1 //===- Local.cpp - Functions to perform local transformations -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions perform various local transformations to the
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
88 using namespace llvm::PatternMatch
;
90 #define DEBUG_TYPE "local"
92 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
94 // Max recursion depth for collectBitParts used when detecting bswap and
96 static const unsigned BitPartRecursionMaxDepth
= 64;
98 //===----------------------------------------------------------------------===//
99 // Local constant propagation.
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination. This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
110 const TargetLibraryInfo
*TLI
,
111 DomTreeUpdater
*DTU
) {
112 Instruction
*T
= BB
->getTerminator();
113 IRBuilder
<> Builder(T
);
115 // Branch - See if we are conditional jumping on constant
116 if (auto *BI
= dyn_cast
<BranchInst
>(T
)) {
117 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
118 BasicBlock
*Dest1
= BI
->getSuccessor(0);
119 BasicBlock
*Dest2
= BI
->getSuccessor(1);
121 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
122 // Are we branching on constant?
123 // YES. Change to unconditional branch...
124 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
125 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
127 // Let the basic block know that we are letting go of it. Based on this,
128 // it will adjust it's PHI nodes.
129 OldDest
->removePredecessor(BB
);
131 // Replace the conditional branch with an unconditional one.
132 Builder
.CreateBr(Destination
);
133 BI
->eraseFromParent();
135 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, OldDest
}});
139 if (Dest2
== Dest1
) { // Conditional branch to same location?
140 // This branch matches something like this:
141 // br bool %cond, label %Dest, label %Dest
142 // and changes it into: br label %Dest
144 // Let the basic block know that we are letting go of one copy of it.
145 assert(BI
->getParent() && "Terminator not inserted in block!");
146 Dest1
->removePredecessor(BI
->getParent());
148 // Replace the conditional branch with an unconditional one.
149 Builder
.CreateBr(Dest1
);
150 Value
*Cond
= BI
->getCondition();
151 BI
->eraseFromParent();
152 if (DeleteDeadConditions
)
153 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
159 if (auto *SI
= dyn_cast
<SwitchInst
>(T
)) {
160 // If we are switching on a constant, we can convert the switch to an
161 // unconditional branch.
162 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
163 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
164 BasicBlock
*TheOnlyDest
= DefaultDest
;
166 // If the default is unreachable, ignore it when searching for TheOnlyDest.
167 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
168 SI
->getNumCases() > 0) {
169 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
172 // Figure out which case it goes to.
173 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
174 // Found case matching a constant operand?
175 if (i
->getCaseValue() == CI
) {
176 TheOnlyDest
= i
->getCaseSuccessor();
180 // Check to see if this branch is going to the same place as the default
181 // dest. If so, eliminate it as an explicit compare.
182 if (i
->getCaseSuccessor() == DefaultDest
) {
183 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
184 unsigned NCases
= SI
->getNumCases();
185 // Fold the case metadata into the default if there will be any branches
186 // left, unless the metadata doesn't match the switch.
187 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
188 // Collect branch weights into a vector.
189 SmallVector
<uint32_t, 8> Weights
;
190 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
192 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
193 Weights
.push_back(CI
->getValue().getZExtValue());
195 // Merge weight of this case to the default weight.
196 unsigned idx
= i
->getCaseIndex();
197 Weights
[0] += Weights
[idx
+1];
198 // Remove weight for this case.
199 std::swap(Weights
[idx
+1], Weights
.back());
201 SI
->setMetadata(LLVMContext::MD_prof
,
202 MDBuilder(BB
->getContext()).
203 createBranchWeights(Weights
));
205 // Remove this entry.
206 BasicBlock
*ParentBB
= SI
->getParent();
207 DefaultDest
->removePredecessor(ParentBB
);
208 i
= SI
->removeCase(i
);
211 DTU
->applyUpdatesPermissive(
212 {{DominatorTree::Delete
, ParentBB
, DefaultDest
}});
216 // Otherwise, check to see if the switch only branches to one destination.
217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219 if (i
->getCaseSuccessor() != TheOnlyDest
)
220 TheOnlyDest
= nullptr;
222 // Increment this iterator as we haven't removed the case.
226 if (CI
&& !TheOnlyDest
) {
227 // Branching on a constant, but not any of the cases, go to the default
229 TheOnlyDest
= SI
->getDefaultDest();
232 // If we found a single destination that we can fold the switch into, do so
235 // Insert the new branch.
236 Builder
.CreateBr(TheOnlyDest
);
237 BasicBlock
*BB
= SI
->getParent();
238 std::vector
<DominatorTree::UpdateType
> Updates
;
240 Updates
.reserve(SI
->getNumSuccessors() - 1);
242 // Remove entries from PHI nodes which we no longer branch to...
243 for (BasicBlock
*Succ
: successors(SI
)) {
244 // Found case matching a constant operand?
245 if (Succ
== TheOnlyDest
) {
246 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
248 Succ
->removePredecessor(BB
);
250 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
254 // Delete the old switch.
255 Value
*Cond
= SI
->getCondition();
256 SI
->eraseFromParent();
257 if (DeleteDeadConditions
)
258 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
260 DTU
->applyUpdatesPermissive(Updates
);
264 if (SI
->getNumCases() == 1) {
265 // Otherwise, we can fold this switch into a conditional branch
266 // instruction if it has only one non-default destination.
267 auto FirstCase
= *SI
->case_begin();
268 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
269 FirstCase
.getCaseValue(), "cond");
271 // Insert the new branch.
272 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
273 FirstCase
.getCaseSuccessor(),
274 SI
->getDefaultDest());
275 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
276 if (MD
&& MD
->getNumOperands() == 3) {
277 ConstantInt
*SICase
=
278 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
280 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
281 assert(SICase
&& SIDef
);
282 // The TrueWeight should be the weight for the single case of SI.
283 NewBr
->setMetadata(LLVMContext::MD_prof
,
284 MDBuilder(BB
->getContext()).
285 createBranchWeights(SICase
->getValue().getZExtValue(),
286 SIDef
->getValue().getZExtValue()));
289 // Update make.implicit metadata to the newly-created conditional branch.
290 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
292 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
294 // Delete the old switch.
295 SI
->eraseFromParent();
301 if (auto *IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
302 // indirectbr blockaddress(@F, @BB) -> br label @BB
304 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
305 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
306 std::vector
<DominatorTree::UpdateType
> Updates
;
308 Updates
.reserve(IBI
->getNumDestinations() - 1);
310 // Insert the new branch.
311 Builder
.CreateBr(TheOnlyDest
);
313 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
314 if (IBI
->getDestination(i
) == TheOnlyDest
) {
315 TheOnlyDest
= nullptr;
317 BasicBlock
*ParentBB
= IBI
->getParent();
318 BasicBlock
*DestBB
= IBI
->getDestination(i
);
319 DestBB
->removePredecessor(ParentBB
);
321 Updates
.push_back({DominatorTree::Delete
, ParentBB
, DestBB
});
324 Value
*Address
= IBI
->getAddress();
325 IBI
->eraseFromParent();
326 if (DeleteDeadConditions
)
327 // Delete pointer cast instructions.
328 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
330 // Also zap the blockaddress constant if there are no users remaining,
331 // otherwise the destination is still marked as having its address taken.
333 BA
->destroyConstant();
335 // If we didn't find our destination in the IBI successor list, then we
336 // have undefined behavior. Replace the unconditional branch with an
337 // 'unreachable' instruction.
339 BB
->getTerminator()->eraseFromParent();
340 new UnreachableInst(BB
->getContext(), BB
);
344 DTU
->applyUpdatesPermissive(Updates
);
352 //===----------------------------------------------------------------------===//
353 // Local dead code elimination.
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
359 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
360 const TargetLibraryInfo
*TLI
) {
363 return wouldInstructionBeTriviallyDead(I
, TLI
);
366 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
367 const TargetLibraryInfo
*TLI
) {
368 if (I
->isTerminator())
371 // We don't want the landingpad-like instructions removed by anything this
376 // We don't want debug info removed by anything this general, unless
377 // debug info is empty.
378 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
379 if (DDI
->getAddress())
383 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
388 if (DbgLabelInst
*DLI
= dyn_cast
<DbgLabelInst
>(I
)) {
394 if (!I
->mayHaveSideEffects())
397 // Special case intrinsics that "may have side effects" but can be deleted
399 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
400 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401 if (II
->getIntrinsicID() == Intrinsic::stacksave
||
402 II
->getIntrinsicID() == Intrinsic::launder_invariant_group
)
405 // Lifetime intrinsics are dead when their right-hand is undef.
406 if (II
->isLifetimeStartOrEnd())
407 return isa
<UndefValue
>(II
->getArgOperand(1));
409 // Assumptions are dead if their condition is trivially true. Guards on
410 // true are operationally no-ops. In the future we can consider more
411 // sophisticated tradeoffs for guards considering potential for check
412 // widening, but for now we keep things simple.
413 if (II
->getIntrinsicID() == Intrinsic::assume
||
414 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
415 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
416 return !Cond
->isZero();
422 if (isAllocLikeFn(I
, TLI
))
425 if (CallInst
*CI
= isFreeCall(I
, TLI
))
426 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
427 return C
->isNullValue() || isa
<UndefValue
>(C
);
429 if (auto *Call
= dyn_cast
<CallBase
>(I
))
430 if (isMathLibCallNoop(Call
, TLI
))
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it. If that makes any of its operands
438 /// trivially dead, delete them too, recursively. Return true if any
439 /// instructions were deleted.
440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441 Value
*V
, const TargetLibraryInfo
*TLI
, MemorySSAUpdater
*MSSAU
) {
442 Instruction
*I
= dyn_cast
<Instruction
>(V
);
443 if (!I
|| !isInstructionTriviallyDead(I
, TLI
))
446 SmallVector
<Instruction
*, 16> DeadInsts
;
447 DeadInsts
.push_back(I
);
448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
, TLI
, MSSAU
);
453 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454 SmallVectorImpl
<Instruction
*> &DeadInsts
, const TargetLibraryInfo
*TLI
,
455 MemorySSAUpdater
*MSSAU
) {
456 // Process the dead instruction list until empty.
457 while (!DeadInsts
.empty()) {
458 Instruction
&I
= *DeadInsts
.pop_back_val();
459 assert(I
.use_empty() && "Instructions with uses are not dead.");
460 assert(isInstructionTriviallyDead(&I
, TLI
) &&
461 "Live instruction found in dead worklist!");
463 // Don't lose the debug info while deleting the instructions.
466 // Null out all of the instruction's operands to see if any operand becomes
468 for (Use
&OpU
: I
.operands()) {
469 Value
*OpV
= OpU
.get();
472 if (!OpV
->use_empty())
475 // If the operand is an instruction that became dead as we nulled out the
476 // operand, and if it is 'trivially' dead, delete it in a future loop
478 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
479 if (isInstructionTriviallyDead(OpI
, TLI
))
480 DeadInsts
.push_back(OpI
);
483 MSSAU
->removeMemoryAccess(&I
);
489 bool llvm::replaceDbgUsesWithUndef(Instruction
*I
) {
490 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
491 findDbgUsers(DbgUsers
, I
);
492 for (auto *DII
: DbgUsers
) {
493 Value
*Undef
= UndefValue::get(I
->getType());
494 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
495 ValueAsMetadata::get(Undef
)));
497 return !DbgUsers
.empty();
500 /// areAllUsesEqual - Check whether the uses of a value are all the same.
501 /// This is similar to Instruction::hasOneUse() except this will also return
502 /// true when there are no uses or multiple uses that all refer to the same
504 static bool areAllUsesEqual(Instruction
*I
) {
505 Value::user_iterator UI
= I
->user_begin();
506 Value::user_iterator UE
= I
->user_end();
511 for (++UI
; UI
!= UE
; ++UI
) {
518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
519 /// dead PHI node, due to being a def-use chain of single-use nodes that
520 /// either forms a cycle or is terminated by a trivially dead instruction,
521 /// delete it. If that makes any of its operands trivially dead, delete them
522 /// too, recursively. Return true if a change was made.
523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
524 const TargetLibraryInfo
*TLI
) {
525 SmallPtrSet
<Instruction
*, 4> Visited
;
526 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
527 I
= cast
<Instruction
>(*I
->user_begin())) {
529 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
531 // If we find an instruction more than once, we're on a cycle that
532 // won't prove fruitful.
533 if (!Visited
.insert(I
).second
) {
534 // Break the cycle and delete the instruction and its operands.
535 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
536 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
544 simplifyAndDCEInstruction(Instruction
*I
,
545 SmallSetVector
<Instruction
*, 16> &WorkList
,
546 const DataLayout
&DL
,
547 const TargetLibraryInfo
*TLI
) {
548 if (isInstructionTriviallyDead(I
, TLI
)) {
549 salvageDebugInfo(*I
);
551 // Null out all of the instruction's operands to see if any operand becomes
553 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
554 Value
*OpV
= I
->getOperand(i
);
555 I
->setOperand(i
, nullptr);
557 if (!OpV
->use_empty() || I
== OpV
)
560 // If the operand is an instruction that became dead as we nulled out the
561 // operand, and if it is 'trivially' dead, delete it in a future loop
563 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
564 if (isInstructionTriviallyDead(OpI
, TLI
))
565 WorkList
.insert(OpI
);
568 I
->eraseFromParent();
573 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
574 // Add the users to the worklist. CAREFUL: an instruction can use itself,
575 // in the case of a phi node.
576 for (User
*U
: I
->users()) {
578 WorkList
.insert(cast
<Instruction
>(U
));
582 // Replace the instruction with its simplified value.
583 bool Changed
= false;
584 if (!I
->use_empty()) {
585 I
->replaceAllUsesWith(SimpleV
);
588 if (isInstructionTriviallyDead(I
, TLI
)) {
589 I
->eraseFromParent();
597 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
598 /// simplify any instructions in it and recursively delete dead instructions.
600 /// This returns true if it changed the code, note that it can delete
601 /// instructions in other blocks as well in this block.
602 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
603 const TargetLibraryInfo
*TLI
) {
604 bool MadeChange
= false;
605 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
608 // In debug builds, ensure that the terminator of the block is never replaced
609 // or deleted by these simplifications. The idea of simplification is that it
610 // cannot introduce new instructions, and there is no way to replace the
611 // terminator of a block without introducing a new instruction.
612 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
615 SmallSetVector
<Instruction
*, 16> WorkList
;
616 // Iterate over the original function, only adding insts to the worklist
617 // if they actually need to be revisited. This avoids having to pre-init
618 // the worklist with the entire function's worth of instructions.
619 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
621 assert(!BI
->isTerminator());
622 Instruction
*I
= &*BI
;
625 // We're visiting this instruction now, so make sure it's not in the
626 // worklist from an earlier visit.
627 if (!WorkList
.count(I
))
628 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
631 while (!WorkList
.empty()) {
632 Instruction
*I
= WorkList
.pop_back_val();
633 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
638 //===----------------------------------------------------------------------===//
639 // Control Flow Graph Restructuring.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
643 DomTreeUpdater
*DTU
) {
644 // This only adjusts blocks with PHI nodes.
645 if (!isa
<PHINode
>(BB
->begin()))
648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649 // them down. This will leave us with single entry phi nodes and other phis
650 // that can be removed.
651 BB
->removePredecessor(Pred
, true);
653 WeakTrackingVH PhiIt
= &BB
->front();
654 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
655 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
656 Value
*OldPhiIt
= PhiIt
;
658 if (!recursivelySimplifyInstruction(PN
))
661 // If recursive simplification ended up deleting the next PHI node we would
662 // iterate to, then our iterator is invalid, restart scanning from the top
664 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
667 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, Pred
, BB
}});
670 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
,
671 DomTreeUpdater
*DTU
) {
673 // If BB has single-entry PHI nodes, fold them.
674 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
675 Value
*NewVal
= PN
->getIncomingValue(0);
676 // Replace self referencing PHI with undef, it must be dead.
677 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
678 PN
->replaceAllUsesWith(NewVal
);
679 PN
->eraseFromParent();
682 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
683 assert(PredBB
&& "Block doesn't have a single predecessor!");
685 bool ReplaceEntryBB
= false;
686 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
687 ReplaceEntryBB
= true;
689 // DTU updates: Collect all the edges that enter
690 // PredBB. These dominator edges will be redirected to DestBB.
691 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
694 Updates
.push_back({DominatorTree::Delete
, PredBB
, DestBB
});
695 for (auto I
= pred_begin(PredBB
), E
= pred_end(PredBB
); I
!= E
; ++I
) {
696 Updates
.push_back({DominatorTree::Delete
, *I
, PredBB
});
697 // This predecessor of PredBB may already have DestBB as a successor.
698 if (llvm::find(successors(*I
), DestBB
) == succ_end(*I
))
699 Updates
.push_back({DominatorTree::Insert
, *I
, DestBB
});
703 // Zap anything that took the address of DestBB. Not doing this will give the
704 // address an invalid value.
705 if (DestBB
->hasAddressTaken()) {
706 BlockAddress
*BA
= BlockAddress::get(DestBB
);
707 Constant
*Replacement
=
708 ConstantInt::get(Type::getInt32Ty(BA
->getContext()), 1);
709 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
711 BA
->destroyConstant();
714 // Anything that branched to PredBB now branches to DestBB.
715 PredBB
->replaceAllUsesWith(DestBB
);
717 // Splice all the instructions from PredBB to DestBB.
718 PredBB
->getTerminator()->eraseFromParent();
719 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
720 new UnreachableInst(PredBB
->getContext(), PredBB
);
722 // If the PredBB is the entry block of the function, move DestBB up to
723 // become the entry block after we erase PredBB.
725 DestBB
->moveAfter(PredBB
);
728 assert(PredBB
->getInstList().size() == 1 &&
729 isa
<UnreachableInst
>(PredBB
->getTerminator()) &&
730 "The successor list of PredBB isn't empty before "
731 "applying corresponding DTU updates.");
732 DTU
->applyUpdatesPermissive(Updates
);
733 DTU
->deleteBB(PredBB
);
734 // Recalculation of DomTree is needed when updating a forward DomTree and
735 // the Entry BB is replaced.
736 if (ReplaceEntryBB
&& DTU
->hasDomTree()) {
737 // The entry block was removed and there is no external interface for
738 // the dominator tree to be notified of this change. In this corner-case
739 // we recalculate the entire tree.
740 DTU
->recalculate(*(DestBB
->getParent()));
745 PredBB
->eraseFromParent(); // Nuke BB if DTU is nullptr.
749 /// Return true if we can choose one of these values to use in place of the
750 /// other. Note that we will always choose the non-undef value to keep.
751 static bool CanMergeValues(Value
*First
, Value
*Second
) {
752 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
755 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
756 /// branch to Succ, into Succ.
758 /// Assumption: Succ is the single successor for BB.
759 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
760 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
762 LLVM_DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
763 << Succ
->getName() << "\n");
764 // Shortcut, if there is only a single predecessor it must be BB and merging
766 if (Succ
->getSinglePredecessor()) return true;
768 // Make a list of the predecessors of BB
769 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
771 // Look at all the phi nodes in Succ, to see if they present a conflict when
772 // merging these blocks
773 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
774 PHINode
*PN
= cast
<PHINode
>(I
);
776 // If the incoming value from BB is again a PHINode in
777 // BB which has the same incoming value for *PI as PN does, we can
778 // merge the phi nodes and then the blocks can still be merged
779 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
780 if (BBPN
&& BBPN
->getParent() == BB
) {
781 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
782 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
783 if (BBPreds
.count(IBB
) &&
784 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
785 PN
->getIncomingValue(PI
))) {
787 << "Can't fold, phi node " << PN
->getName() << " in "
788 << Succ
->getName() << " is conflicting with "
789 << BBPN
->getName() << " with regard to common predecessor "
790 << IBB
->getName() << "\n");
795 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
796 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
797 // See if the incoming value for the common predecessor is equal to the
798 // one for BB, in which case this phi node will not prevent the merging
800 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
801 if (BBPreds
.count(IBB
) &&
802 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
803 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName()
804 << " in " << Succ
->getName()
805 << " is conflicting with regard to common "
806 << "predecessor " << IBB
->getName() << "\n");
816 using PredBlockVector
= SmallVector
<BasicBlock
*, 16>;
817 using IncomingValueMap
= DenseMap
<BasicBlock
*, Value
*>;
819 /// Determines the value to use as the phi node input for a block.
821 /// Select between \p OldVal any value that we know flows from \p BB
822 /// to a particular phi on the basis of which one (if either) is not
823 /// undef. Update IncomingValues based on the selected value.
825 /// \param OldVal The value we are considering selecting.
826 /// \param BB The block that the value flows in from.
827 /// \param IncomingValues A map from block-to-value for other phi inputs
828 /// that we have examined.
830 /// \returns the selected value.
831 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
832 IncomingValueMap
&IncomingValues
) {
833 if (!isa
<UndefValue
>(OldVal
)) {
834 assert((!IncomingValues
.count(BB
) ||
835 IncomingValues
.find(BB
)->second
== OldVal
) &&
836 "Expected OldVal to match incoming value from BB!");
838 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
842 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
843 if (It
!= IncomingValues
.end()) return It
->second
;
848 /// Create a map from block to value for the operands of a
851 /// Create a map from block to value for each non-undef value flowing
854 /// \param PN The phi we are collecting the map for.
855 /// \param IncomingValues [out] The map from block to value for this phi.
856 static void gatherIncomingValuesToPhi(PHINode
*PN
,
857 IncomingValueMap
&IncomingValues
) {
858 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
859 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
860 Value
*V
= PN
->getIncomingValue(i
);
862 if (!isa
<UndefValue
>(V
))
863 IncomingValues
.insert(std::make_pair(BB
, V
));
867 /// Replace the incoming undef values to a phi with the values
868 /// from a block-to-value map.
870 /// \param PN The phi we are replacing the undefs in.
871 /// \param IncomingValues A map from block to value.
872 static void replaceUndefValuesInPhi(PHINode
*PN
,
873 const IncomingValueMap
&IncomingValues
) {
874 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
875 Value
*V
= PN
->getIncomingValue(i
);
877 if (!isa
<UndefValue
>(V
)) continue;
879 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
880 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
881 if (It
== IncomingValues
.end()) continue;
883 PN
->setIncomingValue(i
, It
->second
);
887 /// Replace a value flowing from a block to a phi with
888 /// potentially multiple instances of that value flowing from the
889 /// block's predecessors to the phi.
891 /// \param BB The block with the value flowing into the phi.
892 /// \param BBPreds The predecessors of BB.
893 /// \param PN The phi that we are updating.
894 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
895 const PredBlockVector
&BBPreds
,
897 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
898 assert(OldVal
&& "No entry in PHI for Pred BB!");
900 IncomingValueMap IncomingValues
;
902 // We are merging two blocks - BB, and the block containing PN - and
903 // as a result we need to redirect edges from the predecessors of BB
904 // to go to the block containing PN, and update PN
905 // accordingly. Since we allow merging blocks in the case where the
906 // predecessor and successor blocks both share some predecessors,
907 // and where some of those common predecessors might have undef
908 // values flowing into PN, we want to rewrite those values to be
909 // consistent with the non-undef values.
911 gatherIncomingValuesToPhi(PN
, IncomingValues
);
913 // If this incoming value is one of the PHI nodes in BB, the new entries
914 // in the PHI node are the entries from the old PHI.
915 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
916 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
917 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
918 // Note that, since we are merging phi nodes and BB and Succ might
919 // have common predecessors, we could end up with a phi node with
920 // identical incoming branches. This will be cleaned up later (and
921 // will trigger asserts if we try to clean it up now, without also
922 // simplifying the corresponding conditional branch).
923 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
924 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
925 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
928 // And add a new incoming value for this predecessor for the
929 // newly retargeted branch.
930 PN
->addIncoming(Selected
, PredBB
);
933 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
934 // Update existing incoming values in PN for this
935 // predecessor of BB.
936 BasicBlock
*PredBB
= BBPreds
[i
];
937 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
940 // And add a new incoming value for this predecessor for the
941 // newly retargeted branch.
942 PN
->addIncoming(Selected
, PredBB
);
946 replaceUndefValuesInPhi(PN
, IncomingValues
);
949 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
950 DomTreeUpdater
*DTU
) {
951 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
952 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
954 // We can't eliminate infinite loops.
955 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
956 if (BB
== Succ
) return false;
958 // Check to see if merging these blocks would cause conflicts for any of the
959 // phi nodes in BB or Succ. If not, we can safely merge.
960 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
962 // Check for cases where Succ has multiple predecessors and a PHI node in BB
963 // has uses which will not disappear when the PHI nodes are merged. It is
964 // possible to handle such cases, but difficult: it requires checking whether
965 // BB dominates Succ, which is non-trivial to calculate in the case where
966 // Succ has multiple predecessors. Also, it requires checking whether
967 // constructing the necessary self-referential PHI node doesn't introduce any
968 // conflicts; this isn't too difficult, but the previous code for doing this
971 // Note that if this check finds a live use, BB dominates Succ, so BB is
972 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
973 // folding the branch isn't profitable in that case anyway.
974 if (!Succ
->getSinglePredecessor()) {
975 BasicBlock::iterator BBI
= BB
->begin();
976 while (isa
<PHINode
>(*BBI
)) {
977 for (Use
&U
: BBI
->uses()) {
978 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
979 if (PN
->getIncomingBlock(U
) != BB
)
989 // We cannot fold the block if it's a branch to an already present callbr
990 // successor because that creates duplicate successors.
991 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
992 if (auto *CBI
= dyn_cast
<CallBrInst
>((*I
)->getTerminator())) {
993 if (Succ
== CBI
->getDefaultDest())
995 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
996 if (Succ
== CBI
->getIndirectDest(i
))
1001 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
1003 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1005 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1006 // All predecessors of BB will be moved to Succ.
1007 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1008 Updates
.push_back({DominatorTree::Delete
, *I
, BB
});
1009 // This predecessor of BB may already have Succ as a successor.
1010 if (llvm::find(successors(*I
), Succ
) == succ_end(*I
))
1011 Updates
.push_back({DominatorTree::Insert
, *I
, Succ
});
1015 if (isa
<PHINode
>(Succ
->begin())) {
1016 // If there is more than one pred of succ, and there are PHI nodes in
1017 // the successor, then we need to add incoming edges for the PHI nodes
1019 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
1021 // Loop over all of the PHI nodes in the successor of BB.
1022 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
1023 PHINode
*PN
= cast
<PHINode
>(I
);
1025 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
1029 if (Succ
->getSinglePredecessor()) {
1030 // BB is the only predecessor of Succ, so Succ will end up with exactly
1031 // the same predecessors BB had.
1033 // Copy over any phi, debug or lifetime instruction.
1034 BB
->getTerminator()->eraseFromParent();
1035 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
1038 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
1039 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1040 assert(PN
->use_empty() && "There shouldn't be any uses here!");
1041 PN
->eraseFromParent();
1045 // If the unconditional branch we replaced contains llvm.loop metadata, we
1046 // add the metadata to the branch instructions in the predecessors.
1047 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
1048 Instruction
*TI
= BB
->getTerminator();
1050 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
1051 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1052 BasicBlock
*Pred
= *PI
;
1053 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
1056 // Everything that jumped to BB now goes to Succ.
1057 BB
->replaceAllUsesWith(Succ
);
1058 if (!Succ
->hasName()) Succ
->takeName(BB
);
1060 // Clear the successor list of BB to match updates applying to DTU later.
1061 if (BB
->getTerminator())
1062 BB
->getInstList().pop_back();
1063 new UnreachableInst(BB
->getContext(), BB
);
1064 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
1065 "applying corresponding DTU updates.");
1068 DTU
->applyUpdatesPermissive(Updates
);
1071 BB
->eraseFromParent(); // Delete the old basic block.
1076 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
1077 // This implementation doesn't currently consider undef operands
1078 // specially. Theoretically, two phis which are identical except for
1079 // one having an undef where the other doesn't could be collapsed.
1081 struct PHIDenseMapInfo
{
1082 static PHINode
*getEmptyKey() {
1083 return DenseMapInfo
<PHINode
*>::getEmptyKey();
1086 static PHINode
*getTombstoneKey() {
1087 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
1090 static unsigned getHashValue(PHINode
*PN
) {
1091 // Compute a hash value on the operands. Instcombine will likely have
1092 // sorted them, which helps expose duplicates, but we have to check all
1093 // the operands to be safe in case instcombine hasn't run.
1094 return static_cast<unsigned>(hash_combine(
1095 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
1096 hash_combine_range(PN
->block_begin(), PN
->block_end())));
1099 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
1100 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1101 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1103 return LHS
->isIdenticalTo(RHS
);
1107 // Set of unique PHINodes.
1108 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
1110 // Examine each PHI.
1111 bool Changed
= false;
1112 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
1113 auto Inserted
= PHISet
.insert(PN
);
1114 if (!Inserted
.second
) {
1115 // A duplicate. Replace this PHI with its duplicate.
1116 PN
->replaceAllUsesWith(*Inserted
.first
);
1117 PN
->eraseFromParent();
1120 // The RAUW can change PHIs that we already visited. Start over from the
1130 /// enforceKnownAlignment - If the specified pointer points to an object that
1131 /// we control, modify the object's alignment to PrefAlign. This isn't
1132 /// often possible though. If alignment is important, a more reliable approach
1133 /// is to simply align all global variables and allocation instructions to
1134 /// their preferred alignment from the beginning.
1135 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
1137 const DataLayout
&DL
) {
1138 assert(PrefAlign
> Align
);
1140 V
= V
->stripPointerCasts();
1142 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1143 // TODO: ideally, computeKnownBits ought to have used
1144 // AllocaInst::getAlignment() in its computation already, making
1145 // the below max redundant. But, as it turns out,
1146 // stripPointerCasts recurses through infinite layers of bitcasts,
1147 // while computeKnownBits is not allowed to traverse more than 6
1149 Align
= std::max(AI
->getAlignment(), Align
);
1150 if (PrefAlign
<= Align
)
1153 // If the preferred alignment is greater than the natural stack alignment
1154 // then don't round up. This avoids dynamic stack realignment.
1155 if (DL
.exceedsNaturalStackAlignment(llvm::Align(PrefAlign
)))
1157 AI
->setAlignment(PrefAlign
);
1161 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1162 // TODO: as above, this shouldn't be necessary.
1163 Align
= std::max(GO
->getAlignment(), Align
);
1164 if (PrefAlign
<= Align
)
1167 // If there is a large requested alignment and we can, bump up the alignment
1168 // of the global. If the memory we set aside for the global may not be the
1169 // memory used by the final program then it is impossible for us to reliably
1170 // enforce the preferred alignment.
1171 if (!GO
->canIncreaseAlignment())
1174 GO
->setAlignment(PrefAlign
);
1181 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1182 const DataLayout
&DL
,
1183 const Instruction
*CxtI
,
1184 AssumptionCache
*AC
,
1185 const DominatorTree
*DT
) {
1186 assert(V
->getType()->isPointerTy() &&
1187 "getOrEnforceKnownAlignment expects a pointer!");
1189 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1190 unsigned TrailZ
= Known
.countMinTrailingZeros();
1192 // Avoid trouble with ridiculously large TrailZ values, such as
1193 // those computed from a null pointer.
1194 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1196 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1198 // LLVM doesn't support alignments larger than this currently.
1199 Align
= std::min(Align
, +Value::MaximumAlignment
);
1201 if (PrefAlign
> Align
)
1202 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1204 // We don't need to make any adjustment.
1208 ///===---------------------------------------------------------------------===//
1209 /// Dbg Intrinsic utilities
1212 /// See if there is a dbg.value intrinsic for DIVar before I.
1213 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1215 // Since we can't guarantee that the original dbg.declare instrinsic
1216 // is removed by LowerDbgDeclare(), we need to make sure that we are
1217 // not inserting the same dbg.value intrinsic over and over.
1218 BasicBlock::InstListType::iterator
PrevI(I
);
1219 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1221 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1222 if (DVI
->getValue() == I
->getOperand(0) &&
1223 DVI
->getVariable() == DIVar
&&
1224 DVI
->getExpression() == DIExpr
)
1230 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1231 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1232 DIExpression
*DIExpr
,
1234 // Since we can't guarantee that the original dbg.declare instrinsic
1235 // is removed by LowerDbgDeclare(), we need to make sure that we are
1236 // not inserting the same dbg.value intrinsic over and over.
1237 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1238 findDbgValues(DbgValues
, APN
);
1239 for (auto *DVI
: DbgValues
) {
1240 assert(DVI
->getValue() == APN
);
1241 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1247 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1248 /// (or fragment of the variable) described by \p DII.
1250 /// This is primarily intended as a helper for the different
1251 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1252 /// converted describes an alloca'd variable, so we need to use the
1253 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1254 /// identified as covering an n-bit fragment, if the store size of i1 is at
1256 static bool valueCoversEntireFragment(Type
*ValTy
, DbgVariableIntrinsic
*DII
) {
1257 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1258 uint64_t ValueSize
= DL
.getTypeAllocSizeInBits(ValTy
);
1259 if (auto FragmentSize
= DII
->getFragmentSizeInBits())
1260 return ValueSize
>= *FragmentSize
;
1261 // We can't always calculate the size of the DI variable (e.g. if it is a
1262 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1264 if (DII
->isAddressOfVariable())
1265 if (auto *AI
= dyn_cast_or_null
<AllocaInst
>(DII
->getVariableLocation()))
1266 if (auto FragmentSize
= AI
->getAllocationSizeInBits(DL
))
1267 return ValueSize
>= *FragmentSize
;
1268 // Could not determine size of variable. Conservatively return false.
1272 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1273 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1274 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1275 /// case this DebugLoc leaks into any adjacent instructions.
1276 static DebugLoc
getDebugValueLoc(DbgVariableIntrinsic
*DII
, Instruction
*Src
) {
1277 // Original dbg.declare must have a location.
1278 DebugLoc DeclareLoc
= DII
->getDebugLoc();
1279 MDNode
*Scope
= DeclareLoc
.getScope();
1280 DILocation
*InlinedAt
= DeclareLoc
.getInlinedAt();
1281 // Produce an unknown location with the correct scope / inlinedAt fields.
1282 return DebugLoc::get(0, 0, Scope
, InlinedAt
);
1285 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1286 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1287 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1288 StoreInst
*SI
, DIBuilder
&Builder
) {
1289 assert(DII
->isAddressOfVariable());
1290 auto *DIVar
= DII
->getVariable();
1291 assert(DIVar
&& "Missing variable");
1292 auto *DIExpr
= DII
->getExpression();
1293 Value
*DV
= SI
->getValueOperand();
1295 DebugLoc NewLoc
= getDebugValueLoc(DII
, SI
);
1297 if (!valueCoversEntireFragment(DV
->getType(), DII
)) {
1298 // FIXME: If storing to a part of the variable described by the dbg.declare,
1299 // then we want to insert a dbg.value for the corresponding fragment.
1300 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1302 // For now, when there is a store to parts of the variable (but we do not
1303 // know which part) we insert an dbg.value instrinsic to indicate that we
1304 // know nothing about the variable's content.
1305 DV
= UndefValue::get(DV
->getType());
1306 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1307 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1311 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1312 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1315 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1316 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1317 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1318 LoadInst
*LI
, DIBuilder
&Builder
) {
1319 auto *DIVar
= DII
->getVariable();
1320 auto *DIExpr
= DII
->getExpression();
1321 assert(DIVar
&& "Missing variable");
1323 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1326 if (!valueCoversEntireFragment(LI
->getType(), DII
)) {
1327 // FIXME: If only referring to a part of the variable described by the
1328 // dbg.declare, then we want to insert a dbg.value for the corresponding
1330 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1335 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1337 // We are now tracking the loaded value instead of the address. In the
1338 // future if multi-location support is added to the IR, it might be
1339 // preferable to keep tracking both the loaded value and the original
1340 // address in case the alloca can not be elided.
1341 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1342 LI
, DIVar
, DIExpr
, NewLoc
, (Instruction
*)nullptr);
1343 DbgValue
->insertAfter(LI
);
1346 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1347 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1348 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1349 PHINode
*APN
, DIBuilder
&Builder
) {
1350 auto *DIVar
= DII
->getVariable();
1351 auto *DIExpr
= DII
->getExpression();
1352 assert(DIVar
&& "Missing variable");
1354 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1357 if (!valueCoversEntireFragment(APN
->getType(), DII
)) {
1358 // FIXME: If only referring to a part of the variable described by the
1359 // dbg.declare, then we want to insert a dbg.value for the corresponding
1361 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1366 BasicBlock
*BB
= APN
->getParent();
1367 auto InsertionPt
= BB
->getFirstInsertionPt();
1369 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1371 // The block may be a catchswitch block, which does not have a valid
1373 // FIXME: Insert dbg.value markers in the successors when appropriate.
1374 if (InsertionPt
!= BB
->end())
1375 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, NewLoc
, &*InsertionPt
);
1378 /// Determine whether this alloca is either a VLA or an array.
1379 static bool isArray(AllocaInst
*AI
) {
1380 return AI
->isArrayAllocation() ||
1381 AI
->getType()->getElementType()->isArrayTy();
1384 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1385 /// of llvm.dbg.value intrinsics.
1386 bool llvm::LowerDbgDeclare(Function
&F
) {
1387 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1388 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1390 for (Instruction
&BI
: FI
)
1391 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1392 Dbgs
.push_back(DDI
);
1397 for (auto &I
: Dbgs
) {
1398 DbgDeclareInst
*DDI
= I
;
1399 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1400 // If this is an alloca for a scalar variable, insert a dbg.value
1401 // at each load and store to the alloca and erase the dbg.declare.
1402 // The dbg.values allow tracking a variable even if it is not
1403 // stored on the stack, while the dbg.declare can only describe
1404 // the stack slot (and at a lexical-scope granularity). Later
1405 // passes will attempt to elide the stack slot.
1406 if (!AI
|| isArray(AI
))
1409 // A volatile load/store means that the alloca can't be elided anyway.
1410 if (llvm::any_of(AI
->users(), [](User
*U
) -> bool {
1411 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1412 return LI
->isVolatile();
1413 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
1414 return SI
->isVolatile();
1419 for (auto &AIUse
: AI
->uses()) {
1420 User
*U
= AIUse
.getUser();
1421 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1422 if (AIUse
.getOperandNo() == 1)
1423 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1424 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1425 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1426 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1427 // This is a call by-value or some other instruction that takes a
1428 // pointer to the variable. Insert a *value* intrinsic that describes
1429 // the variable by dereferencing the alloca.
1430 DebugLoc NewLoc
= getDebugValueLoc(DDI
, nullptr);
1432 DIExpression::append(DDI
->getExpression(), dwarf::DW_OP_deref
);
1433 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(), DerefExpr
, NewLoc
,
1437 DDI
->eraseFromParent();
1442 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1443 void llvm::insertDebugValuesForPHIs(BasicBlock
*BB
,
1444 SmallVectorImpl
<PHINode
*> &InsertedPHIs
) {
1445 assert(BB
&& "No BasicBlock to clone dbg.value(s) from.");
1446 if (InsertedPHIs
.size() == 0)
1449 // Map existing PHI nodes to their dbg.values.
1450 ValueToValueMapTy DbgValueMap
;
1451 for (auto &I
: *BB
) {
1452 if (auto DbgII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
1453 if (auto *Loc
= dyn_cast_or_null
<PHINode
>(DbgII
->getVariableLocation()))
1454 DbgValueMap
.insert({Loc
, DbgII
});
1457 if (DbgValueMap
.size() == 0)
1460 // Then iterate through the new PHIs and look to see if they use one of the
1461 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1462 // propagate the info through the new PHI.
1463 LLVMContext
&C
= BB
->getContext();
1464 for (auto PHI
: InsertedPHIs
) {
1465 BasicBlock
*Parent
= PHI
->getParent();
1466 // Avoid inserting an intrinsic into an EH block.
1467 if (Parent
->getFirstNonPHI()->isEHPad())
1469 auto PhiMAV
= MetadataAsValue::get(C
, ValueAsMetadata::get(PHI
));
1470 for (auto VI
: PHI
->operand_values()) {
1471 auto V
= DbgValueMap
.find(VI
);
1472 if (V
!= DbgValueMap
.end()) {
1473 auto *DbgII
= cast
<DbgVariableIntrinsic
>(V
->second
);
1474 Instruction
*NewDbgII
= DbgII
->clone();
1475 NewDbgII
->setOperand(0, PhiMAV
);
1476 auto InsertionPt
= Parent
->getFirstInsertionPt();
1477 assert(InsertionPt
!= Parent
->end() && "Ill-formed basic block");
1478 NewDbgII
->insertBefore(&*InsertionPt
);
1484 /// Finds all intrinsics declaring local variables as living in the memory that
1485 /// 'V' points to. This may include a mix of dbg.declare and
1486 /// dbg.addr intrinsics.
1487 TinyPtrVector
<DbgVariableIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1488 // This function is hot. Check whether the value has any metadata to avoid a
1490 if (!V
->isUsedByMetadata())
1492 auto *L
= LocalAsMetadata::getIfExists(V
);
1495 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1499 TinyPtrVector
<DbgVariableIntrinsic
*> Declares
;
1500 for (User
*U
: MDV
->users()) {
1501 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1502 if (DII
->isAddressOfVariable())
1503 Declares
.push_back(DII
);
1509 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1510 // This function is hot. Check whether the value has any metadata to avoid a
1512 if (!V
->isUsedByMetadata())
1514 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1515 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1516 for (User
*U
: MDV
->users())
1517 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1518 DbgValues
.push_back(DVI
);
1521 void llvm::findDbgUsers(SmallVectorImpl
<DbgVariableIntrinsic
*> &DbgUsers
,
1523 // This function is hot. Check whether the value has any metadata to avoid a
1525 if (!V
->isUsedByMetadata())
1527 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1528 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1529 for (User
*U
: MDV
->users())
1530 if (DbgVariableIntrinsic
*DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1531 DbgUsers
.push_back(DII
);
1534 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1535 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1536 uint8_t DIExprFlags
, int Offset
) {
1537 auto DbgAddrs
= FindDbgAddrUses(Address
);
1538 for (DbgVariableIntrinsic
*DII
: DbgAddrs
) {
1539 DebugLoc Loc
= DII
->getDebugLoc();
1540 auto *DIVar
= DII
->getVariable();
1541 auto *DIExpr
= DII
->getExpression();
1542 assert(DIVar
&& "Missing variable");
1543 DIExpr
= DIExpression::prepend(DIExpr
, DIExprFlags
, Offset
);
1544 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1545 // llvm.dbg.declare.
1546 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1547 if (DII
== InsertBefore
)
1548 InsertBefore
= InsertBefore
->getNextNode();
1549 DII
->eraseFromParent();
1551 return !DbgAddrs
.empty();
1554 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1555 DIBuilder
&Builder
, uint8_t DIExprFlags
,
1557 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1558 DIExprFlags
, Offset
);
1561 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1562 DIBuilder
&Builder
, int Offset
) {
1563 DebugLoc Loc
= DVI
->getDebugLoc();
1564 auto *DIVar
= DVI
->getVariable();
1565 auto *DIExpr
= DVI
->getExpression();
1566 assert(DIVar
&& "Missing variable");
1568 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1569 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1571 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1572 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1575 // Insert the offset before the first deref.
1576 // We could just change the offset argument of dbg.value, but it's unsigned...
1578 DIExpr
= DIExpression::prepend(DIExpr
, 0, Offset
);
1580 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1581 DVI
->eraseFromParent();
1584 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1585 DIBuilder
&Builder
, int Offset
) {
1586 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1587 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1588 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1590 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1591 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1595 /// Wrap \p V in a ValueAsMetadata instance.
1596 static MetadataAsValue
*wrapValueInMetadata(LLVMContext
&C
, Value
*V
) {
1597 return MetadataAsValue::get(C
, ValueAsMetadata::get(V
));
1600 bool llvm::salvageDebugInfo(Instruction
&I
) {
1601 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
1602 findDbgUsers(DbgUsers
, &I
);
1603 if (DbgUsers
.empty())
1606 return salvageDebugInfoForDbgValues(I
, DbgUsers
);
1609 bool llvm::salvageDebugInfoForDbgValues(
1610 Instruction
&I
, ArrayRef
<DbgVariableIntrinsic
*> DbgUsers
) {
1611 auto &Ctx
= I
.getContext();
1612 auto wrapMD
= [&](Value
*V
) { return wrapValueInMetadata(Ctx
, V
); };
1614 for (auto *DII
: DbgUsers
) {
1615 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1616 // are implicitly pointing out the value as a DWARF memory location
1618 bool StackValue
= isa
<DbgValueInst
>(DII
);
1620 DIExpression
*DIExpr
=
1621 salvageDebugInfoImpl(I
, DII
->getExpression(), StackValue
);
1623 // salvageDebugInfoImpl should fail on examining the first element of
1624 // DbgUsers, or none of them.
1628 DII
->setOperand(0, wrapMD(I
.getOperand(0)));
1629 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1630 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1636 DIExpression
*llvm::salvageDebugInfoImpl(Instruction
&I
,
1637 DIExpression
*SrcDIExpr
,
1638 bool WithStackValue
) {
1639 auto &M
= *I
.getModule();
1640 auto &DL
= M
.getDataLayout();
1642 // Apply a vector of opcodes to the source DIExpression.
1643 auto doSalvage
= [&](SmallVectorImpl
<uint64_t> &Ops
) -> DIExpression
* {
1644 DIExpression
*DIExpr
= SrcDIExpr
;
1646 DIExpr
= DIExpression::prependOpcodes(DIExpr
, Ops
, WithStackValue
);
1651 // Apply the given offset to the source DIExpression.
1652 auto applyOffset
= [&](uint64_t Offset
) -> DIExpression
* {
1653 SmallVector
<uint64_t, 8> Ops
;
1654 DIExpression::appendOffset(Ops
, Offset
);
1655 return doSalvage(Ops
);
1658 // initializer-list helper for applying operators to the source DIExpression.
1660 [&](std::initializer_list
<uint64_t> Opcodes
) -> DIExpression
* {
1661 SmallVector
<uint64_t, 8> Ops(Opcodes
);
1662 return doSalvage(Ops
);
1665 if (auto *CI
= dyn_cast
<CastInst
>(&I
)) {
1666 // No-op casts and zexts are irrelevant for debug info.
1667 if (CI
->isNoopCast(DL
) || isa
<ZExtInst
>(&I
))
1670 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1672 M
.getDataLayout().getIndexSizeInBits(GEP
->getPointerAddressSpace());
1673 // Rewrite a constant GEP into a DIExpression.
1674 APInt
Offset(BitWidth
, 0);
1675 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
)) {
1676 return applyOffset(Offset
.getSExtValue());
1680 } else if (auto *BI
= dyn_cast
<BinaryOperator
>(&I
)) {
1681 // Rewrite binary operations with constant integer operands.
1682 auto *ConstInt
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1683 if (!ConstInt
|| ConstInt
->getBitWidth() > 64)
1686 uint64_t Val
= ConstInt
->getSExtValue();
1687 switch (BI
->getOpcode()) {
1688 case Instruction::Add
:
1689 return applyOffset(Val
);
1690 case Instruction::Sub
:
1691 return applyOffset(-int64_t(Val
));
1692 case Instruction::Mul
:
1693 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mul
});
1694 case Instruction::SDiv
:
1695 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_div
});
1696 case Instruction::SRem
:
1697 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mod
});
1698 case Instruction::Or
:
1699 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_or
});
1700 case Instruction::And
:
1701 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_and
});
1702 case Instruction::Xor
:
1703 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_xor
});
1704 case Instruction::Shl
:
1705 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shl
});
1706 case Instruction::LShr
:
1707 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shr
});
1708 case Instruction::AShr
:
1709 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shra
});
1711 // TODO: Salvage constants from each kind of binop we know about.
1714 // *Not* to do: we should not attempt to salvage load instructions,
1715 // because the validity and lifetime of a dbg.value containing
1716 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1721 /// A replacement for a dbg.value expression.
1722 using DbgValReplacement
= Optional
<DIExpression
*>;
1724 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1725 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1726 /// changes are made.
1727 static bool rewriteDebugUsers(
1728 Instruction
&From
, Value
&To
, Instruction
&DomPoint
, DominatorTree
&DT
,
1729 function_ref
<DbgValReplacement(DbgVariableIntrinsic
&DII
)> RewriteExpr
) {
1730 // Find debug users of From.
1731 SmallVector
<DbgVariableIntrinsic
*, 1> Users
;
1732 findDbgUsers(Users
, &From
);
1736 // Prevent use-before-def of To.
1737 bool Changed
= false;
1738 SmallPtrSet
<DbgVariableIntrinsic
*, 1> DeleteOrSalvage
;
1739 if (isa
<Instruction
>(&To
)) {
1740 bool DomPointAfterFrom
= From
.getNextNonDebugInstruction() == &DomPoint
;
1742 for (auto *DII
: Users
) {
1743 // It's common to see a debug user between From and DomPoint. Move it
1744 // after DomPoint to preserve the variable update without any reordering.
1745 if (DomPointAfterFrom
&& DII
->getNextNonDebugInstruction() == &DomPoint
) {
1746 LLVM_DEBUG(dbgs() << "MOVE: " << *DII
<< '\n');
1747 DII
->moveAfter(&DomPoint
);
1750 // Users which otherwise aren't dominated by the replacement value must
1751 // be salvaged or deleted.
1752 } else if (!DT
.dominates(&DomPoint
, DII
)) {
1753 DeleteOrSalvage
.insert(DII
);
1758 // Update debug users without use-before-def risk.
1759 for (auto *DII
: Users
) {
1760 if (DeleteOrSalvage
.count(DII
))
1763 LLVMContext
&Ctx
= DII
->getContext();
1764 DbgValReplacement DVR
= RewriteExpr(*DII
);
1768 DII
->setOperand(0, wrapValueInMetadata(Ctx
, &To
));
1769 DII
->setOperand(2, MetadataAsValue::get(Ctx
, *DVR
));
1770 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII
<< '\n');
1774 if (!DeleteOrSalvage
.empty()) {
1775 // Try to salvage the remaining debug users.
1776 Changed
|= salvageDebugInfo(From
);
1778 // Delete the debug users which weren't salvaged.
1779 for (auto *DII
: DeleteOrSalvage
) {
1780 if (DII
->getVariableLocation() == &From
) {
1781 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII
<< '\n');
1782 DII
->eraseFromParent();
1791 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1792 /// losslessly preserve the bits and semantics of the value. This predicate is
1793 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1795 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1796 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1797 /// and also does not allow lossless pointer <-> integer conversions.
1798 static bool isBitCastSemanticsPreserving(const DataLayout
&DL
, Type
*FromTy
,
1800 // Trivially compatible types.
1804 // Handle compatible pointer <-> integer conversions.
1805 if (FromTy
->isIntOrPtrTy() && ToTy
->isIntOrPtrTy()) {
1806 bool SameSize
= DL
.getTypeSizeInBits(FromTy
) == DL
.getTypeSizeInBits(ToTy
);
1807 bool LosslessConversion
= !DL
.isNonIntegralPointerType(FromTy
) &&
1808 !DL
.isNonIntegralPointerType(ToTy
);
1809 return SameSize
&& LosslessConversion
;
1812 // TODO: This is not exhaustive.
1816 bool llvm::replaceAllDbgUsesWith(Instruction
&From
, Value
&To
,
1817 Instruction
&DomPoint
, DominatorTree
&DT
) {
1818 // Exit early if From has no debug users.
1819 if (!From
.isUsedByMetadata())
1822 assert(&From
!= &To
&& "Can't replace something with itself");
1824 Type
*FromTy
= From
.getType();
1825 Type
*ToTy
= To
.getType();
1827 auto Identity
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1828 return DII
.getExpression();
1831 // Handle no-op conversions.
1832 Module
&M
= *From
.getModule();
1833 const DataLayout
&DL
= M
.getDataLayout();
1834 if (isBitCastSemanticsPreserving(DL
, FromTy
, ToTy
))
1835 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1837 // Handle integer-to-integer widening and narrowing.
1838 // FIXME: Use DW_OP_convert when it's available everywhere.
1839 if (FromTy
->isIntegerTy() && ToTy
->isIntegerTy()) {
1840 uint64_t FromBits
= FromTy
->getPrimitiveSizeInBits();
1841 uint64_t ToBits
= ToTy
->getPrimitiveSizeInBits();
1842 assert(FromBits
!= ToBits
&& "Unexpected no-op conversion");
1844 // When the width of the result grows, assume that a debugger will only
1845 // access the low `FromBits` bits when inspecting the source variable.
1846 if (FromBits
< ToBits
)
1847 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1849 // The width of the result has shrunk. Use sign/zero extension to describe
1850 // the source variable's high bits.
1851 auto SignOrZeroExt
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1852 DILocalVariable
*Var
= DII
.getVariable();
1854 // Without knowing signedness, sign/zero extension isn't possible.
1855 auto Signedness
= Var
->getSignedness();
1859 bool Signed
= *Signedness
== DIBasicType::Signedness::Signed
;
1860 dwarf::TypeKind TK
= Signed
? dwarf::DW_ATE_signed
: dwarf::DW_ATE_unsigned
;
1861 SmallVector
<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert
, ToBits
, TK
,
1862 dwarf::DW_OP_LLVM_convert
, FromBits
, TK
});
1863 return DIExpression::appendToStack(DII
.getExpression(), Ops
);
1865 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, SignOrZeroExt
);
1868 // TODO: Floating-point conversions, vectors.
1872 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1873 unsigned NumDeadInst
= 0;
1874 // Delete the instructions backwards, as it has a reduced likelihood of
1875 // having to update as many def-use and use-def chains.
1876 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1877 while (EndInst
!= &BB
->front()) {
1878 // Delete the next to last instruction.
1879 Instruction
*Inst
= &*--EndInst
->getIterator();
1880 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1881 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1882 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1886 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1888 Inst
->eraseFromParent();
1893 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1894 bool PreserveLCSSA
, DomTreeUpdater
*DTU
,
1895 MemorySSAUpdater
*MSSAU
) {
1896 BasicBlock
*BB
= I
->getParent();
1897 std::vector
<DominatorTree::UpdateType
> Updates
;
1900 MSSAU
->changeToUnreachable(I
);
1902 // Loop over all of the successors, removing BB's entry from any PHI
1905 Updates
.reserve(BB
->getTerminator()->getNumSuccessors());
1906 for (BasicBlock
*Successor
: successors(BB
)) {
1907 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1909 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
1911 // Insert a call to llvm.trap right before this. This turns the undefined
1912 // behavior into a hard fail instead of falling through into random code.
1915 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1916 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1917 CallTrap
->setDebugLoc(I
->getDebugLoc());
1919 auto *UI
= new UnreachableInst(I
->getContext(), I
);
1920 UI
->setDebugLoc(I
->getDebugLoc());
1922 // All instructions after this are dead.
1923 unsigned NumInstrsRemoved
= 0;
1924 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1925 while (BBI
!= BBE
) {
1926 if (!BBI
->use_empty())
1927 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1928 BB
->getInstList().erase(BBI
++);
1932 DTU
->applyUpdatesPermissive(Updates
);
1933 return NumInstrsRemoved
;
1936 CallInst
*llvm::createCallMatchingInvoke(InvokeInst
*II
) {
1937 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1938 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1939 II
->getOperandBundlesAsDefs(OpBundles
);
1940 CallInst
*NewCall
= CallInst::Create(II
->getFunctionType(),
1941 II
->getCalledValue(), Args
, OpBundles
);
1942 NewCall
->setCallingConv(II
->getCallingConv());
1943 NewCall
->setAttributes(II
->getAttributes());
1944 NewCall
->setDebugLoc(II
->getDebugLoc());
1945 NewCall
->copyMetadata(*II
);
1949 /// changeToCall - Convert the specified invoke into a normal call.
1950 void llvm::changeToCall(InvokeInst
*II
, DomTreeUpdater
*DTU
) {
1951 CallInst
*NewCall
= createCallMatchingInvoke(II
);
1952 NewCall
->takeName(II
);
1953 NewCall
->insertBefore(II
);
1954 II
->replaceAllUsesWith(NewCall
);
1956 // Follow the call by a branch to the normal destination.
1957 BasicBlock
*NormalDestBB
= II
->getNormalDest();
1958 BranchInst::Create(NormalDestBB
, II
);
1960 // Update PHI nodes in the unwind destination
1961 BasicBlock
*BB
= II
->getParent();
1962 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
1963 UnwindDestBB
->removePredecessor(BB
);
1964 II
->eraseFromParent();
1966 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDestBB
}});
1969 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
1970 BasicBlock
*UnwindEdge
) {
1971 BasicBlock
*BB
= CI
->getParent();
1973 // Convert this function call into an invoke instruction. First, split the
1976 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
1978 // Delete the unconditional branch inserted by splitBasicBlock
1979 BB
->getInstList().pop_back();
1981 // Create the new invoke instruction.
1982 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
1983 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1985 CI
->getOperandBundlesAsDefs(OpBundles
);
1987 // Note: we're round tripping operand bundles through memory here, and that
1988 // can potentially be avoided with a cleverer API design that we do not have
1992 InvokeInst::Create(CI
->getFunctionType(), CI
->getCalledValue(), Split
,
1993 UnwindEdge
, InvokeArgs
, OpBundles
, CI
->getName(), BB
);
1994 II
->setDebugLoc(CI
->getDebugLoc());
1995 II
->setCallingConv(CI
->getCallingConv());
1996 II
->setAttributes(CI
->getAttributes());
1998 // Make sure that anything using the call now uses the invoke! This also
1999 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2000 CI
->replaceAllUsesWith(II
);
2002 // Delete the original call
2003 Split
->getInstList().pop_front();
2007 static bool markAliveBlocks(Function
&F
,
2008 SmallPtrSetImpl
<BasicBlock
*> &Reachable
,
2009 DomTreeUpdater
*DTU
= nullptr) {
2010 SmallVector
<BasicBlock
*, 128> Worklist
;
2011 BasicBlock
*BB
= &F
.front();
2012 Worklist
.push_back(BB
);
2013 Reachable
.insert(BB
);
2014 bool Changed
= false;
2016 BB
= Worklist
.pop_back_val();
2018 // Do a quick scan of the basic block, turning any obviously unreachable
2019 // instructions into LLVM unreachable insts. The instruction combining pass
2020 // canonicalizes unreachable insts into stores to null or undef.
2021 for (Instruction
&I
: *BB
) {
2022 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
2023 Value
*Callee
= CI
->getCalledValue();
2024 // Handle intrinsic calls.
2025 if (Function
*F
= dyn_cast
<Function
>(Callee
)) {
2026 auto IntrinsicID
= F
->getIntrinsicID();
2027 // Assumptions that are known to be false are equivalent to
2028 // unreachable. Also, if the condition is undefined, then we make the
2029 // choice most beneficial to the optimizer, and choose that to also be
2031 if (IntrinsicID
== Intrinsic::assume
) {
2032 if (match(CI
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2033 // Don't insert a call to llvm.trap right before the unreachable.
2034 changeToUnreachable(CI
, false, false, DTU
);
2038 } else if (IntrinsicID
== Intrinsic::experimental_guard
) {
2039 // A call to the guard intrinsic bails out of the current
2040 // compilation unit if the predicate passed to it is false. If the
2041 // predicate is a constant false, then we know the guard will bail
2042 // out of the current compile unconditionally, so all code following
2045 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2046 // guards to treat `undef` as `false` since a guard on `undef` can
2047 // still be useful for widening.
2048 if (match(CI
->getArgOperand(0), m_Zero()))
2049 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2050 changeToUnreachable(CI
->getNextNode(), /*UseLLVMTrap=*/false,
2056 } else if ((isa
<ConstantPointerNull
>(Callee
) &&
2057 !NullPointerIsDefined(CI
->getFunction())) ||
2058 isa
<UndefValue
>(Callee
)) {
2059 changeToUnreachable(CI
, /*UseLLVMTrap=*/false, false, DTU
);
2063 if (CI
->doesNotReturn() && !CI
->isMustTailCall()) {
2064 // If we found a call to a no-return function, insert an unreachable
2065 // instruction after it. Make sure there isn't *already* one there
2067 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2068 // Don't insert a call to llvm.trap right before the unreachable.
2069 changeToUnreachable(CI
->getNextNode(), false, false, DTU
);
2074 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2075 // Store to undef and store to null are undefined and used to signal
2076 // that they should be changed to unreachable by passes that can't
2079 // Don't touch volatile stores.
2080 if (SI
->isVolatile()) continue;
2082 Value
*Ptr
= SI
->getOperand(1);
2084 if (isa
<UndefValue
>(Ptr
) ||
2085 (isa
<ConstantPointerNull
>(Ptr
) &&
2086 !NullPointerIsDefined(SI
->getFunction(),
2087 SI
->getPointerAddressSpace()))) {
2088 changeToUnreachable(SI
, true, false, DTU
);
2095 Instruction
*Terminator
= BB
->getTerminator();
2096 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
2097 // Turn invokes that call 'nounwind' functions into ordinary calls.
2098 Value
*Callee
= II
->getCalledValue();
2099 if ((isa
<ConstantPointerNull
>(Callee
) &&
2100 !NullPointerIsDefined(BB
->getParent())) ||
2101 isa
<UndefValue
>(Callee
)) {
2102 changeToUnreachable(II
, true, false, DTU
);
2104 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
2105 if (II
->use_empty() && II
->onlyReadsMemory()) {
2106 // jump to the normal destination branch.
2107 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2108 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2109 BranchInst::Create(NormalDestBB
, II
);
2110 UnwindDestBB
->removePredecessor(II
->getParent());
2111 II
->eraseFromParent();
2113 DTU
->applyUpdatesPermissive(
2114 {{DominatorTree::Delete
, BB
, UnwindDestBB
}});
2116 changeToCall(II
, DTU
);
2119 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
2120 // Remove catchpads which cannot be reached.
2121 struct CatchPadDenseMapInfo
{
2122 static CatchPadInst
*getEmptyKey() {
2123 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
2126 static CatchPadInst
*getTombstoneKey() {
2127 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
2130 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
2131 return static_cast<unsigned>(hash_combine_range(
2132 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
2135 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
2136 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
2137 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
2139 return LHS
->isIdenticalTo(RHS
);
2143 // Set of unique CatchPads.
2144 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
2145 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
2147 detail::DenseSetEmpty Empty
;
2148 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
2149 E
= CatchSwitch
->handler_end();
2151 BasicBlock
*HandlerBB
= *I
;
2152 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
2153 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
2154 CatchSwitch
->removeHandler(I
);
2162 Changed
|= ConstantFoldTerminator(BB
, true, nullptr, DTU
);
2163 for (BasicBlock
*Successor
: successors(BB
))
2164 if (Reachable
.insert(Successor
).second
)
2165 Worklist
.push_back(Successor
);
2166 } while (!Worklist
.empty());
2170 void llvm::removeUnwindEdge(BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
2171 Instruction
*TI
= BB
->getTerminator();
2173 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
2174 changeToCall(II
, DTU
);
2179 BasicBlock
*UnwindDest
;
2181 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
2182 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
2183 UnwindDest
= CRI
->getUnwindDest();
2184 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
2185 auto *NewCatchSwitch
= CatchSwitchInst::Create(
2186 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
2187 CatchSwitch
->getName(), CatchSwitch
);
2188 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
2189 NewCatchSwitch
->addHandler(PadBB
);
2191 NewTI
= NewCatchSwitch
;
2192 UnwindDest
= CatchSwitch
->getUnwindDest();
2194 llvm_unreachable("Could not find unwind successor");
2197 NewTI
->takeName(TI
);
2198 NewTI
->setDebugLoc(TI
->getDebugLoc());
2199 UnwindDest
->removePredecessor(BB
);
2200 TI
->replaceAllUsesWith(NewTI
);
2201 TI
->eraseFromParent();
2203 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDest
}});
2206 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2207 /// if they are in a dead cycle. Return true if a change was made, false
2208 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2209 /// after modifying the CFG.
2210 bool llvm::removeUnreachableBlocks(Function
&F
, LazyValueInfo
*LVI
,
2211 DomTreeUpdater
*DTU
,
2212 MemorySSAUpdater
*MSSAU
) {
2213 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
2214 bool Changed
= markAliveBlocks(F
, Reachable
, DTU
);
2216 // If there are unreachable blocks in the CFG...
2217 if (Reachable
.size() == F
.size())
2220 assert(Reachable
.size() < F
.size());
2221 NumRemoved
+= F
.size()-Reachable
.size();
2223 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet
;
2224 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
2226 if (Reachable
.count(BB
))
2228 DeadBlockSet
.insert(BB
);
2232 MSSAU
->removeBlocks(DeadBlockSet
);
2234 // Loop over all of the basic blocks that are not reachable, dropping all of
2235 // their internal references. Update DTU and LVI if available.
2236 std::vector
<DominatorTree::UpdateType
> Updates
;
2237 for (auto *BB
: DeadBlockSet
) {
2238 for (BasicBlock
*Successor
: successors(BB
)) {
2239 if (!DeadBlockSet
.count(Successor
))
2240 Successor
->removePredecessor(BB
);
2242 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
2245 LVI
->eraseBlock(BB
);
2246 BB
->dropAllReferences();
2248 for (Function::iterator I
= ++F
.begin(); I
!= F
.end();) {
2250 if (Reachable
.count(BB
)) {
2255 // Remove the terminator of BB to clear the successor list of BB.
2256 if (BB
->getTerminator())
2257 BB
->getInstList().pop_back();
2258 new UnreachableInst(BB
->getContext(), BB
);
2259 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
2260 "applying corresponding DTU updates.");
2263 I
= F
.getBasicBlockList().erase(I
);
2268 DTU
->applyUpdatesPermissive(Updates
);
2269 bool Deleted
= false;
2270 for (auto *BB
: DeadBlockSet
) {
2271 if (DTU
->isBBPendingDeletion(BB
))
2283 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
2284 ArrayRef
<unsigned> KnownIDs
, bool DoesKMove
) {
2285 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
2286 K
->dropUnknownNonDebugMetadata(KnownIDs
);
2287 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
2288 for (const auto &MD
: Metadata
) {
2289 unsigned Kind
= MD
.first
;
2290 MDNode
*JMD
= J
->getMetadata(Kind
);
2291 MDNode
*KMD
= MD
.second
;
2295 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
2297 case LLVMContext::MD_dbg
:
2298 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2299 case LLVMContext::MD_tbaa
:
2300 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
2302 case LLVMContext::MD_alias_scope
:
2303 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
2305 case LLVMContext::MD_noalias
:
2306 case LLVMContext::MD_mem_parallel_loop_access
:
2307 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
2309 case LLVMContext::MD_access_group
:
2310 K
->setMetadata(LLVMContext::MD_access_group
,
2311 intersectAccessGroups(K
, J
));
2313 case LLVMContext::MD_range
:
2315 // If K does move, use most generic range. Otherwise keep the range of
2318 // FIXME: If K does move, we should drop the range info and nonnull.
2319 // Currently this function is used with DoesKMove in passes
2320 // doing hoisting/sinking and the current behavior of using the
2321 // most generic range is correct in those cases.
2322 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
2324 case LLVMContext::MD_fpmath
:
2325 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
2327 case LLVMContext::MD_invariant_load
:
2328 // Only set the !invariant.load if it is present in both instructions.
2329 K
->setMetadata(Kind
, JMD
);
2331 case LLVMContext::MD_nonnull
:
2332 // If K does move, keep nonull if it is present in both instructions.
2334 K
->setMetadata(Kind
, JMD
);
2336 case LLVMContext::MD_invariant_group
:
2337 // Preserve !invariant.group in K.
2339 case LLVMContext::MD_align
:
2340 K
->setMetadata(Kind
,
2341 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2343 case LLVMContext::MD_dereferenceable
:
2344 case LLVMContext::MD_dereferenceable_or_null
:
2345 K
->setMetadata(Kind
,
2346 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2348 case LLVMContext::MD_preserve_access_index
:
2349 // Preserve !preserve.access.index in K.
2353 // Set !invariant.group from J if J has it. If both instructions have it
2354 // then we will just pick it from J - even when they are different.
2355 // Also make sure that K is load or store - f.e. combining bitcast with load
2356 // could produce bitcast with invariant.group metadata, which is invalid.
2357 // FIXME: we should try to preserve both invariant.group md if they are
2358 // different, but right now instruction can only have one invariant.group.
2359 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
2360 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
2361 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
2364 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
,
2366 unsigned KnownIDs
[] = {
2367 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2368 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2369 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
2370 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
2371 LLVMContext::MD_dereferenceable
,
2372 LLVMContext::MD_dereferenceable_or_null
,
2373 LLVMContext::MD_access_group
, LLVMContext::MD_preserve_access_index
};
2374 combineMetadata(K
, J
, KnownIDs
, KDominatesJ
);
2377 void llvm::copyMetadataForLoad(LoadInst
&Dest
, const LoadInst
&Source
) {
2378 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MD
;
2379 Source
.getAllMetadata(MD
);
2380 MDBuilder
MDB(Dest
.getContext());
2381 Type
*NewType
= Dest
.getType();
2382 const DataLayout
&DL
= Source
.getModule()->getDataLayout();
2383 for (const auto &MDPair
: MD
) {
2384 unsigned ID
= MDPair
.first
;
2385 MDNode
*N
= MDPair
.second
;
2386 // Note, essentially every kind of metadata should be preserved here! This
2387 // routine is supposed to clone a load instruction changing *only its type*.
2388 // The only metadata it makes sense to drop is metadata which is invalidated
2389 // when the pointer type changes. This should essentially never be the case
2390 // in LLVM, but we explicitly switch over only known metadata to be
2391 // conservatively correct. If you are adding metadata to LLVM which pertains
2392 // to loads, you almost certainly want to add it here.
2394 case LLVMContext::MD_dbg
:
2395 case LLVMContext::MD_tbaa
:
2396 case LLVMContext::MD_prof
:
2397 case LLVMContext::MD_fpmath
:
2398 case LLVMContext::MD_tbaa_struct
:
2399 case LLVMContext::MD_invariant_load
:
2400 case LLVMContext::MD_alias_scope
:
2401 case LLVMContext::MD_noalias
:
2402 case LLVMContext::MD_nontemporal
:
2403 case LLVMContext::MD_mem_parallel_loop_access
:
2404 case LLVMContext::MD_access_group
:
2405 // All of these directly apply.
2406 Dest
.setMetadata(ID
, N
);
2409 case LLVMContext::MD_nonnull
:
2410 copyNonnullMetadata(Source
, N
, Dest
);
2413 case LLVMContext::MD_align
:
2414 case LLVMContext::MD_dereferenceable
:
2415 case LLVMContext::MD_dereferenceable_or_null
:
2416 // These only directly apply if the new type is also a pointer.
2417 if (NewType
->isPointerTy())
2418 Dest
.setMetadata(ID
, N
);
2421 case LLVMContext::MD_range
:
2422 copyRangeMetadata(DL
, Source
, N
, Dest
);
2428 void llvm::patchReplacementInstruction(Instruction
*I
, Value
*Repl
) {
2429 auto *ReplInst
= dyn_cast
<Instruction
>(Repl
);
2433 // Patch the replacement so that it is not more restrictive than the value
2435 // Note that if 'I' is a load being replaced by some operation,
2436 // for example, by an arithmetic operation, then andIRFlags()
2437 // would just erase all math flags from the original arithmetic
2438 // operation, which is clearly not wanted and not needed.
2439 if (!isa
<LoadInst
>(I
))
2440 ReplInst
->andIRFlags(I
);
2442 // FIXME: If both the original and replacement value are part of the
2443 // same control-flow region (meaning that the execution of one
2444 // guarantees the execution of the other), then we can combine the
2445 // noalias scopes here and do better than the general conservative
2446 // answer used in combineMetadata().
2448 // In general, GVN unifies expressions over different control-flow
2449 // regions, and so we need a conservative combination of the noalias
2451 static const unsigned KnownIDs
[] = {
2452 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2453 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2454 LLVMContext::MD_fpmath
, LLVMContext::MD_invariant_load
,
2455 LLVMContext::MD_invariant_group
, LLVMContext::MD_nonnull
,
2456 LLVMContext::MD_access_group
, LLVMContext::MD_preserve_access_index
};
2457 combineMetadata(ReplInst
, I
, KnownIDs
, false);
2460 template <typename RootType
, typename DominatesFn
>
2461 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
2462 const RootType
&Root
,
2463 const DominatesFn
&Dominates
) {
2464 assert(From
->getType() == To
->getType());
2467 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2470 if (!Dominates(Root
, U
))
2473 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From
->getName()
2474 << "' as " << *To
<< " in " << *U
<< "\n");
2480 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
2481 assert(From
->getType() == To
->getType());
2482 auto *BB
= From
->getParent();
2485 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2488 auto *I
= cast
<Instruction
>(U
.getUser());
2489 if (I
->getParent() == BB
)
2497 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2499 const BasicBlockEdge
&Root
) {
2500 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
2501 return DT
.dominates(Root
, U
);
2503 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
2506 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2508 const BasicBlock
*BB
) {
2509 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
2510 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
2511 return DT
.properlyDominates(BB
, I
);
2513 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
2516 bool llvm::callsGCLeafFunction(const CallBase
*Call
,
2517 const TargetLibraryInfo
&TLI
) {
2518 // Check if the function is specifically marked as a gc leaf function.
2519 if (Call
->hasFnAttr("gc-leaf-function"))
2521 if (const Function
*F
= Call
->getCalledFunction()) {
2522 if (F
->hasFnAttribute("gc-leaf-function"))
2525 if (auto IID
= F
->getIntrinsicID())
2526 // Most LLVM intrinsics do not take safepoints.
2527 return IID
!= Intrinsic::experimental_gc_statepoint
&&
2528 IID
!= Intrinsic::experimental_deoptimize
;
2531 // Lib calls can be materialized by some passes, and won't be
2532 // marked as 'gc-leaf-function.' All available Libcalls are
2535 if (TLI
.getLibFunc(ImmutableCallSite(Call
), LF
)) {
2542 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
2544 auto *NewTy
= NewLI
.getType();
2546 // This only directly applies if the new type is also a pointer.
2547 if (NewTy
->isPointerTy()) {
2548 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
2552 // The only other translation we can do is to integral loads with !range
2554 if (!NewTy
->isIntegerTy())
2557 MDBuilder
MDB(NewLI
.getContext());
2558 const Value
*Ptr
= OldLI
.getPointerOperand();
2559 auto *ITy
= cast
<IntegerType
>(NewTy
);
2560 auto *NullInt
= ConstantExpr::getPtrToInt(
2561 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
2562 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
2563 NewLI
.setMetadata(LLVMContext::MD_range
,
2564 MDB
.createRange(NonNullInt
, NullInt
));
2567 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
2568 MDNode
*N
, LoadInst
&NewLI
) {
2569 auto *NewTy
= NewLI
.getType();
2571 // Give up unless it is converted to a pointer where there is a single very
2572 // valuable mapping we can do reliably.
2573 // FIXME: It would be nice to propagate this in more ways, but the type
2574 // conversions make it hard.
2575 if (!NewTy
->isPointerTy())
2578 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(NewTy
);
2579 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
2580 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
2581 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
2585 void llvm::dropDebugUsers(Instruction
&I
) {
2586 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
2587 findDbgUsers(DbgUsers
, &I
);
2588 for (auto *DII
: DbgUsers
)
2589 DII
->eraseFromParent();
2592 void llvm::hoistAllInstructionsInto(BasicBlock
*DomBlock
, Instruction
*InsertPt
,
2594 // Since we are moving the instructions out of its basic block, we do not
2595 // retain their original debug locations (DILocations) and debug intrinsic
2598 // Doing so would degrade the debugging experience and adversely affect the
2599 // accuracy of profiling information.
2601 // Currently, when hoisting the instructions, we take the following actions:
2602 // - Remove their debug intrinsic instructions.
2603 // - Set their debug locations to the values from the insertion point.
2605 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2606 // need to be deleted, is because there will not be any instructions with a
2607 // DILocation in either branch left after performing the transformation. We
2608 // can only insert a dbg.value after the two branches are joined again.
2610 // See PR38762, PR39243 for more details.
2612 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2613 // encode predicated DIExpressions that yield different results on different
2615 for (BasicBlock::iterator II
= BB
->begin(), IE
= BB
->end(); II
!= IE
;) {
2616 Instruction
*I
= &*II
;
2617 I
->dropUnknownNonDebugMetadata();
2618 if (I
->isUsedByMetadata())
2620 if (isa
<DbgInfoIntrinsic
>(I
)) {
2621 // Remove DbgInfo Intrinsics.
2622 II
= I
->eraseFromParent();
2625 I
->setDebugLoc(InsertPt
->getDebugLoc());
2628 DomBlock
->getInstList().splice(InsertPt
->getIterator(), BB
->getInstList(),
2630 BB
->getTerminator()->getIterator());
2635 /// A potential constituent of a bitreverse or bswap expression. See
2636 /// collectBitParts for a fuller explanation.
2638 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
2639 Provenance
.resize(BW
);
2642 /// The Value that this is a bitreverse/bswap of.
2645 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2646 /// in Provider becomes bit B in the result of this expression.
2647 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
2649 enum { Unset
= -1 };
2652 } // end anonymous namespace
2654 /// Analyze the specified subexpression and see if it is capable of providing
2655 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2656 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2657 /// the output of the expression came from a corresponding bit in some other
2658 /// value. This function is recursive, and the end result is a mapping of
2659 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2660 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2662 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2663 /// that the expression deposits the low byte of %X into the high byte of the
2664 /// result and that all other bits are zero. This expression is accepted and a
2665 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2668 /// To avoid revisiting values, the BitPart results are memoized into the
2669 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2670 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2671 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2672 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2673 /// type instead to provide the same functionality.
2675 /// Because we pass around references into \c BPS, we must use a container that
2676 /// does not invalidate internal references (std::map instead of DenseMap).
2677 static const Optional
<BitPart
> &
2678 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
2679 std::map
<Value
*, Optional
<BitPart
>> &BPS
, int Depth
) {
2680 auto I
= BPS
.find(V
);
2684 auto &Result
= BPS
[V
] = None
;
2685 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2687 // Prevent stack overflow by limiting the recursion depth
2688 if (Depth
== BitPartRecursionMaxDepth
) {
2689 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2693 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
2694 // If this is an or instruction, it may be an inner node of the bswap.
2695 if (I
->getOpcode() == Instruction::Or
) {
2696 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2697 MatchBitReversals
, BPS
, Depth
+ 1);
2698 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
2699 MatchBitReversals
, BPS
, Depth
+ 1);
2703 // Try and merge the two together.
2704 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
2707 Result
= BitPart(A
->Provider
, BitWidth
);
2708 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
2709 if (A
->Provenance
[i
] != BitPart::Unset
&&
2710 B
->Provenance
[i
] != BitPart::Unset
&&
2711 A
->Provenance
[i
] != B
->Provenance
[i
])
2712 return Result
= None
;
2714 if (A
->Provenance
[i
] == BitPart::Unset
)
2715 Result
->Provenance
[i
] = B
->Provenance
[i
];
2717 Result
->Provenance
[i
] = A
->Provenance
[i
];
2723 // If this is a logical shift by a constant, recurse then shift the result.
2724 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
2726 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
2727 // Ensure the shift amount is defined.
2728 if (BitShift
> BitWidth
)
2731 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2732 MatchBitReversals
, BPS
, Depth
+ 1);
2737 // Perform the "shift" on BitProvenance.
2738 auto &P
= Result
->Provenance
;
2739 if (I
->getOpcode() == Instruction::Shl
) {
2740 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2741 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2743 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2744 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2750 // If this is a logical 'and' with a mask that clears bits, recurse then
2751 // unset the appropriate bits.
2752 if (I
->getOpcode() == Instruction::And
&&
2753 isa
<ConstantInt
>(I
->getOperand(1))) {
2754 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2755 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2757 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2759 unsigned NumMaskedBits
= AndMask
.countPopulation();
2760 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2763 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2764 MatchBitReversals
, BPS
, Depth
+ 1);
2769 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2770 // If the AndMask is zero for this bit, clear the bit.
2771 if ((AndMask
& Bit
) == 0)
2772 Result
->Provenance
[i
] = BitPart::Unset
;
2776 // If this is a zext instruction zero extend the result.
2777 if (I
->getOpcode() == Instruction::ZExt
) {
2778 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2779 MatchBitReversals
, BPS
, Depth
+ 1);
2783 Result
= BitPart(Res
->Provider
, BitWidth
);
2784 auto NarrowBitWidth
=
2785 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2786 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2787 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2788 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2789 Result
->Provenance
[i
] = BitPart::Unset
;
2794 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2795 // the input value to the bswap/bitreverse.
2796 Result
= BitPart(V
, BitWidth
);
2797 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2798 Result
->Provenance
[i
] = i
;
2802 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2803 unsigned BitWidth
) {
2804 if (From
% 8 != To
% 8)
2806 // Convert from bit indices to byte indices and check for a byte reversal.
2810 return From
== BitWidth
- To
- 1;
2813 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2814 unsigned BitWidth
) {
2815 return From
== BitWidth
- To
- 1;
2818 bool llvm::recognizeBSwapOrBitReverseIdiom(
2819 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2820 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2821 if (Operator::getOpcode(I
) != Instruction::Or
)
2823 if (!MatchBSwaps
&& !MatchBitReversals
)
2825 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2826 if (!ITy
|| ITy
->getBitWidth() > 128)
2827 return false; // Can't do vectors or integers > 128 bits.
2828 unsigned BW
= ITy
->getBitWidth();
2830 unsigned DemandedBW
= BW
;
2831 IntegerType
*DemandedTy
= ITy
;
2832 if (I
->hasOneUse()) {
2833 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2834 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2835 DemandedBW
= DemandedTy
->getBitWidth();
2839 // Try to find all the pieces corresponding to the bswap.
2840 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2841 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
, 0);
2844 auto &BitProvenance
= Res
->Provenance
;
2846 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2847 // only byteswap values with an even number of bytes.
2848 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2849 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2851 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2853 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2856 Intrinsic::ID Intrin
;
2857 if (OKForBSwap
&& MatchBSwaps
)
2858 Intrin
= Intrinsic::bswap
;
2859 else if (OKForBitReverse
&& MatchBitReversals
)
2860 Intrin
= Intrinsic::bitreverse
;
2864 if (ITy
!= DemandedTy
) {
2865 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2866 Value
*Provider
= Res
->Provider
;
2867 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2868 // We may need to truncate the provider.
2869 if (DemandedTy
!= ProviderTy
) {
2870 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2872 InsertedInsts
.push_back(Trunc
);
2875 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2876 InsertedInsts
.push_back(CI
);
2877 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2878 InsertedInsts
.push_back(ExtInst
);
2882 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2883 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2887 // CodeGen has special handling for some string functions that may replace
2888 // them with target-specific intrinsics. Since that'd skip our interceptors
2889 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2890 // we mark affected calls as NoBuiltin, which will disable optimization
2892 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2893 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2894 Function
*F
= CI
->getCalledFunction();
2896 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2897 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2898 !F
->doesNotAccessMemory())
2899 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2902 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2903 // We can't have a PHI with a metadata type.
2904 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2908 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2911 switch (I
->getOpcode()) {
2914 case Instruction::Call
:
2915 case Instruction::Invoke
:
2916 // Can't handle inline asm. Skip it.
2917 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2919 // Many arithmetic intrinsics have no issue taking a
2920 // variable, however it's hard to distingish these from
2921 // specials such as @llvm.frameaddress that require a constant.
2922 if (isa
<IntrinsicInst
>(I
))
2925 // Constant bundle operands may need to retain their constant-ness for
2927 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2930 case Instruction::ShuffleVector
:
2931 // Shufflevector masks are constant.
2933 case Instruction::Switch
:
2934 case Instruction::ExtractValue
:
2935 // All operands apart from the first are constant.
2937 case Instruction::InsertValue
:
2938 // All operands apart from the first and the second are constant.
2940 case Instruction::Alloca
:
2941 // Static allocas (constant size in the entry block) are handled by
2942 // prologue/epilogue insertion so they're free anyway. We definitely don't
2943 // want to make them non-constant.
2944 return !cast
<AllocaInst
>(I
)->isStaticAlloca();
2945 case Instruction::GetElementPtr
:
2948 gep_type_iterator It
= gep_type_begin(I
);
2949 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)
2956 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
2957 AllocaInst
*llvm::findAllocaForValue(Value
*V
,
2958 AllocaForValueMapTy
&AllocaForValue
) {
2959 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2961 // See if we've already calculated (or started to calculate) alloca for a
2963 AllocaForValueMapTy::iterator I
= AllocaForValue
.find(V
);
2964 if (I
!= AllocaForValue
.end())
2966 // Store 0 while we're calculating alloca for value V to avoid
2967 // infinite recursion if the value references itself.
2968 AllocaForValue
[V
] = nullptr;
2969 AllocaInst
*Res
= nullptr;
2970 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
2971 Res
= findAllocaForValue(CI
->getOperand(0), AllocaForValue
);
2972 else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
2973 for (Value
*IncValue
: PN
->incoming_values()) {
2974 // Allow self-referencing phi-nodes.
2977 AllocaInst
*IncValueAI
= findAllocaForValue(IncValue
, AllocaForValue
);
2978 // AI for incoming values should exist and should all be equal.
2979 if (IncValueAI
== nullptr || (Res
!= nullptr && IncValueAI
!= Res
))
2983 } else if (GetElementPtrInst
*EP
= dyn_cast
<GetElementPtrInst
>(V
)) {
2984 Res
= findAllocaForValue(EP
->getPointerOperand(), AllocaForValue
);
2986 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
2990 AllocaForValue
[V
] = Res
;