[ASan] Make insertion of version mismatch guard configurable
[llvm-core.git] / lib / Transforms / Utils / LoopUtils.cpp
blob4c6c2edc385ed10e9ff26fb32c07cef8bafbe877
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSAUpdater.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
45 #define DEBUG_TYPE "loop-utils"
47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
48 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
50 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
51 MemorySSAUpdater *MSSAU,
52 bool PreserveLCSSA) {
53 bool Changed = false;
55 // We re-use a vector for the in-loop predecesosrs.
56 SmallVector<BasicBlock *, 4> InLoopPredecessors;
58 auto RewriteExit = [&](BasicBlock *BB) {
59 assert(InLoopPredecessors.empty() &&
60 "Must start with an empty predecessors list!");
61 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
63 // See if there are any non-loop predecessors of this exit block and
64 // keep track of the in-loop predecessors.
65 bool IsDedicatedExit = true;
66 for (auto *PredBB : predecessors(BB))
67 if (L->contains(PredBB)) {
68 if (isa<IndirectBrInst>(PredBB->getTerminator()))
69 // We cannot rewrite exiting edges from an indirectbr.
70 return false;
71 if (isa<CallBrInst>(PredBB->getTerminator()))
72 // We cannot rewrite exiting edges from a callbr.
73 return false;
75 InLoopPredecessors.push_back(PredBB);
76 } else {
77 IsDedicatedExit = false;
80 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
82 // Nothing to do if this is already a dedicated exit.
83 if (IsDedicatedExit)
84 return false;
86 auto *NewExitBB = SplitBlockPredecessors(
87 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
89 if (!NewExitBB)
90 LLVM_DEBUG(
91 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
92 << *L << "\n");
93 else
94 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
95 << NewExitBB->getName() << "\n");
96 return true;
99 // Walk the exit blocks directly rather than building up a data structure for
100 // them, but only visit each one once.
101 SmallPtrSet<BasicBlock *, 4> Visited;
102 for (auto *BB : L->blocks())
103 for (auto *SuccBB : successors(BB)) {
104 // We're looking for exit blocks so skip in-loop successors.
105 if (L->contains(SuccBB))
106 continue;
108 // Visit each exit block exactly once.
109 if (!Visited.insert(SuccBB).second)
110 continue;
112 Changed |= RewriteExit(SuccBB);
115 return Changed;
118 /// Returns the instructions that use values defined in the loop.
119 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
120 SmallVector<Instruction *, 8> UsedOutside;
122 for (auto *Block : L->getBlocks())
123 // FIXME: I believe that this could use copy_if if the Inst reference could
124 // be adapted into a pointer.
125 for (auto &Inst : *Block) {
126 auto Users = Inst.users();
127 if (any_of(Users, [&](User *U) {
128 auto *Use = cast<Instruction>(U);
129 return !L->contains(Use->getParent());
131 UsedOutside.push_back(&Inst);
134 return UsedOutside;
137 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
138 // By definition, all loop passes need the LoopInfo analysis and the
139 // Dominator tree it depends on. Because they all participate in the loop
140 // pass manager, they must also preserve these.
141 AU.addRequired<DominatorTreeWrapperPass>();
142 AU.addPreserved<DominatorTreeWrapperPass>();
143 AU.addRequired<LoopInfoWrapperPass>();
144 AU.addPreserved<LoopInfoWrapperPass>();
146 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
147 // here because users shouldn't directly get them from this header.
148 extern char &LoopSimplifyID;
149 extern char &LCSSAID;
150 AU.addRequiredID(LoopSimplifyID);
151 AU.addPreservedID(LoopSimplifyID);
152 AU.addRequiredID(LCSSAID);
153 AU.addPreservedID(LCSSAID);
154 // This is used in the LPPassManager to perform LCSSA verification on passes
155 // which preserve lcssa form
156 AU.addRequired<LCSSAVerificationPass>();
157 AU.addPreserved<LCSSAVerificationPass>();
159 // Loop passes are designed to run inside of a loop pass manager which means
160 // that any function analyses they require must be required by the first loop
161 // pass in the manager (so that it is computed before the loop pass manager
162 // runs) and preserved by all loop pasess in the manager. To make this
163 // reasonably robust, the set needed for most loop passes is maintained here.
164 // If your loop pass requires an analysis not listed here, you will need to
165 // carefully audit the loop pass manager nesting structure that results.
166 AU.addRequired<AAResultsWrapperPass>();
167 AU.addPreserved<AAResultsWrapperPass>();
168 AU.addPreserved<BasicAAWrapperPass>();
169 AU.addPreserved<GlobalsAAWrapperPass>();
170 AU.addPreserved<SCEVAAWrapperPass>();
171 AU.addRequired<ScalarEvolutionWrapperPass>();
172 AU.addPreserved<ScalarEvolutionWrapperPass>();
175 /// Manually defined generic "LoopPass" dependency initialization. This is used
176 /// to initialize the exact set of passes from above in \c
177 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
178 /// with:
180 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
182 /// As-if "LoopPass" were a pass.
183 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
184 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
185 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
186 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
187 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
190 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
195 /// Create MDNode for input string.
196 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
197 LLVMContext &Context = TheLoop->getHeader()->getContext();
198 Metadata *MDs[] = {
199 MDString::get(Context, Name),
200 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
201 return MDNode::get(Context, MDs);
204 /// Set input string into loop metadata by keeping other values intact.
205 /// If the string is already in loop metadata update value if it is
206 /// different.
207 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
208 unsigned V) {
209 SmallVector<Metadata *, 4> MDs(1);
210 // If the loop already has metadata, retain it.
211 MDNode *LoopID = TheLoop->getLoopID();
212 if (LoopID) {
213 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
214 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
215 // If it is of form key = value, try to parse it.
216 if (Node->getNumOperands() == 2) {
217 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
218 if (S && S->getString().equals(StringMD)) {
219 ConstantInt *IntMD =
220 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
221 if (IntMD && IntMD->getSExtValue() == V)
222 // It is already in place. Do nothing.
223 return;
224 // We need to update the value, so just skip it here and it will
225 // be added after copying other existed nodes.
226 continue;
229 MDs.push_back(Node);
232 // Add new metadata.
233 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
234 // Replace current metadata node with new one.
235 LLVMContext &Context = TheLoop->getHeader()->getContext();
236 MDNode *NewLoopID = MDNode::get(Context, MDs);
237 // Set operand 0 to refer to the loop id itself.
238 NewLoopID->replaceOperandWith(0, NewLoopID);
239 TheLoop->setLoopID(NewLoopID);
242 /// Find string metadata for loop
244 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
245 /// operand or null otherwise. If the string metadata is not found return
246 /// Optional's not-a-value.
247 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
248 StringRef Name) {
249 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
250 if (!MD)
251 return None;
252 switch (MD->getNumOperands()) {
253 case 1:
254 return nullptr;
255 case 2:
256 return &MD->getOperand(1);
257 default:
258 llvm_unreachable("loop metadata has 0 or 1 operand");
262 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
263 StringRef Name) {
264 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
265 if (!MD)
266 return None;
267 switch (MD->getNumOperands()) {
268 case 1:
269 // When the value is absent it is interpreted as 'attribute set'.
270 return true;
271 case 2:
272 if (ConstantInt *IntMD =
273 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
274 return IntMD->getZExtValue();
275 return true;
277 llvm_unreachable("unexpected number of options");
280 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
281 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
284 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
285 StringRef Name) {
286 const MDOperand *AttrMD =
287 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
288 if (!AttrMD)
289 return None;
291 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
292 if (!IntMD)
293 return None;
295 return IntMD->getSExtValue();
298 Optional<MDNode *> llvm::makeFollowupLoopID(
299 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
300 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
301 if (!OrigLoopID) {
302 if (AlwaysNew)
303 return nullptr;
304 return None;
307 assert(OrigLoopID->getOperand(0) == OrigLoopID);
309 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
310 bool InheritSomeAttrs =
311 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
312 SmallVector<Metadata *, 8> MDs;
313 MDs.push_back(nullptr);
315 bool Changed = false;
316 if (InheritAllAttrs || InheritSomeAttrs) {
317 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
318 MDNode *Op = cast<MDNode>(Existing.get());
320 auto InheritThisAttribute = [InheritSomeAttrs,
321 InheritOptionsExceptPrefix](MDNode *Op) {
322 if (!InheritSomeAttrs)
323 return false;
325 // Skip malformatted attribute metadata nodes.
326 if (Op->getNumOperands() == 0)
327 return true;
328 Metadata *NameMD = Op->getOperand(0).get();
329 if (!isa<MDString>(NameMD))
330 return true;
331 StringRef AttrName = cast<MDString>(NameMD)->getString();
333 // Do not inherit excluded attributes.
334 return !AttrName.startswith(InheritOptionsExceptPrefix);
337 if (InheritThisAttribute(Op))
338 MDs.push_back(Op);
339 else
340 Changed = true;
342 } else {
343 // Modified if we dropped at least one attribute.
344 Changed = OrigLoopID->getNumOperands() > 1;
347 bool HasAnyFollowup = false;
348 for (StringRef OptionName : FollowupOptions) {
349 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
350 if (!FollowupNode)
351 continue;
353 HasAnyFollowup = true;
354 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
355 MDs.push_back(Option.get());
356 Changed = true;
360 // Attributes of the followup loop not specified explicity, so signal to the
361 // transformation pass to add suitable attributes.
362 if (!AlwaysNew && !HasAnyFollowup)
363 return None;
365 // If no attributes were added or remove, the previous loop Id can be reused.
366 if (!AlwaysNew && !Changed)
367 return OrigLoopID;
369 // No attributes is equivalent to having no !llvm.loop metadata at all.
370 if (MDs.size() == 1)
371 return nullptr;
373 // Build the new loop ID.
374 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
375 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
376 return FollowupLoopID;
379 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
380 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
383 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
384 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
387 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
388 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
389 return TM_SuppressedByUser;
391 Optional<int> Count =
392 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
393 if (Count.hasValue())
394 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
396 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
397 return TM_ForcedByUser;
399 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
400 return TM_ForcedByUser;
402 if (hasDisableAllTransformsHint(L))
403 return TM_Disable;
405 return TM_Unspecified;
408 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
409 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
410 return TM_SuppressedByUser;
412 Optional<int> Count =
413 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
414 if (Count.hasValue())
415 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
417 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
418 return TM_ForcedByUser;
420 if (hasDisableAllTransformsHint(L))
421 return TM_Disable;
423 return TM_Unspecified;
426 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
427 Optional<bool> Enable =
428 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
430 if (Enable == false)
431 return TM_SuppressedByUser;
433 Optional<int> VectorizeWidth =
434 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
435 Optional<int> InterleaveCount =
436 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
438 // 'Forcing' vector width and interleave count to one effectively disables
439 // this tranformation.
440 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
441 return TM_SuppressedByUser;
443 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
444 return TM_Disable;
446 if (Enable == true)
447 return TM_ForcedByUser;
449 if (VectorizeWidth == 1 && InterleaveCount == 1)
450 return TM_Disable;
452 if (VectorizeWidth > 1 || InterleaveCount > 1)
453 return TM_Enable;
455 if (hasDisableAllTransformsHint(L))
456 return TM_Disable;
458 return TM_Unspecified;
461 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
462 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
463 return TM_ForcedByUser;
465 if (hasDisableAllTransformsHint(L))
466 return TM_Disable;
468 return TM_Unspecified;
471 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
472 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
473 return TM_SuppressedByUser;
475 if (hasDisableAllTransformsHint(L))
476 return TM_Disable;
478 return TM_Unspecified;
481 /// Does a BFS from a given node to all of its children inside a given loop.
482 /// The returned vector of nodes includes the starting point.
483 SmallVector<DomTreeNode *, 16>
484 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
485 SmallVector<DomTreeNode *, 16> Worklist;
486 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
487 // Only include subregions in the top level loop.
488 BasicBlock *BB = DTN->getBlock();
489 if (CurLoop->contains(BB))
490 Worklist.push_back(DTN);
493 AddRegionToWorklist(N);
495 for (size_t I = 0; I < Worklist.size(); I++)
496 for (DomTreeNode *Child : Worklist[I]->getChildren())
497 AddRegionToWorklist(Child);
499 return Worklist;
502 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
503 ScalarEvolution *SE = nullptr,
504 LoopInfo *LI = nullptr) {
505 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
506 auto *Preheader = L->getLoopPreheader();
507 assert(Preheader && "Preheader should exist!");
509 // Now that we know the removal is safe, remove the loop by changing the
510 // branch from the preheader to go to the single exit block.
512 // Because we're deleting a large chunk of code at once, the sequence in which
513 // we remove things is very important to avoid invalidation issues.
515 // Tell ScalarEvolution that the loop is deleted. Do this before
516 // deleting the loop so that ScalarEvolution can look at the loop
517 // to determine what it needs to clean up.
518 if (SE)
519 SE->forgetLoop(L);
521 auto *ExitBlock = L->getUniqueExitBlock();
522 assert(ExitBlock && "Should have a unique exit block!");
523 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
525 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
526 assert(OldBr && "Preheader must end with a branch");
527 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
528 // Connect the preheader to the exit block. Keep the old edge to the header
529 // around to perform the dominator tree update in two separate steps
530 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
531 // preheader -> header.
534 // 0. Preheader 1. Preheader 2. Preheader
535 // | | | |
536 // V | V |
537 // Header <--\ | Header <--\ | Header <--\
538 // | | | | | | | | | | |
539 // | V | | | V | | | V |
540 // | Body --/ | | Body --/ | | Body --/
541 // V V V V V
542 // Exit Exit Exit
544 // By doing this is two separate steps we can perform the dominator tree
545 // update without using the batch update API.
547 // Even when the loop is never executed, we cannot remove the edge from the
548 // source block to the exit block. Consider the case where the unexecuted loop
549 // branches back to an outer loop. If we deleted the loop and removed the edge
550 // coming to this inner loop, this will break the outer loop structure (by
551 // deleting the backedge of the outer loop). If the outer loop is indeed a
552 // non-loop, it will be deleted in a future iteration of loop deletion pass.
553 IRBuilder<> Builder(OldBr);
554 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
555 // Remove the old branch. The conditional branch becomes a new terminator.
556 OldBr->eraseFromParent();
558 // Rewrite phis in the exit block to get their inputs from the Preheader
559 // instead of the exiting block.
560 for (PHINode &P : ExitBlock->phis()) {
561 // Set the zero'th element of Phi to be from the preheader and remove all
562 // other incoming values. Given the loop has dedicated exits, all other
563 // incoming values must be from the exiting blocks.
564 int PredIndex = 0;
565 P.setIncomingBlock(PredIndex, Preheader);
566 // Removes all incoming values from all other exiting blocks (including
567 // duplicate values from an exiting block).
568 // Nuke all entries except the zero'th entry which is the preheader entry.
569 // NOTE! We need to remove Incoming Values in the reverse order as done
570 // below, to keep the indices valid for deletion (removeIncomingValues
571 // updates getNumIncomingValues and shifts all values down into the operand
572 // being deleted).
573 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
574 P.removeIncomingValue(e - i, false);
576 assert((P.getNumIncomingValues() == 1 &&
577 P.getIncomingBlock(PredIndex) == Preheader) &&
578 "Should have exactly one value and that's from the preheader!");
581 // Disconnect the loop body by branching directly to its exit.
582 Builder.SetInsertPoint(Preheader->getTerminator());
583 Builder.CreateBr(ExitBlock);
584 // Remove the old branch.
585 Preheader->getTerminator()->eraseFromParent();
587 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
588 if (DT) {
589 // Update the dominator tree by informing it about the new edge from the
590 // preheader to the exit and the removed edge.
591 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
592 {DominatorTree::Delete, Preheader, L->getHeader()}});
595 // Use a map to unique and a vector to guarantee deterministic ordering.
596 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
597 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
599 // Given LCSSA form is satisfied, we should not have users of instructions
600 // within the dead loop outside of the loop. However, LCSSA doesn't take
601 // unreachable uses into account. We handle them here.
602 // We could do it after drop all references (in this case all users in the
603 // loop will be already eliminated and we have less work to do but according
604 // to API doc of User::dropAllReferences only valid operation after dropping
605 // references, is deletion. So let's substitute all usages of
606 // instruction from the loop with undef value of corresponding type first.
607 for (auto *Block : L->blocks())
608 for (Instruction &I : *Block) {
609 auto *Undef = UndefValue::get(I.getType());
610 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
611 Use &U = *UI;
612 ++UI;
613 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
614 if (L->contains(Usr->getParent()))
615 continue;
616 // If we have a DT then we can check that uses outside a loop only in
617 // unreachable block.
618 if (DT)
619 assert(!DT->isReachableFromEntry(U) &&
620 "Unexpected user in reachable block");
621 U.set(Undef);
623 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
624 if (!DVI)
625 continue;
626 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
627 if (Key != DeadDebugSet.end())
628 continue;
629 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
630 DeadDebugInst.push_back(DVI);
633 // After the loop has been deleted all the values defined and modified
634 // inside the loop are going to be unavailable.
635 // Since debug values in the loop have been deleted, inserting an undef
636 // dbg.value truncates the range of any dbg.value before the loop where the
637 // loop used to be. This is particularly important for constant values.
638 DIBuilder DIB(*ExitBlock->getModule());
639 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
640 assert(InsertDbgValueBefore &&
641 "There should be a non-PHI instruction in exit block, else these "
642 "instructions will have no parent.");
643 for (auto *DVI : DeadDebugInst)
644 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
645 DVI->getVariable(), DVI->getExpression(),
646 DVI->getDebugLoc(), InsertDbgValueBefore);
648 // Remove the block from the reference counting scheme, so that we can
649 // delete it freely later.
650 for (auto *Block : L->blocks())
651 Block->dropAllReferences();
653 if (LI) {
654 // Erase the instructions and the blocks without having to worry
655 // about ordering because we already dropped the references.
656 // NOTE: This iteration is safe because erasing the block does not remove
657 // its entry from the loop's block list. We do that in the next section.
658 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
659 LpI != LpE; ++LpI)
660 (*LpI)->eraseFromParent();
662 // Finally, the blocks from loopinfo. This has to happen late because
663 // otherwise our loop iterators won't work.
665 SmallPtrSet<BasicBlock *, 8> blocks;
666 blocks.insert(L->block_begin(), L->block_end());
667 for (BasicBlock *BB : blocks)
668 LI->removeBlock(BB);
670 // The last step is to update LoopInfo now that we've eliminated this loop.
671 LI->erase(L);
675 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
676 // Support loops with an exiting latch and other existing exists only
677 // deoptimize.
679 // Get the branch weights for the loop's backedge.
680 BasicBlock *Latch = L->getLoopLatch();
681 if (!Latch)
682 return None;
683 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
684 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
685 return None;
687 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
688 LatchBR->getSuccessor(1) == L->getHeader()) &&
689 "At least one edge out of the latch must go to the header");
691 SmallVector<BasicBlock *, 4> ExitBlocks;
692 L->getUniqueNonLatchExitBlocks(ExitBlocks);
693 if (any_of(ExitBlocks, [](const BasicBlock *EB) {
694 return !EB->getTerminatingDeoptimizeCall();
696 return None;
698 // To estimate the number of times the loop body was executed, we want to
699 // know the number of times the backedge was taken, vs. the number of times
700 // we exited the loop.
701 uint64_t TrueVal, FalseVal;
702 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
703 return None;
705 if (!TrueVal || !FalseVal)
706 return 0;
708 // Divide the count of the backedge by the count of the edge exiting the loop,
709 // rounding to nearest.
710 if (LatchBR->getSuccessor(0) == L->getHeader())
711 return (TrueVal + (FalseVal / 2)) / FalseVal;
712 else
713 return (FalseVal + (TrueVal / 2)) / TrueVal;
716 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
717 ScalarEvolution &SE) {
718 Loop *OuterL = InnerLoop->getParentLoop();
719 if (!OuterL)
720 return true;
722 // Get the backedge taken count for the inner loop
723 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
724 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
725 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
726 !InnerLoopBECountSC->getType()->isIntegerTy())
727 return false;
729 // Get whether count is invariant to the outer loop
730 ScalarEvolution::LoopDisposition LD =
731 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
732 if (LD != ScalarEvolution::LoopInvariant)
733 return false;
735 return true;
738 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
739 RecurrenceDescriptor::MinMaxRecurrenceKind RK,
740 Value *Left, Value *Right) {
741 CmpInst::Predicate P = CmpInst::ICMP_NE;
742 switch (RK) {
743 default:
744 llvm_unreachable("Unknown min/max recurrence kind");
745 case RecurrenceDescriptor::MRK_UIntMin:
746 P = CmpInst::ICMP_ULT;
747 break;
748 case RecurrenceDescriptor::MRK_UIntMax:
749 P = CmpInst::ICMP_UGT;
750 break;
751 case RecurrenceDescriptor::MRK_SIntMin:
752 P = CmpInst::ICMP_SLT;
753 break;
754 case RecurrenceDescriptor::MRK_SIntMax:
755 P = CmpInst::ICMP_SGT;
756 break;
757 case RecurrenceDescriptor::MRK_FloatMin:
758 P = CmpInst::FCMP_OLT;
759 break;
760 case RecurrenceDescriptor::MRK_FloatMax:
761 P = CmpInst::FCMP_OGT;
762 break;
765 // We only match FP sequences that are 'fast', so we can unconditionally
766 // set it on any generated instructions.
767 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
768 FastMathFlags FMF;
769 FMF.setFast();
770 Builder.setFastMathFlags(FMF);
772 Value *Cmp;
773 if (RK == RecurrenceDescriptor::MRK_FloatMin ||
774 RK == RecurrenceDescriptor::MRK_FloatMax)
775 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
776 else
777 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
779 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
780 return Select;
783 // Helper to generate an ordered reduction.
784 Value *
785 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
786 unsigned Op,
787 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
788 ArrayRef<Value *> RedOps) {
789 unsigned VF = Src->getType()->getVectorNumElements();
791 // Extract and apply reduction ops in ascending order:
792 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
793 Value *Result = Acc;
794 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
795 Value *Ext =
796 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
798 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
799 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
800 "bin.rdx");
801 } else {
802 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
803 "Invalid min/max");
804 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
807 if (!RedOps.empty())
808 propagateIRFlags(Result, RedOps);
811 return Result;
814 // Helper to generate a log2 shuffle reduction.
815 Value *
816 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
817 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
818 ArrayRef<Value *> RedOps) {
819 unsigned VF = Src->getType()->getVectorNumElements();
820 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
821 // and vector ops, reducing the set of values being computed by half each
822 // round.
823 assert(isPowerOf2_32(VF) &&
824 "Reduction emission only supported for pow2 vectors!");
825 Value *TmpVec = Src;
826 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
827 for (unsigned i = VF; i != 1; i >>= 1) {
828 // Move the upper half of the vector to the lower half.
829 for (unsigned j = 0; j != i / 2; ++j)
830 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
832 // Fill the rest of the mask with undef.
833 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
834 UndefValue::get(Builder.getInt32Ty()));
836 Value *Shuf = Builder.CreateShuffleVector(
837 TmpVec, UndefValue::get(TmpVec->getType()),
838 ConstantVector::get(ShuffleMask), "rdx.shuf");
840 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
841 // The builder propagates its fast-math-flags setting.
842 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
843 "bin.rdx");
844 } else {
845 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
846 "Invalid min/max");
847 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
849 if (!RedOps.empty())
850 propagateIRFlags(TmpVec, RedOps);
852 // The result is in the first element of the vector.
853 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
856 /// Create a simple vector reduction specified by an opcode and some
857 /// flags (if generating min/max reductions).
858 Value *llvm::createSimpleTargetReduction(
859 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
860 Value *Src, TargetTransformInfo::ReductionFlags Flags,
861 ArrayRef<Value *> RedOps) {
862 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
864 std::function<Value *()> BuildFunc;
865 using RD = RecurrenceDescriptor;
866 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
868 switch (Opcode) {
869 case Instruction::Add:
870 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
871 break;
872 case Instruction::Mul:
873 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
874 break;
875 case Instruction::And:
876 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
877 break;
878 case Instruction::Or:
879 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
880 break;
881 case Instruction::Xor:
882 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
883 break;
884 case Instruction::FAdd:
885 BuildFunc = [&]() {
886 auto Rdx = Builder.CreateFAddReduce(
887 Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
888 return Rdx;
890 break;
891 case Instruction::FMul:
892 BuildFunc = [&]() {
893 Type *Ty = Src->getType()->getVectorElementType();
894 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
895 return Rdx;
897 break;
898 case Instruction::ICmp:
899 if (Flags.IsMaxOp) {
900 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
901 BuildFunc = [&]() {
902 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
904 } else {
905 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
906 BuildFunc = [&]() {
907 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
910 break;
911 case Instruction::FCmp:
912 if (Flags.IsMaxOp) {
913 MinMaxKind = RD::MRK_FloatMax;
914 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
915 } else {
916 MinMaxKind = RD::MRK_FloatMin;
917 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
919 break;
920 default:
921 llvm_unreachable("Unhandled opcode");
922 break;
924 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
925 return BuildFunc();
926 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
929 /// Create a vector reduction using a given recurrence descriptor.
930 Value *llvm::createTargetReduction(IRBuilder<> &B,
931 const TargetTransformInfo *TTI,
932 RecurrenceDescriptor &Desc, Value *Src,
933 bool NoNaN) {
934 // TODO: Support in-order reductions based on the recurrence descriptor.
935 using RD = RecurrenceDescriptor;
936 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
937 TargetTransformInfo::ReductionFlags Flags;
938 Flags.NoNaN = NoNaN;
940 // All ops in the reduction inherit fast-math-flags from the recurrence
941 // descriptor.
942 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
943 B.setFastMathFlags(Desc.getFastMathFlags());
945 switch (RecKind) {
946 case RD::RK_FloatAdd:
947 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
948 case RD::RK_FloatMult:
949 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
950 case RD::RK_IntegerAdd:
951 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
952 case RD::RK_IntegerMult:
953 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
954 case RD::RK_IntegerAnd:
955 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
956 case RD::RK_IntegerOr:
957 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
958 case RD::RK_IntegerXor:
959 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
960 case RD::RK_IntegerMinMax: {
961 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
962 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
963 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
964 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
966 case RD::RK_FloatMinMax: {
967 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
968 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
970 default:
971 llvm_unreachable("Unhandled RecKind");
975 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
976 auto *VecOp = dyn_cast<Instruction>(I);
977 if (!VecOp)
978 return;
979 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
980 : dyn_cast<Instruction>(OpValue);
981 if (!Intersection)
982 return;
983 const unsigned Opcode = Intersection->getOpcode();
984 VecOp->copyIRFlags(Intersection);
985 for (auto *V : VL) {
986 auto *Instr = dyn_cast<Instruction>(V);
987 if (!Instr)
988 continue;
989 if (OpValue == nullptr || Opcode == Instr->getOpcode())
990 VecOp->andIRFlags(V);
994 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
995 ScalarEvolution &SE) {
996 const SCEV *Zero = SE.getZero(S->getType());
997 return SE.isAvailableAtLoopEntry(S, L) &&
998 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1001 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1002 ScalarEvolution &SE) {
1003 const SCEV *Zero = SE.getZero(S->getType());
1004 return SE.isAvailableAtLoopEntry(S, L) &&
1005 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1008 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1009 bool Signed) {
1010 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1011 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1012 APInt::getMinValue(BitWidth);
1013 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1014 return SE.isAvailableAtLoopEntry(S, L) &&
1015 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1016 SE.getConstant(Min));
1019 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1020 bool Signed) {
1021 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1022 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1023 APInt::getMaxValue(BitWidth);
1024 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1025 return SE.isAvailableAtLoopEntry(S, L) &&
1026 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1027 SE.getConstant(Max));