1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSAUpdater.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 using namespace llvm::PatternMatch
;
45 #define DEBUG_TYPE "loop-utils"
47 static const char *LLVMLoopDisableNonforced
= "llvm.loop.disable_nonforced";
48 static const char *LLVMLoopDisableLICM
= "llvm.licm.disable";
50 bool llvm::formDedicatedExitBlocks(Loop
*L
, DominatorTree
*DT
, LoopInfo
*LI
,
51 MemorySSAUpdater
*MSSAU
,
55 // We re-use a vector for the in-loop predecesosrs.
56 SmallVector
<BasicBlock
*, 4> InLoopPredecessors
;
58 auto RewriteExit
= [&](BasicBlock
*BB
) {
59 assert(InLoopPredecessors
.empty() &&
60 "Must start with an empty predecessors list!");
61 auto Cleanup
= make_scope_exit([&] { InLoopPredecessors
.clear(); });
63 // See if there are any non-loop predecessors of this exit block and
64 // keep track of the in-loop predecessors.
65 bool IsDedicatedExit
= true;
66 for (auto *PredBB
: predecessors(BB
))
67 if (L
->contains(PredBB
)) {
68 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
69 // We cannot rewrite exiting edges from an indirectbr.
71 if (isa
<CallBrInst
>(PredBB
->getTerminator()))
72 // We cannot rewrite exiting edges from a callbr.
75 InLoopPredecessors
.push_back(PredBB
);
77 IsDedicatedExit
= false;
80 assert(!InLoopPredecessors
.empty() && "Must have *some* loop predecessor!");
82 // Nothing to do if this is already a dedicated exit.
86 auto *NewExitBB
= SplitBlockPredecessors(
87 BB
, InLoopPredecessors
, ".loopexit", DT
, LI
, MSSAU
, PreserveLCSSA
);
91 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
94 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
95 << NewExitBB
->getName() << "\n");
99 // Walk the exit blocks directly rather than building up a data structure for
100 // them, but only visit each one once.
101 SmallPtrSet
<BasicBlock
*, 4> Visited
;
102 for (auto *BB
: L
->blocks())
103 for (auto *SuccBB
: successors(BB
)) {
104 // We're looking for exit blocks so skip in-loop successors.
105 if (L
->contains(SuccBB
))
108 // Visit each exit block exactly once.
109 if (!Visited
.insert(SuccBB
).second
)
112 Changed
|= RewriteExit(SuccBB
);
118 /// Returns the instructions that use values defined in the loop.
119 SmallVector
<Instruction
*, 8> llvm::findDefsUsedOutsideOfLoop(Loop
*L
) {
120 SmallVector
<Instruction
*, 8> UsedOutside
;
122 for (auto *Block
: L
->getBlocks())
123 // FIXME: I believe that this could use copy_if if the Inst reference could
124 // be adapted into a pointer.
125 for (auto &Inst
: *Block
) {
126 auto Users
= Inst
.users();
127 if (any_of(Users
, [&](User
*U
) {
128 auto *Use
= cast
<Instruction
>(U
);
129 return !L
->contains(Use
->getParent());
131 UsedOutside
.push_back(&Inst
);
137 void llvm::getLoopAnalysisUsage(AnalysisUsage
&AU
) {
138 // By definition, all loop passes need the LoopInfo analysis and the
139 // Dominator tree it depends on. Because they all participate in the loop
140 // pass manager, they must also preserve these.
141 AU
.addRequired
<DominatorTreeWrapperPass
>();
142 AU
.addPreserved
<DominatorTreeWrapperPass
>();
143 AU
.addRequired
<LoopInfoWrapperPass
>();
144 AU
.addPreserved
<LoopInfoWrapperPass
>();
146 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
147 // here because users shouldn't directly get them from this header.
148 extern char &LoopSimplifyID
;
149 extern char &LCSSAID
;
150 AU
.addRequiredID(LoopSimplifyID
);
151 AU
.addPreservedID(LoopSimplifyID
);
152 AU
.addRequiredID(LCSSAID
);
153 AU
.addPreservedID(LCSSAID
);
154 // This is used in the LPPassManager to perform LCSSA verification on passes
155 // which preserve lcssa form
156 AU
.addRequired
<LCSSAVerificationPass
>();
157 AU
.addPreserved
<LCSSAVerificationPass
>();
159 // Loop passes are designed to run inside of a loop pass manager which means
160 // that any function analyses they require must be required by the first loop
161 // pass in the manager (so that it is computed before the loop pass manager
162 // runs) and preserved by all loop pasess in the manager. To make this
163 // reasonably robust, the set needed for most loop passes is maintained here.
164 // If your loop pass requires an analysis not listed here, you will need to
165 // carefully audit the loop pass manager nesting structure that results.
166 AU
.addRequired
<AAResultsWrapperPass
>();
167 AU
.addPreserved
<AAResultsWrapperPass
>();
168 AU
.addPreserved
<BasicAAWrapperPass
>();
169 AU
.addPreserved
<GlobalsAAWrapperPass
>();
170 AU
.addPreserved
<SCEVAAWrapperPass
>();
171 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
172 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
175 /// Manually defined generic "LoopPass" dependency initialization. This is used
176 /// to initialize the exact set of passes from above in \c
177 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
180 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
182 /// As-if "LoopPass" were a pass.
183 void llvm::initializeLoopPassPass(PassRegistry
&Registry
) {
184 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
185 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
186 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
187 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass
)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
189 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
190 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
191 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
192 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
195 /// Create MDNode for input string.
196 static MDNode
*createStringMetadata(Loop
*TheLoop
, StringRef Name
, unsigned V
) {
197 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
199 MDString::get(Context
, Name
),
200 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context
), V
))};
201 return MDNode::get(Context
, MDs
);
204 /// Set input string into loop metadata by keeping other values intact.
205 /// If the string is already in loop metadata update value if it is
207 void llvm::addStringMetadataToLoop(Loop
*TheLoop
, const char *StringMD
,
209 SmallVector
<Metadata
*, 4> MDs(1);
210 // If the loop already has metadata, retain it.
211 MDNode
*LoopID
= TheLoop
->getLoopID();
213 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
214 MDNode
*Node
= cast
<MDNode
>(LoopID
->getOperand(i
));
215 // If it is of form key = value, try to parse it.
216 if (Node
->getNumOperands() == 2) {
217 MDString
*S
= dyn_cast
<MDString
>(Node
->getOperand(0));
218 if (S
&& S
->getString().equals(StringMD
)) {
220 mdconst::extract_or_null
<ConstantInt
>(Node
->getOperand(1));
221 if (IntMD
&& IntMD
->getSExtValue() == V
)
222 // It is already in place. Do nothing.
224 // We need to update the value, so just skip it here and it will
225 // be added after copying other existed nodes.
233 MDs
.push_back(createStringMetadata(TheLoop
, StringMD
, V
));
234 // Replace current metadata node with new one.
235 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
236 MDNode
*NewLoopID
= MDNode::get(Context
, MDs
);
237 // Set operand 0 to refer to the loop id itself.
238 NewLoopID
->replaceOperandWith(0, NewLoopID
);
239 TheLoop
->setLoopID(NewLoopID
);
242 /// Find string metadata for loop
244 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
245 /// operand or null otherwise. If the string metadata is not found return
246 /// Optional's not-a-value.
247 Optional
<const MDOperand
*> llvm::findStringMetadataForLoop(const Loop
*TheLoop
,
249 MDNode
*MD
= findOptionMDForLoop(TheLoop
, Name
);
252 switch (MD
->getNumOperands()) {
256 return &MD
->getOperand(1);
258 llvm_unreachable("loop metadata has 0 or 1 operand");
262 static Optional
<bool> getOptionalBoolLoopAttribute(const Loop
*TheLoop
,
264 MDNode
*MD
= findOptionMDForLoop(TheLoop
, Name
);
267 switch (MD
->getNumOperands()) {
269 // When the value is absent it is interpreted as 'attribute set'.
272 if (ConstantInt
*IntMD
=
273 mdconst::extract_or_null
<ConstantInt
>(MD
->getOperand(1).get()))
274 return IntMD
->getZExtValue();
277 llvm_unreachable("unexpected number of options");
280 static bool getBooleanLoopAttribute(const Loop
*TheLoop
, StringRef Name
) {
281 return getOptionalBoolLoopAttribute(TheLoop
, Name
).getValueOr(false);
284 llvm::Optional
<int> llvm::getOptionalIntLoopAttribute(Loop
*TheLoop
,
286 const MDOperand
*AttrMD
=
287 findStringMetadataForLoop(TheLoop
, Name
).getValueOr(nullptr);
291 ConstantInt
*IntMD
= mdconst::extract_or_null
<ConstantInt
>(AttrMD
->get());
295 return IntMD
->getSExtValue();
298 Optional
<MDNode
*> llvm::makeFollowupLoopID(
299 MDNode
*OrigLoopID
, ArrayRef
<StringRef
> FollowupOptions
,
300 const char *InheritOptionsExceptPrefix
, bool AlwaysNew
) {
307 assert(OrigLoopID
->getOperand(0) == OrigLoopID
);
309 bool InheritAllAttrs
= !InheritOptionsExceptPrefix
;
310 bool InheritSomeAttrs
=
311 InheritOptionsExceptPrefix
&& InheritOptionsExceptPrefix
[0] != '\0';
312 SmallVector
<Metadata
*, 8> MDs
;
313 MDs
.push_back(nullptr);
315 bool Changed
= false;
316 if (InheritAllAttrs
|| InheritSomeAttrs
) {
317 for (const MDOperand
&Existing
: drop_begin(OrigLoopID
->operands(), 1)) {
318 MDNode
*Op
= cast
<MDNode
>(Existing
.get());
320 auto InheritThisAttribute
= [InheritSomeAttrs
,
321 InheritOptionsExceptPrefix
](MDNode
*Op
) {
322 if (!InheritSomeAttrs
)
325 // Skip malformatted attribute metadata nodes.
326 if (Op
->getNumOperands() == 0)
328 Metadata
*NameMD
= Op
->getOperand(0).get();
329 if (!isa
<MDString
>(NameMD
))
331 StringRef AttrName
= cast
<MDString
>(NameMD
)->getString();
333 // Do not inherit excluded attributes.
334 return !AttrName
.startswith(InheritOptionsExceptPrefix
);
337 if (InheritThisAttribute(Op
))
343 // Modified if we dropped at least one attribute.
344 Changed
= OrigLoopID
->getNumOperands() > 1;
347 bool HasAnyFollowup
= false;
348 for (StringRef OptionName
: FollowupOptions
) {
349 MDNode
*FollowupNode
= findOptionMDForLoopID(OrigLoopID
, OptionName
);
353 HasAnyFollowup
= true;
354 for (const MDOperand
&Option
: drop_begin(FollowupNode
->operands(), 1)) {
355 MDs
.push_back(Option
.get());
360 // Attributes of the followup loop not specified explicity, so signal to the
361 // transformation pass to add suitable attributes.
362 if (!AlwaysNew
&& !HasAnyFollowup
)
365 // If no attributes were added or remove, the previous loop Id can be reused.
366 if (!AlwaysNew
&& !Changed
)
369 // No attributes is equivalent to having no !llvm.loop metadata at all.
373 // Build the new loop ID.
374 MDTuple
*FollowupLoopID
= MDNode::get(OrigLoopID
->getContext(), MDs
);
375 FollowupLoopID
->replaceOperandWith(0, FollowupLoopID
);
376 return FollowupLoopID
;
379 bool llvm::hasDisableAllTransformsHint(const Loop
*L
) {
380 return getBooleanLoopAttribute(L
, LLVMLoopDisableNonforced
);
383 bool llvm::hasDisableLICMTransformsHint(const Loop
*L
) {
384 return getBooleanLoopAttribute(L
, LLVMLoopDisableLICM
);
387 TransformationMode
llvm::hasUnrollTransformation(Loop
*L
) {
388 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.disable"))
389 return TM_SuppressedByUser
;
391 Optional
<int> Count
=
392 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll.count");
393 if (Count
.hasValue())
394 return Count
.getValue() == 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
396 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.enable"))
397 return TM_ForcedByUser
;
399 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll.full"))
400 return TM_ForcedByUser
;
402 if (hasDisableAllTransformsHint(L
))
405 return TM_Unspecified
;
408 TransformationMode
llvm::hasUnrollAndJamTransformation(Loop
*L
) {
409 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.disable"))
410 return TM_SuppressedByUser
;
412 Optional
<int> Count
=
413 getOptionalIntLoopAttribute(L
, "llvm.loop.unroll_and_jam.count");
414 if (Count
.hasValue())
415 return Count
.getValue() == 1 ? TM_SuppressedByUser
: TM_ForcedByUser
;
417 if (getBooleanLoopAttribute(L
, "llvm.loop.unroll_and_jam.enable"))
418 return TM_ForcedByUser
;
420 if (hasDisableAllTransformsHint(L
))
423 return TM_Unspecified
;
426 TransformationMode
llvm::hasVectorizeTransformation(Loop
*L
) {
427 Optional
<bool> Enable
=
428 getOptionalBoolLoopAttribute(L
, "llvm.loop.vectorize.enable");
431 return TM_SuppressedByUser
;
433 Optional
<int> VectorizeWidth
=
434 getOptionalIntLoopAttribute(L
, "llvm.loop.vectorize.width");
435 Optional
<int> InterleaveCount
=
436 getOptionalIntLoopAttribute(L
, "llvm.loop.interleave.count");
438 // 'Forcing' vector width and interleave count to one effectively disables
439 // this tranformation.
440 if (Enable
== true && VectorizeWidth
== 1 && InterleaveCount
== 1)
441 return TM_SuppressedByUser
;
443 if (getBooleanLoopAttribute(L
, "llvm.loop.isvectorized"))
447 return TM_ForcedByUser
;
449 if (VectorizeWidth
== 1 && InterleaveCount
== 1)
452 if (VectorizeWidth
> 1 || InterleaveCount
> 1)
455 if (hasDisableAllTransformsHint(L
))
458 return TM_Unspecified
;
461 TransformationMode
llvm::hasDistributeTransformation(Loop
*L
) {
462 if (getBooleanLoopAttribute(L
, "llvm.loop.distribute.enable"))
463 return TM_ForcedByUser
;
465 if (hasDisableAllTransformsHint(L
))
468 return TM_Unspecified
;
471 TransformationMode
llvm::hasLICMVersioningTransformation(Loop
*L
) {
472 if (getBooleanLoopAttribute(L
, "llvm.loop.licm_versioning.disable"))
473 return TM_SuppressedByUser
;
475 if (hasDisableAllTransformsHint(L
))
478 return TM_Unspecified
;
481 /// Does a BFS from a given node to all of its children inside a given loop.
482 /// The returned vector of nodes includes the starting point.
483 SmallVector
<DomTreeNode
*, 16>
484 llvm::collectChildrenInLoop(DomTreeNode
*N
, const Loop
*CurLoop
) {
485 SmallVector
<DomTreeNode
*, 16> Worklist
;
486 auto AddRegionToWorklist
= [&](DomTreeNode
*DTN
) {
487 // Only include subregions in the top level loop.
488 BasicBlock
*BB
= DTN
->getBlock();
489 if (CurLoop
->contains(BB
))
490 Worklist
.push_back(DTN
);
493 AddRegionToWorklist(N
);
495 for (size_t I
= 0; I
< Worklist
.size(); I
++)
496 for (DomTreeNode
*Child
: Worklist
[I
]->getChildren())
497 AddRegionToWorklist(Child
);
502 void llvm::deleteDeadLoop(Loop
*L
, DominatorTree
*DT
= nullptr,
503 ScalarEvolution
*SE
= nullptr,
504 LoopInfo
*LI
= nullptr) {
505 assert((!DT
|| L
->isLCSSAForm(*DT
)) && "Expected LCSSA!");
506 auto *Preheader
= L
->getLoopPreheader();
507 assert(Preheader
&& "Preheader should exist!");
509 // Now that we know the removal is safe, remove the loop by changing the
510 // branch from the preheader to go to the single exit block.
512 // Because we're deleting a large chunk of code at once, the sequence in which
513 // we remove things is very important to avoid invalidation issues.
515 // Tell ScalarEvolution that the loop is deleted. Do this before
516 // deleting the loop so that ScalarEvolution can look at the loop
517 // to determine what it needs to clean up.
521 auto *ExitBlock
= L
->getUniqueExitBlock();
522 assert(ExitBlock
&& "Should have a unique exit block!");
523 assert(L
->hasDedicatedExits() && "Loop should have dedicated exits!");
525 auto *OldBr
= dyn_cast
<BranchInst
>(Preheader
->getTerminator());
526 assert(OldBr
&& "Preheader must end with a branch");
527 assert(OldBr
->isUnconditional() && "Preheader must have a single successor");
528 // Connect the preheader to the exit block. Keep the old edge to the header
529 // around to perform the dominator tree update in two separate steps
530 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
531 // preheader -> header.
534 // 0. Preheader 1. Preheader 2. Preheader
537 // Header <--\ | Header <--\ | Header <--\
538 // | | | | | | | | | | |
539 // | V | | | V | | | V |
540 // | Body --/ | | Body --/ | | Body --/
544 // By doing this is two separate steps we can perform the dominator tree
545 // update without using the batch update API.
547 // Even when the loop is never executed, we cannot remove the edge from the
548 // source block to the exit block. Consider the case where the unexecuted loop
549 // branches back to an outer loop. If we deleted the loop and removed the edge
550 // coming to this inner loop, this will break the outer loop structure (by
551 // deleting the backedge of the outer loop). If the outer loop is indeed a
552 // non-loop, it will be deleted in a future iteration of loop deletion pass.
553 IRBuilder
<> Builder(OldBr
);
554 Builder
.CreateCondBr(Builder
.getFalse(), L
->getHeader(), ExitBlock
);
555 // Remove the old branch. The conditional branch becomes a new terminator.
556 OldBr
->eraseFromParent();
558 // Rewrite phis in the exit block to get their inputs from the Preheader
559 // instead of the exiting block.
560 for (PHINode
&P
: ExitBlock
->phis()) {
561 // Set the zero'th element of Phi to be from the preheader and remove all
562 // other incoming values. Given the loop has dedicated exits, all other
563 // incoming values must be from the exiting blocks.
565 P
.setIncomingBlock(PredIndex
, Preheader
);
566 // Removes all incoming values from all other exiting blocks (including
567 // duplicate values from an exiting block).
568 // Nuke all entries except the zero'th entry which is the preheader entry.
569 // NOTE! We need to remove Incoming Values in the reverse order as done
570 // below, to keep the indices valid for deletion (removeIncomingValues
571 // updates getNumIncomingValues and shifts all values down into the operand
573 for (unsigned i
= 0, e
= P
.getNumIncomingValues() - 1; i
!= e
; ++i
)
574 P
.removeIncomingValue(e
- i
, false);
576 assert((P
.getNumIncomingValues() == 1 &&
577 P
.getIncomingBlock(PredIndex
) == Preheader
) &&
578 "Should have exactly one value and that's from the preheader!");
581 // Disconnect the loop body by branching directly to its exit.
582 Builder
.SetInsertPoint(Preheader
->getTerminator());
583 Builder
.CreateBr(ExitBlock
);
584 // Remove the old branch.
585 Preheader
->getTerminator()->eraseFromParent();
587 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
589 // Update the dominator tree by informing it about the new edge from the
590 // preheader to the exit and the removed edge.
591 DTU
.applyUpdates({{DominatorTree::Insert
, Preheader
, ExitBlock
},
592 {DominatorTree::Delete
, Preheader
, L
->getHeader()}});
595 // Use a map to unique and a vector to guarantee deterministic ordering.
596 llvm::SmallDenseSet
<std::pair
<DIVariable
*, DIExpression
*>, 4> DeadDebugSet
;
597 llvm::SmallVector
<DbgVariableIntrinsic
*, 4> DeadDebugInst
;
599 // Given LCSSA form is satisfied, we should not have users of instructions
600 // within the dead loop outside of the loop. However, LCSSA doesn't take
601 // unreachable uses into account. We handle them here.
602 // We could do it after drop all references (in this case all users in the
603 // loop will be already eliminated and we have less work to do but according
604 // to API doc of User::dropAllReferences only valid operation after dropping
605 // references, is deletion. So let's substitute all usages of
606 // instruction from the loop with undef value of corresponding type first.
607 for (auto *Block
: L
->blocks())
608 for (Instruction
&I
: *Block
) {
609 auto *Undef
= UndefValue::get(I
.getType());
610 for (Value::use_iterator UI
= I
.use_begin(), E
= I
.use_end(); UI
!= E
;) {
613 if (auto *Usr
= dyn_cast
<Instruction
>(U
.getUser()))
614 if (L
->contains(Usr
->getParent()))
616 // If we have a DT then we can check that uses outside a loop only in
617 // unreachable block.
619 assert(!DT
->isReachableFromEntry(U
) &&
620 "Unexpected user in reachable block");
623 auto *DVI
= dyn_cast
<DbgVariableIntrinsic
>(&I
);
626 auto Key
= DeadDebugSet
.find({DVI
->getVariable(), DVI
->getExpression()});
627 if (Key
!= DeadDebugSet
.end())
629 DeadDebugSet
.insert({DVI
->getVariable(), DVI
->getExpression()});
630 DeadDebugInst
.push_back(DVI
);
633 // After the loop has been deleted all the values defined and modified
634 // inside the loop are going to be unavailable.
635 // Since debug values in the loop have been deleted, inserting an undef
636 // dbg.value truncates the range of any dbg.value before the loop where the
637 // loop used to be. This is particularly important for constant values.
638 DIBuilder
DIB(*ExitBlock
->getModule());
639 Instruction
*InsertDbgValueBefore
= ExitBlock
->getFirstNonPHI();
640 assert(InsertDbgValueBefore
&&
641 "There should be a non-PHI instruction in exit block, else these "
642 "instructions will have no parent.");
643 for (auto *DVI
: DeadDebugInst
)
644 DIB
.insertDbgValueIntrinsic(UndefValue::get(Builder
.getInt32Ty()),
645 DVI
->getVariable(), DVI
->getExpression(),
646 DVI
->getDebugLoc(), InsertDbgValueBefore
);
648 // Remove the block from the reference counting scheme, so that we can
649 // delete it freely later.
650 for (auto *Block
: L
->blocks())
651 Block
->dropAllReferences();
654 // Erase the instructions and the blocks without having to worry
655 // about ordering because we already dropped the references.
656 // NOTE: This iteration is safe because erasing the block does not remove
657 // its entry from the loop's block list. We do that in the next section.
658 for (Loop::block_iterator LpI
= L
->block_begin(), LpE
= L
->block_end();
660 (*LpI
)->eraseFromParent();
662 // Finally, the blocks from loopinfo. This has to happen late because
663 // otherwise our loop iterators won't work.
665 SmallPtrSet
<BasicBlock
*, 8> blocks
;
666 blocks
.insert(L
->block_begin(), L
->block_end());
667 for (BasicBlock
*BB
: blocks
)
670 // The last step is to update LoopInfo now that we've eliminated this loop.
675 Optional
<unsigned> llvm::getLoopEstimatedTripCount(Loop
*L
) {
676 // Support loops with an exiting latch and other existing exists only
679 // Get the branch weights for the loop's backedge.
680 BasicBlock
*Latch
= L
->getLoopLatch();
683 BranchInst
*LatchBR
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
684 if (!LatchBR
|| LatchBR
->getNumSuccessors() != 2 || !L
->isLoopExiting(Latch
))
687 assert((LatchBR
->getSuccessor(0) == L
->getHeader() ||
688 LatchBR
->getSuccessor(1) == L
->getHeader()) &&
689 "At least one edge out of the latch must go to the header");
691 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
692 L
->getUniqueNonLatchExitBlocks(ExitBlocks
);
693 if (any_of(ExitBlocks
, [](const BasicBlock
*EB
) {
694 return !EB
->getTerminatingDeoptimizeCall();
698 // To estimate the number of times the loop body was executed, we want to
699 // know the number of times the backedge was taken, vs. the number of times
700 // we exited the loop.
701 uint64_t TrueVal
, FalseVal
;
702 if (!LatchBR
->extractProfMetadata(TrueVal
, FalseVal
))
705 if (!TrueVal
|| !FalseVal
)
708 // Divide the count of the backedge by the count of the edge exiting the loop,
709 // rounding to nearest.
710 if (LatchBR
->getSuccessor(0) == L
->getHeader())
711 return (TrueVal
+ (FalseVal
/ 2)) / FalseVal
;
713 return (FalseVal
+ (TrueVal
/ 2)) / TrueVal
;
716 bool llvm::hasIterationCountInvariantInParent(Loop
*InnerLoop
,
717 ScalarEvolution
&SE
) {
718 Loop
*OuterL
= InnerLoop
->getParentLoop();
722 // Get the backedge taken count for the inner loop
723 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
724 const SCEV
*InnerLoopBECountSC
= SE
.getExitCount(InnerLoop
, InnerLoopLatch
);
725 if (isa
<SCEVCouldNotCompute
>(InnerLoopBECountSC
) ||
726 !InnerLoopBECountSC
->getType()->isIntegerTy())
729 // Get whether count is invariant to the outer loop
730 ScalarEvolution::LoopDisposition LD
=
731 SE
.getLoopDisposition(InnerLoopBECountSC
, OuterL
);
732 if (LD
!= ScalarEvolution::LoopInvariant
)
738 Value
*llvm::createMinMaxOp(IRBuilder
<> &Builder
,
739 RecurrenceDescriptor::MinMaxRecurrenceKind RK
,
740 Value
*Left
, Value
*Right
) {
741 CmpInst::Predicate P
= CmpInst::ICMP_NE
;
744 llvm_unreachable("Unknown min/max recurrence kind");
745 case RecurrenceDescriptor::MRK_UIntMin
:
746 P
= CmpInst::ICMP_ULT
;
748 case RecurrenceDescriptor::MRK_UIntMax
:
749 P
= CmpInst::ICMP_UGT
;
751 case RecurrenceDescriptor::MRK_SIntMin
:
752 P
= CmpInst::ICMP_SLT
;
754 case RecurrenceDescriptor::MRK_SIntMax
:
755 P
= CmpInst::ICMP_SGT
;
757 case RecurrenceDescriptor::MRK_FloatMin
:
758 P
= CmpInst::FCMP_OLT
;
760 case RecurrenceDescriptor::MRK_FloatMax
:
761 P
= CmpInst::FCMP_OGT
;
765 // We only match FP sequences that are 'fast', so we can unconditionally
766 // set it on any generated instructions.
767 IRBuilder
<>::FastMathFlagGuard
FMFG(Builder
);
770 Builder
.setFastMathFlags(FMF
);
773 if (RK
== RecurrenceDescriptor::MRK_FloatMin
||
774 RK
== RecurrenceDescriptor::MRK_FloatMax
)
775 Cmp
= Builder
.CreateFCmp(P
, Left
, Right
, "rdx.minmax.cmp");
777 Cmp
= Builder
.CreateICmp(P
, Left
, Right
, "rdx.minmax.cmp");
779 Value
*Select
= Builder
.CreateSelect(Cmp
, Left
, Right
, "rdx.minmax.select");
783 // Helper to generate an ordered reduction.
785 llvm::getOrderedReduction(IRBuilder
<> &Builder
, Value
*Acc
, Value
*Src
,
787 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind
,
788 ArrayRef
<Value
*> RedOps
) {
789 unsigned VF
= Src
->getType()->getVectorNumElements();
791 // Extract and apply reduction ops in ascending order:
792 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
794 for (unsigned ExtractIdx
= 0; ExtractIdx
!= VF
; ++ExtractIdx
) {
796 Builder
.CreateExtractElement(Src
, Builder
.getInt32(ExtractIdx
));
798 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
799 Result
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, Result
, Ext
,
802 assert(MinMaxKind
!= RecurrenceDescriptor::MRK_Invalid
&&
804 Result
= createMinMaxOp(Builder
, MinMaxKind
, Result
, Ext
);
808 propagateIRFlags(Result
, RedOps
);
814 // Helper to generate a log2 shuffle reduction.
816 llvm::getShuffleReduction(IRBuilder
<> &Builder
, Value
*Src
, unsigned Op
,
817 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind
,
818 ArrayRef
<Value
*> RedOps
) {
819 unsigned VF
= Src
->getType()->getVectorNumElements();
820 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
821 // and vector ops, reducing the set of values being computed by half each
823 assert(isPowerOf2_32(VF
) &&
824 "Reduction emission only supported for pow2 vectors!");
826 SmallVector
<Constant
*, 32> ShuffleMask(VF
, nullptr);
827 for (unsigned i
= VF
; i
!= 1; i
>>= 1) {
828 // Move the upper half of the vector to the lower half.
829 for (unsigned j
= 0; j
!= i
/ 2; ++j
)
830 ShuffleMask
[j
] = Builder
.getInt32(i
/ 2 + j
);
832 // Fill the rest of the mask with undef.
833 std::fill(&ShuffleMask
[i
/ 2], ShuffleMask
.end(),
834 UndefValue::get(Builder
.getInt32Ty()));
836 Value
*Shuf
= Builder
.CreateShuffleVector(
837 TmpVec
, UndefValue::get(TmpVec
->getType()),
838 ConstantVector::get(ShuffleMask
), "rdx.shuf");
840 if (Op
!= Instruction::ICmp
&& Op
!= Instruction::FCmp
) {
841 // The builder propagates its fast-math-flags setting.
842 TmpVec
= Builder
.CreateBinOp((Instruction::BinaryOps
)Op
, TmpVec
, Shuf
,
845 assert(MinMaxKind
!= RecurrenceDescriptor::MRK_Invalid
&&
847 TmpVec
= createMinMaxOp(Builder
, MinMaxKind
, TmpVec
, Shuf
);
850 propagateIRFlags(TmpVec
, RedOps
);
852 // The result is in the first element of the vector.
853 return Builder
.CreateExtractElement(TmpVec
, Builder
.getInt32(0));
856 /// Create a simple vector reduction specified by an opcode and some
857 /// flags (if generating min/max reductions).
858 Value
*llvm::createSimpleTargetReduction(
859 IRBuilder
<> &Builder
, const TargetTransformInfo
*TTI
, unsigned Opcode
,
860 Value
*Src
, TargetTransformInfo::ReductionFlags Flags
,
861 ArrayRef
<Value
*> RedOps
) {
862 assert(isa
<VectorType
>(Src
->getType()) && "Type must be a vector");
864 std::function
<Value
*()> BuildFunc
;
865 using RD
= RecurrenceDescriptor
;
866 RD::MinMaxRecurrenceKind MinMaxKind
= RD::MRK_Invalid
;
869 case Instruction::Add
:
870 BuildFunc
= [&]() { return Builder
.CreateAddReduce(Src
); };
872 case Instruction::Mul
:
873 BuildFunc
= [&]() { return Builder
.CreateMulReduce(Src
); };
875 case Instruction::And
:
876 BuildFunc
= [&]() { return Builder
.CreateAndReduce(Src
); };
878 case Instruction::Or
:
879 BuildFunc
= [&]() { return Builder
.CreateOrReduce(Src
); };
881 case Instruction::Xor
:
882 BuildFunc
= [&]() { return Builder
.CreateXorReduce(Src
); };
884 case Instruction::FAdd
:
886 auto Rdx
= Builder
.CreateFAddReduce(
887 Constant::getNullValue(Src
->getType()->getVectorElementType()), Src
);
891 case Instruction::FMul
:
893 Type
*Ty
= Src
->getType()->getVectorElementType();
894 auto Rdx
= Builder
.CreateFMulReduce(ConstantFP::get(Ty
, 1.0), Src
);
898 case Instruction::ICmp
:
900 MinMaxKind
= Flags
.IsSigned
? RD::MRK_SIntMax
: RD::MRK_UIntMax
;
902 return Builder
.CreateIntMaxReduce(Src
, Flags
.IsSigned
);
905 MinMaxKind
= Flags
.IsSigned
? RD::MRK_SIntMin
: RD::MRK_UIntMin
;
907 return Builder
.CreateIntMinReduce(Src
, Flags
.IsSigned
);
911 case Instruction::FCmp
:
913 MinMaxKind
= RD::MRK_FloatMax
;
914 BuildFunc
= [&]() { return Builder
.CreateFPMaxReduce(Src
, Flags
.NoNaN
); };
916 MinMaxKind
= RD::MRK_FloatMin
;
917 BuildFunc
= [&]() { return Builder
.CreateFPMinReduce(Src
, Flags
.NoNaN
); };
921 llvm_unreachable("Unhandled opcode");
924 if (TTI
->useReductionIntrinsic(Opcode
, Src
->getType(), Flags
))
926 return getShuffleReduction(Builder
, Src
, Opcode
, MinMaxKind
, RedOps
);
929 /// Create a vector reduction using a given recurrence descriptor.
930 Value
*llvm::createTargetReduction(IRBuilder
<> &B
,
931 const TargetTransformInfo
*TTI
,
932 RecurrenceDescriptor
&Desc
, Value
*Src
,
934 // TODO: Support in-order reductions based on the recurrence descriptor.
935 using RD
= RecurrenceDescriptor
;
936 RD::RecurrenceKind RecKind
= Desc
.getRecurrenceKind();
937 TargetTransformInfo::ReductionFlags Flags
;
940 // All ops in the reduction inherit fast-math-flags from the recurrence
942 IRBuilder
<>::FastMathFlagGuard
FMFGuard(B
);
943 B
.setFastMathFlags(Desc
.getFastMathFlags());
946 case RD::RK_FloatAdd
:
947 return createSimpleTargetReduction(B
, TTI
, Instruction::FAdd
, Src
, Flags
);
948 case RD::RK_FloatMult
:
949 return createSimpleTargetReduction(B
, TTI
, Instruction::FMul
, Src
, Flags
);
950 case RD::RK_IntegerAdd
:
951 return createSimpleTargetReduction(B
, TTI
, Instruction::Add
, Src
, Flags
);
952 case RD::RK_IntegerMult
:
953 return createSimpleTargetReduction(B
, TTI
, Instruction::Mul
, Src
, Flags
);
954 case RD::RK_IntegerAnd
:
955 return createSimpleTargetReduction(B
, TTI
, Instruction::And
, Src
, Flags
);
956 case RD::RK_IntegerOr
:
957 return createSimpleTargetReduction(B
, TTI
, Instruction::Or
, Src
, Flags
);
958 case RD::RK_IntegerXor
:
959 return createSimpleTargetReduction(B
, TTI
, Instruction::Xor
, Src
, Flags
);
960 case RD::RK_IntegerMinMax
: {
961 RD::MinMaxRecurrenceKind MMKind
= Desc
.getMinMaxRecurrenceKind();
962 Flags
.IsMaxOp
= (MMKind
== RD::MRK_SIntMax
|| MMKind
== RD::MRK_UIntMax
);
963 Flags
.IsSigned
= (MMKind
== RD::MRK_SIntMax
|| MMKind
== RD::MRK_SIntMin
);
964 return createSimpleTargetReduction(B
, TTI
, Instruction::ICmp
, Src
, Flags
);
966 case RD::RK_FloatMinMax
: {
967 Flags
.IsMaxOp
= Desc
.getMinMaxRecurrenceKind() == RD::MRK_FloatMax
;
968 return createSimpleTargetReduction(B
, TTI
, Instruction::FCmp
, Src
, Flags
);
971 llvm_unreachable("Unhandled RecKind");
975 void llvm::propagateIRFlags(Value
*I
, ArrayRef
<Value
*> VL
, Value
*OpValue
) {
976 auto *VecOp
= dyn_cast
<Instruction
>(I
);
979 auto *Intersection
= (OpValue
== nullptr) ? dyn_cast
<Instruction
>(VL
[0])
980 : dyn_cast
<Instruction
>(OpValue
);
983 const unsigned Opcode
= Intersection
->getOpcode();
984 VecOp
->copyIRFlags(Intersection
);
986 auto *Instr
= dyn_cast
<Instruction
>(V
);
989 if (OpValue
== nullptr || Opcode
== Instr
->getOpcode())
990 VecOp
->andIRFlags(V
);
994 bool llvm::isKnownNegativeInLoop(const SCEV
*S
, const Loop
*L
,
995 ScalarEvolution
&SE
) {
996 const SCEV
*Zero
= SE
.getZero(S
->getType());
997 return SE
.isAvailableAtLoopEntry(S
, L
) &&
998 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SLT
, S
, Zero
);
1001 bool llvm::isKnownNonNegativeInLoop(const SCEV
*S
, const Loop
*L
,
1002 ScalarEvolution
&SE
) {
1003 const SCEV
*Zero
= SE
.getZero(S
->getType());
1004 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1005 SE
.isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_SGE
, S
, Zero
);
1008 bool llvm::cannotBeMinInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1010 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1011 APInt Min
= Signed
? APInt::getSignedMinValue(BitWidth
) :
1012 APInt::getMinValue(BitWidth
);
1013 auto Predicate
= Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1014 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1015 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1016 SE
.getConstant(Min
));
1019 bool llvm::cannotBeMaxInLoop(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
1021 unsigned BitWidth
= cast
<IntegerType
>(S
->getType())->getBitWidth();
1022 APInt Max
= Signed
? APInt::getSignedMaxValue(BitWidth
) :
1023 APInt::getMaxValue(BitWidth
);
1024 auto Predicate
= Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1025 return SE
.isAvailableAtLoopEntry(S
, L
) &&
1026 SE
.isLoopEntryGuardedByCond(L
, Predicate
, S
,
1027 SE
.getConstant(Max
));