1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
22 //===----------------------------------------------------------------------===//
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
28 #define DEBUG_TYPE "loop-vectorize"
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder
{
36 // The outermost loop of the input loop nest considered for vectorization.
39 // Loop Info analysis.
42 // Vectorization plan that we are working on.
46 VPRegionBlock
*TopRegion
= nullptr;
48 // Builder of the VPlan instruction-level representation.
49 VPBuilder VPIRBuilder
;
51 // NOTE: The following maps are intentionally destroyed after the plain CFG
52 // construction because subsequent VPlan-to-VPlan transformation may
54 // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
55 DenseMap
<BasicBlock
*, VPBasicBlock
*> BB2VPBB
;
56 // Map incoming Value definitions to their newly-created VPValues.
57 DenseMap
<Value
*, VPValue
*> IRDef2VPValue
;
59 // Hold phi node's that need to be fixed once the plain CFG has been built.
60 SmallVector
<PHINode
*, 8> PhisToFix
;
63 void setVPBBPredsFromBB(VPBasicBlock
*VPBB
, BasicBlock
*BB
);
65 VPBasicBlock
*getOrCreateVPBB(BasicBlock
*BB
);
67 bool isExternalDef(Value
*Val
);
69 VPValue
*getOrCreateVPOperand(Value
*IRVal
);
70 void createVPInstructionsForVPBB(VPBasicBlock
*VPBB
, BasicBlock
*BB
);
73 PlainCFGBuilder(Loop
*Lp
, LoopInfo
*LI
, VPlan
&P
)
74 : TheLoop(Lp
), LI(LI
), Plan(P
) {}
76 // Build the plain CFG and return its Top Region.
77 VPRegionBlock
*buildPlainCFG();
79 } // anonymous namespace
81 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
82 // must have no predecessors.
83 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock
*VPBB
, BasicBlock
*BB
) {
84 SmallVector
<VPBlockBase
*, 8> VPBBPreds
;
85 // Collect VPBB predecessors.
86 for (BasicBlock
*Pred
: predecessors(BB
))
87 VPBBPreds
.push_back(getOrCreateVPBB(Pred
));
89 VPBB
->setPredecessors(VPBBPreds
);
92 // Add operands to VPInstructions representing phi nodes from the input IR.
93 void PlainCFGBuilder::fixPhiNodes() {
94 for (auto *Phi
: PhisToFix
) {
95 assert(IRDef2VPValue
.count(Phi
) && "Missing VPInstruction for PHINode.");
96 VPValue
*VPVal
= IRDef2VPValue
[Phi
];
97 assert(isa
<VPInstruction
>(VPVal
) && "Expected VPInstruction for phi node.");
98 auto *VPPhi
= cast
<VPInstruction
>(VPVal
);
99 assert(VPPhi
->getNumOperands() == 0 &&
100 "Expected VPInstruction with no operands.");
102 for (Value
*Op
: Phi
->operands())
103 VPPhi
->addOperand(getOrCreateVPOperand(Op
));
107 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
108 // existing one if it was already created.
109 VPBasicBlock
*PlainCFGBuilder::getOrCreateVPBB(BasicBlock
*BB
) {
110 auto BlockIt
= BB2VPBB
.find(BB
);
111 if (BlockIt
!= BB2VPBB
.end())
112 // Retrieve existing VPBB.
113 return BlockIt
->second
;
116 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB
->getName() << "\n");
117 VPBasicBlock
*VPBB
= new VPBasicBlock(BB
->getName());
119 VPBB
->setParent(TopRegion
);
124 // Return true if \p Val is considered an external definition. An external
125 // definition is either:
126 // 1. A Value that is not an Instruction. This will be refined in the future.
127 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
128 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
129 // outermost loop exits.
130 bool PlainCFGBuilder::isExternalDef(Value
*Val
) {
131 // All the Values that are not Instructions are considered external
132 // definitions for now.
133 Instruction
*Inst
= dyn_cast
<Instruction
>(Val
);
137 BasicBlock
*InstParent
= Inst
->getParent();
138 assert(InstParent
&& "Expected instruction parent.");
140 // Check whether Instruction definition is in loop PH.
141 BasicBlock
*PH
= TheLoop
->getLoopPreheader();
142 assert(PH
&& "Expected loop pre-header.");
144 if (InstParent
== PH
)
145 // Instruction definition is in outermost loop PH.
148 // Check whether Instruction definition is in the loop exit.
149 BasicBlock
*Exit
= TheLoop
->getUniqueExitBlock();
150 assert(Exit
&& "Expected loop with single exit.");
151 if (InstParent
== Exit
) {
152 // Instruction definition is in outermost loop exit.
156 // Check whether Instruction definition is in loop body.
157 return !TheLoop
->contains(Inst
);
161 // Create a new VPValue or retrieve an existing one for the Instruction's
162 // operand \p IRVal. This function must only be used to create/retrieve VPValues
163 // for *Instruction's operands* and not to create regular VPInstruction's. For
164 // the latter, please, look at 'createVPInstructionsForVPBB'.
165 VPValue
*PlainCFGBuilder::getOrCreateVPOperand(Value
*IRVal
) {
166 auto VPValIt
= IRDef2VPValue
.find(IRVal
);
167 if (VPValIt
!= IRDef2VPValue
.end())
168 // Operand has an associated VPInstruction or VPValue that was previously
170 return VPValIt
->second
;
172 // Operand doesn't have a previously created VPInstruction/VPValue. This
173 // means that operand is:
174 // A) a definition external to VPlan,
175 // B) any other Value without specific representation in VPlan.
176 // For now, we use VPValue to represent A and B and classify both as external
177 // definitions. We may introduce specific VPValue subclasses for them in the
179 assert(isExternalDef(IRVal
) && "Expected external definition as operand.");
181 // A and B: Create VPValue and add it to the pool of external definitions and
182 // to the Value->VPValue map.
183 VPValue
*NewVPVal
= new VPValue(IRVal
);
184 Plan
.addExternalDef(NewVPVal
);
185 IRDef2VPValue
[IRVal
] = NewVPVal
;
189 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
190 // counterpart. This function must be invoked in RPO so that the operands of a
191 // VPInstruction in \p BB have been visited before (except for Phi nodes).
192 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock
*VPBB
,
194 VPIRBuilder
.setInsertPoint(VPBB
);
195 for (Instruction
&InstRef
: *BB
) {
196 Instruction
*Inst
= &InstRef
;
198 // There shouldn't be any VPValue for Inst at this point. Otherwise, we
199 // visited Inst when we shouldn't, breaking the RPO traversal order.
200 assert(!IRDef2VPValue
.count(Inst
) &&
201 "Instruction shouldn't have been visited.");
203 if (auto *Br
= dyn_cast
<BranchInst
>(Inst
)) {
204 // Branch instruction is not explicitly represented in VPlan but we need
205 // to represent its condition bit when it's conditional.
206 if (Br
->isConditional())
207 getOrCreateVPOperand(Br
->getCondition());
209 // Skip the rest of the Instruction processing for Branch instructions.
213 VPInstruction
*NewVPInst
;
214 if (auto *Phi
= dyn_cast
<PHINode
>(Inst
)) {
215 // Phi node's operands may have not been visited at this point. We create
216 // an empty VPInstruction that we will fix once the whole plain CFG has
218 NewVPInst
= cast
<VPInstruction
>(VPIRBuilder
.createNaryOp(
219 Inst
->getOpcode(), {} /*No operands*/, Inst
));
220 PhisToFix
.push_back(Phi
);
222 // Translate LLVM-IR operands into VPValue operands and set them in the
223 // new VPInstruction.
224 SmallVector
<VPValue
*, 4> VPOperands
;
225 for (Value
*Op
: Inst
->operands())
226 VPOperands
.push_back(getOrCreateVPOperand(Op
));
228 // Build VPInstruction for any arbitraty Instruction without specific
229 // representation in VPlan.
230 NewVPInst
= cast
<VPInstruction
>(
231 VPIRBuilder
.createNaryOp(Inst
->getOpcode(), VPOperands
, Inst
));
234 IRDef2VPValue
[Inst
] = NewVPInst
;
238 // Main interface to build the plain CFG.
239 VPRegionBlock
*PlainCFGBuilder::buildPlainCFG() {
240 // 1. Create the Top Region. It will be the parent of all VPBBs.
241 TopRegion
= new VPRegionBlock("TopRegion", false /*isReplicator*/);
243 // 2. Scan the body of the loop in a topological order to visit each basic
244 // block after having visited its predecessor basic blocks. Create a VPBB for
245 // each BB and link it to its successor and predecessor VPBBs. Note that
246 // predecessors must be set in the same order as they are in the incomming IR.
247 // Otherwise, there might be problems with existing phi nodes and algorithm
248 // based on predecessors traversal.
250 // Loop PH needs to be explicitly visited since it's not taken into account by
252 BasicBlock
*PreheaderBB
= TheLoop
->getLoopPreheader();
253 assert((PreheaderBB
->getTerminator()->getNumSuccessors() == 1) &&
254 "Unexpected loop preheader");
255 VPBasicBlock
*PreheaderVPBB
= getOrCreateVPBB(PreheaderBB
);
256 createVPInstructionsForVPBB(PreheaderVPBB
, PreheaderBB
);
257 // Create empty VPBB for Loop H so that we can link PH->H.
258 VPBlockBase
*HeaderVPBB
= getOrCreateVPBB(TheLoop
->getHeader());
259 // Preheader's predecessors will be set during the loop RPO traversal below.
260 PreheaderVPBB
->setOneSuccessor(HeaderVPBB
);
262 LoopBlocksRPO
RPO(TheLoop
);
265 for (BasicBlock
*BB
: RPO
) {
266 // Create or retrieve the VPBasicBlock for this BB and create its
268 VPBasicBlock
*VPBB
= getOrCreateVPBB(BB
);
269 createVPInstructionsForVPBB(VPBB
, BB
);
271 // Set VPBB successors. We create empty VPBBs for successors if they don't
272 // exist already. Recipes will be created when the successor is visited
273 // during the RPO traversal.
274 Instruction
*TI
= BB
->getTerminator();
275 assert(TI
&& "Terminator expected.");
276 unsigned NumSuccs
= TI
->getNumSuccessors();
279 VPBasicBlock
*SuccVPBB
= getOrCreateVPBB(TI
->getSuccessor(0));
280 assert(SuccVPBB
&& "VPBB Successor not found.");
281 VPBB
->setOneSuccessor(SuccVPBB
);
282 } else if (NumSuccs
== 2) {
283 VPBasicBlock
*SuccVPBB0
= getOrCreateVPBB(TI
->getSuccessor(0));
284 assert(SuccVPBB0
&& "Successor 0 not found.");
285 VPBasicBlock
*SuccVPBB1
= getOrCreateVPBB(TI
->getSuccessor(1));
286 assert(SuccVPBB1
&& "Successor 1 not found.");
288 // Get VPBB's condition bit.
289 assert(isa
<BranchInst
>(TI
) && "Unsupported terminator!");
290 auto *Br
= cast
<BranchInst
>(TI
);
291 Value
*BrCond
= Br
->getCondition();
292 // Look up the branch condition to get the corresponding VPValue
293 // representing the condition bit in VPlan (which may be in another VPBB).
294 assert(IRDef2VPValue
.count(BrCond
) &&
295 "Missing condition bit in IRDef2VPValue!");
296 VPValue
*VPCondBit
= IRDef2VPValue
[BrCond
];
298 // Link successors using condition bit.
299 VPBB
->setTwoSuccessors(SuccVPBB0
, SuccVPBB1
, VPCondBit
);
301 llvm_unreachable("Number of successors not supported.");
303 // Set VPBB predecessors in the same order as they are in the incoming BB.
304 setVPBBPredsFromBB(VPBB
, BB
);
307 // 3. Process outermost loop exit. We created an empty VPBB for the loop
308 // single exit BB during the RPO traversal of the loop body but Instructions
309 // weren't visited because it's not part of the the loop.
310 BasicBlock
*LoopExitBB
= TheLoop
->getUniqueExitBlock();
311 assert(LoopExitBB
&& "Loops with multiple exits are not supported.");
312 VPBasicBlock
*LoopExitVPBB
= BB2VPBB
[LoopExitBB
];
313 createVPInstructionsForVPBB(LoopExitVPBB
, LoopExitBB
);
314 // Loop exit was already set as successor of the loop exiting BB.
315 // We only set its predecessor VPBB now.
316 setVPBBPredsFromBB(LoopExitVPBB
, LoopExitBB
);
318 // 4. The whole CFG has been built at this point so all the input Values must
319 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
323 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
324 // Top Region entry and exit.
325 TopRegion
->setEntry(PreheaderVPBB
);
326 TopRegion
->setExit(LoopExitVPBB
);
330 VPRegionBlock
*VPlanHCFGBuilder::buildPlainCFG() {
331 PlainCFGBuilder
PCFGBuilder(TheLoop
, LI
, Plan
);
332 return PCFGBuilder
.buildPlainCFG();
335 // Public interface to build a H-CFG.
336 void VPlanHCFGBuilder::buildHierarchicalCFG() {
337 // Build Top Region enclosing the plain CFG and set it as VPlan entry.
338 VPRegionBlock
*TopRegion
= buildPlainCFG();
339 Plan
.setEntry(TopRegion
);
340 LLVM_DEBUG(Plan
.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan
);
342 Verifier
.verifyHierarchicalCFG(TopRegion
);
344 // Compute plain CFG dom tree for VPLInfo.
345 VPDomTree
.recalculate(*TopRegion
);
346 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
347 VPDomTree
.print(dbgs()));
349 // Compute VPLInfo and keep it in Plan.
350 VPLoopInfo
&VPLInfo
= Plan
.getVPLoopInfo();
351 VPLInfo
.analyze(VPDomTree
);
352 LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
353 VPLInfo
.print(dbgs()));