>(InsertNewInstWith(
117 PHINode::Create(EI
.getType(), PN
->getNumIncomingValues(), ""), *PN
));
118 // Scalarize each PHI operand.
119 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
120 Value
*PHIInVal
= PN
->getIncomingValue(i
);
121 BasicBlock
*inBB
= PN
->getIncomingBlock(i
);
122 Value
*Elt
= EI
.getIndexOperand();
123 // If the operand is the PHI induction variable:
124 if (PHIInVal
== PHIUser
) {
125 // Scalarize the binary operation. Its first operand is the
126 // scalar PHI, and the second operand is extracted from the other
128 BinaryOperator
*B0
= cast
<BinaryOperator
>(PHIUser
);
129 unsigned opId
= (B0
->getOperand(0) == PN
) ? 1 : 0;
130 Value
*Op
= InsertNewInstWith(
131 ExtractElementInst::Create(B0
->getOperand(opId
), Elt
,
132 B0
->getOperand(opId
)->getName() + ".Elt"),
134 Value
*newPHIUser
= InsertNewInstWith(
135 BinaryOperator::CreateWithCopiedFlags(B0
->getOpcode(),
136 scalarPHI
, Op
, B0
), *B0
);
137 scalarPHI
->addIncoming(newPHIUser
, inBB
);
139 // Scalarize PHI input:
140 Instruction
*newEI
= ExtractElementInst::Create(PHIInVal
, Elt
, "");
141 // Insert the new instruction into the predecessor basic block.
142 Instruction
*pos
= dyn_cast
<Instruction
>(PHIInVal
);
143 BasicBlock::iterator InsertPos
;
144 if (pos
&& !isa
<PHINode
>(pos
)) {
145 InsertPos
= ++pos
->getIterator();
147 InsertPos
= inBB
->getFirstInsertionPt();
150 InsertNewInstWith(newEI
, *InsertPos
);
152 scalarPHI
->addIncoming(newEI
, inBB
);
156 for (auto E
: Extracts
)
157 replaceInstUsesWith(*E
, scalarPHI
);
162 static Instruction
*foldBitcastExtElt(ExtractElementInst
&Ext
,
163 InstCombiner::BuilderTy
&Builder
,
167 if (!match(Ext
.getVectorOperand(), m_BitCast(m_Value(X
))) ||
168 !X
->getType()->isVectorTy() ||
169 !match(Ext
.getIndexOperand(), m_ConstantInt(ExtIndexC
)))
172 // If this extractelement is using a bitcast from a vector of the same number
173 // of elements, see if we can find the source element from the source vector:
174 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175 Type
*SrcTy
= X
->getType();
176 Type
*DestTy
= Ext
.getType();
177 unsigned NumSrcElts
= SrcTy
->getVectorNumElements();
178 unsigned NumElts
= Ext
.getVectorOperandType()->getNumElements();
179 if (NumSrcElts
== NumElts
)
180 if (Value
*Elt
= findScalarElement(X
, ExtIndexC
))
181 return new BitCastInst(Elt
, DestTy
);
183 // If the source elements are wider than the destination, try to shift and
184 // truncate a subset of scalar bits of an insert op.
185 if (NumSrcElts
< NumElts
) {
188 if (!match(X
, m_InsertElement(m_Value(), m_Value(Scalar
),
189 m_ConstantInt(InsIndexC
))))
192 // The extract must be from the subset of vector elements that we inserted
193 // into. Example: if we inserted element 1 of a <2 x i64> and we are
194 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195 // of elements 4-7 of the bitcasted vector.
196 unsigned NarrowingRatio
= NumElts
/ NumSrcElts
;
197 if (ExtIndexC
/ NarrowingRatio
!= InsIndexC
)
200 // We are extracting part of the original scalar. How that scalar is
201 // inserted into the vector depends on the endian-ness. Example:
202 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
203 // +--+--+--+--+--+--+--+--+
204 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
205 // extelt <4 x i16> V', 3: | |S2|S3|
206 // +--+--+--+--+--+--+--+--+
207 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209 // In this example, we must right-shift little-endian. Big-endian is just a
211 unsigned Chunk
= ExtIndexC
% NarrowingRatio
;
213 Chunk
= NarrowingRatio
- 1 - Chunk
;
215 // Bail out if this is an FP vector to FP vector sequence. That would take
216 // more instructions than we started with unless there is no shift, and it
217 // may not be handled as well in the backend.
218 bool NeedSrcBitcast
= SrcTy
->getScalarType()->isFloatingPointTy();
219 bool NeedDestBitcast
= DestTy
->isFloatingPointTy();
220 if (NeedSrcBitcast
&& NeedDestBitcast
)
223 unsigned SrcWidth
= SrcTy
->getScalarSizeInBits();
224 unsigned DestWidth
= DestTy
->getPrimitiveSizeInBits();
225 unsigned ShAmt
= Chunk
* DestWidth
;
227 // TODO: This limitation is more strict than necessary. We could sum the
228 // number of new instructions and subtract the number eliminated to know if
230 if (!X
->hasOneUse() || !Ext
.getVectorOperand()->hasOneUse())
231 if (NeedSrcBitcast
|| NeedDestBitcast
)
234 if (NeedSrcBitcast
) {
235 Type
*SrcIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), SrcWidth
);
236 Scalar
= Builder
.CreateBitCast(Scalar
, SrcIntTy
);
240 // Bail out if we could end with more instructions than we started with.
241 if (!Ext
.getVectorOperand()->hasOneUse())
243 Scalar
= Builder
.CreateLShr(Scalar
, ShAmt
);
246 if (NeedDestBitcast
) {
247 Type
*DestIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), DestWidth
);
248 return new BitCastInst(Builder
.CreateTrunc(Scalar
, DestIntTy
), DestTy
);
250 return new TruncInst(Scalar
, DestTy
);
256 Instruction
*InstCombiner::visitExtractElementInst(ExtractElementInst
&EI
) {
257 Value
*SrcVec
= EI
.getVectorOperand();
258 Value
*Index
= EI
.getIndexOperand();
259 if (Value
*V
= SimplifyExtractElementInst(SrcVec
, Index
,
260 SQ
.getWithInstruction(&EI
)))
261 return replaceInstUsesWith(EI
, V
);
263 // If extracting a specified index from the vector, see if we can recursively
264 // find a previously computed scalar that was inserted into the vector.
265 auto *IndexC
= dyn_cast
<ConstantInt
>(Index
);
267 unsigned NumElts
= EI
.getVectorOperandType()->getNumElements();
269 // InstSimplify should handle cases where the index is invalid.
270 if (!IndexC
->getValue().ule(NumElts
))
273 // This instruction only demands the single element from the input vector.
274 // If the input vector has a single use, simplify it based on this use
276 if (SrcVec
->hasOneUse() && NumElts
!= 1) {
277 APInt
UndefElts(NumElts
, 0);
278 APInt
DemandedElts(NumElts
, 0);
279 DemandedElts
.setBit(IndexC
->getZExtValue());
280 if (Value
*V
= SimplifyDemandedVectorElts(SrcVec
, DemandedElts
,
287 if (Instruction
*I
= foldBitcastExtElt(EI
, Builder
, DL
.isBigEndian()))
290 // If there's a vector PHI feeding a scalar use through this extractelement
291 // instruction, try to scalarize the PHI.
292 if (auto *Phi
= dyn_cast
<PHINode
>(SrcVec
))
293 if (Instruction
*ScalarPHI
= scalarizePHI(EI
, Phi
))
298 if (match(SrcVec
, m_BinOp(BO
)) && cheapToScalarize(SrcVec
, IndexC
)) {
299 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
300 Value
*X
= BO
->getOperand(0), *Y
= BO
->getOperand(1);
301 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
302 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
303 return BinaryOperator::CreateWithCopiedFlags(BO
->getOpcode(), E0
, E1
, BO
);
307 CmpInst::Predicate Pred
;
308 if (match(SrcVec
, m_Cmp(Pred
, m_Value(X
), m_Value(Y
))) &&
309 cheapToScalarize(SrcVec
, IndexC
)) {
310 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
311 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
312 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
313 return CmpInst::Create(cast
<CmpInst
>(SrcVec
)->getOpcode(), Pred
, E0
, E1
);
316 if (auto *I
= dyn_cast
<Instruction
>(SrcVec
)) {
317 if (auto *IE
= dyn_cast
<InsertElementInst
>(I
)) {
318 // Extracting the inserted element?
319 if (IE
->getOperand(2) == Index
)
320 return replaceInstUsesWith(EI
, IE
->getOperand(1));
321 // If the inserted and extracted elements are constants, they must not
322 // be the same value, extract from the pre-inserted value instead.
323 if (isa
<Constant
>(IE
->getOperand(2)) && IndexC
) {
324 Worklist
.AddValue(SrcVec
);
325 EI
.setOperand(0, IE
->getOperand(0));
328 } else if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
329 // If this is extracting an element from a shufflevector, figure out where
330 // it came from and extract from the appropriate input element instead.
331 if (auto *Elt
= dyn_cast
<ConstantInt
>(Index
)) {
332 int SrcIdx
= SVI
->getMaskValue(Elt
->getZExtValue());
335 SVI
->getOperand(0)->getType()->getVectorNumElements();
338 return replaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
339 if (SrcIdx
< (int)LHSWidth
)
340 Src
= SVI
->getOperand(0);
343 Src
= SVI
->getOperand(1);
345 Type
*Int32Ty
= Type::getInt32Ty(EI
.getContext());
346 return ExtractElementInst::Create(Src
,
347 ConstantInt::get(Int32Ty
,
350 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
351 // Canonicalize extractelement(cast) -> cast(extractelement).
352 // Bitcasts can change the number of vector elements, and they cost
354 if (CI
->hasOneUse() && (CI
->getOpcode() != Instruction::BitCast
)) {
355 Value
*EE
= Builder
.CreateExtractElement(CI
->getOperand(0), Index
);
356 Worklist
.AddValue(EE
);
357 return CastInst::Create(CI
->getOpcode(), EE
, EI
.getType());
364 /// If V is a shuffle of values that ONLY returns elements from either LHS or
365 /// RHS, return the shuffle mask and true. Otherwise, return false.
366 static bool collectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
367 SmallVectorImpl
<Constant
*> &Mask
) {
368 assert(LHS
->getType() == RHS
->getType() &&
369 "Invalid CollectSingleShuffleElements");
370 unsigned NumElts
= V
->getType()->getVectorNumElements();
372 if (isa
<UndefValue
>(V
)) {
373 Mask
.assign(NumElts
, UndefValue::get(Type::getInt32Ty(V
->getContext())));
378 for (unsigned i
= 0; i
!= NumElts
; ++i
)
379 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
));
384 for (unsigned i
= 0; i
!= NumElts
; ++i
)
385 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()),
390 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
391 // If this is an insert of an extract from some other vector, include it.
392 Value
*VecOp
= IEI
->getOperand(0);
393 Value
*ScalarOp
= IEI
->getOperand(1);
394 Value
*IdxOp
= IEI
->getOperand(2);
396 if (!isa
<ConstantInt
>(IdxOp
))
398 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
400 if (isa
<UndefValue
>(ScalarOp
)) { // inserting undef into vector.
401 // We can handle this if the vector we are inserting into is
403 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
404 // If so, update the mask to reflect the inserted undef.
405 Mask
[InsertedIdx
] = UndefValue::get(Type::getInt32Ty(V
->getContext()));
408 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
409 if (isa
<ConstantInt
>(EI
->getOperand(1))) {
410 unsigned ExtractedIdx
=
411 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
412 unsigned NumLHSElts
= LHS
->getType()->getVectorNumElements();
414 // This must be extracting from either LHS or RHS.
415 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
416 // We can handle this if the vector we are inserting into is
418 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
419 // If so, update the mask to reflect the inserted value.
420 if (EI
->getOperand(0) == LHS
) {
421 Mask
[InsertedIdx
% NumElts
] =
422 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
425 assert(EI
->getOperand(0) == RHS
);
426 Mask
[InsertedIdx
% NumElts
] =
427 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
428 ExtractedIdx
+ NumLHSElts
);
440 /// If we have insertion into a vector that is wider than the vector that we
441 /// are extracting from, try to widen the source vector to allow a single
442 /// shufflevector to replace one or more insert/extract pairs.
443 static void replaceExtractElements(InsertElementInst
*InsElt
,
444 ExtractElementInst
*ExtElt
,
446 VectorType
*InsVecType
= InsElt
->getType();
447 VectorType
*ExtVecType
= ExtElt
->getVectorOperandType();
448 unsigned NumInsElts
= InsVecType
->getVectorNumElements();
449 unsigned NumExtElts
= ExtVecType
->getVectorNumElements();
451 // The inserted-to vector must be wider than the extracted-from vector.
452 if (InsVecType
->getElementType() != ExtVecType
->getElementType() ||
453 NumExtElts
>= NumInsElts
)
456 // Create a shuffle mask to widen the extended-from vector using undefined
457 // values. The mask selects all of the values of the original vector followed
458 // by as many undefined values as needed to create a vector of the same length
459 // as the inserted-to vector.
460 SmallVector
<Constant
*, 16> ExtendMask
;
461 IntegerType
*IntType
= Type::getInt32Ty(InsElt
->getContext());
462 for (unsigned i
= 0; i
< NumExtElts
; ++i
)
463 ExtendMask
.push_back(ConstantInt::get(IntType
, i
));
464 for (unsigned i
= NumExtElts
; i
< NumInsElts
; ++i
)
465 ExtendMask
.push_back(UndefValue::get(IntType
));
467 Value
*ExtVecOp
= ExtElt
->getVectorOperand();
468 auto *ExtVecOpInst
= dyn_cast
<Instruction
>(ExtVecOp
);
469 BasicBlock
*InsertionBlock
= (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
470 ? ExtVecOpInst
->getParent()
471 : ExtElt
->getParent();
473 // TODO: This restriction matches the basic block check below when creating
474 // new extractelement instructions. If that limitation is removed, this one
475 // could also be removed. But for now, we just bail out to ensure that we
476 // will replace the extractelement instruction that is feeding our
477 // insertelement instruction. This allows the insertelement to then be
478 // replaced by a shufflevector. If the insertelement is not replaced, we can
479 // induce infinite looping because there's an optimization for extractelement
480 // that will delete our widening shuffle. This would trigger another attempt
481 // here to create that shuffle, and we spin forever.
482 if (InsertionBlock
!= InsElt
->getParent())
485 // TODO: This restriction matches the check in visitInsertElementInst() and
486 // prevents an infinite loop caused by not turning the extract/insert pair
487 // into a shuffle. We really should not need either check, but we're lacking
488 // folds for shufflevectors because we're afraid to generate shuffle masks
489 // that the backend can't handle.
490 if (InsElt
->hasOneUse() && isa
<InsertElementInst
>(InsElt
->user_back()))
493 auto *WideVec
= new ShuffleVectorInst(ExtVecOp
, UndefValue::get(ExtVecType
),
494 ConstantVector::get(ExtendMask
));
496 // Insert the new shuffle after the vector operand of the extract is defined
497 // (as long as it's not a PHI) or at the start of the basic block of the
498 // extract, so any subsequent extracts in the same basic block can use it.
499 // TODO: Insert before the earliest ExtractElementInst that is replaced.
500 if (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
501 WideVec
->insertAfter(ExtVecOpInst
);
503 IC
.InsertNewInstWith(WideVec
, *ExtElt
->getParent()->getFirstInsertionPt());
505 // Replace extracts from the original narrow vector with extracts from the new
507 for (User
*U
: ExtVecOp
->users()) {
508 ExtractElementInst
*OldExt
= dyn_cast
<ExtractElementInst
>(U
);
509 if (!OldExt
|| OldExt
->getParent() != WideVec
->getParent())
511 auto *NewExt
= ExtractElementInst::Create(WideVec
, OldExt
->getOperand(1));
512 NewExt
->insertAfter(OldExt
);
513 IC
.replaceInstUsesWith(*OldExt
, NewExt
);
517 /// We are building a shuffle to create V, which is a sequence of insertelement,
518 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
519 /// not rely on the second vector source. Return a std::pair containing the
520 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
521 /// parameter as required.
523 /// Note: we intentionally don't try to fold earlier shuffles since they have
524 /// often been chosen carefully to be efficiently implementable on the target.
525 using ShuffleOps
= std::pair
<Value
*, Value
*>;
527 static ShuffleOps
collectShuffleElements(Value
*V
,
528 SmallVectorImpl
<Constant
*> &Mask
,
531 assert(V
->getType()->isVectorTy() && "Invalid shuffle!");
532 unsigned NumElts
= V
->getType()->getVectorNumElements();
534 if (isa
<UndefValue
>(V
)) {
535 Mask
.assign(NumElts
, UndefValue::get(Type::getInt32Ty(V
->getContext())));
536 return std::make_pair(
537 PermittedRHS
? UndefValue::get(PermittedRHS
->getType()) : V
, nullptr);
540 if (isa
<ConstantAggregateZero
>(V
)) {
541 Mask
.assign(NumElts
, ConstantInt::get(Type::getInt32Ty(V
->getContext()),0));
542 return std::make_pair(V
, nullptr);
545 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
546 // If this is an insert of an extract from some other vector, include it.
547 Value
*VecOp
= IEI
->getOperand(0);
548 Value
*ScalarOp
= IEI
->getOperand(1);
549 Value
*IdxOp
= IEI
->getOperand(2);
551 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
552 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
)) {
553 unsigned ExtractedIdx
=
554 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
555 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
557 // Either the extracted from or inserted into vector must be RHSVec,
558 // otherwise we'd end up with a shuffle of three inputs.
559 if (EI
->getOperand(0) == PermittedRHS
|| PermittedRHS
== nullptr) {
560 Value
*RHS
= EI
->getOperand(0);
561 ShuffleOps LR
= collectShuffleElements(VecOp
, Mask
, RHS
, IC
);
562 assert(LR
.second
== nullptr || LR
.second
== RHS
);
564 if (LR
.first
->getType() != RHS
->getType()) {
565 // Although we are giving up for now, see if we can create extracts
566 // that match the inserts for another round of combining.
567 replaceExtractElements(IEI
, EI
, IC
);
569 // We tried our best, but we can't find anything compatible with RHS
570 // further up the chain. Return a trivial shuffle.
571 for (unsigned i
= 0; i
< NumElts
; ++i
)
572 Mask
[i
] = ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
);
573 return std::make_pair(V
, nullptr);
576 unsigned NumLHSElts
= RHS
->getType()->getVectorNumElements();
577 Mask
[InsertedIdx
% NumElts
] =
578 ConstantInt::get(Type::getInt32Ty(V
->getContext()),
579 NumLHSElts
+ExtractedIdx
);
580 return std::make_pair(LR
.first
, RHS
);
583 if (VecOp
== PermittedRHS
) {
584 // We've gone as far as we can: anything on the other side of the
585 // extractelement will already have been converted into a shuffle.
586 unsigned NumLHSElts
=
587 EI
->getOperand(0)->getType()->getVectorNumElements();
588 for (unsigned i
= 0; i
!= NumElts
; ++i
)
589 Mask
.push_back(ConstantInt::get(
590 Type::getInt32Ty(V
->getContext()),
591 i
== InsertedIdx
? ExtractedIdx
: NumLHSElts
+ i
));
592 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
595 // If this insertelement is a chain that comes from exactly these two
596 // vectors, return the vector and the effective shuffle.
597 if (EI
->getOperand(0)->getType() == PermittedRHS
->getType() &&
598 collectSingleShuffleElements(IEI
, EI
->getOperand(0), PermittedRHS
,
600 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
605 // Otherwise, we can't do anything fancy. Return an identity vector.
606 for (unsigned i
= 0; i
!= NumElts
; ++i
)
607 Mask
.push_back(ConstantInt::get(Type::getInt32Ty(V
->getContext()), i
));
608 return std::make_pair(V
, nullptr);
611 /// Try to find redundant insertvalue instructions, like the following ones:
612 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
613 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
614 /// Here the second instruction inserts values at the same indices, as the
615 /// first one, making the first one redundant.
616 /// It should be transformed to:
617 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
618 Instruction
*InstCombiner::visitInsertValueInst(InsertValueInst
&I
) {
619 bool IsRedundant
= false;
620 ArrayRef
<unsigned int> FirstIndices
= I
.getIndices();
622 // If there is a chain of insertvalue instructions (each of them except the
623 // last one has only one use and it's another insertvalue insn from this
624 // chain), check if any of the 'children' uses the same indices as the first
625 // instruction. In this case, the first one is redundant.
628 while (V
->hasOneUse() && Depth
< 10) {
629 User
*U
= V
->user_back();
630 auto UserInsInst
= dyn_cast
<InsertValueInst
>(U
);
631 if (!UserInsInst
|| U
->getOperand(0) != V
)
633 if (UserInsInst
->getIndices() == FirstIndices
) {
642 return replaceInstUsesWith(I
, I
.getOperand(0));
646 static bool isShuffleEquivalentToSelect(ShuffleVectorInst
&Shuf
) {
647 int MaskSize
= Shuf
.getMask()->getType()->getVectorNumElements();
648 int VecSize
= Shuf
.getOperand(0)->getType()->getVectorNumElements();
650 // A vector select does not change the size of the operands.
651 if (MaskSize
!= VecSize
)
654 // Each mask element must be undefined or choose a vector element from one of
655 // the source operands without crossing vector lanes.
656 for (int i
= 0; i
!= MaskSize
; ++i
) {
657 int Elt
= Shuf
.getMaskValue(i
);
658 if (Elt
!= -1 && Elt
!= i
&& Elt
!= i
+ VecSize
)
665 /// Turn a chain of inserts that splats a value into an insert + shuffle:
666 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
667 /// shufflevector(insertelt(X, %k, 0), undef, zero)
668 static Instruction
*foldInsSequenceIntoSplat(InsertElementInst
&InsElt
) {
669 // We are interested in the last insert in a chain. So if this insert has a
670 // single user and that user is an insert, bail.
671 if (InsElt
.hasOneUse() && isa
<InsertElementInst
>(InsElt
.user_back()))
674 auto *VecTy
= cast
<VectorType
>(InsElt
.getType());
675 unsigned NumElements
= VecTy
->getNumElements();
677 // Do not try to do this for a one-element vector, since that's a nop,
678 // and will cause an inf-loop.
679 if (NumElements
== 1)
682 Value
*SplatVal
= InsElt
.getOperand(1);
683 InsertElementInst
*CurrIE
= &InsElt
;
684 SmallVector
<bool, 16> ElementPresent(NumElements
, false);
685 InsertElementInst
*FirstIE
= nullptr;
687 // Walk the chain backwards, keeping track of which indices we inserted into,
688 // until we hit something that isn't an insert of the splatted value.
690 auto *Idx
= dyn_cast
<ConstantInt
>(CurrIE
->getOperand(2));
691 if (!Idx
|| CurrIE
->getOperand(1) != SplatVal
)
694 auto *NextIE
= dyn_cast
<InsertElementInst
>(CurrIE
->getOperand(0));
695 // Check none of the intermediate steps have any additional uses, except
696 // for the root insertelement instruction, which can be re-used, if it
697 // inserts at position 0.
698 if (CurrIE
!= &InsElt
&&
699 (!CurrIE
->hasOneUse() && (NextIE
!= nullptr || !Idx
->isZero())))
702 ElementPresent
[Idx
->getZExtValue()] = true;
707 // If this is just a single insertelement (not a sequence), we are done.
708 if (FirstIE
== &InsElt
)
711 // If we are not inserting into an undef vector, make sure we've seen an
712 // insert into every element.
713 // TODO: If the base vector is not undef, it might be better to create a splat
714 // and then a select-shuffle (blend) with the base vector.
715 if (!isa
<UndefValue
>(FirstIE
->getOperand(0)))
716 if (any_of(ElementPresent
, [](bool Present
) { return !Present
; }))
719 // Create the insert + shuffle.
720 Type
*Int32Ty
= Type::getInt32Ty(InsElt
.getContext());
721 UndefValue
*UndefVec
= UndefValue::get(VecTy
);
722 Constant
*Zero
= ConstantInt::get(Int32Ty
, 0);
723 if (!cast
<ConstantInt
>(FirstIE
->getOperand(2))->isZero())
724 FirstIE
= InsertElementInst::Create(UndefVec
, SplatVal
, Zero
, "", &InsElt
);
726 // Splat from element 0, but replace absent elements with undef in the mask.
727 SmallVector
<Constant
*, 16> Mask(NumElements
, Zero
);
728 for (unsigned i
= 0; i
!= NumElements
; ++i
)
729 if (!ElementPresent
[i
])
730 Mask
[i
] = UndefValue::get(Int32Ty
);
732 return new ShuffleVectorInst(FirstIE
, UndefVec
, ConstantVector::get(Mask
));
735 /// Try to fold an insert element into an existing splat shuffle by changing
736 /// the shuffle's mask to include the index of this insert element.
737 static Instruction
*foldInsEltIntoSplat(InsertElementInst
&InsElt
) {
738 // Check if the vector operand of this insert is a canonical splat shuffle.
739 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
740 if (!Shuf
|| !Shuf
->isZeroEltSplat())
743 // Check for a constant insertion index.
745 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
748 // Check if the splat shuffle's input is the same as this insert's scalar op.
749 Value
*X
= InsElt
.getOperand(1);
750 Value
*Op0
= Shuf
->getOperand(0);
751 if (!match(Op0
, m_InsertElement(m_Undef(), m_Specific(X
), m_ZeroInt())))
754 // Replace the shuffle mask element at the index of this insert with a zero.
756 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
757 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
758 unsigned NumMaskElts
= Shuf
->getType()->getVectorNumElements();
759 SmallVector
<Constant
*, 16> NewMaskVec(NumMaskElts
);
760 Type
*I32Ty
= IntegerType::getInt32Ty(Shuf
->getContext());
761 Constant
*Zero
= ConstantInt::getNullValue(I32Ty
);
762 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
763 NewMaskVec
[i
] = i
== IdxC
? Zero
: Shuf
->getMask()->getAggregateElement(i
);
765 Constant
*NewMask
= ConstantVector::get(NewMaskVec
);
766 return new ShuffleVectorInst(Op0
, UndefValue::get(Op0
->getType()), NewMask
);
769 /// If we have an insertelement instruction feeding into another insertelement
770 /// and the 2nd is inserting a constant into the vector, canonicalize that
771 /// constant insertion before the insertion of a variable:
773 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
774 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
776 /// This has the potential of eliminating the 2nd insertelement instruction
777 /// via constant folding of the scalar constant into a vector constant.
778 static Instruction
*hoistInsEltConst(InsertElementInst
&InsElt2
,
779 InstCombiner::BuilderTy
&Builder
) {
780 auto *InsElt1
= dyn_cast
<InsertElementInst
>(InsElt2
.getOperand(0));
781 if (!InsElt1
|| !InsElt1
->hasOneUse())
786 ConstantInt
*IdxC1
, *IdxC2
;
787 if (match(InsElt1
->getOperand(0), m_Value(X
)) &&
788 match(InsElt1
->getOperand(1), m_Value(Y
)) && !isa
<Constant
>(Y
) &&
789 match(InsElt1
->getOperand(2), m_ConstantInt(IdxC1
)) &&
790 match(InsElt2
.getOperand(1), m_Constant(ScalarC
)) &&
791 match(InsElt2
.getOperand(2), m_ConstantInt(IdxC2
)) && IdxC1
!= IdxC2
) {
792 Value
*NewInsElt1
= Builder
.CreateInsertElement(X
, ScalarC
, IdxC2
);
793 return InsertElementInst::Create(NewInsElt1
, Y
, IdxC1
);
799 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
800 /// --> shufflevector X, CVec', Mask'
801 static Instruction
*foldConstantInsEltIntoShuffle(InsertElementInst
&InsElt
) {
802 auto *Inst
= dyn_cast
<Instruction
>(InsElt
.getOperand(0));
803 // Bail out if the parent has more than one use. In that case, we'd be
804 // replacing the insertelt with a shuffle, and that's not a clear win.
805 if (!Inst
|| !Inst
->hasOneUse())
807 if (auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0))) {
808 // The shuffle must have a constant vector operand. The insertelt must have
809 // a constant scalar being inserted at a constant position in the vector.
810 Constant
*ShufConstVec
, *InsEltScalar
;
811 uint64_t InsEltIndex
;
812 if (!match(Shuf
->getOperand(1), m_Constant(ShufConstVec
)) ||
813 !match(InsElt
.getOperand(1), m_Constant(InsEltScalar
)) ||
814 !match(InsElt
.getOperand(2), m_ConstantInt(InsEltIndex
)))
817 // Adding an element to an arbitrary shuffle could be expensive, but a
818 // shuffle that selects elements from vectors without crossing lanes is
820 // If we're just adding a constant into that shuffle, it will still be
822 if (!isShuffleEquivalentToSelect(*Shuf
))
825 // From the above 'select' check, we know that the mask has the same number
826 // of elements as the vector input operands. We also know that each constant
827 // input element is used in its lane and can not be used more than once by
828 // the shuffle. Therefore, replace the constant in the shuffle's constant
829 // vector with the insertelt constant. Replace the constant in the shuffle's
830 // mask vector with the insertelt index plus the length of the vector
831 // (because the constant vector operand of a shuffle is always the 2nd
833 Constant
*Mask
= Shuf
->getMask();
834 unsigned NumElts
= Mask
->getType()->getVectorNumElements();
835 SmallVector
<Constant
*, 16> NewShufElts(NumElts
);
836 SmallVector
<Constant
*, 16> NewMaskElts(NumElts
);
837 for (unsigned I
= 0; I
!= NumElts
; ++I
) {
838 if (I
== InsEltIndex
) {
839 NewShufElts
[I
] = InsEltScalar
;
840 Type
*Int32Ty
= Type::getInt32Ty(Shuf
->getContext());
841 NewMaskElts
[I
] = ConstantInt::get(Int32Ty
, InsEltIndex
+ NumElts
);
843 // Copy over the existing values.
844 NewShufElts
[I
] = ShufConstVec
->getAggregateElement(I
);
845 NewMaskElts
[I
] = Mask
->getAggregateElement(I
);
849 // Create new operands for a shuffle that includes the constant of the
850 // original insertelt. The old shuffle will be dead now.
851 return new ShuffleVectorInst(Shuf
->getOperand(0),
852 ConstantVector::get(NewShufElts
),
853 ConstantVector::get(NewMaskElts
));
854 } else if (auto *IEI
= dyn_cast
<InsertElementInst
>(Inst
)) {
855 // Transform sequences of insertelements ops with constant data/indexes into
856 // a single shuffle op.
857 unsigned NumElts
= InsElt
.getType()->getNumElements();
859 uint64_t InsertIdx
[2];
861 if (!match(InsElt
.getOperand(2), m_ConstantInt(InsertIdx
[0])) ||
862 !match(InsElt
.getOperand(1), m_Constant(Val
[0])) ||
863 !match(IEI
->getOperand(2), m_ConstantInt(InsertIdx
[1])) ||
864 !match(IEI
->getOperand(1), m_Constant(Val
[1])))
866 SmallVector
<Constant
*, 16> Values(NumElts
);
867 SmallVector
<Constant
*, 16> Mask(NumElts
);
868 auto ValI
= std::begin(Val
);
869 // Generate new constant vector and mask.
870 // We have 2 values/masks from the insertelements instructions. Insert them
871 // into new value/mask vectors.
872 for (uint64_t I
: InsertIdx
) {
876 Mask
[I
] = ConstantInt::get(Type::getInt32Ty(InsElt
.getContext()),
881 // Remaining values are filled with 'undef' values.
882 for (unsigned I
= 0; I
< NumElts
; ++I
) {
885 Values
[I
] = UndefValue::get(InsElt
.getType()->getElementType());
886 Mask
[I
] = ConstantInt::get(Type::getInt32Ty(InsElt
.getContext()), I
);
889 // Create new operands for a shuffle that includes the constant of the
890 // original insertelt.
891 return new ShuffleVectorInst(IEI
->getOperand(0),
892 ConstantVector::get(Values
),
893 ConstantVector::get(Mask
));
898 Instruction
*InstCombiner::visitInsertElementInst(InsertElementInst
&IE
) {
899 Value
*VecOp
= IE
.getOperand(0);
900 Value
*ScalarOp
= IE
.getOperand(1);
901 Value
*IdxOp
= IE
.getOperand(2);
903 if (auto *V
= SimplifyInsertElementInst(
904 VecOp
, ScalarOp
, IdxOp
, SQ
.getWithInstruction(&IE
)))
905 return replaceInstUsesWith(IE
, V
);
907 // If the vector and scalar are both bitcast from the same element type, do
908 // the insert in that source type followed by bitcast.
909 Value
*VecSrc
, *ScalarSrc
;
910 if (match(VecOp
, m_BitCast(m_Value(VecSrc
))) &&
911 match(ScalarOp
, m_BitCast(m_Value(ScalarSrc
))) &&
912 (VecOp
->hasOneUse() || ScalarOp
->hasOneUse()) &&
913 VecSrc
->getType()->isVectorTy() && !ScalarSrc
->getType()->isVectorTy() &&
914 VecSrc
->getType()->getVectorElementType() == ScalarSrc
->getType()) {
915 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
916 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
917 Value
*NewInsElt
= Builder
.CreateInsertElement(VecSrc
, ScalarSrc
, IdxOp
);
918 return new BitCastInst(NewInsElt
, IE
.getType());
921 // If the inserted element was extracted from some other vector and both
922 // indexes are valid constants, try to turn this into a shuffle.
923 uint64_t InsertedIdx
, ExtractedIdx
;
925 if (match(IdxOp
, m_ConstantInt(InsertedIdx
)) &&
926 match(ScalarOp
, m_ExtractElement(m_Value(ExtVecOp
),
927 m_ConstantInt(ExtractedIdx
))) &&
928 ExtractedIdx
< ExtVecOp
->getType()->getVectorNumElements()) {
929 // TODO: Looking at the user(s) to determine if this insert is a
930 // fold-to-shuffle opportunity does not match the usual instcombine
931 // constraints. We should decide if the transform is worthy based only
932 // on this instruction and its operands, but that may not work currently.
934 // Here, we are trying to avoid creating shuffles before reaching
935 // the end of a chain of extract-insert pairs. This is complicated because
936 // we do not generally form arbitrary shuffle masks in instcombine
937 // (because those may codegen poorly), but collectShuffleElements() does
940 // The rules for determining what is an acceptable target-independent
941 // shuffle mask are fuzzy because they evolve based on the backend's
942 // capabilities and real-world impact.
943 auto isShuffleRootCandidate
= [](InsertElementInst
&Insert
) {
944 if (!Insert
.hasOneUse())
946 auto *InsertUser
= dyn_cast
<InsertElementInst
>(Insert
.user_back());
952 // Try to form a shuffle from a chain of extract-insert ops.
953 if (isShuffleRootCandidate(IE
)) {
954 SmallVector
<Constant
*, 16> Mask
;
955 ShuffleOps LR
= collectShuffleElements(&IE
, Mask
, nullptr, *this);
957 // The proposed shuffle may be trivial, in which case we shouldn't
958 // perform the combine.
959 if (LR
.first
!= &IE
&& LR
.second
!= &IE
) {
960 // We now have a shuffle of LHS, RHS, Mask.
961 if (LR
.second
== nullptr)
962 LR
.second
= UndefValue::get(LR
.first
->getType());
963 return new ShuffleVectorInst(LR
.first
, LR
.second
,
964 ConstantVector::get(Mask
));
969 unsigned VWidth
= VecOp
->getType()->getVectorNumElements();
970 APInt
UndefElts(VWidth
, 0);
971 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
972 if (Value
*V
= SimplifyDemandedVectorElts(&IE
, AllOnesEltMask
, UndefElts
)) {
974 return replaceInstUsesWith(IE
, V
);
978 if (Instruction
*Shuf
= foldConstantInsEltIntoShuffle(IE
))
981 if (Instruction
*NewInsElt
= hoistInsEltConst(IE
, Builder
))
984 if (Instruction
*Broadcast
= foldInsSequenceIntoSplat(IE
))
987 if (Instruction
*Splat
= foldInsEltIntoSplat(IE
))
993 /// Return true if we can evaluate the specified expression tree if the vector
994 /// elements were shuffled in a different order.
995 static bool canEvaluateShuffled(Value
*V
, ArrayRef
<int> Mask
,
996 unsigned Depth
= 5) {
997 // We can always reorder the elements of a constant.
998 if (isa
<Constant
>(V
))
1001 // We won't reorder vector arguments. No IPO here.
1002 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1003 if (!I
) return false;
1005 // Two users may expect different orders of the elements. Don't try it.
1006 if (!I
->hasOneUse())
1009 if (Depth
== 0) return false;
1011 switch (I
->getOpcode()) {
1012 case Instruction::Add
:
1013 case Instruction::FAdd
:
1014 case Instruction::Sub
:
1015 case Instruction::FSub
:
1016 case Instruction::Mul
:
1017 case Instruction::FMul
:
1018 case Instruction::UDiv
:
1019 case Instruction::SDiv
:
1020 case Instruction::FDiv
:
1021 case Instruction::URem
:
1022 case Instruction::SRem
:
1023 case Instruction::FRem
:
1024 case Instruction::Shl
:
1025 case Instruction::LShr
:
1026 case Instruction::AShr
:
1027 case Instruction::And
:
1028 case Instruction::Or
:
1029 case Instruction::Xor
:
1030 case Instruction::ICmp
:
1031 case Instruction::FCmp
:
1032 case Instruction::Trunc
:
1033 case Instruction::ZExt
:
1034 case Instruction::SExt
:
1035 case Instruction::FPToUI
:
1036 case Instruction::FPToSI
:
1037 case Instruction::UIToFP
:
1038 case Instruction::SIToFP
:
1039 case Instruction::FPTrunc
:
1040 case Instruction::FPExt
:
1041 case Instruction::GetElementPtr
: {
1042 // Bail out if we would create longer vector ops. We could allow creating
1043 // longer vector ops, but that may result in more expensive codegen. We
1044 // would also need to limit the transform to avoid undefined behavior for
1046 Type
*ITy
= I
->getType();
1047 if (ITy
->isVectorTy() && Mask
.size() > ITy
->getVectorNumElements())
1049 for (Value
*Operand
: I
->operands()) {
1050 if (!canEvaluateShuffled(Operand
, Mask
, Depth
- 1))
1055 case Instruction::InsertElement
: {
1056 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1057 if (!CI
) return false;
1058 int ElementNumber
= CI
->getLimitedValue();
1060 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1061 // can't put an element into multiple indices.
1062 bool SeenOnce
= false;
1063 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1064 if (Mask
[i
] == ElementNumber
) {
1070 return canEvaluateShuffled(I
->getOperand(0), Mask
, Depth
- 1);
1076 /// Rebuild a new instruction just like 'I' but with the new operands given.
1077 /// In the event of type mismatch, the type of the operands is correct.
1078 static Value
*buildNew(Instruction
*I
, ArrayRef
<Value
*> NewOps
) {
1079 // We don't want to use the IRBuilder here because we want the replacement
1080 // instructions to appear next to 'I', not the builder's insertion point.
1081 switch (I
->getOpcode()) {
1082 case Instruction::Add
:
1083 case Instruction::FAdd
:
1084 case Instruction::Sub
:
1085 case Instruction::FSub
:
1086 case Instruction::Mul
:
1087 case Instruction::FMul
:
1088 case Instruction::UDiv
:
1089 case Instruction::SDiv
:
1090 case Instruction::FDiv
:
1091 case Instruction::URem
:
1092 case Instruction::SRem
:
1093 case Instruction::FRem
:
1094 case Instruction::Shl
:
1095 case Instruction::LShr
:
1096 case Instruction::AShr
:
1097 case Instruction::And
:
1098 case Instruction::Or
:
1099 case Instruction::Xor
: {
1100 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
1101 assert(NewOps
.size() == 2 && "binary operator with #ops != 2");
1102 BinaryOperator
*New
=
1103 BinaryOperator::Create(cast
<BinaryOperator
>(I
)->getOpcode(),
1104 NewOps
[0], NewOps
[1], "", BO
);
1105 if (isa
<OverflowingBinaryOperator
>(BO
)) {
1106 New
->setHasNoUnsignedWrap(BO
->hasNoUnsignedWrap());
1107 New
->setHasNoSignedWrap(BO
->hasNoSignedWrap());
1109 if (isa
<PossiblyExactOperator
>(BO
)) {
1110 New
->setIsExact(BO
->isExact());
1112 if (isa
<FPMathOperator
>(BO
))
1113 New
->copyFastMathFlags(I
);
1116 case Instruction::ICmp
:
1117 assert(NewOps
.size() == 2 && "icmp with #ops != 2");
1118 return new ICmpInst(I
, cast
<ICmpInst
>(I
)->getPredicate(),
1119 NewOps
[0], NewOps
[1]);
1120 case Instruction::FCmp
:
1121 assert(NewOps
.size() == 2 && "fcmp with #ops != 2");
1122 return new FCmpInst(I
, cast
<FCmpInst
>(I
)->getPredicate(),
1123 NewOps
[0], NewOps
[1]);
1124 case Instruction::Trunc
:
1125 case Instruction::ZExt
:
1126 case Instruction::SExt
:
1127 case Instruction::FPToUI
:
1128 case Instruction::FPToSI
:
1129 case Instruction::UIToFP
:
1130 case Instruction::SIToFP
:
1131 case Instruction::FPTrunc
:
1132 case Instruction::FPExt
: {
1133 // It's possible that the mask has a different number of elements from
1134 // the original cast. We recompute the destination type to match the mask.
1136 VectorType::get(I
->getType()->getScalarType(),
1137 NewOps
[0]->getType()->getVectorNumElements());
1138 assert(NewOps
.size() == 1 && "cast with #ops != 1");
1139 return CastInst::Create(cast
<CastInst
>(I
)->getOpcode(), NewOps
[0], DestTy
,
1142 case Instruction::GetElementPtr
: {
1143 Value
*Ptr
= NewOps
[0];
1144 ArrayRef
<Value
*> Idx
= NewOps
.slice(1);
1145 GetElementPtrInst
*GEP
= GetElementPtrInst::Create(
1146 cast
<GetElementPtrInst
>(I
)->getSourceElementType(), Ptr
, Idx
, "", I
);
1147 GEP
->setIsInBounds(cast
<GetElementPtrInst
>(I
)->isInBounds());
1151 llvm_unreachable("failed to rebuild vector instructions");
1154 static Value
*evaluateInDifferentElementOrder(Value
*V
, ArrayRef
<int> Mask
) {
1155 // Mask.size() does not need to be equal to the number of vector elements.
1157 assert(V
->getType()->isVectorTy() && "can't reorder non-vector elements");
1158 Type
*EltTy
= V
->getType()->getScalarType();
1159 Type
*I32Ty
= IntegerType::getInt32Ty(V
->getContext());
1160 if (isa
<UndefValue
>(V
))
1161 return UndefValue::get(VectorType::get(EltTy
, Mask
.size()));
1163 if (isa
<ConstantAggregateZero
>(V
))
1164 return ConstantAggregateZero::get(VectorType::get(EltTy
, Mask
.size()));
1166 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
1167 SmallVector
<Constant
*, 16> MaskValues
;
1168 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1170 MaskValues
.push_back(UndefValue::get(I32Ty
));
1172 MaskValues
.push_back(ConstantInt::get(I32Ty
, Mask
[i
]));
1174 return ConstantExpr::getShuffleVector(C
, UndefValue::get(C
->getType()),
1175 ConstantVector::get(MaskValues
));
1178 Instruction
*I
= cast
<Instruction
>(V
);
1179 switch (I
->getOpcode()) {
1180 case Instruction::Add
:
1181 case Instruction::FAdd
:
1182 case Instruction::Sub
:
1183 case Instruction::FSub
:
1184 case Instruction::Mul
:
1185 case Instruction::FMul
:
1186 case Instruction::UDiv
:
1187 case Instruction::SDiv
:
1188 case Instruction::FDiv
:
1189 case Instruction::URem
:
1190 case Instruction::SRem
:
1191 case Instruction::FRem
:
1192 case Instruction::Shl
:
1193 case Instruction::LShr
:
1194 case Instruction::AShr
:
1195 case Instruction::And
:
1196 case Instruction::Or
:
1197 case Instruction::Xor
:
1198 case Instruction::ICmp
:
1199 case Instruction::FCmp
:
1200 case Instruction::Trunc
:
1201 case Instruction::ZExt
:
1202 case Instruction::SExt
:
1203 case Instruction::FPToUI
:
1204 case Instruction::FPToSI
:
1205 case Instruction::UIToFP
:
1206 case Instruction::SIToFP
:
1207 case Instruction::FPTrunc
:
1208 case Instruction::FPExt
:
1209 case Instruction::Select
:
1210 case Instruction::GetElementPtr
: {
1211 SmallVector
<Value
*, 8> NewOps
;
1212 bool NeedsRebuild
= (Mask
.size() != I
->getType()->getVectorNumElements());
1213 for (int i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
1215 // Recursively call evaluateInDifferentElementOrder on vector arguments
1216 // as well. E.g. GetElementPtr may have scalar operands even if the
1217 // return value is a vector, so we need to examine the operand type.
1218 if (I
->getOperand(i
)->getType()->isVectorTy())
1219 V
= evaluateInDifferentElementOrder(I
->getOperand(i
), Mask
);
1221 V
= I
->getOperand(i
);
1222 NewOps
.push_back(V
);
1223 NeedsRebuild
|= (V
!= I
->getOperand(i
));
1226 return buildNew(I
, NewOps
);
1230 case Instruction::InsertElement
: {
1231 int Element
= cast
<ConstantInt
>(I
->getOperand(2))->getLimitedValue();
1233 // The insertelement was inserting at Element. Figure out which element
1234 // that becomes after shuffling. The answer is guaranteed to be unique
1235 // by CanEvaluateShuffled.
1238 for (int e
= Mask
.size(); Index
!= e
; ++Index
) {
1239 if (Mask
[Index
] == Element
) {
1245 // If element is not in Mask, no need to handle the operand 1 (element to
1246 // be inserted). Just evaluate values in operand 0 according to Mask.
1248 return evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1250 Value
*V
= evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1251 return InsertElementInst::Create(V
, I
->getOperand(1),
1252 ConstantInt::get(I32Ty
, Index
), "", I
);
1255 llvm_unreachable("failed to reorder elements of vector instruction!");
1258 static void recognizeIdentityMask(const SmallVectorImpl
<int> &Mask
,
1259 bool &isLHSID
, bool &isRHSID
) {
1260 isLHSID
= isRHSID
= true;
1262 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1263 if (Mask
[i
] < 0) continue; // Ignore undef values.
1264 // Is this an identity shuffle of the LHS value?
1265 isLHSID
&= (Mask
[i
] == (int)i
);
1267 // Is this an identity shuffle of the RHS value?
1268 isRHSID
&= (Mask
[i
]-e
== i
);
1272 // Returns true if the shuffle is extracting a contiguous range of values from
1273 // LHS, for example:
1274 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1275 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1276 // Shuffles to: |EE|FF|GG|HH|
1278 static bool isShuffleExtractingFromLHS(ShuffleVectorInst
&SVI
,
1279 SmallVector
<int, 16> &Mask
) {
1280 unsigned LHSElems
= SVI
.getOperand(0)->getType()->getVectorNumElements();
1281 unsigned MaskElems
= Mask
.size();
1282 unsigned BegIdx
= Mask
.front();
1283 unsigned EndIdx
= Mask
.back();
1284 if (BegIdx
> EndIdx
|| EndIdx
>= LHSElems
|| EndIdx
- BegIdx
!= MaskElems
- 1)
1286 for (unsigned I
= 0; I
!= MaskElems
; ++I
)
1287 if (static_cast<unsigned>(Mask
[I
]) != BegIdx
+ I
)
1292 /// These are the ingredients in an alternate form binary operator as described
1295 BinaryOperator::BinaryOps Opcode
;
1298 BinopElts(BinaryOperator::BinaryOps Opc
= (BinaryOperator::BinaryOps
)0,
1299 Value
*V0
= nullptr, Value
*V1
= nullptr) :
1300 Opcode(Opc
), Op0(V0
), Op1(V1
) {}
1301 operator bool() const { return Opcode
!= 0; }
1304 /// Binops may be transformed into binops with different opcodes and operands.
1305 /// Reverse the usual canonicalization to enable folds with the non-canonical
1306 /// form of the binop. If a transform is possible, return the elements of the
1307 /// new binop. If not, return invalid elements.
1308 static BinopElts
getAlternateBinop(BinaryOperator
*BO
, const DataLayout
&DL
) {
1309 Value
*BO0
= BO
->getOperand(0), *BO1
= BO
->getOperand(1);
1310 Type
*Ty
= BO
->getType();
1311 switch (BO
->getOpcode()) {
1312 case Instruction::Shl
: {
1313 // shl X, C --> mul X, (1 << C)
1315 if (match(BO1
, m_Constant(C
))) {
1316 Constant
*ShlOne
= ConstantExpr::getShl(ConstantInt::get(Ty
, 1), C
);
1317 return { Instruction::Mul
, BO0
, ShlOne
};
1321 case Instruction::Or
: {
1322 // or X, C --> add X, C (when X and C have no common bits set)
1324 if (match(BO1
, m_APInt(C
)) && MaskedValueIsZero(BO0
, *C
, DL
))
1325 return { Instruction::Add
, BO0
, BO1
};
1334 static Instruction
*foldSelectShuffleWith1Binop(ShuffleVectorInst
&Shuf
) {
1335 assert(Shuf
.isSelect() && "Must have select-equivalent shuffle");
1337 // Are we shuffling together some value and that same value after it has been
1338 // modified by a binop with a constant?
1339 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1342 if (match(Op0
, m_BinOp(m_Specific(Op1
), m_Constant(C
))))
1344 else if (match(Op1
, m_BinOp(m_Specific(Op0
), m_Constant(C
))))
1349 // The identity constant for a binop leaves a variable operand unchanged. For
1350 // a vector, this is a splat of something like 0, -1, or 1.
1351 // If there's no identity constant for this binop, we're done.
1352 auto *BO
= cast
<BinaryOperator
>(Op0IsBinop
? Op0
: Op1
);
1353 BinaryOperator::BinaryOps BOpcode
= BO
->getOpcode();
1354 Constant
*IdC
= ConstantExpr::getBinOpIdentity(BOpcode
, Shuf
.getType(), true);
1358 // Shuffle identity constants into the lanes that return the original value.
1359 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1360 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1361 // The existing binop constant vector remains in the same operand position.
1362 Constant
*Mask
= Shuf
.getMask();
1363 Constant
*NewC
= Op0IsBinop
? ConstantExpr::getShuffleVector(C
, IdC
, Mask
) :
1364 ConstantExpr::getShuffleVector(IdC
, C
, Mask
);
1366 bool MightCreatePoisonOrUB
=
1367 Mask
->containsUndefElement() &&
1368 (Instruction::isIntDivRem(BOpcode
) || Instruction::isShift(BOpcode
));
1369 if (MightCreatePoisonOrUB
)
1370 NewC
= getSafeVectorConstantForBinop(BOpcode
, NewC
, true);
1372 // shuf (bop X, C), X, M --> bop X, C'
1373 // shuf X, (bop X, C), M --> bop X, C'
1374 Value
*X
= Op0IsBinop
? Op1
: Op0
;
1375 Instruction
*NewBO
= BinaryOperator::Create(BOpcode
, X
, NewC
);
1376 NewBO
->copyIRFlags(BO
);
1378 // An undef shuffle mask element may propagate as an undef constant element in
1379 // the new binop. That would produce poison where the original code might not.
1380 // If we already made a safe constant, then there's no danger.
1381 if (Mask
->containsUndefElement() && !MightCreatePoisonOrUB
)
1382 NewBO
->dropPoisonGeneratingFlags();
1386 /// If we have an insert of a scalar to a non-zero element of an undefined
1387 /// vector and then shuffle that value, that's the same as inserting to the zero
1388 /// element and shuffling. Splatting from the zero element is recognized as the
1389 /// canonical form of splat.
1390 static Instruction
*canonicalizeInsertSplat(ShuffleVectorInst
&Shuf
,
1391 InstCombiner::BuilderTy
&Builder
) {
1392 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1393 Constant
*Mask
= Shuf
.getMask();
1397 // Match a shuffle that is a splat to a non-zero element.
1398 if (!match(Op0
, m_OneUse(m_InsertElement(m_Undef(), m_Value(X
),
1399 m_ConstantInt(IndexC
)))) ||
1400 !match(Op1
, m_Undef()) || match(Mask
, m_ZeroInt()) || IndexC
== 0)
1403 // Insert into element 0 of an undef vector.
1404 UndefValue
*UndefVec
= UndefValue::get(Shuf
.getType());
1405 Constant
*Zero
= Builder
.getInt32(0);
1406 Value
*NewIns
= Builder
.CreateInsertElement(UndefVec
, X
, Zero
);
1408 // Splat from element 0. Any mask element that is undefined remains undefined.
1410 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1411 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1412 unsigned NumMaskElts
= Shuf
.getType()->getVectorNumElements();
1413 SmallVector
<Constant
*, 16> NewMask(NumMaskElts
, Zero
);
1414 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
1415 if (isa
<UndefValue
>(Mask
->getAggregateElement(i
)))
1416 NewMask
[i
] = Mask
->getAggregateElement(i
);
1418 return new ShuffleVectorInst(NewIns
, UndefVec
, ConstantVector::get(NewMask
));
1421 /// Try to fold shuffles that are the equivalent of a vector select.
1422 static Instruction
*foldSelectShuffle(ShuffleVectorInst
&Shuf
,
1423 InstCombiner::BuilderTy
&Builder
,
1424 const DataLayout
&DL
) {
1425 if (!Shuf
.isSelect())
1428 // Canonicalize to choose from operand 0 first.
1429 unsigned NumElts
= Shuf
.getType()->getVectorNumElements();
1430 if (Shuf
.getMaskValue(0) >= (int)NumElts
) {
1431 // TODO: Can we assert that both operands of a shuffle-select are not undef
1432 // (otherwise, it would have been folded by instsimplify?
1437 if (Instruction
*I
= foldSelectShuffleWith1Binop(Shuf
))
1440 BinaryOperator
*B0
, *B1
;
1441 if (!match(Shuf
.getOperand(0), m_BinOp(B0
)) ||
1442 !match(Shuf
.getOperand(1), m_BinOp(B1
)))
1447 bool ConstantsAreOp1
;
1448 if (match(B0
, m_BinOp(m_Value(X
), m_Constant(C0
))) &&
1449 match(B1
, m_BinOp(m_Value(Y
), m_Constant(C1
))))
1450 ConstantsAreOp1
= true;
1451 else if (match(B0
, m_BinOp(m_Constant(C0
), m_Value(X
))) &&
1452 match(B1
, m_BinOp(m_Constant(C1
), m_Value(Y
))))
1453 ConstantsAreOp1
= false;
1457 // We need matching binops to fold the lanes together.
1458 BinaryOperator::BinaryOps Opc0
= B0
->getOpcode();
1459 BinaryOperator::BinaryOps Opc1
= B1
->getOpcode();
1460 bool DropNSW
= false;
1461 if (ConstantsAreOp1
&& Opc0
!= Opc1
) {
1462 // TODO: We drop "nsw" if shift is converted into multiply because it may
1463 // not be correct when the shift amount is BitWidth - 1. We could examine
1464 // each vector element to determine if it is safe to keep that flag.
1465 if (Opc0
== Instruction::Shl
|| Opc1
== Instruction::Shl
)
1467 if (BinopElts AltB0
= getAlternateBinop(B0
, DL
)) {
1468 assert(isa
<Constant
>(AltB0
.Op1
) && "Expecting constant with alt binop");
1469 Opc0
= AltB0
.Opcode
;
1470 C0
= cast
<Constant
>(AltB0
.Op1
);
1471 } else if (BinopElts AltB1
= getAlternateBinop(B1
, DL
)) {
1472 assert(isa
<Constant
>(AltB1
.Op1
) && "Expecting constant with alt binop");
1473 Opc1
= AltB1
.Opcode
;
1474 C1
= cast
<Constant
>(AltB1
.Op1
);
1481 // The opcodes must be the same. Use a new name to make that clear.
1482 BinaryOperator::BinaryOps BOpc
= Opc0
;
1484 // Select the constant elements needed for the single binop.
1485 Constant
*Mask
= Shuf
.getMask();
1486 Constant
*NewC
= ConstantExpr::getShuffleVector(C0
, C1
, Mask
);
1488 // We are moving a binop after a shuffle. When a shuffle has an undefined
1489 // mask element, the result is undefined, but it is not poison or undefined
1490 // behavior. That is not necessarily true for div/rem/shift.
1491 bool MightCreatePoisonOrUB
=
1492 Mask
->containsUndefElement() &&
1493 (Instruction::isIntDivRem(BOpc
) || Instruction::isShift(BOpc
));
1494 if (MightCreatePoisonOrUB
)
1495 NewC
= getSafeVectorConstantForBinop(BOpc
, NewC
, ConstantsAreOp1
);
1499 // Remove a binop and the shuffle by rearranging the constant:
1500 // shuffle (op V, C0), (op V, C1), M --> op V, C'
1501 // shuffle (op C0, V), (op C1, V), M --> op C', V
1504 // If there are 2 different variable operands, we must create a new shuffle
1505 // (select) first, so check uses to ensure that we don't end up with more
1506 // instructions than we started with.
1507 if (!B0
->hasOneUse() && !B1
->hasOneUse())
1510 // If we use the original shuffle mask and op1 is *variable*, we would be
1511 // putting an undef into operand 1 of div/rem/shift. This is either UB or
1512 // poison. We do not have to guard against UB when *constants* are op1
1513 // because safe constants guarantee that we do not overflow sdiv/srem (and
1514 // there's no danger for other opcodes).
1515 // TODO: To allow this case, create a new shuffle mask with no undefs.
1516 if (MightCreatePoisonOrUB
&& !ConstantsAreOp1
)
1519 // Note: In general, we do not create new shuffles in InstCombine because we
1520 // do not know if a target can lower an arbitrary shuffle optimally. In this
1521 // case, the shuffle uses the existing mask, so there is no additional risk.
1523 // Select the variable vectors first, then perform the binop:
1524 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1525 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1526 V
= Builder
.CreateShuffleVector(X
, Y
, Mask
);
1529 Instruction
*NewBO
= ConstantsAreOp1
? BinaryOperator::Create(BOpc
, V
, NewC
) :
1530 BinaryOperator::Create(BOpc
, NewC
, V
);
1532 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1533 // 1. If we changed an opcode, poison conditions might have changed.
1534 // 2. If the shuffle had undef mask elements, the new binop might have undefs
1535 // where the original code did not. But if we already made a safe constant,
1536 // then there's no danger.
1537 NewBO
->copyIRFlags(B0
);
1538 NewBO
->andIRFlags(B1
);
1540 NewBO
->setHasNoSignedWrap(false);
1541 if (Mask
->containsUndefElement() && !MightCreatePoisonOrUB
)
1542 NewBO
->dropPoisonGeneratingFlags();
1546 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1547 /// narrowing (concatenating with undef and extracting back to the original
1548 /// length). This allows replacing the wide select with a narrow select.
1549 static Instruction
*narrowVectorSelect(ShuffleVectorInst
&Shuf
,
1550 InstCombiner::BuilderTy
&Builder
) {
1551 // This must be a narrowing identity shuffle. It extracts the 1st N elements
1552 // of the 1st vector operand of a shuffle.
1553 if (!match(Shuf
.getOperand(1), m_Undef()) || !Shuf
.isIdentityWithExtract())
1556 // The vector being shuffled must be a vector select that we can eliminate.
1557 // TODO: The one-use requirement could be eased if X and/or Y are constants.
1558 Value
*Cond
, *X
, *Y
;
1559 if (!match(Shuf
.getOperand(0),
1560 m_OneUse(m_Select(m_Value(Cond
), m_Value(X
), m_Value(Y
)))))
1563 // We need a narrow condition value. It must be extended with undef elements
1564 // and have the same number of elements as this shuffle.
1565 unsigned NarrowNumElts
= Shuf
.getType()->getVectorNumElements();
1567 if (!match(Cond
, m_OneUse(m_ShuffleVector(m_Value(NarrowCond
), m_Undef(),
1569 NarrowCond
->getType()->getVectorNumElements() != NarrowNumElts
||
1570 !cast
<ShuffleVectorInst
>(Cond
)->isIdentityWithPadding())
1573 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1574 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1575 Value
*Undef
= UndefValue::get(X
->getType());
1576 Value
*NarrowX
= Builder
.CreateShuffleVector(X
, Undef
, Shuf
.getMask());
1577 Value
*NarrowY
= Builder
.CreateShuffleVector(Y
, Undef
, Shuf
.getMask());
1578 return SelectInst::Create(NarrowCond
, NarrowX
, NarrowY
);
1581 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1582 static Instruction
*foldIdentityExtractShuffle(ShuffleVectorInst
&Shuf
) {
1583 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1584 if (!Shuf
.isIdentityWithExtract() || !isa
<UndefValue
>(Op1
))
1589 if (!match(Op0
, m_ShuffleVector(m_Value(X
), m_Value(Y
), m_Constant(Mask
))))
1592 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1593 // then combining may result in worse codegen.
1594 if (!Op0
->hasOneUse())
1597 // We are extracting a subvector from a shuffle. Remove excess elements from
1598 // the 1st shuffle mask to eliminate the extract.
1600 // This transform is conservatively limited to identity extracts because we do
1601 // not allow arbitrary shuffle mask creation as a target-independent transform
1602 // (because we can't guarantee that will lower efficiently).
1604 // If the extracting shuffle has an undef mask element, it transfers to the
1605 // new shuffle mask. Otherwise, copy the original mask element. Example:
1606 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1607 // shuf X, Y, <C0, undef, C2, undef>
1608 unsigned NumElts
= Shuf
.getType()->getVectorNumElements();
1609 SmallVector
<Constant
*, 16> NewMask(NumElts
);
1610 assert(NumElts
< Mask
->getType()->getVectorNumElements() &&
1611 "Identity with extract must have less elements than its inputs");
1613 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1614 Constant
*ExtractMaskElt
= Shuf
.getMask()->getAggregateElement(i
);
1615 Constant
*MaskElt
= Mask
->getAggregateElement(i
);
1616 NewMask
[i
] = isa
<UndefValue
>(ExtractMaskElt
) ? ExtractMaskElt
: MaskElt
;
1618 return new ShuffleVectorInst(X
, Y
, ConstantVector::get(NewMask
));
1621 /// Try to replace a shuffle with an insertelement.
1622 static Instruction
*foldShuffleWithInsert(ShuffleVectorInst
&Shuf
) {
1623 Value
*V0
= Shuf
.getOperand(0), *V1
= Shuf
.getOperand(1);
1624 SmallVector
<int, 16> Mask
= Shuf
.getShuffleMask();
1626 // The shuffle must not change vector sizes.
1627 // TODO: This restriction could be removed if the insert has only one use
1628 // (because the transform would require a new length-changing shuffle).
1629 int NumElts
= Mask
.size();
1630 if (NumElts
!= (int)(V0
->getType()->getVectorNumElements()))
1633 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1634 auto isShufflingScalarIntoOp1
= [&](Value
*&Scalar
, ConstantInt
*&IndexC
) {
1635 // We need an insertelement with a constant index.
1636 if (!match(V0
, m_InsertElement(m_Value(), m_Value(Scalar
),
1637 m_ConstantInt(IndexC
))))
1640 // Test the shuffle mask to see if it splices the inserted scalar into the
1641 // operand 1 vector of the shuffle.
1642 int NewInsIndex
= -1;
1643 for (int i
= 0; i
!= NumElts
; ++i
) {
1644 // Ignore undef mask elements.
1648 // The shuffle takes elements of operand 1 without lane changes.
1649 if (Mask
[i
] == NumElts
+ i
)
1652 // The shuffle must choose the inserted scalar exactly once.
1653 if (NewInsIndex
!= -1 || Mask
[i
] != IndexC
->getSExtValue())
1656 // The shuffle is placing the inserted scalar into element i.
1660 assert(NewInsIndex
!= -1 && "Did not fold shuffle with unused operand?");
1662 // Index is updated to the potentially translated insertion lane.
1663 IndexC
= ConstantInt::get(IndexC
->getType(), NewInsIndex
);
1667 // If the shuffle is unnecessary, insert the scalar operand directly into
1668 // operand 1 of the shuffle. Example:
1669 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1671 ConstantInt
*IndexC
;
1672 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
1673 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
1675 // Try again after commuting shuffle. Example:
1676 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1677 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1679 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
1680 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
1681 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
1686 static Instruction
*foldIdentityPaddedShuffles(ShuffleVectorInst
&Shuf
) {
1687 // Match the operands as identity with padding (also known as concatenation
1688 // with undef) shuffles of the same source type. The backend is expected to
1689 // recreate these concatenations from a shuffle of narrow operands.
1690 auto *Shuffle0
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(0));
1691 auto *Shuffle1
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(1));
1692 if (!Shuffle0
|| !Shuffle0
->isIdentityWithPadding() ||
1693 !Shuffle1
|| !Shuffle1
->isIdentityWithPadding())
1696 // We limit this transform to power-of-2 types because we expect that the
1697 // backend can convert the simplified IR patterns to identical nodes as the
1699 // TODO: If we can verify the same behavior for arbitrary types, the
1700 // power-of-2 checks can be removed.
1701 Value
*X
= Shuffle0
->getOperand(0);
1702 Value
*Y
= Shuffle1
->getOperand(0);
1703 if (X
->getType() != Y
->getType() ||
1704 !isPowerOf2_32(Shuf
.getType()->getVectorNumElements()) ||
1705 !isPowerOf2_32(Shuffle0
->getType()->getVectorNumElements()) ||
1706 !isPowerOf2_32(X
->getType()->getVectorNumElements()) ||
1707 isa
<UndefValue
>(X
) || isa
<UndefValue
>(Y
))
1709 assert(isa
<UndefValue
>(Shuffle0
->getOperand(1)) &&
1710 isa
<UndefValue
>(Shuffle1
->getOperand(1)) &&
1711 "Unexpected operand for identity shuffle");
1713 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1714 // operands directly by adjusting the shuffle mask to account for the narrower
1716 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1717 int NarrowElts
= X
->getType()->getVectorNumElements();
1718 int WideElts
= Shuffle0
->getType()->getVectorNumElements();
1719 assert(WideElts
> NarrowElts
&& "Unexpected types for identity with padding");
1721 Type
*I32Ty
= IntegerType::getInt32Ty(Shuf
.getContext());
1722 SmallVector
<int, 16> Mask
= Shuf
.getShuffleMask();
1723 SmallVector
<Constant
*, 16> NewMask(Mask
.size(), UndefValue::get(I32Ty
));
1724 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1728 // If this shuffle is choosing an undef element from 1 of the sources, that
1729 // element is undef.
1730 if (Mask
[i
] < WideElts
) {
1731 if (Shuffle0
->getMaskValue(Mask
[i
]) == -1)
1734 if (Shuffle1
->getMaskValue(Mask
[i
] - WideElts
) == -1)
1738 // If this shuffle is choosing from the 1st narrow op, the mask element is
1739 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1740 // element is offset down to adjust for the narrow vector widths.
1741 if (Mask
[i
] < WideElts
) {
1742 assert(Mask
[i
] < NarrowElts
&& "Unexpected shuffle mask");
1743 NewMask
[i
] = ConstantInt::get(I32Ty
, Mask
[i
]);
1745 assert(Mask
[i
] < (WideElts
+ NarrowElts
) && "Unexpected shuffle mask");
1746 NewMask
[i
] = ConstantInt::get(I32Ty
, Mask
[i
] - (WideElts
- NarrowElts
));
1749 return new ShuffleVectorInst(X
, Y
, ConstantVector::get(NewMask
));
1752 Instruction
*InstCombiner::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
1753 Value
*LHS
= SVI
.getOperand(0);
1754 Value
*RHS
= SVI
.getOperand(1);
1755 if (auto *V
= SimplifyShuffleVectorInst(
1756 LHS
, RHS
, SVI
.getMask(), SVI
.getType(), SQ
.getWithInstruction(&SVI
)))
1757 return replaceInstUsesWith(SVI
, V
);
1759 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
1760 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1761 unsigned VWidth
= SVI
.getType()->getVectorNumElements();
1762 unsigned LHSWidth
= LHS
->getType()->getVectorNumElements();
1763 SmallVector
<int, 16> Mask
= SVI
.getShuffleMask();
1764 Type
*Int32Ty
= Type::getInt32Ty(SVI
.getContext());
1765 if (LHS
== RHS
|| isa
<UndefValue
>(LHS
)) {
1766 // Remap any references to RHS to use LHS.
1767 SmallVector
<Constant
*, 16> Elts
;
1768 for (unsigned i
= 0, e
= LHSWidth
; i
!= VWidth
; ++i
) {
1770 Elts
.push_back(UndefValue::get(Int32Ty
));
1774 if ((Mask
[i
] >= (int)e
&& isa
<UndefValue
>(RHS
)) ||
1775 (Mask
[i
] < (int)e
&& isa
<UndefValue
>(LHS
))) {
1776 Mask
[i
] = -1; // Turn into undef.
1777 Elts
.push_back(UndefValue::get(Int32Ty
));
1779 Mask
[i
] = Mask
[i
] % e
; // Force to LHS.
1780 Elts
.push_back(ConstantInt::get(Int32Ty
, Mask
[i
]));
1783 SVI
.setOperand(0, SVI
.getOperand(1));
1784 SVI
.setOperand(1, UndefValue::get(RHS
->getType()));
1785 SVI
.setOperand(2, ConstantVector::get(Elts
));
1789 if (Instruction
*I
= canonicalizeInsertSplat(SVI
, Builder
))
1792 if (Instruction
*I
= foldSelectShuffle(SVI
, Builder
, DL
))
1795 if (Instruction
*I
= narrowVectorSelect(SVI
, Builder
))
1798 APInt
UndefElts(VWidth
, 0);
1799 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1800 if (Value
*V
= SimplifyDemandedVectorElts(&SVI
, AllOnesEltMask
, UndefElts
)) {
1802 return replaceInstUsesWith(SVI
, V
);
1806 if (Instruction
*I
= foldIdentityExtractShuffle(SVI
))
1809 // These transforms have the potential to lose undef knowledge, so they are
1810 // intentionally placed after SimplifyDemandedVectorElts().
1811 if (Instruction
*I
= foldShuffleWithInsert(SVI
))
1813 if (Instruction
*I
= foldIdentityPaddedShuffles(SVI
))
1816 if (VWidth
== LHSWidth
) {
1817 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1818 bool isLHSID
, isRHSID
;
1819 recognizeIdentityMask(Mask
, isLHSID
, isRHSID
);
1821 // Eliminate identity shuffles.
1822 if (isLHSID
) return replaceInstUsesWith(SVI
, LHS
);
1823 if (isRHSID
) return replaceInstUsesWith(SVI
, RHS
);
1826 if (isa
<UndefValue
>(RHS
) && canEvaluateShuffled(LHS
, Mask
)) {
1827 Value
*V
= evaluateInDifferentElementOrder(LHS
, Mask
);
1828 return replaceInstUsesWith(SVI
, V
);
1831 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1832 // a non-vector type. We can instead bitcast the original vector followed by
1833 // an extract of the desired element:
1835 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1836 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1837 // %1 = bitcast <4 x i8> %sroa to i32
1839 // %bc = bitcast <16 x i8> %in to <4 x i32>
1840 // %ext = extractelement <4 x i32> %bc, i32 0
1842 // If the shuffle is extracting a contiguous range of values from the input
1843 // vector then each use which is a bitcast of the extracted size can be
1844 // replaced. This will work if the vector types are compatible, and the begin
1845 // index is aligned to a value in the casted vector type. If the begin index
1846 // isn't aligned then we can shuffle the original vector (keeping the same
1847 // vector type) before extracting.
1849 // This code will bail out if the target type is fundamentally incompatible
1850 // with vectors of the source type.
1852 // Example of <16 x i8>, target type i32:
1853 // Index range [4,8): v-----------v Will work.
1854 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1855 // <16 x i8>: | | | | | | | | | | | | | | | | |
1856 // <4 x i32>: | | | | |
1857 // +-----------+-----------+-----------+-----------+
1858 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1859 // Target type i40: ^--------------^ Won't work, bail.
1860 bool MadeChange
= false;
1861 if (isShuffleExtractingFromLHS(SVI
, Mask
)) {
1863 unsigned MaskElems
= Mask
.size();
1864 VectorType
*SrcTy
= cast
<VectorType
>(V
->getType());
1865 unsigned VecBitWidth
= SrcTy
->getBitWidth();
1866 unsigned SrcElemBitWidth
= DL
.getTypeSizeInBits(SrcTy
->getElementType());
1867 assert(SrcElemBitWidth
&& "vector elements must have a bitwidth");
1868 unsigned SrcNumElems
= SrcTy
->getNumElements();
1869 SmallVector
<BitCastInst
*, 8> BCs
;
1870 DenseMap
<Type
*, Value
*> NewBCs
;
1871 for (User
*U
: SVI
.users())
1872 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(U
))
1873 if (!BC
->use_empty())
1874 // Only visit bitcasts that weren't previously handled.
1876 for (BitCastInst
*BC
: BCs
) {
1877 unsigned BegIdx
= Mask
.front();
1878 Type
*TgtTy
= BC
->getDestTy();
1879 unsigned TgtElemBitWidth
= DL
.getTypeSizeInBits(TgtTy
);
1880 if (!TgtElemBitWidth
)
1882 unsigned TgtNumElems
= VecBitWidth
/ TgtElemBitWidth
;
1883 bool VecBitWidthsEqual
= VecBitWidth
== TgtNumElems
* TgtElemBitWidth
;
1884 bool BegIsAligned
= 0 == ((SrcElemBitWidth
* BegIdx
) % TgtElemBitWidth
);
1885 if (!VecBitWidthsEqual
)
1887 if (!VectorType::isValidElementType(TgtTy
))
1889 VectorType
*CastSrcTy
= VectorType::get(TgtTy
, TgtNumElems
);
1890 if (!BegIsAligned
) {
1891 // Shuffle the input so [0,NumElements) contains the output, and
1892 // [NumElems,SrcNumElems) is undef.
1893 SmallVector
<Constant
*, 16> ShuffleMask(SrcNumElems
,
1894 UndefValue::get(Int32Ty
));
1895 for (unsigned I
= 0, E
= MaskElems
, Idx
= BegIdx
; I
!= E
; ++Idx
, ++I
)
1896 ShuffleMask
[I
] = ConstantInt::get(Int32Ty
, Idx
);
1897 V
= Builder
.CreateShuffleVector(V
, UndefValue::get(V
->getType()),
1898 ConstantVector::get(ShuffleMask
),
1899 SVI
.getName() + ".extract");
1902 unsigned SrcElemsPerTgtElem
= TgtElemBitWidth
/ SrcElemBitWidth
;
1903 assert(SrcElemsPerTgtElem
);
1904 BegIdx
/= SrcElemsPerTgtElem
;
1905 bool BCAlreadyExists
= NewBCs
.find(CastSrcTy
) != NewBCs
.end();
1909 : Builder
.CreateBitCast(V
, CastSrcTy
, SVI
.getName() + ".bc");
1910 if (!BCAlreadyExists
)
1911 NewBCs
[CastSrcTy
] = NewBC
;
1912 auto *Ext
= Builder
.CreateExtractElement(
1913 NewBC
, ConstantInt::get(Int32Ty
, BegIdx
), SVI
.getName() + ".extract");
1914 // The shufflevector isn't being replaced: the bitcast that used it
1915 // is. InstCombine will visit the newly-created instructions.
1916 replaceInstUsesWith(*BC
, Ext
);
1921 // If the LHS is a shufflevector itself, see if we can combine it with this
1922 // one without producing an unusual shuffle.
1923 // Cases that might be simplified:
1925 // x1=shuffle(v1,v2,mask1)
1926 // x=shuffle(x1,undef,mask)
1928 // x=shuffle(v1,undef,newMask)
1929 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1931 // x1=shuffle(v1,undef,mask1)
1932 // x=shuffle(x1,x2,mask)
1933 // where v1.size() == mask1.size()
1935 // x=shuffle(v1,x2,newMask)
1936 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1938 // x2=shuffle(v2,undef,mask2)
1939 // x=shuffle(x1,x2,mask)
1940 // where v2.size() == mask2.size()
1942 // x=shuffle(x1,v2,newMask)
1943 // newMask[i] = (mask[i] < x1.size())
1944 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1946 // x1=shuffle(v1,undef,mask1)
1947 // x2=shuffle(v2,undef,mask2)
1948 // x=shuffle(x1,x2,mask)
1949 // where v1.size() == v2.size()
1951 // x=shuffle(v1,v2,newMask)
1952 // newMask[i] = (mask[i] < x1.size())
1953 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1955 // Here we are really conservative:
1956 // we are absolutely afraid of producing a shuffle mask not in the input
1957 // program, because the code gen may not be smart enough to turn a merged
1958 // shuffle into two specific shuffles: it may produce worse code. As such,
1959 // we only merge two shuffles if the result is either a splat or one of the
1960 // input shuffle masks. In this case, merging the shuffles just removes
1961 // one instruction, which we know is safe. This is good for things like
1962 // turning: (splat(splat)) -> splat, or
1963 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1964 ShuffleVectorInst
* LHSShuffle
= dyn_cast
<ShuffleVectorInst
>(LHS
);
1965 ShuffleVectorInst
* RHSShuffle
= dyn_cast
<ShuffleVectorInst
>(RHS
);
1967 if (!isa
<UndefValue
>(LHSShuffle
->getOperand(1)) && !isa
<UndefValue
>(RHS
))
1968 LHSShuffle
= nullptr;
1970 if (!isa
<UndefValue
>(RHSShuffle
->getOperand(1)))
1971 RHSShuffle
= nullptr;
1972 if (!LHSShuffle
&& !RHSShuffle
)
1973 return MadeChange
? &SVI
: nullptr;
1975 Value
* LHSOp0
= nullptr;
1976 Value
* LHSOp1
= nullptr;
1977 Value
* RHSOp0
= nullptr;
1978 unsigned LHSOp0Width
= 0;
1979 unsigned RHSOp0Width
= 0;
1981 LHSOp0
= LHSShuffle
->getOperand(0);
1982 LHSOp1
= LHSShuffle
->getOperand(1);
1983 LHSOp0Width
= LHSOp0
->getType()->getVectorNumElements();
1986 RHSOp0
= RHSShuffle
->getOperand(0);
1987 RHSOp0Width
= RHSOp0
->getType()->getVectorNumElements();
1989 Value
* newLHS
= LHS
;
1990 Value
* newRHS
= RHS
;
1993 if (isa
<UndefValue
>(RHS
)) {
1998 else if (LHSOp0Width
== LHSWidth
) {
2003 if (RHSShuffle
&& RHSOp0Width
== LHSWidth
) {
2007 if (LHSOp0
== RHSOp0
) {
2012 if (newLHS
== LHS
&& newRHS
== RHS
)
2013 return MadeChange
? &SVI
: nullptr;
2015 SmallVector
<int, 16> LHSMask
;
2016 SmallVector
<int, 16> RHSMask
;
2018 LHSMask
= LHSShuffle
->getShuffleMask();
2019 if (RHSShuffle
&& newRHS
!= RHS
)
2020 RHSMask
= RHSShuffle
->getShuffleMask();
2022 unsigned newLHSWidth
= (newLHS
!= LHS
) ? LHSOp0Width
: LHSWidth
;
2023 SmallVector
<int, 16> newMask
;
2024 bool isSplat
= true;
2026 // Create a new mask for the new ShuffleVectorInst so that the new
2027 // ShuffleVectorInst is equivalent to the original one.
2028 for (unsigned i
= 0; i
< VWidth
; ++i
) {
2031 // This element is an undef value.
2033 } else if (Mask
[i
] < (int)LHSWidth
) {
2034 // This element is from left hand side vector operand.
2036 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2037 // new mask value for the element.
2038 if (newLHS
!= LHS
) {
2039 eltMask
= LHSMask
[Mask
[i
]];
2040 // If the value selected is an undef value, explicitly specify it
2041 // with a -1 mask value.
2042 if (eltMask
>= (int)LHSOp0Width
&& isa
<UndefValue
>(LHSOp1
))
2047 // This element is from right hand side vector operand
2049 // If the value selected is an undef value, explicitly specify it
2050 // with a -1 mask value. (case 1)
2051 if (isa
<UndefValue
>(RHS
))
2053 // If RHS is going to be replaced (case 3 or 4), calculate the
2054 // new mask value for the element.
2055 else if (newRHS
!= RHS
) {
2056 eltMask
= RHSMask
[Mask
[i
]-LHSWidth
];
2057 // If the value selected is an undef value, explicitly specify it
2058 // with a -1 mask value.
2059 if (eltMask
>= (int)RHSOp0Width
) {
2060 assert(isa
<UndefValue
>(RHSShuffle
->getOperand(1))
2061 && "should have been check above");
2065 eltMask
= Mask
[i
]-LHSWidth
;
2067 // If LHS's width is changed, shift the mask value accordingly.
2068 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2069 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2070 // If newRHS == newLHS, we want to remap any references from newRHS to
2071 // newLHS so that we can properly identify splats that may occur due to
2072 // obfuscation across the two vectors.
2073 if (eltMask
>= 0 && newRHS
!= nullptr && newLHS
!= newRHS
)
2074 eltMask
+= newLHSWidth
;
2077 // Check if this could still be a splat.
2079 if (SplatElt
>= 0 && SplatElt
!= eltMask
)
2084 newMask
.push_back(eltMask
);
2087 // If the result mask is equal to one of the original shuffle masks,
2088 // or is a splat, do the replacement.
2089 if (isSplat
|| newMask
== LHSMask
|| newMask
== RHSMask
|| newMask
== Mask
) {
2090 SmallVector
<Constant
*, 16> Elts
;
2091 for (unsigned i
= 0, e
= newMask
.size(); i
!= e
; ++i
) {
2092 if (newMask
[i
] < 0) {
2093 Elts
.push_back(UndefValue::get(Int32Ty
));
2095 Elts
.push_back(ConstantInt::get(Int32Ty
, newMask
[i
]));
2099 newRHS
= UndefValue::get(newLHS
->getType());
2100 return new ShuffleVectorInst(newLHS
, newRHS
, ConstantVector::get(Elts
));
2103 // If the result mask is an identity, replace uses of this instruction with
2104 // corresponding argument.
2105 bool isLHSID
, isRHSID
;
2106 recognizeIdentityMask(newMask
, isLHSID
, isRHSID
);
2107 if (isLHSID
&& VWidth
== LHSOp0Width
) return replaceInstUsesWith(SVI
, newLHS
);
2108 if (isRHSID
&& VWidth
== RHSOp0Width
) return replaceInstUsesWith(SVI
, newRHS
);
2110 return MadeChange
? &SVI
: nullptr;