1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCMCTargetDesc.h"
16 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCISelLowering.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCSubtarget.h"
21 #include "PPCTargetMachine.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/KnownBits.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetRegisterInfo.h"
70 #define DEBUG_TYPE "ppc-codegen"
72 STATISTIC(NumSextSetcc
,
73 "Number of (sext(setcc)) nodes expanded into GPR sequence.");
74 STATISTIC(NumZextSetcc
,
75 "Number of (zext(setcc)) nodes expanded into GPR sequence.");
76 STATISTIC(SignExtensionsAdded
,
77 "Number of sign extensions for compare inputs added.");
78 STATISTIC(ZeroExtensionsAdded
,
79 "Number of zero extensions for compare inputs added.");
80 STATISTIC(NumLogicOpsOnComparison
,
81 "Number of logical ops on i1 values calculated in GPR.");
82 STATISTIC(OmittedForNonExtendUses
,
83 "Number of compares not eliminated as they have non-extending uses.");
85 // FIXME: Remove this once the bug has been fixed!
86 cl::opt
<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
87 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden
);
90 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
91 cl::desc("use aggressive ppc isel for bit permutations"),
93 static cl::opt
<bool> BPermRewriterNoMasking(
94 "ppc-bit-perm-rewriter-stress-rotates",
95 cl::desc("stress rotate selection in aggressive ppc isel for "
99 static cl::opt
<bool> EnableBranchHint(
100 "ppc-use-branch-hint", cl::init(true),
101 cl::desc("Enable static hinting of branches on ppc"),
106 //===--------------------------------------------------------------------===//
107 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
108 /// instructions for SelectionDAG operations.
110 class PPCDAGToDAGISel
: public SelectionDAGISel
{
111 const PPCTargetMachine
&TM
;
112 const PPCSubtarget
*PPCSubTarget
;
113 const PPCTargetLowering
*PPCLowering
;
114 unsigned GlobalBaseReg
;
117 explicit PPCDAGToDAGISel(PPCTargetMachine
&tm
, CodeGenOpt::Level OptLevel
)
118 : SelectionDAGISel(tm
, OptLevel
), TM(tm
) {}
120 bool runOnMachineFunction(MachineFunction
&MF
) override
{
121 // Make sure we re-emit a set of the global base reg if necessary
123 PPCSubTarget
= &MF
.getSubtarget
<PPCSubtarget
>();
124 PPCLowering
= PPCSubTarget
->getTargetLowering();
125 SelectionDAGISel::runOnMachineFunction(MF
);
127 if (!PPCSubTarget
->isSVR4ABI())
128 InsertVRSaveCode(MF
);
133 void PreprocessISelDAG() override
;
134 void PostprocessISelDAG() override
;
136 /// getI32Imm - Return a target constant with the specified value, of type
138 inline SDValue
getI32Imm(unsigned Imm
, const SDLoc
&dl
) {
139 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
142 /// getI64Imm - Return a target constant with the specified value, of type
144 inline SDValue
getI64Imm(uint64_t Imm
, const SDLoc
&dl
) {
145 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i64
);
148 /// getSmallIPtrImm - Return a target constant of pointer type.
149 inline SDValue
getSmallIPtrImm(unsigned Imm
, const SDLoc
&dl
) {
150 return CurDAG
->getTargetConstant(
151 Imm
, dl
, PPCLowering
->getPointerTy(CurDAG
->getDataLayout()));
154 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
155 /// rotate and mask opcode and mask operation.
156 static bool isRotateAndMask(SDNode
*N
, unsigned Mask
, bool isShiftMask
,
157 unsigned &SH
, unsigned &MB
, unsigned &ME
);
159 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
160 /// base register. Return the virtual register that holds this value.
161 SDNode
*getGlobalBaseReg();
163 void selectFrameIndex(SDNode
*SN
, SDNode
*N
, unsigned Offset
= 0);
165 // Select - Convert the specified operand from a target-independent to a
166 // target-specific node if it hasn't already been changed.
167 void Select(SDNode
*N
) override
;
169 bool tryBitfieldInsert(SDNode
*N
);
170 bool tryBitPermutation(SDNode
*N
);
172 /// SelectCC - Select a comparison of the specified values with the
173 /// specified condition code, returning the CR# of the expression.
174 SDValue
SelectCC(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
177 /// SelectAddrImm - Returns true if the address N can be represented by
178 /// a base register plus a signed 16-bit displacement [r+imm].
179 bool SelectAddrImm(SDValue N
, SDValue
&Disp
,
181 return PPCLowering
->SelectAddressRegImm(N
, Disp
, Base
, *CurDAG
, 0);
184 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
185 /// immediate field. Note that the operand at this point is already the
186 /// result of a prior SelectAddressRegImm call.
187 bool SelectAddrImmOffs(SDValue N
, SDValue
&Out
) const {
188 if (N
.getOpcode() == ISD::TargetConstant
||
189 N
.getOpcode() == ISD::TargetGlobalAddress
) {
197 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
198 /// represented as an indexed [r+r] operation. Returns false if it can
199 /// be represented by [r+imm], which are preferred.
200 bool SelectAddrIdx(SDValue N
, SDValue
&Base
, SDValue
&Index
) {
201 return PPCLowering
->SelectAddressRegReg(N
, Base
, Index
, *CurDAG
);
204 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
205 /// represented as an indexed [r+r] operation.
206 bool SelectAddrIdxOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
) {
207 return PPCLowering
->SelectAddressRegRegOnly(N
, Base
, Index
, *CurDAG
);
210 /// SelectAddrImmX4 - Returns true if the address N can be represented by
211 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
212 /// Suitable for use by STD and friends.
213 bool SelectAddrImmX4(SDValue N
, SDValue
&Disp
, SDValue
&Base
) {
214 return PPCLowering
->SelectAddressRegImm(N
, Disp
, Base
, *CurDAG
, 4);
217 bool SelectAddrImmX16(SDValue N
, SDValue
&Disp
, SDValue
&Base
) {
218 return PPCLowering
->SelectAddressRegImm(N
, Disp
, Base
, *CurDAG
, 16);
221 // Select an address into a single register.
222 bool SelectAddr(SDValue N
, SDValue
&Base
) {
227 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
228 /// inline asm expressions. It is always correct to compute the value into
229 /// a register. The case of adding a (possibly relocatable) constant to a
230 /// register can be improved, but it is wrong to substitute Reg+Reg for
231 /// Reg in an asm, because the load or store opcode would have to change.
232 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
233 unsigned ConstraintID
,
234 std::vector
<SDValue
> &OutOps
) override
{
235 switch(ConstraintID
) {
237 errs() << "ConstraintID: " << ConstraintID
<< "\n";
238 llvm_unreachable("Unexpected asm memory constraint");
239 case InlineAsm::Constraint_es
:
240 case InlineAsm::Constraint_i
:
241 case InlineAsm::Constraint_m
:
242 case InlineAsm::Constraint_o
:
243 case InlineAsm::Constraint_Q
:
244 case InlineAsm::Constraint_Z
:
245 case InlineAsm::Constraint_Zy
:
246 // We need to make sure that this one operand does not end up in r0
247 // (because we might end up lowering this as 0(%op)).
248 const TargetRegisterInfo
*TRI
= PPCSubTarget
->getRegisterInfo();
249 const TargetRegisterClass
*TRC
= TRI
->getPointerRegClass(*MF
, /*Kind=*/1);
251 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), dl
, MVT::i32
);
253 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
254 dl
, Op
.getValueType(),
257 OutOps
.push_back(NewOp
);
263 void InsertVRSaveCode(MachineFunction
&MF
);
265 StringRef
getPassName() const override
{
266 return "PowerPC DAG->DAG Pattern Instruction Selection";
269 // Include the pieces autogenerated from the target description.
270 #include "PPCGenDAGISel.inc"
273 // Conversion type for interpreting results of a 32-bit instruction as
274 // a 64-bit value or vice versa.
275 enum ExtOrTruncConversion
{ Ext
, Trunc
};
277 // Modifiers to guide how an ISD::SETCC node's result is to be computed
279 // ZExtOrig - use the original condition code, zero-extend value
280 // ZExtInvert - invert the condition code, zero-extend value
281 // SExtOrig - use the original condition code, sign-extend value
282 // SExtInvert - invert the condition code, sign-extend value
283 enum SetccInGPROpts
{ ZExtOrig
, ZExtInvert
, SExtOrig
, SExtInvert
};
285 // Comparisons against zero to emit GPR code sequences for. Each of these
286 // sequences may need to be emitted for two or more equivalent patterns.
287 // For example (a >= 0) == (a > -1).
288 enum ZeroCompare
{ GEZExt
, GESExt
, LEZExt
, LESExt
};
290 bool trySETCC(SDNode
*N
);
291 bool tryEXTEND(SDNode
*N
);
292 bool tryLogicOpOfCompares(SDNode
*N
);
293 SDValue
computeLogicOpInGPR(SDValue LogicOp
);
294 SDValue
signExtendInputIfNeeded(SDValue Input
);
295 SDValue
zeroExtendInputIfNeeded(SDValue Input
);
296 SDValue
addExtOrTrunc(SDValue NatWidthRes
, ExtOrTruncConversion Conv
);
297 SDValue
getCompoundZeroComparisonInGPR(SDValue LHS
, SDLoc dl
,
299 SDValue
get32BitZExtCompare(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
300 int64_t RHSValue
, SDLoc dl
);
301 SDValue
get32BitSExtCompare(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
302 int64_t RHSValue
, SDLoc dl
);
303 SDValue
get64BitZExtCompare(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
304 int64_t RHSValue
, SDLoc dl
);
305 SDValue
get64BitSExtCompare(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
306 int64_t RHSValue
, SDLoc dl
);
307 SDValue
getSETCCInGPR(SDValue Compare
, SetccInGPROpts ConvOpts
);
309 void PeepholePPC64();
310 void PeepholePPC64ZExt();
311 void PeepholeCROps();
313 SDValue
combineToCMPB(SDNode
*N
);
314 void foldBoolExts(SDValue
&Res
, SDNode
*&N
);
316 bool AllUsersSelectZero(SDNode
*N
);
317 void SwapAllSelectUsers(SDNode
*N
);
319 bool isOffsetMultipleOf(SDNode
*N
, unsigned Val
) const;
320 void transferMemOperands(SDNode
*N
, SDNode
*Result
);
323 } // end anonymous namespace
325 /// InsertVRSaveCode - Once the entire function has been instruction selected,
326 /// all virtual registers are created and all machine instructions are built,
327 /// check to see if we need to save/restore VRSAVE. If so, do it.
328 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction
&Fn
) {
329 // Check to see if this function uses vector registers, which means we have to
330 // save and restore the VRSAVE register and update it with the regs we use.
332 // In this case, there will be virtual registers of vector type created
333 // by the scheduler. Detect them now.
334 bool HasVectorVReg
= false;
335 for (unsigned i
= 0, e
= RegInfo
->getNumVirtRegs(); i
!= e
; ++i
) {
336 unsigned Reg
= TargetRegisterInfo::index2VirtReg(i
);
337 if (RegInfo
->getRegClass(Reg
) == &PPC::VRRCRegClass
) {
338 HasVectorVReg
= true;
342 if (!HasVectorVReg
) return; // nothing to do.
344 // If we have a vector register, we want to emit code into the entry and exit
345 // blocks to save and restore the VRSAVE register. We do this here (instead
346 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
348 // 1. This (trivially) reduces the load on the register allocator, by not
349 // having to represent the live range of the VRSAVE register.
350 // 2. This (more significantly) allows us to create a temporary virtual
351 // register to hold the saved VRSAVE value, allowing this temporary to be
352 // register allocated, instead of forcing it to be spilled to the stack.
354 // Create two vregs - one to hold the VRSAVE register that is live-in to the
355 // function and one for the value after having bits or'd into it.
356 unsigned InVRSAVE
= RegInfo
->createVirtualRegister(&PPC::GPRCRegClass
);
357 unsigned UpdatedVRSAVE
= RegInfo
->createVirtualRegister(&PPC::GPRCRegClass
);
359 const TargetInstrInfo
&TII
= *PPCSubTarget
->getInstrInfo();
360 MachineBasicBlock
&EntryBB
= *Fn
.begin();
362 // Emit the following code into the entry block:
363 // InVRSAVE = MFVRSAVE
364 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
365 // MTVRSAVE UpdatedVRSAVE
366 MachineBasicBlock::iterator IP
= EntryBB
.begin(); // Insert Point
367 BuildMI(EntryBB
, IP
, dl
, TII
.get(PPC::MFVRSAVE
), InVRSAVE
);
368 BuildMI(EntryBB
, IP
, dl
, TII
.get(PPC::UPDATE_VRSAVE
),
369 UpdatedVRSAVE
).addReg(InVRSAVE
);
370 BuildMI(EntryBB
, IP
, dl
, TII
.get(PPC::MTVRSAVE
)).addReg(UpdatedVRSAVE
);
372 // Find all return blocks, outputting a restore in each epilog.
373 for (MachineFunction::iterator BB
= Fn
.begin(), E
= Fn
.end(); BB
!= E
; ++BB
) {
374 if (BB
->isReturnBlock()) {
375 IP
= BB
->end(); --IP
;
377 // Skip over all terminator instructions, which are part of the return
379 MachineBasicBlock::iterator I2
= IP
;
380 while (I2
!= BB
->begin() && (--I2
)->isTerminator())
383 // Emit: MTVRSAVE InVRSave
384 BuildMI(*BB
, IP
, dl
, TII
.get(PPC::MTVRSAVE
)).addReg(InVRSAVE
);
389 /// getGlobalBaseReg - Output the instructions required to put the
390 /// base address to use for accessing globals into a register.
392 SDNode
*PPCDAGToDAGISel::getGlobalBaseReg() {
393 if (!GlobalBaseReg
) {
394 const TargetInstrInfo
&TII
= *PPCSubTarget
->getInstrInfo();
395 // Insert the set of GlobalBaseReg into the first MBB of the function
396 MachineBasicBlock
&FirstMBB
= MF
->front();
397 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
398 const Module
*M
= MF
->getFunction()->getParent();
401 if (PPCLowering
->getPointerTy(CurDAG
->getDataLayout()) == MVT::i32
) {
402 if (PPCSubTarget
->isTargetELF()) {
403 GlobalBaseReg
= PPC::R30
;
404 if (M
->getPICLevel() == PICLevel::SmallPIC
) {
405 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MoveGOTtoLR
));
406 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MFLR
), GlobalBaseReg
);
407 MF
->getInfo
<PPCFunctionInfo
>()->setUsesPICBase(true);
409 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MovePCtoLR
));
410 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MFLR
), GlobalBaseReg
);
411 unsigned TempReg
= RegInfo
->createVirtualRegister(&PPC::GPRCRegClass
);
412 BuildMI(FirstMBB
, MBBI
, dl
,
413 TII
.get(PPC::UpdateGBR
), GlobalBaseReg
)
414 .addReg(TempReg
, RegState::Define
).addReg(GlobalBaseReg
);
415 MF
->getInfo
<PPCFunctionInfo
>()->setUsesPICBase(true);
419 RegInfo
->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass
);
420 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MovePCtoLR
));
421 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MFLR
), GlobalBaseReg
);
424 GlobalBaseReg
= RegInfo
->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass
);
425 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MovePCtoLR8
));
426 BuildMI(FirstMBB
, MBBI
, dl
, TII
.get(PPC::MFLR8
), GlobalBaseReg
);
429 return CurDAG
->getRegister(GlobalBaseReg
,
430 PPCLowering
->getPointerTy(CurDAG
->getDataLayout()))
434 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
435 /// operand. If so Imm will receive the 32-bit value.
436 static bool isInt32Immediate(SDNode
*N
, unsigned &Imm
) {
437 if (N
->getOpcode() == ISD::Constant
&& N
->getValueType(0) == MVT::i32
) {
438 Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
444 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
445 /// operand. If so Imm will receive the 64-bit value.
446 static bool isInt64Immediate(SDNode
*N
, uint64_t &Imm
) {
447 if (N
->getOpcode() == ISD::Constant
&& N
->getValueType(0) == MVT::i64
) {
448 Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
454 // isInt32Immediate - This method tests to see if a constant operand.
455 // If so Imm will receive the 32 bit value.
456 static bool isInt32Immediate(SDValue N
, unsigned &Imm
) {
457 return isInt32Immediate(N
.getNode(), Imm
);
460 static unsigned getBranchHint(unsigned PCC
, FunctionLoweringInfo
*FuncInfo
,
461 const SDValue
&DestMBB
) {
462 assert(isa
<BasicBlockSDNode
>(DestMBB
));
464 if (!FuncInfo
->BPI
) return PPC::BR_NO_HINT
;
466 const BasicBlock
*BB
= FuncInfo
->MBB
->getBasicBlock();
467 const TerminatorInst
*BBTerm
= BB
->getTerminator();
469 if (BBTerm
->getNumSuccessors() != 2) return PPC::BR_NO_HINT
;
471 const BasicBlock
*TBB
= BBTerm
->getSuccessor(0);
472 const BasicBlock
*FBB
= BBTerm
->getSuccessor(1);
474 auto TProb
= FuncInfo
->BPI
->getEdgeProbability(BB
, TBB
);
475 auto FProb
= FuncInfo
->BPI
->getEdgeProbability(BB
, FBB
);
477 // We only want to handle cases which are easy to predict at static time, e.g.
478 // C++ throw statement, that is very likely not taken, or calling never
479 // returned function, e.g. stdlib exit(). So we set Threshold to filter
482 // Below is LLVM branch weight table, we only want to handle case 1, 2
484 // Case Taken:Nontaken Example
485 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
486 // 2. Invoke-terminating 1:1048575
487 // 3. Coldblock 4:64 __builtin_expect
488 // 4. Loop Branch 124:4 For loop
489 // 5. PH/ZH/FPH 20:12
490 const uint32_t Threshold
= 10000;
492 if (std::max(TProb
, FProb
) / Threshold
< std::min(TProb
, FProb
))
493 return PPC::BR_NO_HINT
;
495 DEBUG(dbgs() << "Use branch hint for '" << FuncInfo
->Fn
->getName() << "::"
496 << BB
->getName() << "'\n"
497 << " -> " << TBB
->getName() << ": " << TProb
<< "\n"
498 << " -> " << FBB
->getName() << ": " << FProb
<< "\n");
500 const BasicBlockSDNode
*BBDN
= cast
<BasicBlockSDNode
>(DestMBB
);
502 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
503 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
504 if (BBDN
->getBasicBlock()->getBasicBlock() != TBB
)
505 std::swap(TProb
, FProb
);
507 return (TProb
> FProb
) ? PPC::BR_TAKEN_HINT
: PPC::BR_NONTAKEN_HINT
;
510 // isOpcWithIntImmediate - This method tests to see if the node is a specific
511 // opcode and that it has a immediate integer right operand.
512 // If so Imm will receive the 32 bit value.
513 static bool isOpcWithIntImmediate(SDNode
*N
, unsigned Opc
, unsigned& Imm
) {
514 return N
->getOpcode() == Opc
515 && isInt32Immediate(N
->getOperand(1).getNode(), Imm
);
518 void PPCDAGToDAGISel::selectFrameIndex(SDNode
*SN
, SDNode
*N
, unsigned Offset
) {
520 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
521 SDValue TFI
= CurDAG
->getTargetFrameIndex(FI
, N
->getValueType(0));
522 unsigned Opc
= N
->getValueType(0) == MVT::i32
? PPC::ADDI
: PPC::ADDI8
;
524 CurDAG
->SelectNodeTo(SN
, Opc
, N
->getValueType(0), TFI
,
525 getSmallIPtrImm(Offset
, dl
));
527 ReplaceNode(SN
, CurDAG
->getMachineNode(Opc
, dl
, N
->getValueType(0), TFI
,
528 getSmallIPtrImm(Offset
, dl
)));
531 bool PPCDAGToDAGISel::isRotateAndMask(SDNode
*N
, unsigned Mask
,
532 bool isShiftMask
, unsigned &SH
,
533 unsigned &MB
, unsigned &ME
) {
534 // Don't even go down this path for i64, since different logic will be
535 // necessary for rldicl/rldicr/rldimi.
536 if (N
->getValueType(0) != MVT::i32
)
540 unsigned Indeterminant
= ~0; // bit mask marking indeterminant results
541 unsigned Opcode
= N
->getOpcode();
542 if (N
->getNumOperands() != 2 ||
543 !isInt32Immediate(N
->getOperand(1).getNode(), Shift
) || (Shift
> 31))
546 if (Opcode
== ISD::SHL
) {
547 // apply shift left to mask if it comes first
548 if (isShiftMask
) Mask
= Mask
<< Shift
;
549 // determine which bits are made indeterminant by shift
550 Indeterminant
= ~(0xFFFFFFFFu
<< Shift
);
551 } else if (Opcode
== ISD::SRL
) {
552 // apply shift right to mask if it comes first
553 if (isShiftMask
) Mask
= Mask
>> Shift
;
554 // determine which bits are made indeterminant by shift
555 Indeterminant
= ~(0xFFFFFFFFu
>> Shift
);
556 // adjust for the left rotate
558 } else if (Opcode
== ISD::ROTL
) {
564 // if the mask doesn't intersect any Indeterminant bits
565 if (Mask
&& !(Mask
& Indeterminant
)) {
567 // make sure the mask is still a mask (wrap arounds may not be)
568 return isRunOfOnes(Mask
, MB
, ME
);
573 /// Turn an or of two masked values into the rotate left word immediate then
574 /// mask insert (rlwimi) instruction.
575 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode
*N
) {
576 SDValue Op0
= N
->getOperand(0);
577 SDValue Op1
= N
->getOperand(1);
580 KnownBits LKnown
, RKnown
;
581 CurDAG
->computeKnownBits(Op0
, LKnown
);
582 CurDAG
->computeKnownBits(Op1
, RKnown
);
584 unsigned TargetMask
= LKnown
.Zero
.getZExtValue();
585 unsigned InsertMask
= RKnown
.Zero
.getZExtValue();
587 if ((TargetMask
| InsertMask
) == 0xFFFFFFFF) {
588 unsigned Op0Opc
= Op0
.getOpcode();
589 unsigned Op1Opc
= Op1
.getOpcode();
590 unsigned Value
, SH
= 0;
591 TargetMask
= ~TargetMask
;
592 InsertMask
= ~InsertMask
;
594 // If the LHS has a foldable shift and the RHS does not, then swap it to the
595 // RHS so that we can fold the shift into the insert.
596 if (Op0Opc
== ISD::AND
&& Op1Opc
== ISD::AND
) {
597 if (Op0
.getOperand(0).getOpcode() == ISD::SHL
||
598 Op0
.getOperand(0).getOpcode() == ISD::SRL
) {
599 if (Op1
.getOperand(0).getOpcode() != ISD::SHL
&&
600 Op1
.getOperand(0).getOpcode() != ISD::SRL
) {
602 std::swap(Op0Opc
, Op1Opc
);
603 std::swap(TargetMask
, InsertMask
);
606 } else if (Op0Opc
== ISD::SHL
|| Op0Opc
== ISD::SRL
) {
607 if (Op1Opc
== ISD::AND
&& Op1
.getOperand(0).getOpcode() != ISD::SHL
&&
608 Op1
.getOperand(0).getOpcode() != ISD::SRL
) {
610 std::swap(Op0Opc
, Op1Opc
);
611 std::swap(TargetMask
, InsertMask
);
616 if (isRunOfOnes(InsertMask
, MB
, ME
)) {
619 if ((Op1Opc
== ISD::SHL
|| Op1Opc
== ISD::SRL
) &&
620 isInt32Immediate(Op1
.getOperand(1), Value
)) {
621 Op1
= Op1
.getOperand(0);
622 SH
= (Op1Opc
== ISD::SHL
) ? Value
: 32 - Value
;
624 if (Op1Opc
== ISD::AND
) {
625 // The AND mask might not be a constant, and we need to make sure that
626 // if we're going to fold the masking with the insert, all bits not
627 // know to be zero in the mask are known to be one.
629 CurDAG
->computeKnownBits(Op1
.getOperand(1), MKnown
);
630 bool CanFoldMask
= InsertMask
== MKnown
.One
.getZExtValue();
632 unsigned SHOpc
= Op1
.getOperand(0).getOpcode();
633 if ((SHOpc
== ISD::SHL
|| SHOpc
== ISD::SRL
) && CanFoldMask
&&
634 isInt32Immediate(Op1
.getOperand(0).getOperand(1), Value
)) {
635 // Note that Value must be in range here (less than 32) because
636 // otherwise there would not be any bits set in InsertMask.
637 Op1
= Op1
.getOperand(0).getOperand(0);
638 SH
= (SHOpc
== ISD::SHL
) ? Value
: 32 - Value
;
643 SDValue Ops
[] = { Op0
, Op1
, getI32Imm(SH
, dl
), getI32Imm(MB
, dl
),
645 ReplaceNode(N
, CurDAG
->getMachineNode(PPC::RLWIMI
, dl
, MVT::i32
, Ops
));
652 // Predict the number of instructions that would be generated by calling
654 static unsigned selectI64ImmInstrCountDirect(int64_t Imm
) {
655 // Assume no remaining bits.
656 unsigned Remainder
= 0;
657 // Assume no shift required.
660 // If it can't be represented as a 32 bit value.
661 if (!isInt
<32>(Imm
)) {
662 Shift
= countTrailingZeros
<uint64_t>(Imm
);
663 int64_t ImmSh
= static_cast<uint64_t>(Imm
) >> Shift
;
665 // If the shifted value fits 32 bits.
666 if (isInt
<32>(ImmSh
)) {
667 // Go with the shifted value.
670 // Still stuck with a 64 bit value.
677 // Intermediate operand.
680 // Handle first 32 bits.
681 unsigned Lo
= Imm
& 0xFFFF;
684 if (isInt
<16>(Imm
)) {
688 // Handle the Hi bits and Lo bits.
695 // If no shift, we're done.
696 if (!Shift
) return Result
;
698 // If Hi word == Lo word,
699 // we can use rldimi to insert the Lo word into Hi word.
700 if ((unsigned)(Imm
& 0xFFFFFFFF) == Remainder
) {
705 // Shift for next step if the upper 32-bits were not zero.
709 // Add in the last bits as required.
710 if ((Remainder
>> 16) & 0xFFFF)
712 if (Remainder
& 0xFFFF)
718 static uint64_t Rot64(uint64_t Imm
, unsigned R
) {
719 return (Imm
<< R
) | (Imm
>> (64 - R
));
722 static unsigned selectI64ImmInstrCount(int64_t Imm
) {
723 unsigned Count
= selectI64ImmInstrCountDirect(Imm
);
725 // If the instruction count is 1 or 2, we do not need further analysis
726 // since rotate + load constant requires at least 2 instructions.
730 for (unsigned r
= 1; r
< 63; ++r
) {
731 uint64_t RImm
= Rot64(Imm
, r
);
732 unsigned RCount
= selectI64ImmInstrCountDirect(RImm
) + 1;
733 Count
= std::min(Count
, RCount
);
735 // See comments in selectI64Imm for an explanation of the logic below.
736 unsigned LS
= findLastSet(RImm
);
740 uint64_t OnesMask
= -(int64_t) (UINT64_C(1) << (LS
+1));
741 uint64_t RImmWithOnes
= RImm
| OnesMask
;
743 RCount
= selectI64ImmInstrCountDirect(RImmWithOnes
) + 1;
744 Count
= std::min(Count
, RCount
);
750 // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount
751 // (above) needs to be kept in sync with this function.
752 static SDNode
*selectI64ImmDirect(SelectionDAG
*CurDAG
, const SDLoc
&dl
,
754 // Assume no remaining bits.
755 unsigned Remainder
= 0;
756 // Assume no shift required.
759 // If it can't be represented as a 32 bit value.
760 if (!isInt
<32>(Imm
)) {
761 Shift
= countTrailingZeros
<uint64_t>(Imm
);
762 int64_t ImmSh
= static_cast<uint64_t>(Imm
) >> Shift
;
764 // If the shifted value fits 32 bits.
765 if (isInt
<32>(ImmSh
)) {
766 // Go with the shifted value.
769 // Still stuck with a 64 bit value.
776 // Intermediate operand.
779 // Handle first 32 bits.
780 unsigned Lo
= Imm
& 0xFFFF;
781 unsigned Hi
= (Imm
>> 16) & 0xFFFF;
783 auto getI32Imm
= [CurDAG
, dl
](unsigned Imm
) {
784 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
788 if (isInt
<16>(Imm
)) {
790 Result
= CurDAG
->getMachineNode(PPC::LI8
, dl
, MVT::i64
, getI32Imm(Lo
));
792 // Handle the Hi bits.
793 unsigned OpC
= Hi
? PPC::LIS8
: PPC::LI8
;
794 Result
= CurDAG
->getMachineNode(OpC
, dl
, MVT::i64
, getI32Imm(Hi
));
796 Result
= CurDAG
->getMachineNode(PPC::ORI8
, dl
, MVT::i64
,
797 SDValue(Result
, 0), getI32Imm(Lo
));
800 Result
= CurDAG
->getMachineNode(PPC::LIS8
, dl
, MVT::i64
, getI32Imm(Hi
));
803 // If no shift, we're done.
804 if (!Shift
) return Result
;
806 // If Hi word == Lo word,
807 // we can use rldimi to insert the Lo word into Hi word.
808 if ((unsigned)(Imm
& 0xFFFFFFFF) == Remainder
) {
810 { SDValue(Result
, 0), SDValue(Result
, 0), getI32Imm(Shift
), getI32Imm(0)};
811 return CurDAG
->getMachineNode(PPC::RLDIMI
, dl
, MVT::i64
, Ops
);
814 // Shift for next step if the upper 32-bits were not zero.
816 Result
= CurDAG
->getMachineNode(PPC::RLDICR
, dl
, MVT::i64
,
819 getI32Imm(63 - Shift
));
822 // Add in the last bits as required.
823 if ((Hi
= (Remainder
>> 16) & 0xFFFF)) {
824 Result
= CurDAG
->getMachineNode(PPC::ORIS8
, dl
, MVT::i64
,
825 SDValue(Result
, 0), getI32Imm(Hi
));
827 if ((Lo
= Remainder
& 0xFFFF)) {
828 Result
= CurDAG
->getMachineNode(PPC::ORI8
, dl
, MVT::i64
,
829 SDValue(Result
, 0), getI32Imm(Lo
));
835 static SDNode
*selectI64Imm(SelectionDAG
*CurDAG
, const SDLoc
&dl
,
837 unsigned Count
= selectI64ImmInstrCountDirect(Imm
);
839 // If the instruction count is 1 or 2, we do not need further analysis
840 // since rotate + load constant requires at least 2 instructions.
842 return selectI64ImmDirect(CurDAG
, dl
, Imm
);
849 for (unsigned r
= 1; r
< 63; ++r
) {
850 uint64_t RImm
= Rot64(Imm
, r
);
851 unsigned RCount
= selectI64ImmInstrCountDirect(RImm
) + 1;
852 if (RCount
< Count
) {
859 // If the immediate to generate has many trailing zeros, it might be
860 // worthwhile to generate a rotated value with too many leading ones
861 // (because that's free with li/lis's sign-extension semantics), and then
862 // mask them off after rotation.
864 unsigned LS
= findLastSet(RImm
);
865 // We're adding (63-LS) higher-order ones, and we expect to mask them off
866 // after performing the inverse rotation by (64-r). So we need that:
867 // 63-LS == 64-r => LS == r-1
871 uint64_t OnesMask
= -(int64_t) (UINT64_C(1) << (LS
+1));
872 uint64_t RImmWithOnes
= RImm
| OnesMask
;
874 RCount
= selectI64ImmInstrCountDirect(RImmWithOnes
) + 1;
875 if (RCount
< Count
) {
878 MatImm
= RImmWithOnes
;
884 return selectI64ImmDirect(CurDAG
, dl
, Imm
);
886 auto getI32Imm
= [CurDAG
, dl
](unsigned Imm
) {
887 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
890 SDValue Val
= SDValue(selectI64ImmDirect(CurDAG
, dl
, MatImm
), 0);
891 return CurDAG
->getMachineNode(PPC::RLDICR
, dl
, MVT::i64
, Val
,
892 getI32Imm(64 - RMin
), getI32Imm(MaskEnd
));
895 // Select a 64-bit constant.
896 static SDNode
*selectI64Imm(SelectionDAG
*CurDAG
, SDNode
*N
) {
900 int64_t Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
901 return selectI64Imm(CurDAG
, dl
, Imm
);
906 class BitPermutationSelector
{
910 // The bit number in the value, using a convention where bit 0 is the
919 ValueBit(SDValue V
, unsigned I
, Kind K
= Variable
)
920 : V(V
), Idx(I
), K(K
) {}
921 ValueBit(Kind K
= Variable
)
922 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX
), K(K
) {}
924 bool isZero() const {
925 return K
== ConstZero
;
928 bool hasValue() const {
929 return K
== Variable
;
932 SDValue
getValue() const {
933 assert(hasValue() && "Cannot get the value of a constant bit");
937 unsigned getValueBitIndex() const {
938 assert(hasValue() && "Cannot get the value bit index of a constant bit");
943 // A bit group has the same underlying value and the same rotate factor.
947 unsigned StartIdx
, EndIdx
;
949 // This rotation amount assumes that the lower 32 bits of the quantity are
950 // replicated in the high 32 bits by the rotation operator (which is done
951 // by rlwinm and friends in 64-bit mode).
953 // Did converting to Repl32 == true change the rotation factor? If it did,
954 // it decreased it by 32.
956 // Was this group coalesced after setting Repl32 to true?
957 bool Repl32Coalesced
;
959 BitGroup(SDValue V
, unsigned R
, unsigned S
, unsigned E
)
960 : V(V
), RLAmt(R
), StartIdx(S
), EndIdx(E
), Repl32(false), Repl32CR(false),
961 Repl32Coalesced(false) {
962 DEBUG(dbgs() << "\tbit group for " << V
.getNode() << " RLAmt = " << R
<<
963 " [" << S
<< ", " << E
<< "]\n");
967 // Information on each (Value, RLAmt) pair (like the number of groups
968 // associated with each) used to choose the lowering method.
969 struct ValueRotInfo
{
971 unsigned RLAmt
= std::numeric_limits
<unsigned>::max();
972 unsigned NumGroups
= 0;
973 unsigned FirstGroupStartIdx
= std::numeric_limits
<unsigned>::max();
976 ValueRotInfo() = default;
978 // For sorting (in reverse order) by NumGroups, and then by
979 // FirstGroupStartIdx.
980 bool operator < (const ValueRotInfo
&Other
) const {
981 // We need to sort so that the non-Repl32 come first because, when we're
982 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
983 // masking operation.
984 if (Repl32
< Other
.Repl32
)
986 else if (Repl32
> Other
.Repl32
)
988 else if (NumGroups
> Other
.NumGroups
)
990 else if (NumGroups
< Other
.NumGroups
)
992 else if (FirstGroupStartIdx
< Other
.FirstGroupStartIdx
)
998 using ValueBitsMemoizedValue
= std::pair
<bool, SmallVector
<ValueBit
, 64>>;
999 using ValueBitsMemoizer
=
1000 DenseMap
<SDValue
, std::unique_ptr
<ValueBitsMemoizedValue
>>;
1001 ValueBitsMemoizer Memoizer
;
1003 // Return a pair of bool and a SmallVector pointer to a memoization entry.
1004 // The bool is true if something interesting was deduced, otherwise if we're
1005 // providing only a generic representation of V (or something else likewise
1006 // uninteresting for instruction selection) through the SmallVector.
1007 std::pair
<bool, SmallVector
<ValueBit
, 64> *> getValueBits(SDValue V
,
1009 auto &ValueEntry
= Memoizer
[V
];
1011 return std::make_pair(ValueEntry
->first
, &ValueEntry
->second
);
1012 ValueEntry
.reset(new ValueBitsMemoizedValue());
1013 bool &Interesting
= ValueEntry
->first
;
1014 SmallVector
<ValueBit
, 64> &Bits
= ValueEntry
->second
;
1015 Bits
.resize(NumBits
);
1017 switch (V
.getOpcode()) {
1020 if (isa
<ConstantSDNode
>(V
.getOperand(1))) {
1021 unsigned RotAmt
= V
.getConstantOperandVal(1);
1023 const auto &LHSBits
= *getValueBits(V
.getOperand(0), NumBits
).second
;
1025 for (unsigned i
= 0; i
< NumBits
; ++i
)
1026 Bits
[i
] = LHSBits
[i
< RotAmt
? i
+ (NumBits
- RotAmt
) : i
- RotAmt
];
1028 return std::make_pair(Interesting
= true, &Bits
);
1032 if (isa
<ConstantSDNode
>(V
.getOperand(1))) {
1033 unsigned ShiftAmt
= V
.getConstantOperandVal(1);
1035 const auto &LHSBits
= *getValueBits(V
.getOperand(0), NumBits
).second
;
1037 for (unsigned i
= ShiftAmt
; i
< NumBits
; ++i
)
1038 Bits
[i
] = LHSBits
[i
- ShiftAmt
];
1040 for (unsigned i
= 0; i
< ShiftAmt
; ++i
)
1041 Bits
[i
] = ValueBit(ValueBit::ConstZero
);
1043 return std::make_pair(Interesting
= true, &Bits
);
1047 if (isa
<ConstantSDNode
>(V
.getOperand(1))) {
1048 unsigned ShiftAmt
= V
.getConstantOperandVal(1);
1050 const auto &LHSBits
= *getValueBits(V
.getOperand(0), NumBits
).second
;
1052 for (unsigned i
= 0; i
< NumBits
- ShiftAmt
; ++i
)
1053 Bits
[i
] = LHSBits
[i
+ ShiftAmt
];
1055 for (unsigned i
= NumBits
- ShiftAmt
; i
< NumBits
; ++i
)
1056 Bits
[i
] = ValueBit(ValueBit::ConstZero
);
1058 return std::make_pair(Interesting
= true, &Bits
);
1062 if (isa
<ConstantSDNode
>(V
.getOperand(1))) {
1063 uint64_t Mask
= V
.getConstantOperandVal(1);
1065 const SmallVector
<ValueBit
, 64> *LHSBits
;
1066 // Mark this as interesting, only if the LHS was also interesting. This
1067 // prevents the overall procedure from matching a single immediate 'and'
1068 // (which is non-optimal because such an and might be folded with other
1069 // things if we don't select it here).
1070 std::tie(Interesting
, LHSBits
) = getValueBits(V
.getOperand(0), NumBits
);
1072 for (unsigned i
= 0; i
< NumBits
; ++i
)
1073 if (((Mask
>> i
) & 1) == 1)
1074 Bits
[i
] = (*LHSBits
)[i
];
1076 Bits
[i
] = ValueBit(ValueBit::ConstZero
);
1078 return std::make_pair(Interesting
, &Bits
);
1082 const auto &LHSBits
= *getValueBits(V
.getOperand(0), NumBits
).second
;
1083 const auto &RHSBits
= *getValueBits(V
.getOperand(1), NumBits
).second
;
1085 bool AllDisjoint
= true;
1086 for (unsigned i
= 0; i
< NumBits
; ++i
)
1087 if (LHSBits
[i
].isZero())
1088 Bits
[i
] = RHSBits
[i
];
1089 else if (RHSBits
[i
].isZero())
1090 Bits
[i
] = LHSBits
[i
];
1092 AllDisjoint
= false;
1099 return std::make_pair(Interesting
= true, &Bits
);
1103 for (unsigned i
= 0; i
< NumBits
; ++i
)
1104 Bits
[i
] = ValueBit(V
, i
);
1106 return std::make_pair(Interesting
= false, &Bits
);
1109 // For each value (except the constant ones), compute the left-rotate amount
1110 // to get it from its original to final position.
1111 void computeRotationAmounts() {
1113 RLAmt
.resize(Bits
.size());
1114 for (unsigned i
= 0; i
< Bits
.size(); ++i
)
1115 if (Bits
[i
].hasValue()) {
1116 unsigned VBI
= Bits
[i
].getValueBitIndex();
1120 RLAmt
[i
] = Bits
.size() - (VBI
- i
);
1121 } else if (Bits
[i
].isZero()) {
1123 RLAmt
[i
] = UINT32_MAX
;
1125 llvm_unreachable("Unknown value bit type");
1129 // Collect groups of consecutive bits with the same underlying value and
1130 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1131 // they break up groups.
1132 void collectBitGroups(bool LateMask
) {
1135 unsigned LastRLAmt
= RLAmt
[0];
1136 SDValue LastValue
= Bits
[0].hasValue() ? Bits
[0].getValue() : SDValue();
1137 unsigned LastGroupStartIdx
= 0;
1138 for (unsigned i
= 1; i
< Bits
.size(); ++i
) {
1139 unsigned ThisRLAmt
= RLAmt
[i
];
1140 SDValue ThisValue
= Bits
[i
].hasValue() ? Bits
[i
].getValue() : SDValue();
1141 if (LateMask
&& !ThisValue
) {
1142 ThisValue
= LastValue
;
1143 ThisRLAmt
= LastRLAmt
;
1144 // If we're doing late masking, then the first bit group always starts
1145 // at zero (even if the first bits were zero).
1146 if (BitGroups
.empty())
1147 LastGroupStartIdx
= 0;
1150 // If this bit has the same underlying value and the same rotate factor as
1151 // the last one, then they're part of the same group.
1152 if (ThisRLAmt
== LastRLAmt
&& ThisValue
== LastValue
)
1155 if (LastValue
.getNode())
1156 BitGroups
.push_back(BitGroup(LastValue
, LastRLAmt
, LastGroupStartIdx
,
1158 LastRLAmt
= ThisRLAmt
;
1159 LastValue
= ThisValue
;
1160 LastGroupStartIdx
= i
;
1162 if (LastValue
.getNode())
1163 BitGroups
.push_back(BitGroup(LastValue
, LastRLAmt
, LastGroupStartIdx
,
1166 if (BitGroups
.empty())
1169 // We might be able to combine the first and last groups.
1170 if (BitGroups
.size() > 1) {
1171 // If the first and last groups are the same, then remove the first group
1172 // in favor of the last group, making the ending index of the last group
1173 // equal to the ending index of the to-be-removed first group.
1174 if (BitGroups
[0].StartIdx
== 0 &&
1175 BitGroups
[BitGroups
.size()-1].EndIdx
== Bits
.size()-1 &&
1176 BitGroups
[0].V
== BitGroups
[BitGroups
.size()-1].V
&&
1177 BitGroups
[0].RLAmt
== BitGroups
[BitGroups
.size()-1].RLAmt
) {
1178 DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1179 BitGroups
[BitGroups
.size()-1].EndIdx
= BitGroups
[0].EndIdx
;
1180 BitGroups
.erase(BitGroups
.begin());
1185 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1186 // associated with each. If there is a degeneracy, pick the one that occurs
1187 // first (in the final value).
1188 void collectValueRotInfo() {
1191 for (auto &BG
: BitGroups
) {
1192 unsigned RLAmtKey
= BG
.RLAmt
+ (BG
.Repl32
? 64 : 0);
1193 ValueRotInfo
&VRI
= ValueRots
[std::make_pair(BG
.V
, RLAmtKey
)];
1195 VRI
.RLAmt
= BG
.RLAmt
;
1196 VRI
.Repl32
= BG
.Repl32
;
1198 VRI
.FirstGroupStartIdx
= std::min(VRI
.FirstGroupStartIdx
, BG
.StartIdx
);
1201 // Now that we've collected the various ValueRotInfo instances, we need to
1203 ValueRotsVec
.clear();
1204 for (auto &I
: ValueRots
) {
1205 ValueRotsVec
.push_back(I
.second
);
1207 std::sort(ValueRotsVec
.begin(), ValueRotsVec
.end());
1210 // In 64-bit mode, rlwinm and friends have a rotation operator that
1211 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1212 // indices of these instructions can only be in the lower 32 bits, so they
1213 // can only represent some 64-bit bit groups. However, when they can be used,
1214 // the 32-bit replication can be used to represent, as a single bit group,
1215 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1216 // groups when possible. Returns true if any of the bit groups were
1218 void assignRepl32BitGroups() {
1219 // If we have bits like this:
1221 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1222 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1223 // Groups: | RLAmt = 8 | RLAmt = 40 |
1225 // But, making use of a 32-bit operation that replicates the low-order 32
1226 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1229 auto IsAllLow32
= [this](BitGroup
& BG
) {
1230 if (BG
.StartIdx
<= BG
.EndIdx
) {
1231 for (unsigned i
= BG
.StartIdx
; i
<= BG
.EndIdx
; ++i
) {
1232 if (!Bits
[i
].hasValue())
1234 if (Bits
[i
].getValueBitIndex() >= 32)
1238 for (unsigned i
= BG
.StartIdx
; i
< Bits
.size(); ++i
) {
1239 if (!Bits
[i
].hasValue())
1241 if (Bits
[i
].getValueBitIndex() >= 32)
1244 for (unsigned i
= 0; i
<= BG
.EndIdx
; ++i
) {
1245 if (!Bits
[i
].hasValue())
1247 if (Bits
[i
].getValueBitIndex() >= 32)
1255 for (auto &BG
: BitGroups
) {
1256 if (BG
.StartIdx
< 32 && BG
.EndIdx
< 32) {
1257 if (IsAllLow32(BG
)) {
1258 if (BG
.RLAmt
>= 32) {
1265 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1266 BG
.V
.getNode() << " RLAmt = " << BG
.RLAmt
<<
1267 " [" << BG
.StartIdx
<< ", " << BG
.EndIdx
<< "]\n");
1272 // Now walk through the bit groups, consolidating where possible.
1273 for (auto I
= BitGroups
.begin(); I
!= BitGroups
.end();) {
1274 // We might want to remove this bit group by merging it with the previous
1275 // group (which might be the ending group).
1276 auto IP
= (I
== BitGroups
.begin()) ?
1277 std::prev(BitGroups
.end()) : std::prev(I
);
1278 if (I
->Repl32
&& IP
->Repl32
&& I
->V
== IP
->V
&& I
->RLAmt
== IP
->RLAmt
&&
1279 I
->StartIdx
== (IP
->EndIdx
+ 1) % 64 && I
!= IP
) {
1281 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1282 I
->V
.getNode() << " RLAmt = " << I
->RLAmt
<<
1283 " [" << I
->StartIdx
<< ", " << I
->EndIdx
<<
1284 "] with group with range [" <<
1285 IP
->StartIdx
<< ", " << IP
->EndIdx
<< "]\n");
1287 IP
->EndIdx
= I
->EndIdx
;
1288 IP
->Repl32CR
= IP
->Repl32CR
|| I
->Repl32CR
;
1289 IP
->Repl32Coalesced
= true;
1290 I
= BitGroups
.erase(I
);
1293 // There is a special case worth handling: If there is a single group
1294 // covering the entire upper 32 bits, and it can be merged with both
1295 // the next and previous groups (which might be the same group), then
1296 // do so. If it is the same group (so there will be only one group in
1297 // total), then we need to reverse the order of the range so that it
1298 // covers the entire 64 bits.
1299 if (I
->StartIdx
== 32 && I
->EndIdx
== 63) {
1300 assert(std::next(I
) == BitGroups
.end() &&
1301 "bit group ends at index 63 but there is another?");
1302 auto IN
= BitGroups
.begin();
1304 if (IP
->Repl32
&& IN
->Repl32
&& I
->V
== IP
->V
&& I
->V
== IN
->V
&&
1305 (I
->RLAmt
% 32) == IP
->RLAmt
&& (I
->RLAmt
% 32) == IN
->RLAmt
&&
1306 IP
->EndIdx
== 31 && IN
->StartIdx
== 0 && I
!= IP
&&
1309 DEBUG(dbgs() << "\tcombining bit group for " <<
1310 I
->V
.getNode() << " RLAmt = " << I
->RLAmt
<<
1311 " [" << I
->StartIdx
<< ", " << I
->EndIdx
<<
1312 "] with 32-bit replicated groups with ranges [" <<
1313 IP
->StartIdx
<< ", " << IP
->EndIdx
<< "] and [" <<
1314 IN
->StartIdx
<< ", " << IN
->EndIdx
<< "]\n");
1317 // There is only one other group; change it to cover the whole
1318 // range (backward, so that it can still be Repl32 but cover the
1319 // whole 64-bit range).
1322 IP
->Repl32CR
= IP
->Repl32CR
|| I
->RLAmt
>= 32;
1323 IP
->Repl32Coalesced
= true;
1324 I
= BitGroups
.erase(I
);
1326 // There are two separate groups, one before this group and one
1327 // after us (at the beginning). We're going to remove this group,
1328 // but also the group at the very beginning.
1329 IP
->EndIdx
= IN
->EndIdx
;
1330 IP
->Repl32CR
= IP
->Repl32CR
|| IN
->Repl32CR
|| I
->RLAmt
>= 32;
1331 IP
->Repl32Coalesced
= true;
1332 I
= BitGroups
.erase(I
);
1333 BitGroups
.erase(BitGroups
.begin());
1336 // This must be the last group in the vector (and we might have
1337 // just invalidated the iterator above), so break here.
1347 SDValue
getI32Imm(unsigned Imm
, const SDLoc
&dl
) {
1348 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
1351 uint64_t getZerosMask() {
1353 for (unsigned i
= 0; i
< Bits
.size(); ++i
) {
1354 if (Bits
[i
].hasValue())
1356 Mask
|= (UINT64_C(1) << i
);
1362 // Depending on the number of groups for a particular value, it might be
1363 // better to rotate, mask explicitly (using andi/andis), and then or the
1364 // result. Select this part of the result first.
1365 void SelectAndParts32(const SDLoc
&dl
, SDValue
&Res
, unsigned *InstCnt
) {
1366 if (BPermRewriterNoMasking
)
1369 for (ValueRotInfo
&VRI
: ValueRotsVec
) {
1371 for (unsigned i
= 0; i
< Bits
.size(); ++i
) {
1372 if (!Bits
[i
].hasValue() || Bits
[i
].getValue() != VRI
.V
)
1374 if (RLAmt
[i
] != VRI
.RLAmt
)
1379 // Compute the masks for andi/andis that would be necessary.
1380 unsigned ANDIMask
= (Mask
& UINT16_MAX
), ANDISMask
= Mask
>> 16;
1381 assert((ANDIMask
!= 0 || ANDISMask
!= 0) &&
1382 "No set bits in mask for value bit groups");
1383 bool NeedsRotate
= VRI
.RLAmt
!= 0;
1385 // We're trying to minimize the number of instructions. If we have one
1386 // group, using one of andi/andis can break even. If we have three
1387 // groups, we can use both andi and andis and break even (to use both
1388 // andi and andis we also need to or the results together). We need four
1389 // groups if we also need to rotate. To use andi/andis we need to do more
1390 // than break even because rotate-and-mask instructions tend to be easier
1393 // FIXME: We've biased here against using andi/andis, which is right for
1394 // POWER cores, but not optimal everywhere. For example, on the A2,
1395 // andi/andis have single-cycle latency whereas the rotate-and-mask
1396 // instructions take two cycles, and it would be better to bias toward
1397 // andi/andis in break-even cases.
1399 unsigned NumAndInsts
= (unsigned) NeedsRotate
+
1400 (unsigned) (ANDIMask
!= 0) +
1401 (unsigned) (ANDISMask
!= 0) +
1402 (unsigned) (ANDIMask
!= 0 && ANDISMask
!= 0) +
1403 (unsigned) (bool) Res
;
1405 DEBUG(dbgs() << "\t\trotation groups for " << VRI
.V
.getNode() <<
1406 " RL: " << VRI
.RLAmt
<< ":" <<
1407 "\n\t\t\tisel using masking: " << NumAndInsts
<<
1408 " using rotates: " << VRI
.NumGroups
<< "\n");
1410 if (NumAndInsts
>= VRI
.NumGroups
)
1413 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1415 if (InstCnt
) *InstCnt
+= NumAndInsts
;
1420 { VRI
.V
, getI32Imm(VRI
.RLAmt
, dl
), getI32Imm(0, dl
),
1421 getI32Imm(31, dl
) };
1422 VRot
= SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
,
1428 SDValue ANDIVal
, ANDISVal
;
1430 ANDIVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDIo
, dl
, MVT::i32
,
1431 VRot
, getI32Imm(ANDIMask
, dl
)), 0);
1433 ANDISVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDISo
, dl
, MVT::i32
,
1434 VRot
, getI32Imm(ANDISMask
, dl
)), 0);
1438 TotalVal
= ANDISVal
;
1442 TotalVal
= SDValue(CurDAG
->getMachineNode(PPC::OR
, dl
, MVT::i32
,
1443 ANDIVal
, ANDISVal
), 0);
1448 Res
= SDValue(CurDAG
->getMachineNode(PPC::OR
, dl
, MVT::i32
,
1451 // Now, remove all groups with this underlying value and rotation
1453 eraseMatchingBitGroups([VRI
](const BitGroup
&BG
) {
1454 return BG
.V
== VRI
.V
&& BG
.RLAmt
== VRI
.RLAmt
;
1459 // Instruction selection for the 32-bit case.
1460 SDNode
*Select32(SDNode
*N
, bool LateMask
, unsigned *InstCnt
) {
1464 if (InstCnt
) *InstCnt
= 0;
1466 // Take care of cases that should use andi/andis first.
1467 SelectAndParts32(dl
, Res
, InstCnt
);
1469 // If we've not yet selected a 'starting' instruction, and we have no zeros
1470 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1471 // number of groups), and start with this rotated value.
1472 if ((!HasZeros
|| LateMask
) && !Res
) {
1473 ValueRotInfo
&VRI
= ValueRotsVec
[0];
1475 if (InstCnt
) *InstCnt
+= 1;
1477 { VRI
.V
, getI32Imm(VRI
.RLAmt
, dl
), getI32Imm(0, dl
),
1478 getI32Imm(31, dl
) };
1479 Res
= SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, Ops
),
1485 // Now, remove all groups with this underlying value and rotation factor.
1486 eraseMatchingBitGroups([VRI
](const BitGroup
&BG
) {
1487 return BG
.V
== VRI
.V
&& BG
.RLAmt
== VRI
.RLAmt
;
1491 if (InstCnt
) *InstCnt
+= BitGroups
.size();
1493 // Insert the other groups (one at a time).
1494 for (auto &BG
: BitGroups
) {
1497 { BG
.V
, getI32Imm(BG
.RLAmt
, dl
),
1498 getI32Imm(Bits
.size() - BG
.EndIdx
- 1, dl
),
1499 getI32Imm(Bits
.size() - BG
.StartIdx
- 1, dl
) };
1500 Res
= SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, Ops
), 0);
1503 { Res
, BG
.V
, getI32Imm(BG
.RLAmt
, dl
),
1504 getI32Imm(Bits
.size() - BG
.EndIdx
- 1, dl
),
1505 getI32Imm(Bits
.size() - BG
.StartIdx
- 1, dl
) };
1506 Res
= SDValue(CurDAG
->getMachineNode(PPC::RLWIMI
, dl
, MVT::i32
, Ops
), 0);
1511 unsigned Mask
= (unsigned) getZerosMask();
1513 unsigned ANDIMask
= (Mask
& UINT16_MAX
), ANDISMask
= Mask
>> 16;
1514 assert((ANDIMask
!= 0 || ANDISMask
!= 0) &&
1515 "No set bits in zeros mask?");
1517 if (InstCnt
) *InstCnt
+= (unsigned) (ANDIMask
!= 0) +
1518 (unsigned) (ANDISMask
!= 0) +
1519 (unsigned) (ANDIMask
!= 0 && ANDISMask
!= 0);
1521 SDValue ANDIVal
, ANDISVal
;
1523 ANDIVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDIo
, dl
, MVT::i32
,
1524 Res
, getI32Imm(ANDIMask
, dl
)), 0);
1526 ANDISVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDISo
, dl
, MVT::i32
,
1527 Res
, getI32Imm(ANDISMask
, dl
)), 0);
1534 Res
= SDValue(CurDAG
->getMachineNode(PPC::OR
, dl
, MVT::i32
,
1535 ANDIVal
, ANDISVal
), 0);
1538 return Res
.getNode();
1541 unsigned SelectRotMask64Count(unsigned RLAmt
, bool Repl32
,
1542 unsigned MaskStart
, unsigned MaskEnd
,
1544 // In the notation used by the instructions, 'start' and 'end' are reversed
1545 // because bits are counted from high to low order.
1546 unsigned InstMaskStart
= 64 - MaskEnd
- 1,
1547 InstMaskEnd
= 64 - MaskStart
- 1;
1552 if ((!IsIns
&& (InstMaskEnd
== 63 || InstMaskStart
== 0)) ||
1553 InstMaskEnd
== 63 - RLAmt
)
1559 // For 64-bit values, not all combinations of rotates and masks are
1560 // available. Produce one if it is available.
1561 SDValue
SelectRotMask64(SDValue V
, const SDLoc
&dl
, unsigned RLAmt
,
1562 bool Repl32
, unsigned MaskStart
, unsigned MaskEnd
,
1563 unsigned *InstCnt
= nullptr) {
1564 // In the notation used by the instructions, 'start' and 'end' are reversed
1565 // because bits are counted from high to low order.
1566 unsigned InstMaskStart
= 64 - MaskEnd
- 1,
1567 InstMaskEnd
= 64 - MaskStart
- 1;
1569 if (InstCnt
) *InstCnt
+= 1;
1572 // This rotation amount assumes that the lower 32 bits of the quantity
1573 // are replicated in the high 32 bits by the rotation operator (which is
1574 // done by rlwinm and friends).
1575 assert(InstMaskStart
>= 32 && "Mask cannot start out of range");
1576 assert(InstMaskEnd
>= 32 && "Mask cannot end out of range");
1578 { V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskStart
- 32, dl
),
1579 getI32Imm(InstMaskEnd
- 32, dl
) };
1580 return SDValue(CurDAG
->getMachineNode(PPC::RLWINM8
, dl
, MVT::i64
,
1584 if (InstMaskEnd
== 63) {
1586 { V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskStart
, dl
) };
1587 return SDValue(CurDAG
->getMachineNode(PPC::RLDICL
, dl
, MVT::i64
, Ops
), 0);
1590 if (InstMaskStart
== 0) {
1592 { V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskEnd
, dl
) };
1593 return SDValue(CurDAG
->getMachineNode(PPC::RLDICR
, dl
, MVT::i64
, Ops
), 0);
1596 if (InstMaskEnd
== 63 - RLAmt
) {
1598 { V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskStart
, dl
) };
1599 return SDValue(CurDAG
->getMachineNode(PPC::RLDIC
, dl
, MVT::i64
, Ops
), 0);
1602 // We cannot do this with a single instruction, so we'll use two. The
1603 // problem is that we're not free to choose both a rotation amount and mask
1604 // start and end independently. We can choose an arbitrary mask start and
1605 // end, but then the rotation amount is fixed. Rotation, however, can be
1606 // inverted, and so by applying an "inverse" rotation first, we can get the
1608 if (InstCnt
) *InstCnt
+= 1;
1610 // The rotation mask for the second instruction must be MaskStart.
1611 unsigned RLAmt2
= MaskStart
;
1612 // The first instruction must rotate V so that the overall rotation amount
1614 unsigned RLAmt1
= (64 + RLAmt
- RLAmt2
) % 64;
1616 V
= SelectRotMask64(V
, dl
, RLAmt1
, false, 0, 63);
1617 return SelectRotMask64(V
, dl
, RLAmt2
, false, MaskStart
, MaskEnd
);
1620 // For 64-bit values, not all combinations of rotates and masks are
1621 // available. Produce a rotate-mask-and-insert if one is available.
1622 SDValue
SelectRotMaskIns64(SDValue Base
, SDValue V
, const SDLoc
&dl
,
1623 unsigned RLAmt
, bool Repl32
, unsigned MaskStart
,
1624 unsigned MaskEnd
, unsigned *InstCnt
= nullptr) {
1625 // In the notation used by the instructions, 'start' and 'end' are reversed
1626 // because bits are counted from high to low order.
1627 unsigned InstMaskStart
= 64 - MaskEnd
- 1,
1628 InstMaskEnd
= 64 - MaskStart
- 1;
1630 if (InstCnt
) *InstCnt
+= 1;
1633 // This rotation amount assumes that the lower 32 bits of the quantity
1634 // are replicated in the high 32 bits by the rotation operator (which is
1635 // done by rlwinm and friends).
1636 assert(InstMaskStart
>= 32 && "Mask cannot start out of range");
1637 assert(InstMaskEnd
>= 32 && "Mask cannot end out of range");
1639 { Base
, V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskStart
- 32, dl
),
1640 getI32Imm(InstMaskEnd
- 32, dl
) };
1641 return SDValue(CurDAG
->getMachineNode(PPC::RLWIMI8
, dl
, MVT::i64
,
1645 if (InstMaskEnd
== 63 - RLAmt
) {
1647 { Base
, V
, getI32Imm(RLAmt
, dl
), getI32Imm(InstMaskStart
, dl
) };
1648 return SDValue(CurDAG
->getMachineNode(PPC::RLDIMI
, dl
, MVT::i64
, Ops
), 0);
1651 // We cannot do this with a single instruction, so we'll use two. The
1652 // problem is that we're not free to choose both a rotation amount and mask
1653 // start and end independently. We can choose an arbitrary mask start and
1654 // end, but then the rotation amount is fixed. Rotation, however, can be
1655 // inverted, and so by applying an "inverse" rotation first, we can get the
1657 if (InstCnt
) *InstCnt
+= 1;
1659 // The rotation mask for the second instruction must be MaskStart.
1660 unsigned RLAmt2
= MaskStart
;
1661 // The first instruction must rotate V so that the overall rotation amount
1663 unsigned RLAmt1
= (64 + RLAmt
- RLAmt2
) % 64;
1665 V
= SelectRotMask64(V
, dl
, RLAmt1
, false, 0, 63);
1666 return SelectRotMaskIns64(Base
, V
, dl
, RLAmt2
, false, MaskStart
, MaskEnd
);
1669 void SelectAndParts64(const SDLoc
&dl
, SDValue
&Res
, unsigned *InstCnt
) {
1670 if (BPermRewriterNoMasking
)
1673 // The idea here is the same as in the 32-bit version, but with additional
1674 // complications from the fact that Repl32 might be true. Because we
1675 // aggressively convert bit groups to Repl32 form (which, for small
1676 // rotation factors, involves no other change), and then coalesce, it might
1677 // be the case that a single 64-bit masking operation could handle both
1678 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1679 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1680 // completely capture the new combined bit group.
1682 for (ValueRotInfo
&VRI
: ValueRotsVec
) {
1685 // We need to add to the mask all bits from the associated bit groups.
1686 // If Repl32 is false, we need to add bits from bit groups that have
1687 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1688 // group is trivially convertable if it overlaps only with the lower 32
1689 // bits, and the group has not been coalesced.
1690 auto MatchingBG
= [VRI
](const BitGroup
&BG
) {
1694 unsigned EffRLAmt
= BG
.RLAmt
;
1695 if (!VRI
.Repl32
&& BG
.Repl32
) {
1696 if (BG
.StartIdx
< 32 && BG
.EndIdx
< 32 && BG
.StartIdx
<= BG
.EndIdx
&&
1697 !BG
.Repl32Coalesced
) {
1703 } else if (VRI
.Repl32
!= BG
.Repl32
) {
1707 return VRI
.RLAmt
== EffRLAmt
;
1710 for (auto &BG
: BitGroups
) {
1711 if (!MatchingBG(BG
))
1714 if (BG
.StartIdx
<= BG
.EndIdx
) {
1715 for (unsigned i
= BG
.StartIdx
; i
<= BG
.EndIdx
; ++i
)
1716 Mask
|= (UINT64_C(1) << i
);
1718 for (unsigned i
= BG
.StartIdx
; i
< Bits
.size(); ++i
)
1719 Mask
|= (UINT64_C(1) << i
);
1720 for (unsigned i
= 0; i
<= BG
.EndIdx
; ++i
)
1721 Mask
|= (UINT64_C(1) << i
);
1725 // We can use the 32-bit andi/andis technique if the mask does not
1726 // require any higher-order bits. This can save an instruction compared
1727 // to always using the general 64-bit technique.
1728 bool Use32BitInsts
= isUInt
<32>(Mask
);
1729 // Compute the masks for andi/andis that would be necessary.
1730 unsigned ANDIMask
= (Mask
& UINT16_MAX
),
1731 ANDISMask
= (Mask
>> 16) & UINT16_MAX
;
1733 bool NeedsRotate
= VRI
.RLAmt
|| (VRI
.Repl32
&& !isUInt
<32>(Mask
));
1735 unsigned NumAndInsts
= (unsigned) NeedsRotate
+
1736 (unsigned) (bool) Res
;
1738 NumAndInsts
+= (unsigned) (ANDIMask
!= 0) + (unsigned) (ANDISMask
!= 0) +
1739 (unsigned) (ANDIMask
!= 0 && ANDISMask
!= 0);
1741 NumAndInsts
+= selectI64ImmInstrCount(Mask
) + /* and */ 1;
1743 unsigned NumRLInsts
= 0;
1744 bool FirstBG
= true;
1745 bool MoreBG
= false;
1746 for (auto &BG
: BitGroups
) {
1747 if (!MatchingBG(BG
)) {
1752 SelectRotMask64Count(BG
.RLAmt
, BG
.Repl32
, BG
.StartIdx
, BG
.EndIdx
,
1757 DEBUG(dbgs() << "\t\trotation groups for " << VRI
.V
.getNode() <<
1758 " RL: " << VRI
.RLAmt
<< (VRI
.Repl32
? " (32):" : ":") <<
1759 "\n\t\t\tisel using masking: " << NumAndInsts
<<
1760 " using rotates: " << NumRLInsts
<< "\n");
1762 // When we'd use andi/andis, we bias toward using the rotates (andi only
1763 // has a record form, and is cracked on POWER cores). However, when using
1764 // general 64-bit constant formation, bias toward the constant form,
1765 // because that exposes more opportunities for CSE.
1766 if (NumAndInsts
> NumRLInsts
)
1768 // When merging multiple bit groups, instruction or is used.
1769 // But when rotate is used, rldimi can inert the rotated value into any
1770 // register, so instruction or can be avoided.
1771 if ((Use32BitInsts
|| MoreBG
) && NumAndInsts
== NumRLInsts
)
1774 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1776 if (InstCnt
) *InstCnt
+= NumAndInsts
;
1779 // We actually need to generate a rotation if we have a non-zero rotation
1780 // factor or, in the Repl32 case, if we care about any of the
1781 // higher-order replicated bits. In the latter case, we generate a mask
1782 // backward so that it actually includes the entire 64 bits.
1783 if (VRI
.RLAmt
|| (VRI
.Repl32
&& !isUInt
<32>(Mask
)))
1784 VRot
= SelectRotMask64(VRI
.V
, dl
, VRI
.RLAmt
, VRI
.Repl32
,
1785 VRI
.Repl32
? 31 : 0, VRI
.Repl32
? 30 : 63);
1790 if (Use32BitInsts
) {
1791 assert((ANDIMask
!= 0 || ANDISMask
!= 0) &&
1792 "No set bits in mask when using 32-bit ands for 64-bit value");
1794 SDValue ANDIVal
, ANDISVal
;
1796 ANDIVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDIo8
, dl
, MVT::i64
,
1797 VRot
, getI32Imm(ANDIMask
, dl
)), 0);
1799 ANDISVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDISo8
, dl
, MVT::i64
,
1800 VRot
, getI32Imm(ANDISMask
, dl
)), 0);
1803 TotalVal
= ANDISVal
;
1807 TotalVal
= SDValue(CurDAG
->getMachineNode(PPC::OR8
, dl
, MVT::i64
,
1808 ANDIVal
, ANDISVal
), 0);
1810 TotalVal
= SDValue(selectI64Imm(CurDAG
, dl
, Mask
), 0);
1812 SDValue(CurDAG
->getMachineNode(PPC::AND8
, dl
, MVT::i64
,
1813 VRot
, TotalVal
), 0);
1819 Res
= SDValue(CurDAG
->getMachineNode(PPC::OR8
, dl
, MVT::i64
,
1822 // Now, remove all groups with this underlying value and rotation
1824 eraseMatchingBitGroups(MatchingBG
);
1828 // Instruction selection for the 64-bit case.
1829 SDNode
*Select64(SDNode
*N
, bool LateMask
, unsigned *InstCnt
) {
1833 if (InstCnt
) *InstCnt
= 0;
1835 // Take care of cases that should use andi/andis first.
1836 SelectAndParts64(dl
, Res
, InstCnt
);
1838 // If we've not yet selected a 'starting' instruction, and we have no zeros
1839 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1840 // number of groups), and start with this rotated value.
1841 if ((!HasZeros
|| LateMask
) && !Res
) {
1842 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1843 // groups will come first, and so the VRI representing the largest number
1844 // of groups might not be first (it might be the first Repl32 groups).
1845 unsigned MaxGroupsIdx
= 0;
1846 if (!ValueRotsVec
[0].Repl32
) {
1847 for (unsigned i
= 0, ie
= ValueRotsVec
.size(); i
< ie
; ++i
)
1848 if (ValueRotsVec
[i
].Repl32
) {
1849 if (ValueRotsVec
[i
].NumGroups
> ValueRotsVec
[0].NumGroups
)
1855 ValueRotInfo
&VRI
= ValueRotsVec
[MaxGroupsIdx
];
1856 bool NeedsRotate
= false;
1859 } else if (VRI
.Repl32
) {
1860 for (auto &BG
: BitGroups
) {
1861 if (BG
.V
!= VRI
.V
|| BG
.RLAmt
!= VRI
.RLAmt
||
1862 BG
.Repl32
!= VRI
.Repl32
)
1865 // We don't need a rotate if the bit group is confined to the lower
1867 if (BG
.StartIdx
< 32 && BG
.EndIdx
< 32 && BG
.StartIdx
< BG
.EndIdx
)
1876 Res
= SelectRotMask64(VRI
.V
, dl
, VRI
.RLAmt
, VRI
.Repl32
,
1877 VRI
.Repl32
? 31 : 0, VRI
.Repl32
? 30 : 63,
1882 // Now, remove all groups with this underlying value and rotation factor.
1884 eraseMatchingBitGroups([VRI
](const BitGroup
&BG
) {
1885 return BG
.V
== VRI
.V
&& BG
.RLAmt
== VRI
.RLAmt
&&
1886 BG
.Repl32
== VRI
.Repl32
;
1890 // Because 64-bit rotates are more flexible than inserts, we might have a
1891 // preference regarding which one we do first (to save one instruction).
1893 for (auto I
= BitGroups
.begin(), IE
= BitGroups
.end(); I
!= IE
; ++I
) {
1894 if (SelectRotMask64Count(I
->RLAmt
, I
->Repl32
, I
->StartIdx
, I
->EndIdx
,
1896 SelectRotMask64Count(I
->RLAmt
, I
->Repl32
, I
->StartIdx
, I
->EndIdx
,
1898 if (I
!= BitGroups
.begin()) {
1901 BitGroups
.insert(BitGroups
.begin(), BG
);
1908 // Insert the other groups (one at a time).
1909 for (auto &BG
: BitGroups
) {
1911 Res
= SelectRotMask64(BG
.V
, dl
, BG
.RLAmt
, BG
.Repl32
, BG
.StartIdx
,
1912 BG
.EndIdx
, InstCnt
);
1914 Res
= SelectRotMaskIns64(Res
, BG
.V
, dl
, BG
.RLAmt
, BG
.Repl32
,
1915 BG
.StartIdx
, BG
.EndIdx
, InstCnt
);
1919 uint64_t Mask
= getZerosMask();
1921 // We can use the 32-bit andi/andis technique if the mask does not
1922 // require any higher-order bits. This can save an instruction compared
1923 // to always using the general 64-bit technique.
1924 bool Use32BitInsts
= isUInt
<32>(Mask
);
1925 // Compute the masks for andi/andis that would be necessary.
1926 unsigned ANDIMask
= (Mask
& UINT16_MAX
),
1927 ANDISMask
= (Mask
>> 16) & UINT16_MAX
;
1929 if (Use32BitInsts
) {
1930 assert((ANDIMask
!= 0 || ANDISMask
!= 0) &&
1931 "No set bits in mask when using 32-bit ands for 64-bit value");
1933 if (InstCnt
) *InstCnt
+= (unsigned) (ANDIMask
!= 0) +
1934 (unsigned) (ANDISMask
!= 0) +
1935 (unsigned) (ANDIMask
!= 0 && ANDISMask
!= 0);
1937 SDValue ANDIVal
, ANDISVal
;
1939 ANDIVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDIo8
, dl
, MVT::i64
,
1940 Res
, getI32Imm(ANDIMask
, dl
)), 0);
1942 ANDISVal
= SDValue(CurDAG
->getMachineNode(PPC::ANDISo8
, dl
, MVT::i64
,
1943 Res
, getI32Imm(ANDISMask
, dl
)), 0);
1950 Res
= SDValue(CurDAG
->getMachineNode(PPC::OR8
, dl
, MVT::i64
,
1951 ANDIVal
, ANDISVal
), 0);
1953 if (InstCnt
) *InstCnt
+= selectI64ImmInstrCount(Mask
) + /* and */ 1;
1955 SDValue MaskVal
= SDValue(selectI64Imm(CurDAG
, dl
, Mask
), 0);
1957 SDValue(CurDAG
->getMachineNode(PPC::AND8
, dl
, MVT::i64
,
1962 return Res
.getNode();
1965 SDNode
*Select(SDNode
*N
, bool LateMask
, unsigned *InstCnt
= nullptr) {
1966 // Fill in BitGroups.
1967 collectBitGroups(LateMask
);
1968 if (BitGroups
.empty())
1971 // For 64-bit values, figure out when we can use 32-bit instructions.
1972 if (Bits
.size() == 64)
1973 assignRepl32BitGroups();
1975 // Fill in ValueRotsVec.
1976 collectValueRotInfo();
1978 if (Bits
.size() == 32) {
1979 return Select32(N
, LateMask
, InstCnt
);
1981 assert(Bits
.size() == 64 && "Not 64 bits here?");
1982 return Select64(N
, LateMask
, InstCnt
);
1988 void eraseMatchingBitGroups(function_ref
<bool(const BitGroup
&)> F
) {
1989 BitGroups
.erase(remove_if(BitGroups
, F
), BitGroups
.end());
1992 SmallVector
<ValueBit
, 64> Bits
;
1995 SmallVector
<unsigned, 64> RLAmt
;
1997 SmallVector
<BitGroup
, 16> BitGroups
;
1999 DenseMap
<std::pair
<SDValue
, unsigned>, ValueRotInfo
> ValueRots
;
2000 SmallVector
<ValueRotInfo
, 16> ValueRotsVec
;
2002 SelectionDAG
*CurDAG
;
2005 BitPermutationSelector(SelectionDAG
*DAG
)
2008 // Here we try to match complex bit permutations into a set of
2009 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2010 // known to produce optimial code for common cases (like i32 byte swapping).
2011 SDNode
*Select(SDNode
*N
) {
2014 getValueBits(SDValue(N
, 0), N
->getValueType(0).getSizeInBits());
2017 Bits
= std::move(*Result
.second
);
2019 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2020 " selection for: ");
2021 DEBUG(N
->dump(CurDAG
));
2023 // Fill it RLAmt and set HasZeros.
2024 computeRotationAmounts();
2027 return Select(N
, false);
2029 // We currently have two techniques for handling results with zeros: early
2030 // masking (the default) and late masking. Late masking is sometimes more
2031 // efficient, but because the structure of the bit groups is different, it
2032 // is hard to tell without generating both and comparing the results. With
2033 // late masking, we ignore zeros in the resulting value when inserting each
2034 // set of bit groups, and then mask in the zeros at the end. With early
2035 // masking, we only insert the non-zero parts of the result at every step.
2037 unsigned InstCnt
, InstCntLateMask
;
2038 DEBUG(dbgs() << "\tEarly masking:\n");
2039 SDNode
*RN
= Select(N
, false, &InstCnt
);
2040 DEBUG(dbgs() << "\t\tisel would use " << InstCnt
<< " instructions\n");
2042 DEBUG(dbgs() << "\tLate masking:\n");
2043 SDNode
*RNLM
= Select(N
, true, &InstCntLateMask
);
2044 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
<<
2047 if (InstCnt
<= InstCntLateMask
) {
2048 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2052 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2057 } // end anonymous namespace
2059 bool PPCDAGToDAGISel::tryBitPermutation(SDNode
*N
) {
2060 if (N
->getValueType(0) != MVT::i32
&&
2061 N
->getValueType(0) != MVT::i64
)
2064 if (!UseBitPermRewriter
)
2067 switch (N
->getOpcode()) {
2074 BitPermutationSelector
BPS(CurDAG
);
2075 if (SDNode
*New
= BPS
.Select(N
)) {
2076 ReplaceNode(N
, New
);
2086 /// SelectCC - Select a comparison of the specified values with the specified
2087 /// condition code, returning the CR# of the expression.
2088 SDValue
PPCDAGToDAGISel::SelectCC(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
2090 // Always select the LHS.
2093 if (LHS
.getValueType() == MVT::i32
) {
2095 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) {
2096 if (isInt32Immediate(RHS
, Imm
)) {
2097 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2098 if (isUInt
<16>(Imm
))
2099 return SDValue(CurDAG
->getMachineNode(PPC::CMPLWI
, dl
, MVT::i32
, LHS
,
2100 getI32Imm(Imm
& 0xFFFF, dl
)),
2102 // If this is a 16-bit signed immediate, fold it.
2103 if (isInt
<16>((int)Imm
))
2104 return SDValue(CurDAG
->getMachineNode(PPC::CMPWI
, dl
, MVT::i32
, LHS
,
2105 getI32Imm(Imm
& 0xFFFF, dl
)),
2108 // For non-equality comparisons, the default code would materialize the
2109 // constant, then compare against it, like this:
2111 // ori r2, r2, 22136
2113 // Since we are just comparing for equality, we can emit this instead:
2114 // xoris r0,r3,0x1234
2115 // cmplwi cr0,r0,0x5678
2117 SDValue
Xor(CurDAG
->getMachineNode(PPC::XORIS
, dl
, MVT::i32
, LHS
,
2118 getI32Imm(Imm
>> 16, dl
)), 0);
2119 return SDValue(CurDAG
->getMachineNode(PPC::CMPLWI
, dl
, MVT::i32
, Xor
,
2120 getI32Imm(Imm
& 0xFFFF, dl
)), 0);
2123 } else if (ISD::isUnsignedIntSetCC(CC
)) {
2124 if (isInt32Immediate(RHS
, Imm
) && isUInt
<16>(Imm
))
2125 return SDValue(CurDAG
->getMachineNode(PPC::CMPLWI
, dl
, MVT::i32
, LHS
,
2126 getI32Imm(Imm
& 0xFFFF, dl
)), 0);
2130 if (isIntS16Immediate(RHS
, SImm
))
2131 return SDValue(CurDAG
->getMachineNode(PPC::CMPWI
, dl
, MVT::i32
, LHS
,
2132 getI32Imm((int)SImm
& 0xFFFF,
2137 } else if (LHS
.getValueType() == MVT::i64
) {
2139 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) {
2140 if (isInt64Immediate(RHS
.getNode(), Imm
)) {
2141 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2142 if (isUInt
<16>(Imm
))
2143 return SDValue(CurDAG
->getMachineNode(PPC::CMPLDI
, dl
, MVT::i64
, LHS
,
2144 getI32Imm(Imm
& 0xFFFF, dl
)),
2146 // If this is a 16-bit signed immediate, fold it.
2148 return SDValue(CurDAG
->getMachineNode(PPC::CMPDI
, dl
, MVT::i64
, LHS
,
2149 getI32Imm(Imm
& 0xFFFF, dl
)),
2152 // For non-equality comparisons, the default code would materialize the
2153 // constant, then compare against it, like this:
2155 // ori r2, r2, 22136
2157 // Since we are just comparing for equality, we can emit this instead:
2158 // xoris r0,r3,0x1234
2159 // cmpldi cr0,r0,0x5678
2161 if (isUInt
<32>(Imm
)) {
2162 SDValue
Xor(CurDAG
->getMachineNode(PPC::XORIS8
, dl
, MVT::i64
, LHS
,
2163 getI64Imm(Imm
>> 16, dl
)), 0);
2164 return SDValue(CurDAG
->getMachineNode(PPC::CMPLDI
, dl
, MVT::i64
, Xor
,
2165 getI64Imm(Imm
& 0xFFFF, dl
)),
2170 } else if (ISD::isUnsignedIntSetCC(CC
)) {
2171 if (isInt64Immediate(RHS
.getNode(), Imm
) && isUInt
<16>(Imm
))
2172 return SDValue(CurDAG
->getMachineNode(PPC::CMPLDI
, dl
, MVT::i64
, LHS
,
2173 getI64Imm(Imm
& 0xFFFF, dl
)), 0);
2177 if (isIntS16Immediate(RHS
, SImm
))
2178 return SDValue(CurDAG
->getMachineNode(PPC::CMPDI
, dl
, MVT::i64
, LHS
,
2179 getI64Imm(SImm
& 0xFFFF, dl
)),
2183 } else if (LHS
.getValueType() == MVT::f32
) {
2186 assert(LHS
.getValueType() == MVT::f64
&& "Unknown vt!");
2187 Opc
= PPCSubTarget
->hasVSX() ? PPC::XSCMPUDP
: PPC::FCMPUD
;
2189 return SDValue(CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, LHS
, RHS
), 0);
2192 static PPC::Predicate
getPredicateForSetCC(ISD::CondCode CC
) {
2198 llvm_unreachable("Should be lowered by legalize!");
2199 default: llvm_unreachable("Unknown condition!");
2201 case ISD::SETEQ
: return PPC::PRED_EQ
;
2203 case ISD::SETNE
: return PPC::PRED_NE
;
2205 case ISD::SETLT
: return PPC::PRED_LT
;
2207 case ISD::SETLE
: return PPC::PRED_LE
;
2209 case ISD::SETGT
: return PPC::PRED_GT
;
2211 case ISD::SETGE
: return PPC::PRED_GE
;
2212 case ISD::SETO
: return PPC::PRED_NU
;
2213 case ISD::SETUO
: return PPC::PRED_UN
;
2214 // These two are invalid for floating point. Assume we have int.
2215 case ISD::SETULT
: return PPC::PRED_LT
;
2216 case ISD::SETUGT
: return PPC::PRED_GT
;
2220 /// getCRIdxForSetCC - Return the index of the condition register field
2221 /// associated with the SetCC condition, and whether or not the field is
2222 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
2223 static unsigned getCRIdxForSetCC(ISD::CondCode CC
, bool &Invert
) {
2226 default: llvm_unreachable("Unknown condition!");
2228 case ISD::SETLT
: return 0; // Bit #0 = SETOLT
2230 case ISD::SETGT
: return 1; // Bit #1 = SETOGT
2232 case ISD::SETEQ
: return 2; // Bit #2 = SETOEQ
2233 case ISD::SETUO
: return 3; // Bit #3 = SETUO
2235 case ISD::SETGE
: Invert
= true; return 0; // !Bit #0 = SETUGE
2237 case ISD::SETLE
: Invert
= true; return 1; // !Bit #1 = SETULE
2239 case ISD::SETNE
: Invert
= true; return 2; // !Bit #2 = SETUNE
2240 case ISD::SETO
: Invert
= true; return 3; // !Bit #3 = SETO
2245 llvm_unreachable("Invalid branch code: should be expanded by legalize");
2246 // These are invalid for floating point. Assume integer.
2247 case ISD::SETULT
: return 0;
2248 case ISD::SETUGT
: return 1;
2252 // getVCmpInst: return the vector compare instruction for the specified
2253 // vector type and condition code. Since this is for altivec specific code,
2254 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
2255 static unsigned int getVCmpInst(MVT VecVT
, ISD::CondCode CC
,
2256 bool HasVSX
, bool &Swap
, bool &Negate
) {
2260 if (VecVT
.isFloatingPoint()) {
2261 /* Handle some cases by swapping input operands. */
2263 case ISD::SETLE
: CC
= ISD::SETGE
; Swap
= true; break;
2264 case ISD::SETLT
: CC
= ISD::SETGT
; Swap
= true; break;
2265 case ISD::SETOLE
: CC
= ISD::SETOGE
; Swap
= true; break;
2266 case ISD::SETOLT
: CC
= ISD::SETOGT
; Swap
= true; break;
2267 case ISD::SETUGE
: CC
= ISD::SETULE
; Swap
= true; break;
2268 case ISD::SETUGT
: CC
= ISD::SETULT
; Swap
= true; break;
2271 /* Handle some cases by negating the result. */
2273 case ISD::SETNE
: CC
= ISD::SETEQ
; Negate
= true; break;
2274 case ISD::SETUNE
: CC
= ISD::SETOEQ
; Negate
= true; break;
2275 case ISD::SETULE
: CC
= ISD::SETOGT
; Negate
= true; break;
2276 case ISD::SETULT
: CC
= ISD::SETOGE
; Negate
= true; break;
2279 /* We have instructions implementing the remaining cases. */
2283 if (VecVT
== MVT::v4f32
)
2284 return HasVSX
? PPC::XVCMPEQSP
: PPC::VCMPEQFP
;
2285 else if (VecVT
== MVT::v2f64
)
2286 return PPC::XVCMPEQDP
;
2290 if (VecVT
== MVT::v4f32
)
2291 return HasVSX
? PPC::XVCMPGTSP
: PPC::VCMPGTFP
;
2292 else if (VecVT
== MVT::v2f64
)
2293 return PPC::XVCMPGTDP
;
2297 if (VecVT
== MVT::v4f32
)
2298 return HasVSX
? PPC::XVCMPGESP
: PPC::VCMPGEFP
;
2299 else if (VecVT
== MVT::v2f64
)
2300 return PPC::XVCMPGEDP
;
2305 llvm_unreachable("Invalid floating-point vector compare condition");
2307 /* Handle some cases by swapping input operands. */
2309 case ISD::SETGE
: CC
= ISD::SETLE
; Swap
= true; break;
2310 case ISD::SETLT
: CC
= ISD::SETGT
; Swap
= true; break;
2311 case ISD::SETUGE
: CC
= ISD::SETULE
; Swap
= true; break;
2312 case ISD::SETULT
: CC
= ISD::SETUGT
; Swap
= true; break;
2315 /* Handle some cases by negating the result. */
2317 case ISD::SETNE
: CC
= ISD::SETEQ
; Negate
= true; break;
2318 case ISD::SETUNE
: CC
= ISD::SETUEQ
; Negate
= true; break;
2319 case ISD::SETLE
: CC
= ISD::SETGT
; Negate
= true; break;
2320 case ISD::SETULE
: CC
= ISD::SETUGT
; Negate
= true; break;
2323 /* We have instructions implementing the remaining cases. */
2327 if (VecVT
== MVT::v16i8
)
2328 return PPC::VCMPEQUB
;
2329 else if (VecVT
== MVT::v8i16
)
2330 return PPC::VCMPEQUH
;
2331 else if (VecVT
== MVT::v4i32
)
2332 return PPC::VCMPEQUW
;
2333 else if (VecVT
== MVT::v2i64
)
2334 return PPC::VCMPEQUD
;
2337 if (VecVT
== MVT::v16i8
)
2338 return PPC::VCMPGTSB
;
2339 else if (VecVT
== MVT::v8i16
)
2340 return PPC::VCMPGTSH
;
2341 else if (VecVT
== MVT::v4i32
)
2342 return PPC::VCMPGTSW
;
2343 else if (VecVT
== MVT::v2i64
)
2344 return PPC::VCMPGTSD
;
2347 if (VecVT
== MVT::v16i8
)
2348 return PPC::VCMPGTUB
;
2349 else if (VecVT
== MVT::v8i16
)
2350 return PPC::VCMPGTUH
;
2351 else if (VecVT
== MVT::v4i32
)
2352 return PPC::VCMPGTUW
;
2353 else if (VecVT
== MVT::v2i64
)
2354 return PPC::VCMPGTUD
;
2359 llvm_unreachable("Invalid integer vector compare condition");
2363 bool PPCDAGToDAGISel::trySETCC(SDNode
*N
) {
2366 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
2368 CurDAG
->getTargetLoweringInfo().getPointerTy(CurDAG
->getDataLayout());
2369 bool isPPC64
= (PtrVT
== MVT::i64
);
2371 if (!PPCSubTarget
->useCRBits() &&
2372 isInt32Immediate(N
->getOperand(1), Imm
)) {
2373 // We can codegen setcc op, imm very efficiently compared to a brcond.
2374 // Check for those cases here.
2377 SDValue Op
= N
->getOperand(0);
2381 Op
= SDValue(CurDAG
->getMachineNode(PPC::CNTLZW
, dl
, MVT::i32
, Op
), 0);
2382 SDValue Ops
[] = { Op
, getI32Imm(27, dl
), getI32Imm(5, dl
),
2383 getI32Imm(31, dl
) };
2384 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
2390 SDValue(CurDAG
->getMachineNode(PPC::ADDIC
, dl
, MVT::i32
, MVT::Glue
,
2391 Op
, getI32Imm(~0U, dl
)), 0);
2392 CurDAG
->SelectNodeTo(N
, PPC::SUBFE
, MVT::i32
, AD
, Op
, AD
.getValue(1));
2396 SDValue Ops
[] = { Op
, getI32Imm(1, dl
), getI32Imm(31, dl
),
2397 getI32Imm(31, dl
) };
2398 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
2403 SDValue(CurDAG
->getMachineNode(PPC::NEG
, dl
, MVT::i32
, Op
), 0);
2404 T
= SDValue(CurDAG
->getMachineNode(PPC::ANDC
, dl
, MVT::i32
, T
, Op
), 0);
2405 SDValue Ops
[] = { T
, getI32Imm(1, dl
), getI32Imm(31, dl
),
2406 getI32Imm(31, dl
) };
2407 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
2411 } else if (Imm
== ~0U) { // setcc op, -1
2412 SDValue Op
= N
->getOperand(0);
2417 Op
= SDValue(CurDAG
->getMachineNode(PPC::ADDIC
, dl
, MVT::i32
, MVT::Glue
,
2418 Op
, getI32Imm(1, dl
)), 0);
2419 CurDAG
->SelectNodeTo(N
, PPC::ADDZE
, MVT::i32
,
2420 SDValue(CurDAG
->getMachineNode(PPC::LI
, dl
,
2423 0), Op
.getValue(1));
2427 Op
= SDValue(CurDAG
->getMachineNode(PPC::NOR
, dl
, MVT::i32
, Op
, Op
), 0);
2428 SDNode
*AD
= CurDAG
->getMachineNode(PPC::ADDIC
, dl
, MVT::i32
, MVT::Glue
,
2429 Op
, getI32Imm(~0U, dl
));
2430 CurDAG
->SelectNodeTo(N
, PPC::SUBFE
, MVT::i32
, SDValue(AD
, 0), Op
,
2435 SDValue AD
= SDValue(CurDAG
->getMachineNode(PPC::ADDI
, dl
, MVT::i32
, Op
,
2436 getI32Imm(1, dl
)), 0);
2437 SDValue AN
= SDValue(CurDAG
->getMachineNode(PPC::AND
, dl
, MVT::i32
, AD
,
2439 SDValue Ops
[] = { AN
, getI32Imm(1, dl
), getI32Imm(31, dl
),
2440 getI32Imm(31, dl
) };
2441 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
2445 SDValue Ops
[] = { Op
, getI32Imm(1, dl
), getI32Imm(31, dl
),
2446 getI32Imm(31, dl
) };
2447 Op
= SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, Ops
), 0);
2448 CurDAG
->SelectNodeTo(N
, PPC::XORI
, MVT::i32
, Op
, getI32Imm(1, dl
));
2455 SDValue LHS
= N
->getOperand(0);
2456 SDValue RHS
= N
->getOperand(1);
2458 // Altivec Vector compare instructions do not set any CR register by default and
2459 // vector compare operations return the same type as the operands.
2460 if (LHS
.getValueType().isVector()) {
2461 if (PPCSubTarget
->hasQPX())
2464 EVT VecVT
= LHS
.getValueType();
2466 unsigned int VCmpInst
= getVCmpInst(VecVT
.getSimpleVT(), CC
,
2467 PPCSubTarget
->hasVSX(), Swap
, Negate
);
2469 std::swap(LHS
, RHS
);
2471 EVT ResVT
= VecVT
.changeVectorElementTypeToInteger();
2473 SDValue
VCmp(CurDAG
->getMachineNode(VCmpInst
, dl
, ResVT
, LHS
, RHS
), 0);
2474 CurDAG
->SelectNodeTo(N
, PPCSubTarget
->hasVSX() ? PPC::XXLNOR
: PPC::VNOR
,
2479 CurDAG
->SelectNodeTo(N
, VCmpInst
, ResVT
, LHS
, RHS
);
2483 if (PPCSubTarget
->useCRBits())
2487 unsigned Idx
= getCRIdxForSetCC(CC
, Inv
);
2488 SDValue CCReg
= SelectCC(LHS
, RHS
, CC
, dl
);
2491 // Force the ccreg into CR7.
2492 SDValue CR7Reg
= CurDAG
->getRegister(PPC::CR7
, MVT::i32
);
2494 SDValue
InFlag(nullptr, 0); // Null incoming flag value.
2495 CCReg
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
, CR7Reg
, CCReg
,
2496 InFlag
).getValue(1);
2498 IntCR
= SDValue(CurDAG
->getMachineNode(PPC::MFOCRF
, dl
, MVT::i32
, CR7Reg
,
2501 SDValue Ops
[] = { IntCR
, getI32Imm((32 - (3 - Idx
)) & 31, dl
),
2502 getI32Imm(31, dl
), getI32Imm(31, dl
) };
2504 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
2508 // Get the specified bit.
2510 SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, Ops
), 0);
2511 CurDAG
->SelectNodeTo(N
, PPC::XORI
, MVT::i32
, Tmp
, getI32Imm(1, dl
));
2515 // Is this opcode a bitwise logical operation?
2516 static bool isLogicOp(unsigned Opc
) {
2517 return Opc
== ISD::AND
|| Opc
== ISD::OR
|| Opc
== ISD::XOR
;
2520 /// If this node is a sign/zero extension of an integer comparison,
2521 /// it can usually be computed in GPR's rather than using comparison
2522 /// instructions and ISEL. We only do this on 64-bit targets for now
2523 /// as the code is specialized for 64-bit (it uses 64-bit instructions
2524 /// and assumes 64-bit registers).
2525 bool PPCDAGToDAGISel::tryEXTEND(SDNode
*N
) {
2526 if (TM
.getOptLevel() == CodeGenOpt::None
|| !TM
.isPPC64())
2528 assert((N
->getOpcode() == ISD::ZERO_EXTEND
||
2529 N
->getOpcode() == ISD::SIGN_EXTEND
) &&
2530 "Expecting a zero/sign extend node!");
2533 // If we are zero-extending the result of a logical operation on i1
2534 // values, we can keep the values in GPRs.
2535 if (isLogicOp(N
->getOperand(0).getOpcode()) &&
2536 N
->getOperand(0).getValueType() == MVT::i1
&&
2537 N
->getOpcode() == ISD::ZERO_EXTEND
)
2538 WideRes
= computeLogicOpInGPR(N
->getOperand(0));
2539 else if (N
->getOperand(0).getOpcode() != ISD::SETCC
)
2543 getSETCCInGPR(N
->getOperand(0),
2544 N
->getOpcode() == ISD::SIGN_EXTEND
?
2545 SetccInGPROpts::SExtOrig
: SetccInGPROpts::ZExtOrig
);
2551 bool Inputs32Bit
= N
->getOperand(0).getOperand(0).getValueType() == MVT::i32
;
2552 bool Output32Bit
= N
->getValueType(0) == MVT::i32
;
2554 NumSextSetcc
+= N
->getOpcode() == ISD::SIGN_EXTEND
? 1 : 0;
2555 NumZextSetcc
+= N
->getOpcode() == ISD::SIGN_EXTEND
? 0 : 1;
2557 SDValue ConvOp
= WideRes
;
2558 if (Inputs32Bit
!= Output32Bit
)
2559 ConvOp
= addExtOrTrunc(WideRes
, Inputs32Bit
? ExtOrTruncConversion::Ext
:
2560 ExtOrTruncConversion::Trunc
);
2561 ReplaceNode(N
, ConvOp
.getNode());
2566 // Lower a logical operation on i1 values into a GPR sequence if possible.
2567 // The result can be kept in a GPR if requested.
2568 // Three types of inputs can be handled:
2571 // - Logical operation (AND/OR/XOR)
2572 // There is also a special case that is handled (namely a complement operation
2573 // achieved with xor %a, -1).
2574 SDValue
PPCDAGToDAGISel::computeLogicOpInGPR(SDValue LogicOp
) {
2575 assert(isLogicOp(LogicOp
.getOpcode()) &&
2576 "Can only handle logic operations here.");
2577 assert(LogicOp
.getValueType() == MVT::i1
&&
2578 "Can only handle logic operations on i1 values here.");
2582 // Special case: xor %a, -1
2583 bool IsBitwiseNegation
= isBitwiseNot(LogicOp
);
2585 // Produces a GPR sequence for each operand of the binary logic operation.
2586 // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2587 // the value in a GPR and for logic operations, it will recursively produce
2588 // a GPR sequence for the operation.
2589 auto getLogicOperand
= [&] (SDValue Operand
) -> SDValue
{
2590 unsigned OperandOpcode
= Operand
.getOpcode();
2591 if (OperandOpcode
== ISD::SETCC
)
2592 return getSETCCInGPR(Operand
, SetccInGPROpts::ZExtOrig
);
2593 else if (OperandOpcode
== ISD::TRUNCATE
) {
2594 SDValue InputOp
= Operand
.getOperand(0);
2595 EVT InVT
= InputOp
.getValueType();
2597 SDValue(CurDAG
->getMachineNode(InVT
== MVT::i32
? PPC::RLDICL_32
:
2598 PPC::RLDICL
, dl
, InVT
, InputOp
,
2599 getI64Imm(0, dl
), getI64Imm(63, dl
)), 0);
2600 } else if (isLogicOp(OperandOpcode
))
2601 return computeLogicOpInGPR(Operand
);
2604 LHS
= getLogicOperand(LogicOp
.getOperand(0));
2605 RHS
= getLogicOperand(LogicOp
.getOperand(1));
2607 // If a GPR sequence can't be produced for the LHS we can't proceed.
2608 // Not producing a GPR sequence for the RHS is only a problem if this isn't
2609 // a bitwise negation operation.
2610 if (!LHS
|| (!RHS
&& !IsBitwiseNegation
))
2613 NumLogicOpsOnComparison
++;
2615 // We will use the inputs as 64-bit values.
2616 if (LHS
.getValueType() == MVT::i32
)
2617 LHS
= addExtOrTrunc(LHS
, ExtOrTruncConversion::Ext
);
2618 if (!IsBitwiseNegation
&& RHS
.getValueType() == MVT::i32
)
2619 RHS
= addExtOrTrunc(RHS
, ExtOrTruncConversion::Ext
);
2622 switch (LogicOp
.getOpcode()) {
2623 default: llvm_unreachable("Unknown logic operation.");
2624 case ISD::AND
: NewOpc
= PPC::AND8
; break;
2625 case ISD::OR
: NewOpc
= PPC::OR8
; break;
2626 case ISD::XOR
: NewOpc
= PPC::XOR8
; break;
2629 if (IsBitwiseNegation
) {
2630 RHS
= getI64Imm(1, dl
);
2631 NewOpc
= PPC::XORI8
;
2634 return SDValue(CurDAG
->getMachineNode(NewOpc
, dl
, MVT::i64
, LHS
, RHS
), 0);
2638 /// Try performing logical operations on results of comparisons in GPRs.
2639 /// It is typically preferred from a performance perspective over performing
2640 /// the operations on individual bits in the CR. We only do this on 64-bit
2641 /// targets for now as the code is specialized for 64-bit (it uses 64-bit
2642 /// instructions and assumes 64-bit registers).
2643 bool PPCDAGToDAGISel::tryLogicOpOfCompares(SDNode
*N
) {
2644 if (TM
.getOptLevel() == CodeGenOpt::None
|| !TM
.isPPC64())
2646 if (N
->getValueType(0) != MVT::i1
)
2648 assert(isLogicOp(N
->getOpcode()) &&
2649 "Expected a logic operation on setcc results.");
2650 SDValue LoweredLogical
= computeLogicOpInGPR(SDValue(N
, 0));
2651 if (!LoweredLogical
)
2655 bool IsBitwiseNegate
= LoweredLogical
.getMachineOpcode() == PPC::XORI8
;
2656 unsigned SubRegToExtract
= IsBitwiseNegate
? PPC::sub_eq
: PPC::sub_gt
;
2657 SDValue CR0Reg
= CurDAG
->getRegister(PPC::CR0
, MVT::i32
);
2658 SDValue LHS
= LoweredLogical
.getOperand(0);
2659 SDValue RHS
= LoweredLogical
.getOperand(1);
2661 SDValue OpToConvToRecForm
;
2663 // Look through any 32-bit to 64-bit implicit extend nodes to find the opcode
2664 // that is input to the XORI.
2665 if (IsBitwiseNegate
&&
2666 LoweredLogical
.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG
)
2667 OpToConvToRecForm
= LoweredLogical
.getOperand(0).getOperand(1);
2668 else if (IsBitwiseNegate
)
2669 // If the input to the XORI isn't an extension, that's what we're after.
2670 OpToConvToRecForm
= LoweredLogical
.getOperand(0);
2672 // If this is not an XORI, it is a reg-reg logical op and we can convert it
2674 OpToConvToRecForm
= LoweredLogical
;
2676 // Get the record-form version of the node we're looking to use to get the
2678 uint16_t NonRecOpc
= OpToConvToRecForm
.getMachineOpcode();
2679 int NewOpc
= PPCInstrInfo::getRecordFormOpcode(NonRecOpc
);
2681 // Convert the right node to record-form. This is either the logical we're
2682 // looking at or it is the input node to the negation (if we're looking at
2683 // a bitwise negation).
2684 if (NewOpc
!= -1 && IsBitwiseNegate
) {
2685 // The input to the XORI has a record-form. Use it.
2686 assert(LoweredLogical
.getConstantOperandVal(1) == 1 &&
2687 "Expected a PPC::XORI8 only for bitwise negation.");
2688 // Emit the record-form instruction.
2689 std::vector
<SDValue
> Ops
;
2690 for (int i
= 0, e
= OpToConvToRecForm
.getNumOperands(); i
< e
; i
++)
2691 Ops
.push_back(OpToConvToRecForm
.getOperand(i
));
2694 SDValue(CurDAG
->getMachineNode(NewOpc
, dl
,
2695 OpToConvToRecForm
.getValueType(),
2696 MVT::Glue
, Ops
), 0);
2698 assert((NewOpc
!= -1 || !IsBitwiseNegate
) &&
2699 "No record form available for AND8/OR8/XOR8?");
2701 SDValue(CurDAG
->getMachineNode(NewOpc
== -1 ? PPC::ANDIo8
: NewOpc
, dl
,
2702 MVT::i64
, MVT::Glue
, LHS
, RHS
), 0);
2705 // Select this node to a single bit from CR0 set by the record-form node
2706 // just created. For bitwise negation, use the EQ bit which is the equivalent
2707 // of negating the result (i.e. it is a bit set when the result of the
2708 // operation is zero).
2710 CurDAG
->getTargetConstant(SubRegToExtract
, dl
, MVT::i32
);
2712 SDValue(CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
,
2713 MVT::i1
, CR0Reg
, SRIdxVal
,
2714 WideOp
.getValue(1)), 0);
2715 ReplaceNode(N
, CRBit
.getNode());
2719 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2720 /// Useful when emitting comparison code for 32-bit values without using
2721 /// the compare instruction (which only considers the lower 32-bits).
2722 SDValue
PPCDAGToDAGISel::signExtendInputIfNeeded(SDValue Input
) {
2723 assert(Input
.getValueType() == MVT::i32
&&
2724 "Can only sign-extend 32-bit values here.");
2725 unsigned Opc
= Input
.getOpcode();
2727 // The value was sign extended and then truncated to 32-bits. No need to
2728 // sign extend it again.
2729 if (Opc
== ISD::TRUNCATE
&&
2730 (Input
.getOperand(0).getOpcode() == ISD::AssertSext
||
2731 Input
.getOperand(0).getOpcode() == ISD::SIGN_EXTEND
))
2734 LoadSDNode
*InputLoad
= dyn_cast
<LoadSDNode
>(Input
);
2735 // The input is a sign-extending load. No reason to sign-extend.
2736 if (InputLoad
&& InputLoad
->getExtensionType() == ISD::SEXTLOAD
)
2739 ConstantSDNode
*InputConst
= dyn_cast
<ConstantSDNode
>(Input
);
2740 // We don't sign-extend constants and already sign-extended values.
2741 if (InputConst
|| Opc
== ISD::AssertSext
|| Opc
== ISD::SIGN_EXTEND_INREG
||
2742 Opc
== ISD::SIGN_EXTEND
)
2746 SignExtensionsAdded
++;
2747 return SDValue(CurDAG
->getMachineNode(PPC::EXTSW_32
, dl
, MVT::i32
, Input
), 0);
2750 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
2751 /// Useful when emitting comparison code for 32-bit values without using
2752 /// the compare instruction (which only considers the lower 32-bits).
2753 SDValue
PPCDAGToDAGISel::zeroExtendInputIfNeeded(SDValue Input
) {
2754 assert(Input
.getValueType() == MVT::i32
&&
2755 "Can only zero-extend 32-bit values here.");
2756 LoadSDNode
*InputLoad
= dyn_cast
<LoadSDNode
>(Input
);
2757 unsigned Opc
= Input
.getOpcode();
2759 // No need to zero-extend loaded values (unless they're loaded with
2760 // a sign-extending load).
2761 if (InputLoad
&& InputLoad
->getExtensionType() != ISD::SEXTLOAD
)
2764 ConstantSDNode
*InputConst
= dyn_cast
<ConstantSDNode
>(Input
);
2765 bool InputZExtConst
= InputConst
&& InputConst
->getSExtValue() >= 0;
2766 // An ISD::TRUNCATE will be lowered to an EXTRACT_SUBREG so we have
2767 // to conservatively actually clear the high bits. We also don't need to
2768 // zero-extend constants or values that are already zero-extended.
2769 if (InputZExtConst
|| Opc
== ISD::AssertZext
|| Opc
== ISD::ZERO_EXTEND
)
2773 ZeroExtensionsAdded
++;
2774 return SDValue(CurDAG
->getMachineNode(PPC::RLDICL_32
, dl
, MVT::i32
, Input
,
2775 getI64Imm(0, dl
), getI64Imm(32, dl
)),
2779 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
2780 // course not actual zero/sign extensions that will generate machine code,
2781 // they're just a way to reinterpret a 32 bit value in a register as a
2782 // 64 bit value and vice-versa.
2783 SDValue
PPCDAGToDAGISel::addExtOrTrunc(SDValue NatWidthRes
,
2784 ExtOrTruncConversion Conv
) {
2785 SDLoc
dl(NatWidthRes
);
2787 // For reinterpreting 32-bit values as 64 bit values, we generate
2788 // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
2789 if (Conv
== ExtOrTruncConversion::Ext
) {
2790 SDValue
ImDef(CurDAG
->getMachineNode(PPC::IMPLICIT_DEF
, dl
, MVT::i64
), 0);
2792 CurDAG
->getTargetConstant(PPC::sub_32
, dl
, MVT::i32
);
2793 return SDValue(CurDAG
->getMachineNode(PPC::INSERT_SUBREG
, dl
, MVT::i64
,
2794 ImDef
, NatWidthRes
, SubRegIdx
), 0);
2797 assert(Conv
== ExtOrTruncConversion::Trunc
&&
2798 "Unknown convertion between 32 and 64 bit values.");
2799 // For reinterpreting 64-bit values as 32-bit values, we just need to
2800 // EXTRACT_SUBREG (i.e. extract the low word).
2802 CurDAG
->getTargetConstant(PPC::sub_32
, dl
, MVT::i32
);
2803 return SDValue(CurDAG
->getMachineNode(PPC::EXTRACT_SUBREG
, dl
, MVT::i32
,
2804 NatWidthRes
, SubRegIdx
), 0);
2807 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
2808 // Handle both zero-extensions and sign-extensions.
2809 SDValue
PPCDAGToDAGISel::getCompoundZeroComparisonInGPR(SDValue LHS
, SDLoc dl
,
2810 ZeroCompare CmpTy
) {
2811 EVT InVT
= LHS
.getValueType();
2812 bool Is32Bit
= InVT
== MVT::i32
;
2815 // Produce the value that needs to be either zero or sign extended.
2817 case ZeroCompare::GEZExt
:
2818 case ZeroCompare::GESExt
:
2819 ToExtend
= SDValue(CurDAG
->getMachineNode(Is32Bit
? PPC::NOR
: PPC::NOR8
,
2820 dl
, InVT
, LHS
, LHS
), 0);
2821 case ZeroCompare::LEZExt
:
2822 case ZeroCompare::LESExt
: {
2825 SDValue(CurDAG
->getMachineNode(PPC::NEG
, dl
, MVT::i32
, LHS
), 0);
2827 SDValue(CurDAG
->getMachineNode(PPC::RLDICL_32
, dl
, MVT::i32
,
2828 Neg
, getI64Imm(1, dl
),
2829 getI64Imm(63, dl
)), 0);
2832 SDValue(CurDAG
->getMachineNode(PPC::ADDI8
, dl
, MVT::i64
, LHS
,
2833 getI64Imm(~0ULL, dl
)), 0);
2834 ToExtend
= SDValue(CurDAG
->getMachineNode(PPC::OR8
, dl
, MVT::i64
,
2840 // For 64-bit sequences, the extensions are the same for the GE/LE cases.
2841 if (!Is32Bit
&& (CmpTy
== ZeroCompare::GEZExt
|| ZeroCompare::LEZExt
))
2842 return SDValue(CurDAG
->getMachineNode(PPC::RLDICL
, dl
, MVT::i64
,
2843 ToExtend
, getI64Imm(1, dl
),
2844 getI64Imm(63, dl
)), 0);
2845 if (!Is32Bit
&& (CmpTy
== ZeroCompare::GESExt
|| ZeroCompare::LESExt
))
2846 return SDValue(CurDAG
->getMachineNode(PPC::SRADI
, dl
, MVT::i64
, ToExtend
,
2847 getI64Imm(63, dl
)), 0);
2849 assert(Is32Bit
&& "Should have handled the 32-bit sequences above.");
2850 // For 32-bit sequences, the extensions differ between GE/LE cases.
2852 case ZeroCompare::GEZExt
: {
2853 SDValue ShiftOps
[] =
2854 { ToExtend
, getI32Imm(1, dl
), getI32Imm(31, dl
), getI32Imm(31, dl
) };
2855 return SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
,
2858 case ZeroCompare::GESExt
:
2859 return SDValue(CurDAG
->getMachineNode(PPC::SRAWI
, dl
, MVT::i32
, ToExtend
,
2860 getI32Imm(31, dl
)), 0);
2861 case ZeroCompare::LEZExt
:
2862 return SDValue(CurDAG
->getMachineNode(PPC::XORI
, dl
, MVT::i32
, ToExtend
,
2863 getI32Imm(1, dl
)), 0);
2864 case ZeroCompare::LESExt
:
2865 return SDValue(CurDAG
->getMachineNode(PPC::ADDI
, dl
, MVT::i32
, ToExtend
,
2866 getI32Imm(-1, dl
)), 0);
2869 // Some compilers warn if there's a default label in the switch above, others
2870 // warn if there isn't a return statement here or in a default label. Appease
2871 // both (even though this is unreachable).
2875 /// Produces a zero-extended result of comparing two 32-bit values according to
2876 /// the passed condition code.
2877 SDValue
PPCDAGToDAGISel::get32BitZExtCompare(SDValue LHS
, SDValue RHS
,
2879 int64_t RHSValue
, SDLoc dl
) {
2880 bool IsRHSZero
= RHSValue
== 0;
2882 default: return SDValue();
2884 // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
2885 // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
2886 SDValue Xor
= IsRHSZero
? LHS
:
2887 SDValue(CurDAG
->getMachineNode(PPC::XOR
, dl
, MVT::i32
, LHS
, RHS
), 0);
2889 SDValue(CurDAG
->getMachineNode(PPC::CNTLZW
, dl
, MVT::i32
, Xor
), 0);
2890 SDValue ShiftOps
[] = { Clz
, getI32Imm(27, dl
), getI32Imm(5, dl
),
2891 getI32Imm(31, dl
) };
2892 return SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
,
2896 // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
2897 // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
2898 SDValue Xor
= IsRHSZero
? LHS
:
2899 SDValue(CurDAG
->getMachineNode(PPC::XOR
, dl
, MVT::i32
, LHS
, RHS
), 0);
2901 SDValue(CurDAG
->getMachineNode(PPC::CNTLZW
, dl
, MVT::i32
, Xor
), 0);
2902 SDValue ShiftOps
[] = { Clz
, getI32Imm(27, dl
), getI32Imm(5, dl
),
2903 getI32Imm(31, dl
) };
2905 SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, ShiftOps
), 0);
2906 return SDValue(CurDAG
->getMachineNode(PPC::XORI
, dl
, MVT::i32
, Shift
,
2907 getI32Imm(1, dl
)), 0);
2910 // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
2911 // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
2913 return getCompoundZeroComparisonInGPR(LHS
, dl
, ZeroCompare::GEZExt
);
2915 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2916 // by swapping inputs and falling through.
2917 std::swap(LHS
, RHS
);
2918 ConstantSDNode
*RHSConst
= dyn_cast
<ConstantSDNode
>(RHS
);
2919 IsRHSZero
= RHSConst
&& RHSConst
->isNullValue();
2923 // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
2924 // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
2926 return getCompoundZeroComparisonInGPR(LHS
, dl
, ZeroCompare::LEZExt
);
2928 SDValue(CurDAG
->getMachineNode(PPC::SUBF
, dl
, MVT::i32
, LHS
, RHS
), 0);
2930 SDValue(CurDAG
->getMachineNode(PPC::RLDICL_32
, dl
, MVT::i32
, Sub
,
2931 getI64Imm(1, dl
), getI64Imm(63, dl
)), 0);
2932 return SDValue(CurDAG
->getMachineNode(PPC::XORI
, dl
,
2933 MVT::i32
, Shift
, getI32Imm(1, dl
)), 0);
2938 /// Produces a sign-extended result of comparing two 32-bit values according to
2939 /// the passed condition code.
2940 SDValue
PPCDAGToDAGISel::get32BitSExtCompare(SDValue LHS
, SDValue RHS
,
2942 int64_t RHSValue
, SDLoc dl
) {
2943 bool IsRHSZero
= RHSValue
== 0;
2945 default: return SDValue();
2947 // (sext (setcc %a, %b, seteq)) ->
2948 // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
2949 // (sext (setcc %a, 0, seteq)) ->
2950 // (ashr (shl (ctlz %a), 58), 63)
2951 SDValue CountInput
= IsRHSZero
? LHS
:
2952 SDValue(CurDAG
->getMachineNode(PPC::XOR
, dl
, MVT::i32
, LHS
, RHS
), 0);
2954 SDValue(CurDAG
->getMachineNode(PPC::CNTLZW
, dl
, MVT::i32
, CountInput
), 0);
2955 SDValue SHLOps
[] = { Cntlzw
, getI32Imm(58, dl
), getI32Imm(0, dl
) };
2957 SDValue(CurDAG
->getMachineNode(PPC::RLDICR_32
, dl
, MVT::i32
, SHLOps
), 0);
2958 return SDValue(CurDAG
->getMachineNode(PPC::SRADI_32
, dl
, MVT::i32
, Sldi
,
2959 getI32Imm(63, dl
)), 0);
2962 // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
2963 // flip the bit, finally take 2's complement.
2964 // (sext (setcc %a, %b, setne)) ->
2965 // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
2966 // Same as above, but the first xor is not needed.
2967 // (sext (setcc %a, 0, setne)) ->
2968 // (neg (xor (lshr (ctlz %a), 5), 1))
2969 SDValue Xor
= IsRHSZero
? LHS
:
2970 SDValue(CurDAG
->getMachineNode(PPC::XOR
, dl
, MVT::i32
, LHS
, RHS
), 0);
2972 SDValue(CurDAG
->getMachineNode(PPC::CNTLZW
, dl
, MVT::i32
, Xor
), 0);
2973 SDValue ShiftOps
[] =
2974 { Clz
, getI32Imm(27, dl
), getI32Imm(5, dl
), getI32Imm(31, dl
) };
2976 SDValue(CurDAG
->getMachineNode(PPC::RLWINM
, dl
, MVT::i32
, ShiftOps
), 0);
2978 SDValue(CurDAG
->getMachineNode(PPC::XORI
, dl
, MVT::i32
, Shift
,
2979 getI32Imm(1, dl
)), 0);
2980 return SDValue(CurDAG
->getMachineNode(PPC::NEG
, dl
, MVT::i32
, Xori
), 0);
2983 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
2984 // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
2986 return getCompoundZeroComparisonInGPR(LHS
, dl
, ZeroCompare::GESExt
);
2988 // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
2989 // by swapping inputs and falling through.
2990 std::swap(LHS
, RHS
);
2991 ConstantSDNode
*RHSConst
= dyn_cast
<ConstantSDNode
>(RHS
);
2992 IsRHSZero
= RHSConst
&& RHSConst
->isNullValue();
2996 // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
2997 // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
2999 return getCompoundZeroComparisonInGPR(LHS
, dl
, ZeroCompare::LESExt
);
3001 SDValue(CurDAG
->getMachineNode(PPC::SUBF
, dl
, MVT::i32
, MVT::Glue
,
3004 SDValue(CurDAG
->getMachineNode(PPC::RLDICL_32
, dl
, MVT::i32
,
3005 SUBFNode
, getI64Imm(1, dl
),
3006 getI64Imm(63, dl
)), 0);
3007 return SDValue(CurDAG
->getMachineNode(PPC::ADDI
, dl
, MVT::i32
, Srdi
,
3008 getI32Imm(-1, dl
)), 0);
3013 /// Produces a zero-extended result of comparing two 64-bit values according to
3014 /// the passed condition code.
3015 SDValue
PPCDAGToDAGISel::get64BitZExtCompare(SDValue LHS
, SDValue RHS
,
3017 int64_t RHSValue
, SDLoc dl
) {
3018 bool IsRHSZero
= RHSValue
== 0;
3020 default: return SDValue();
3022 // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3023 // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
3024 SDValue Xor
= IsRHSZero
? LHS
:
3025 SDValue(CurDAG
->getMachineNode(PPC::XOR8
, dl
, MVT::i64
, LHS
, RHS
), 0);
3027 SDValue(CurDAG
->getMachineNode(PPC::CNTLZD
, dl
, MVT::i64
, Xor
), 0);
3028 return SDValue(CurDAG
->getMachineNode(PPC::RLDICL
, dl
, MVT::i64
, Clz
,
3029 getI64Imm(58, dl
), getI64Imm(63, dl
)),
3033 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3034 // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3035 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3036 // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3037 SDValue Xor
= IsRHSZero
? LHS
:
3038 SDValue(CurDAG
->getMachineNode(PPC::XOR8
, dl
, MVT::i64
, LHS
, RHS
), 0);
3040 SDValue(CurDAG
->getMachineNode(PPC::ADDIC8
, dl
, MVT::i64
, MVT::Glue
,
3041 Xor
, getI32Imm(~0U, dl
)), 0);
3042 return SDValue(CurDAG
->getMachineNode(PPC::SUBFE8
, dl
, MVT::i64
, AC
,
3043 Xor
, AC
.getValue(1)), 0);
3048 /// Produces a sign-extended result of comparing two 64-bit values according to
3049 /// the passed condition code.
3050 SDValue
PPCDAGToDAGISel::get64BitSExtCompare(SDValue LHS
, SDValue RHS
,
3052 int64_t RHSValue
, SDLoc dl
) {
3053 bool IsRHSZero
= RHSValue
== 0;
3055 default: return SDValue();
3057 // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3058 // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3059 // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3060 // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3061 SDValue AddInput
= IsRHSZero
? LHS
:
3062 SDValue(CurDAG
->getMachineNode(PPC::XOR8
, dl
, MVT::i64
, LHS
, RHS
), 0);
3064 SDValue(CurDAG
->getMachineNode(PPC::ADDIC8
, dl
, MVT::i64
, MVT::Glue
,
3065 AddInput
, getI32Imm(~0U, dl
)), 0);
3066 return SDValue(CurDAG
->getMachineNode(PPC::SUBFE8
, dl
, MVT::i64
, Addic
,
3067 Addic
, Addic
.getValue(1)), 0);
3070 // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3071 // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3072 // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3073 // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3074 SDValue Xor
= IsRHSZero
? LHS
:
3075 SDValue(CurDAG
->getMachineNode(PPC::XOR8
, dl
, MVT::i64
, LHS
, RHS
), 0);
3077 SDValue(CurDAG
->getMachineNode(PPC::SUBFIC8
, dl
, MVT::i64
, MVT::Glue
,
3078 Xor
, getI32Imm(0, dl
)), 0);
3079 return SDValue(CurDAG
->getMachineNode(PPC::SUBFE8
, dl
, MVT::i64
, SC
,
3080 SC
, SC
.getValue(1)), 0);
3085 /// Does this SDValue have any uses for which keeping the value in a GPR is
3086 /// appropriate. This is meant to be used on values that have type i1 since
3087 /// it is somewhat meaningless to ask if values of other types can be kept in
3089 static bool allUsesExtend(SDValue Compare
, SelectionDAG
*CurDAG
) {
3090 assert(Compare
.getOpcode() == ISD::SETCC
&&
3091 "An ISD::SETCC node required here.");
3093 // For values that have a single use, the caller should obviously already have
3094 // checked if that use is an extending use. We check the other uses here.
3095 if (Compare
.hasOneUse())
3097 // We want the value in a GPR if it is being extended, used for a select, or
3098 // used in logical operations.
3099 for (auto CompareUse
: Compare
.getNode()->uses())
3100 if (CompareUse
->getOpcode() != ISD::SIGN_EXTEND
&&
3101 CompareUse
->getOpcode() != ISD::ZERO_EXTEND
&&
3102 CompareUse
->getOpcode() != ISD::SELECT
&&
3103 !isLogicOp(CompareUse
->getOpcode())) {
3104 OmittedForNonExtendUses
++;
3110 /// Returns an equivalent of a SETCC node but with the result the same width as
3111 /// the inputs. This can nalso be used for SELECT_CC if either the true or false
3112 /// values is a power of two while the other is zero.
3113 SDValue
PPCDAGToDAGISel::getSETCCInGPR(SDValue Compare
,
3114 SetccInGPROpts ConvOpts
) {
3115 assert((Compare
.getOpcode() == ISD::SETCC
||
3116 Compare
.getOpcode() == ISD::SELECT_CC
) &&
3117 "An ISD::SETCC node required here.");
3119 // Don't convert this comparison to a GPR sequence because there are uses
3120 // of the i1 result (i.e. uses that require the result in the CR).
3121 if ((Compare
.getOpcode() == ISD::SETCC
) && !allUsesExtend(Compare
, CurDAG
))
3124 SDValue LHS
= Compare
.getOperand(0);
3125 SDValue RHS
= Compare
.getOperand(1);
3127 // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3128 int CCOpNum
= Compare
.getOpcode() == ISD::SELECT_CC
? 4 : 2;
3130 cast
<CondCodeSDNode
>(Compare
.getOperand(CCOpNum
))->get();
3131 EVT InputVT
= LHS
.getValueType();
3132 if (InputVT
!= MVT::i32
&& InputVT
!= MVT::i64
)
3135 if (ConvOpts
== SetccInGPROpts::ZExtInvert
||
3136 ConvOpts
== SetccInGPROpts::SExtInvert
)
3137 CC
= ISD::getSetCCInverse(CC
, true);
3139 bool Inputs32Bit
= InputVT
== MVT::i32
;
3140 if (ISD::isSignedIntSetCC(CC
) && Inputs32Bit
) {
3141 LHS
= signExtendInputIfNeeded(LHS
);
3142 RHS
= signExtendInputIfNeeded(RHS
);
3143 } else if (ISD::isUnsignedIntSetCC(CC
) && Inputs32Bit
) {
3144 LHS
= zeroExtendInputIfNeeded(LHS
);
3145 RHS
= zeroExtendInputIfNeeded(RHS
);
3149 ConstantSDNode
*RHSConst
= dyn_cast
<ConstantSDNode
>(RHS
);
3150 int64_t RHSValue
= RHSConst
? RHSConst
->getSExtValue() : INT64_MAX
;
3151 bool IsSext
= ConvOpts
== SetccInGPROpts::SExtOrig
||
3152 ConvOpts
== SetccInGPROpts::SExtInvert
;
3154 if (IsSext
&& Inputs32Bit
)
3155 return get32BitSExtCompare(LHS
, RHS
, CC
, RHSValue
, dl
);
3156 else if (Inputs32Bit
)
3157 return get32BitZExtCompare(LHS
, RHS
, CC
, RHSValue
, dl
);
3159 return get64BitSExtCompare(LHS
, RHS
, CC
, RHSValue
, dl
);
3160 return get64BitZExtCompare(LHS
, RHS
, CC
, RHSValue
, dl
);
3163 /// Does this node represent a load/store node whose address can be represented
3164 /// with a register plus an immediate that's a multiple of \p Val:
3165 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode
*N
, unsigned Val
) const {
3166 LoadSDNode
*LDN
= dyn_cast
<LoadSDNode
>(N
);
3167 StoreSDNode
*STN
= dyn_cast
<StoreSDNode
>(N
);
3170 AddrOp
= LDN
->getOperand(1);
3172 AddrOp
= STN
->getOperand(2);
3175 if (AddrOp
.getOpcode() == ISD::ADD
)
3176 return isIntS16Immediate(AddrOp
.getOperand(1), Imm
) && !(Imm
% Val
);
3178 // If the address comes from the outside, the offset will be zero.
3179 return AddrOp
.getOpcode() == ISD::CopyFromReg
;
3182 void PPCDAGToDAGISel::transferMemOperands(SDNode
*N
, SDNode
*Result
) {
3183 // Transfer memoperands.
3184 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
3185 MemOp
[0] = cast
<MemSDNode
>(N
)->getMemOperand();
3186 cast
<MachineSDNode
>(Result
)->setMemRefs(MemOp
, MemOp
+ 1);
3189 // Select - Convert the specified operand from a target-independent to a
3190 // target-specific node if it hasn't already been changed.
3191 void PPCDAGToDAGISel::Select(SDNode
*N
) {
3193 if (N
->isMachineOpcode()) {
3195 return; // Already selected.
3198 // In case any misguided DAG-level optimizations form an ADD with a
3199 // TargetConstant operand, crash here instead of miscompiling (by selecting
3200 // an r+r add instead of some kind of r+i add).
3201 if (N
->getOpcode() == ISD::ADD
&&
3202 N
->getOperand(1).getOpcode() == ISD::TargetConstant
)
3203 llvm_unreachable("Invalid ADD with TargetConstant operand");
3205 // Try matching complex bit permutations before doing anything else.
3206 if (tryBitPermutation(N
))
3209 switch (N
->getOpcode()) {
3213 if (N
->getValueType(0) == MVT::i64
) {
3214 ReplaceNode(N
, selectI64Imm(CurDAG
, N
));
3219 case ISD::ZERO_EXTEND
:
3220 case ISD::SIGN_EXTEND
:
3230 case PPCISD::GlobalBaseReg
:
3231 ReplaceNode(N
, getGlobalBaseReg());
3234 case ISD::FrameIndex
:
3235 selectFrameIndex(N
, N
);
3238 case PPCISD::MFOCRF
: {
3239 SDValue InFlag
= N
->getOperand(1);
3240 ReplaceNode(N
, CurDAG
->getMachineNode(PPC::MFOCRF
, dl
, MVT::i32
,
3241 N
->getOperand(0), InFlag
));
3245 case PPCISD::READ_TIME_BASE
:
3246 ReplaceNode(N
, CurDAG
->getMachineNode(PPC::ReadTB
, dl
, MVT::i32
, MVT::i32
,
3247 MVT::Other
, N
->getOperand(0)));
3250 case PPCISD::SRA_ADDZE
: {
3251 SDValue N0
= N
->getOperand(0);
3253 CurDAG
->getTargetConstant(*cast
<ConstantSDNode
>(N
->getOperand(1))->
3254 getConstantIntValue(), dl
,
3255 N
->getValueType(0));
3256 if (N
->getValueType(0) == MVT::i64
) {
3258 CurDAG
->getMachineNode(PPC::SRADI
, dl
, MVT::i64
, MVT::Glue
,
3260 CurDAG
->SelectNodeTo(N
, PPC::ADDZE8
, MVT::i64
, SDValue(Op
, 0),
3264 assert(N
->getValueType(0) == MVT::i32
&&
3265 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
3267 CurDAG
->getMachineNode(PPC::SRAWI
, dl
, MVT::i32
, MVT::Glue
,
3269 CurDAG
->SelectNodeTo(N
, PPC::ADDZE
, MVT::i32
, SDValue(Op
, 0),
3276 // Handle preincrement loads.
3277 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
3278 EVT LoadedVT
= LD
->getMemoryVT();
3280 // Normal loads are handled by code generated from the .td file.
3281 if (LD
->getAddressingMode() != ISD::PRE_INC
)
3284 SDValue Offset
= LD
->getOffset();
3285 if (Offset
.getOpcode() == ISD::TargetConstant
||
3286 Offset
.getOpcode() == ISD::TargetGlobalAddress
) {
3289 bool isSExt
= LD
->getExtensionType() == ISD::SEXTLOAD
;
3290 if (LD
->getValueType(0) != MVT::i64
) {
3291 // Handle PPC32 integer and normal FP loads.
3292 assert((!isSExt
|| LoadedVT
== MVT::i16
) && "Invalid sext update load");
3293 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
3294 default: llvm_unreachable("Invalid PPC load type!");
3295 case MVT::f64
: Opcode
= PPC::LFDU
; break;
3296 case MVT::f32
: Opcode
= PPC::LFSU
; break;
3297 case MVT::i32
: Opcode
= PPC::LWZU
; break;
3298 case MVT::i16
: Opcode
= isSExt
? PPC::LHAU
: PPC::LHZU
; break;
3300 case MVT::i8
: Opcode
= PPC::LBZU
; break;
3303 assert(LD
->getValueType(0) == MVT::i64
&& "Unknown load result type!");
3304 assert((!isSExt
|| LoadedVT
== MVT::i16
) && "Invalid sext update load");
3305 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
3306 default: llvm_unreachable("Invalid PPC load type!");
3307 case MVT::i64
: Opcode
= PPC::LDU
; break;
3308 case MVT::i32
: Opcode
= PPC::LWZU8
; break;
3309 case MVT::i16
: Opcode
= isSExt
? PPC::LHAU8
: PPC::LHZU8
; break;
3311 case MVT::i8
: Opcode
= PPC::LBZU8
; break;
3315 SDValue Chain
= LD
->getChain();
3316 SDValue Base
= LD
->getBasePtr();
3317 SDValue Ops
[] = { Offset
, Base
, Chain
};
3318 SDNode
*MN
= CurDAG
->getMachineNode(
3319 Opcode
, dl
, LD
->getValueType(0),
3320 PPCLowering
->getPointerTy(CurDAG
->getDataLayout()), MVT::Other
, Ops
);
3321 transferMemOperands(N
, MN
);
3326 bool isSExt
= LD
->getExtensionType() == ISD::SEXTLOAD
;
3327 if (LD
->getValueType(0) != MVT::i64
) {
3328 // Handle PPC32 integer and normal FP loads.
3329 assert((!isSExt
|| LoadedVT
== MVT::i16
) && "Invalid sext update load");
3330 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
3331 default: llvm_unreachable("Invalid PPC load type!");
3332 case MVT::v4f64
: Opcode
= PPC::QVLFDUX
; break; // QPX
3333 case MVT::v4f32
: Opcode
= PPC::QVLFSUX
; break; // QPX
3334 case MVT::f64
: Opcode
= PPC::LFDUX
; break;
3335 case MVT::f32
: Opcode
= PPC::LFSUX
; break;
3336 case MVT::i32
: Opcode
= PPC::LWZUX
; break;
3337 case MVT::i16
: Opcode
= isSExt
? PPC::LHAUX
: PPC::LHZUX
; break;
3339 case MVT::i8
: Opcode
= PPC::LBZUX
; break;
3342 assert(LD
->getValueType(0) == MVT::i64
&& "Unknown load result type!");
3343 assert((!isSExt
|| LoadedVT
== MVT::i16
|| LoadedVT
== MVT::i32
) &&
3344 "Invalid sext update load");
3345 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
3346 default: llvm_unreachable("Invalid PPC load type!");
3347 case MVT::i64
: Opcode
= PPC::LDUX
; break;
3348 case MVT::i32
: Opcode
= isSExt
? PPC::LWAUX
: PPC::LWZUX8
; break;
3349 case MVT::i16
: Opcode
= isSExt
? PPC::LHAUX8
: PPC::LHZUX8
; break;
3351 case MVT::i8
: Opcode
= PPC::LBZUX8
; break;
3355 SDValue Chain
= LD
->getChain();
3356 SDValue Base
= LD
->getBasePtr();
3357 SDValue Ops
[] = { Base
, Offset
, Chain
};
3358 SDNode
*MN
= CurDAG
->getMachineNode(
3359 Opcode
, dl
, LD
->getValueType(0),
3360 PPCLowering
->getPointerTy(CurDAG
->getDataLayout()), MVT::Other
, Ops
);
3361 transferMemOperands(N
, MN
);
3368 if (tryLogicOpOfCompares(N
))
3371 unsigned Imm
, Imm2
, SH
, MB
, ME
;
3374 // If this is an and of a value rotated between 0 and 31 bits and then and'd
3375 // with a mask, emit rlwinm
3376 if (isInt32Immediate(N
->getOperand(1), Imm
) &&
3377 isRotateAndMask(N
->getOperand(0).getNode(), Imm
, false, SH
, MB
, ME
)) {
3378 SDValue Val
= N
->getOperand(0).getOperand(0);
3379 SDValue Ops
[] = { Val
, getI32Imm(SH
, dl
), getI32Imm(MB
, dl
),
3380 getI32Imm(ME
, dl
) };
3381 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
3384 // If this is just a masked value where the input is not handled above, and
3385 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
3386 if (isInt32Immediate(N
->getOperand(1), Imm
) &&
3387 isRunOfOnes(Imm
, MB
, ME
) &&
3388 N
->getOperand(0).getOpcode() != ISD::ROTL
) {
3389 SDValue Val
= N
->getOperand(0);
3390 SDValue Ops
[] = { Val
, getI32Imm(0, dl
), getI32Imm(MB
, dl
),
3391 getI32Imm(ME
, dl
) };
3392 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
3395 // If this is a 64-bit zero-extension mask, emit rldicl.
3396 if (isInt64Immediate(N
->getOperand(1).getNode(), Imm64
) &&
3398 SDValue Val
= N
->getOperand(0);
3399 MB
= 64 - countTrailingOnes(Imm64
);
3402 if (Val
.getOpcode() == ISD::ANY_EXTEND
) {
3403 auto Op0
= Val
.getOperand(0);
3404 if ( Op0
.getOpcode() == ISD::SRL
&&
3405 isInt32Immediate(Op0
.getOperand(1).getNode(), Imm
) && Imm
<= MB
) {
3407 auto ResultType
= Val
.getNode()->getValueType(0);
3408 auto ImDef
= CurDAG
->getMachineNode(PPC::IMPLICIT_DEF
, dl
,
3410 SDValue
IDVal (ImDef
, 0);
3412 Val
= SDValue(CurDAG
->getMachineNode(PPC::INSERT_SUBREG
, dl
,
3413 ResultType
, IDVal
, Op0
.getOperand(0),
3414 getI32Imm(1, dl
)), 0);
3419 // If the operand is a logical right shift, we can fold it into this
3420 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
3421 // for n <= mb. The right shift is really a left rotate followed by a
3422 // mask, and this mask is a more-restrictive sub-mask of the mask implied
3424 if (Val
.getOpcode() == ISD::SRL
&&
3425 isInt32Immediate(Val
.getOperand(1).getNode(), Imm
) && Imm
<= MB
) {
3426 assert(Imm
< 64 && "Illegal shift amount");
3427 Val
= Val
.getOperand(0);
3431 SDValue Ops
[] = { Val
, getI32Imm(SH
, dl
), getI32Imm(MB
, dl
) };
3432 CurDAG
->SelectNodeTo(N
, PPC::RLDICL
, MVT::i64
, Ops
);
3435 // If this is a negated 64-bit zero-extension mask,
3436 // i.e. the immediate is a sequence of ones from most significant side
3437 // and all zero for reminder, we should use rldicr.
3438 if (isInt64Immediate(N
->getOperand(1).getNode(), Imm64
) &&
3439 isMask_64(~Imm64
)) {
3440 SDValue Val
= N
->getOperand(0);
3441 MB
= 63 - countTrailingOnes(~Imm64
);
3443 SDValue Ops
[] = { Val
, getI32Imm(SH
, dl
), getI32Imm(MB
, dl
) };
3444 CurDAG
->SelectNodeTo(N
, PPC::RLDICR
, MVT::i64
, Ops
);
3448 // AND X, 0 -> 0, not "rlwinm 32".
3449 if (isInt32Immediate(N
->getOperand(1), Imm
) && (Imm
== 0)) {
3450 ReplaceUses(SDValue(N
, 0), N
->getOperand(1));
3453 // ISD::OR doesn't get all the bitfield insertion fun.
3454 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
3456 if (isInt32Immediate(N
->getOperand(1), Imm
) &&
3457 N
->getOperand(0).getOpcode() == ISD::OR
&&
3458 isInt32Immediate(N
->getOperand(0).getOperand(1), Imm2
)) {
3459 // The idea here is to check whether this is equivalent to:
3460 // (c1 & m) | (x & ~m)
3461 // where m is a run-of-ones mask. The logic here is that, for each bit in
3463 // - if both are 1, then the output will be 1.
3464 // - if both are 0, then the output will be 0.
3465 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
3467 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
3469 // If that last condition is never the case, then we can form m from the
3470 // bits that are the same between c1 and c2.
3472 if (isRunOfOnes(~(Imm
^Imm2
), MB
, ME
) && !(~Imm
& Imm2
)) {
3473 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
3474 N
->getOperand(0).getOperand(1),
3475 getI32Imm(0, dl
), getI32Imm(MB
, dl
),
3476 getI32Imm(ME
, dl
) };
3477 ReplaceNode(N
, CurDAG
->getMachineNode(PPC::RLWIMI
, dl
, MVT::i32
, Ops
));
3482 // Other cases are autogenerated.
3486 if (N
->getValueType(0) == MVT::i32
)
3487 if (tryBitfieldInsert(N
))
3490 if (tryLogicOpOfCompares(N
))
3494 if (N
->getOperand(0)->getOpcode() == ISD::FrameIndex
&&
3495 isIntS16Immediate(N
->getOperand(1), Imm
)) {
3497 CurDAG
->computeKnownBits(N
->getOperand(0), LHSKnown
);
3499 // If this is equivalent to an add, then we can fold it with the
3500 // FrameIndex calculation.
3501 if ((LHSKnown
.Zero
.getZExtValue()|~(uint64_t)Imm
) == ~0ULL) {
3502 selectFrameIndex(N
, N
->getOperand(0).getNode(), (int)Imm
);
3507 // Other cases are autogenerated.
3511 if (tryLogicOpOfCompares(N
))
3517 if (N
->getOperand(0)->getOpcode() == ISD::FrameIndex
&&
3518 isIntS16Immediate(N
->getOperand(1), Imm
)) {
3519 selectFrameIndex(N
, N
->getOperand(0).getNode(), (int)Imm
);
3526 unsigned Imm
, SH
, MB
, ME
;
3527 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, Imm
) &&
3528 isRotateAndMask(N
, Imm
, true, SH
, MB
, ME
)) {
3529 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
3530 getI32Imm(SH
, dl
), getI32Imm(MB
, dl
),
3531 getI32Imm(ME
, dl
) };
3532 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
3536 // Other cases are autogenerated.
3540 unsigned Imm
, SH
, MB
, ME
;
3541 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, Imm
) &&
3542 isRotateAndMask(N
, Imm
, true, SH
, MB
, ME
)) {
3543 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
3544 getI32Imm(SH
, dl
), getI32Imm(MB
, dl
),
3545 getI32Imm(ME
, dl
) };
3546 CurDAG
->SelectNodeTo(N
, PPC::RLWINM
, MVT::i32
, Ops
);
3550 // Other cases are autogenerated.
3553 // FIXME: Remove this once the ANDI glue bug is fixed:
3554 case PPCISD::ANDIo_1_EQ_BIT
:
3555 case PPCISD::ANDIo_1_GT_BIT
: {
3559 EVT InVT
= N
->getOperand(0).getValueType();
3560 assert((InVT
== MVT::i64
|| InVT
== MVT::i32
) &&
3561 "Invalid input type for ANDIo_1_EQ_BIT");
3563 unsigned Opcode
= (InVT
== MVT::i64
) ? PPC::ANDIo8
: PPC::ANDIo
;
3564 SDValue
AndI(CurDAG
->getMachineNode(Opcode
, dl
, InVT
, MVT::Glue
,
3566 CurDAG
->getTargetConstant(1, dl
, InVT
)),
3568 SDValue CR0Reg
= CurDAG
->getRegister(PPC::CR0
, MVT::i32
);
3570 CurDAG
->getTargetConstant(N
->getOpcode() == PPCISD::ANDIo_1_EQ_BIT
?
3571 PPC::sub_eq
: PPC::sub_gt
, dl
, MVT::i32
);
3573 CurDAG
->SelectNodeTo(N
, TargetOpcode::EXTRACT_SUBREG
, MVT::i1
, CR0Reg
,
3574 SRIdxVal
, SDValue(AndI
.getNode(), 1) /* glue */);
3577 case ISD::SELECT_CC
: {
3578 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(4))->get();
3580 CurDAG
->getTargetLoweringInfo().getPointerTy(CurDAG
->getDataLayout());
3581 bool isPPC64
= (PtrVT
== MVT::i64
);
3583 // If this is a select of i1 operands, we'll pattern match it.
3584 if (PPCSubTarget
->useCRBits() &&
3585 N
->getOperand(0).getValueType() == MVT::i1
)
3588 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
3590 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1)))
3591 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2)))
3592 if (ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3)))
3593 if (N1C
->isNullValue() && N3C
->isNullValue() &&
3594 N2C
->getZExtValue() == 1ULL && CC
== ISD::SETNE
&&
3595 // FIXME: Implement this optzn for PPC64.
3596 N
->getValueType(0) == MVT::i32
) {
3598 CurDAG
->getMachineNode(PPC::ADDIC
, dl
, MVT::i32
, MVT::Glue
,
3599 N
->getOperand(0), getI32Imm(~0U, dl
));
3600 CurDAG
->SelectNodeTo(N
, PPC::SUBFE
, MVT::i32
, SDValue(Tmp
, 0),
3601 N
->getOperand(0), SDValue(Tmp
, 1));
3605 SDValue CCReg
= SelectCC(N
->getOperand(0), N
->getOperand(1), CC
, dl
);
3607 if (N
->getValueType(0) == MVT::i1
) {
3608 // An i1 select is: (c & t) | (!c & f).
3610 unsigned Idx
= getCRIdxForSetCC(CC
, Inv
);
3614 default: llvm_unreachable("Invalid CC index");
3615 case 0: SRI
= PPC::sub_lt
; break;
3616 case 1: SRI
= PPC::sub_gt
; break;
3617 case 2: SRI
= PPC::sub_eq
; break;
3618 case 3: SRI
= PPC::sub_un
; break;
3621 SDValue CCBit
= CurDAG
->getTargetExtractSubreg(SRI
, dl
, MVT::i1
, CCReg
);
3623 SDValue
NotCCBit(CurDAG
->getMachineNode(PPC::CRNOR
, dl
, MVT::i1
,
3625 SDValue C
= Inv
? NotCCBit
: CCBit
,
3626 NotC
= Inv
? CCBit
: NotCCBit
;
3628 SDValue
CAndT(CurDAG
->getMachineNode(PPC::CRAND
, dl
, MVT::i1
,
3629 C
, N
->getOperand(2)), 0);
3630 SDValue
NotCAndF(CurDAG
->getMachineNode(PPC::CRAND
, dl
, MVT::i1
,
3631 NotC
, N
->getOperand(3)), 0);
3633 CurDAG
->SelectNodeTo(N
, PPC::CROR
, MVT::i1
, CAndT
, NotCAndF
);
3637 unsigned BROpc
= getPredicateForSetCC(CC
);
3639 unsigned SelectCCOp
;
3640 if (N
->getValueType(0) == MVT::i32
)
3641 SelectCCOp
= PPC::SELECT_CC_I4
;
3642 else if (N
->getValueType(0) == MVT::i64
)
3643 SelectCCOp
= PPC::SELECT_CC_I8
;
3644 else if (N
->getValueType(0) == MVT::f32
)
3645 if (PPCSubTarget
->hasP8Vector())
3646 SelectCCOp
= PPC::SELECT_CC_VSSRC
;
3648 SelectCCOp
= PPC::SELECT_CC_F4
;
3649 else if (N
->getValueType(0) == MVT::f64
)
3650 if (PPCSubTarget
->hasVSX())
3651 SelectCCOp
= PPC::SELECT_CC_VSFRC
;
3653 SelectCCOp
= PPC::SELECT_CC_F8
;
3654 else if (PPCSubTarget
->hasQPX() && N
->getValueType(0) == MVT::v4f64
)
3655 SelectCCOp
= PPC::SELECT_CC_QFRC
;
3656 else if (PPCSubTarget
->hasQPX() && N
->getValueType(0) == MVT::v4f32
)
3657 SelectCCOp
= PPC::SELECT_CC_QSRC
;
3658 else if (PPCSubTarget
->hasQPX() && N
->getValueType(0) == MVT::v4i1
)
3659 SelectCCOp
= PPC::SELECT_CC_QBRC
;
3660 else if (N
->getValueType(0) == MVT::v2f64
||
3661 N
->getValueType(0) == MVT::v2i64
)
3662 SelectCCOp
= PPC::SELECT_CC_VSRC
;
3664 SelectCCOp
= PPC::SELECT_CC_VRRC
;
3666 SDValue Ops
[] = { CCReg
, N
->getOperand(2), N
->getOperand(3),
3667 getI32Imm(BROpc
, dl
) };
3668 CurDAG
->SelectNodeTo(N
, SelectCCOp
, N
->getValueType(0), Ops
);
3672 if (PPCSubTarget
->hasVSX()) {
3673 SDValue Ops
[] = { N
->getOperand(2), N
->getOperand(1), N
->getOperand(0) };
3674 CurDAG
->SelectNodeTo(N
, PPC::XXSEL
, N
->getValueType(0), Ops
);
3679 case ISD::VECTOR_SHUFFLE
:
3680 if (PPCSubTarget
->hasVSX() && (N
->getValueType(0) == MVT::v2f64
||
3681 N
->getValueType(0) == MVT::v2i64
)) {
3682 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
3684 SDValue Op1
= N
->getOperand(SVN
->getMaskElt(0) < 2 ? 0 : 1),
3685 Op2
= N
->getOperand(SVN
->getMaskElt(1) < 2 ? 0 : 1);
3688 for (int i
= 0; i
< 2; ++i
)
3689 if (SVN
->getMaskElt(i
) <= 0 || SVN
->getMaskElt(i
) == 2)
3694 if (Op1
== Op2
&& DM
[0] == 0 && DM
[1] == 0 &&
3695 Op1
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3696 isa
<LoadSDNode
>(Op1
.getOperand(0))) {
3697 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op1
.getOperand(0));
3698 SDValue Base
, Offset
;
3700 if (LD
->isUnindexed() && LD
->hasOneUse() && Op1
.hasOneUse() &&
3701 (LD
->getMemoryVT() == MVT::f64
||
3702 LD
->getMemoryVT() == MVT::i64
) &&
3703 SelectAddrIdxOnly(LD
->getBasePtr(), Base
, Offset
)) {
3704 SDValue Chain
= LD
->getChain();
3705 SDValue Ops
[] = { Base
, Offset
, Chain
};
3706 MachineSDNode::mmo_iterator MemOp
= MF
->allocateMemRefsArray(1);
3707 MemOp
[0] = LD
->getMemOperand();
3708 SDNode
*NewN
= CurDAG
->SelectNodeTo(N
, PPC::LXVDSX
,
3709 N
->getValueType(0), Ops
);
3710 cast
<MachineSDNode
>(NewN
)->setMemRefs(MemOp
, MemOp
+ 1);
3715 // For little endian, we must swap the input operands and adjust
3716 // the mask elements (reverse and invert them).
3717 if (PPCSubTarget
->isLittleEndian()) {
3718 std::swap(Op1
, Op2
);
3719 unsigned tmp
= DM
[0];
3724 SDValue DMV
= CurDAG
->getTargetConstant(DM
[1] | (DM
[0] << 1), dl
,
3726 SDValue Ops
[] = { Op1
, Op2
, DMV
};
3727 CurDAG
->SelectNodeTo(N
, PPC::XXPERMDI
, N
->getValueType(0), Ops
);
3734 bool IsPPC64
= PPCSubTarget
->isPPC64();
3735 SDValue Ops
[] = { N
->getOperand(1), N
->getOperand(0) };
3736 CurDAG
->SelectNodeTo(N
, N
->getOpcode() == PPCISD::BDNZ
3737 ? (IsPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
3738 : (IsPPC64
? PPC::BDZ8
: PPC::BDZ
),
3742 case PPCISD::COND_BRANCH
: {
3743 // Op #0 is the Chain.
3744 // Op #1 is the PPC::PRED_* number.
3746 // Op #3 is the Dest MBB
3747 // Op #4 is the Flag.
3748 // Prevent PPC::PRED_* from being selected into LI.
3749 unsigned PCC
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
3750 if (EnableBranchHint
)
3751 PCC
|= getBranchHint(PCC
, FuncInfo
, N
->getOperand(3));
3753 SDValue Pred
= getI32Imm(PCC
, dl
);
3754 SDValue Ops
[] = { Pred
, N
->getOperand(2), N
->getOperand(3),
3755 N
->getOperand(0), N
->getOperand(4) };
3756 CurDAG
->SelectNodeTo(N
, PPC::BCC
, MVT::Other
, Ops
);
3760 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
3761 unsigned PCC
= getPredicateForSetCC(CC
);
3763 if (N
->getOperand(2).getValueType() == MVT::i1
) {
3767 default: llvm_unreachable("Unexpected Boolean-operand predicate");
3768 case PPC::PRED_LT
: Opc
= PPC::CRANDC
; Swap
= true; break;
3769 case PPC::PRED_LE
: Opc
= PPC::CRORC
; Swap
= true; break;
3770 case PPC::PRED_EQ
: Opc
= PPC::CREQV
; Swap
= false; break;
3771 case PPC::PRED_GE
: Opc
= PPC::CRORC
; Swap
= false; break;
3772 case PPC::PRED_GT
: Opc
= PPC::CRANDC
; Swap
= false; break;
3773 case PPC::PRED_NE
: Opc
= PPC::CRXOR
; Swap
= false; break;
3776 SDValue
BitComp(CurDAG
->getMachineNode(Opc
, dl
, MVT::i1
,
3777 N
->getOperand(Swap
? 3 : 2),
3778 N
->getOperand(Swap
? 2 : 3)), 0);
3779 CurDAG
->SelectNodeTo(N
, PPC::BC
, MVT::Other
, BitComp
, N
->getOperand(4),
3784 if (EnableBranchHint
)
3785 PCC
|= getBranchHint(PCC
, FuncInfo
, N
->getOperand(4));
3787 SDValue CondCode
= SelectCC(N
->getOperand(2), N
->getOperand(3), CC
, dl
);
3788 SDValue Ops
[] = { getI32Imm(PCC
, dl
), CondCode
,
3789 N
->getOperand(4), N
->getOperand(0) };
3790 CurDAG
->SelectNodeTo(N
, PPC::BCC
, MVT::Other
, Ops
);
3794 // FIXME: Should custom lower this.
3795 SDValue Chain
= N
->getOperand(0);
3796 SDValue Target
= N
->getOperand(1);
3797 unsigned Opc
= Target
.getValueType() == MVT::i32
? PPC::MTCTR
: PPC::MTCTR8
;
3798 unsigned Reg
= Target
.getValueType() == MVT::i32
? PPC::BCTR
: PPC::BCTR8
;
3799 Chain
= SDValue(CurDAG
->getMachineNode(Opc
, dl
, MVT::Glue
, Target
,
3801 CurDAG
->SelectNodeTo(N
, Reg
, MVT::Other
, Chain
);
3804 case PPCISD::TOC_ENTRY
: {
3805 assert ((PPCSubTarget
->isPPC64() || PPCSubTarget
->isSVR4ABI()) &&
3806 "Only supported for 64-bit ABI and 32-bit SVR4");
3807 if (PPCSubTarget
->isSVR4ABI() && !PPCSubTarget
->isPPC64()) {
3808 SDValue GA
= N
->getOperand(0);
3809 SDNode
*MN
= CurDAG
->getMachineNode(PPC::LWZtoc
, dl
, MVT::i32
, GA
,
3811 transferMemOperands(N
, MN
);
3816 // For medium and large code model, we generate two instructions as
3817 // described below. Otherwise we allow SelectCodeCommon to handle this,
3818 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
3819 CodeModel::Model CModel
= TM
.getCodeModel();
3820 if (CModel
!= CodeModel::Medium
&& CModel
!= CodeModel::Large
)
3823 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
3824 // If it must be toc-referenced according to PPCSubTarget, we generate:
3825 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
3826 // Otherwise we generate:
3827 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
3828 SDValue GA
= N
->getOperand(0);
3829 SDValue TOCbase
= N
->getOperand(1);
3830 SDNode
*Tmp
= CurDAG
->getMachineNode(PPC::ADDIStocHA
, dl
, MVT::i64
,
3833 if (isa
<JumpTableSDNode
>(GA
) || isa
<BlockAddressSDNode
>(GA
) ||
3834 CModel
== CodeModel::Large
) {
3835 SDNode
*MN
= CurDAG
->getMachineNode(PPC::LDtocL
, dl
, MVT::i64
, GA
,
3837 transferMemOperands(N
, MN
);
3842 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(GA
)) {
3843 const GlobalValue
*GV
= G
->getGlobal();
3844 unsigned char GVFlags
= PPCSubTarget
->classifyGlobalReference(GV
);
3845 if (GVFlags
& PPCII::MO_NLP_FLAG
) {
3846 SDNode
*MN
= CurDAG
->getMachineNode(PPC::LDtocL
, dl
, MVT::i64
, GA
,
3848 transferMemOperands(N
, MN
);
3854 ReplaceNode(N
, CurDAG
->getMachineNode(PPC::ADDItocL
, dl
, MVT::i64
,
3855 SDValue(Tmp
, 0), GA
));
3858 case PPCISD::PPC32_PICGOT
:
3859 // Generate a PIC-safe GOT reference.
3860 assert(!PPCSubTarget
->isPPC64() && PPCSubTarget
->isSVR4ABI() &&
3861 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
3862 CurDAG
->SelectNodeTo(N
, PPC::PPC32PICGOT
,
3863 PPCLowering
->getPointerTy(CurDAG
->getDataLayout()),
3867 case PPCISD::VADD_SPLAT
: {
3868 // This expands into one of three sequences, depending on whether
3869 // the first operand is odd or even, positive or negative.
3870 assert(isa
<ConstantSDNode
>(N
->getOperand(0)) &&
3871 isa
<ConstantSDNode
>(N
->getOperand(1)) &&
3872 "Invalid operand on VADD_SPLAT!");
3874 int Elt
= N
->getConstantOperandVal(0);
3875 int EltSize
= N
->getConstantOperandVal(1);
3876 unsigned Opc1
, Opc2
, Opc3
;
3880 Opc1
= PPC::VSPLTISB
;
3881 Opc2
= PPC::VADDUBM
;
3882 Opc3
= PPC::VSUBUBM
;
3884 } else if (EltSize
== 2) {
3885 Opc1
= PPC::VSPLTISH
;
3886 Opc2
= PPC::VADDUHM
;
3887 Opc3
= PPC::VSUBUHM
;
3890 assert(EltSize
== 4 && "Invalid element size on VADD_SPLAT!");
3891 Opc1
= PPC::VSPLTISW
;
3892 Opc2
= PPC::VADDUWM
;
3893 Opc3
= PPC::VSUBUWM
;
3897 if ((Elt
& 1) == 0) {
3898 // Elt is even, in the range [-32,-18] + [16,30].
3900 // Convert: VADD_SPLAT elt, size
3901 // Into: tmp = VSPLTIS[BHW] elt
3902 // VADDU[BHW]M tmp, tmp
3903 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
3904 SDValue EltVal
= getI32Imm(Elt
>> 1, dl
);
3905 SDNode
*Tmp
= CurDAG
->getMachineNode(Opc1
, dl
, VT
, EltVal
);
3906 SDValue TmpVal
= SDValue(Tmp
, 0);
3907 ReplaceNode(N
, CurDAG
->getMachineNode(Opc2
, dl
, VT
, TmpVal
, TmpVal
));
3909 } else if (Elt
> 0) {
3910 // Elt is odd and positive, in the range [17,31].
3912 // Convert: VADD_SPLAT elt, size
3913 // Into: tmp1 = VSPLTIS[BHW] elt-16
3914 // tmp2 = VSPLTIS[BHW] -16
3915 // VSUBU[BHW]M tmp1, tmp2
3916 SDValue EltVal
= getI32Imm(Elt
- 16, dl
);
3917 SDNode
*Tmp1
= CurDAG
->getMachineNode(Opc1
, dl
, VT
, EltVal
);
3918 EltVal
= getI32Imm(-16, dl
);
3919 SDNode
*Tmp2
= CurDAG
->getMachineNode(Opc1
, dl
, VT
, EltVal
);
3920 ReplaceNode(N
, CurDAG
->getMachineNode(Opc3
, dl
, VT
, SDValue(Tmp1
, 0),
3924 // Elt is odd and negative, in the range [-31,-17].
3926 // Convert: VADD_SPLAT elt, size
3927 // Into: tmp1 = VSPLTIS[BHW] elt+16
3928 // tmp2 = VSPLTIS[BHW] -16
3929 // VADDU[BHW]M tmp1, tmp2
3930 SDValue EltVal
= getI32Imm(Elt
+ 16, dl
);
3931 SDNode
*Tmp1
= CurDAG
->getMachineNode(Opc1
, dl
, VT
, EltVal
);
3932 EltVal
= getI32Imm(-16, dl
);
3933 SDNode
*Tmp2
= CurDAG
->getMachineNode(Opc1
, dl
, VT
, EltVal
);
3934 ReplaceNode(N
, CurDAG
->getMachineNode(Opc2
, dl
, VT
, SDValue(Tmp1
, 0),
3944 // If the target supports the cmpb instruction, do the idiom recognition here.
3945 // We don't do this as a DAG combine because we don't want to do it as nodes
3946 // are being combined (because we might miss part of the eventual idiom). We
3947 // don't want to do it during instruction selection because we want to reuse
3948 // the logic for lowering the masking operations already part of the
3949 // instruction selector.
3950 SDValue
PPCDAGToDAGISel::combineToCMPB(SDNode
*N
) {
3953 assert(N
->getOpcode() == ISD::OR
&&
3954 "Only OR nodes are supported for CMPB");
3957 if (!PPCSubTarget
->hasCMPB())
3960 if (N
->getValueType(0) != MVT::i32
&&
3961 N
->getValueType(0) != MVT::i64
)
3964 EVT VT
= N
->getValueType(0);
3967 bool BytesFound
[8] = {false, false, false, false, false, false, false, false};
3968 uint64_t Mask
= 0, Alt
= 0;
3970 auto IsByteSelectCC
= [this](SDValue O
, unsigned &b
,
3971 uint64_t &Mask
, uint64_t &Alt
,
3972 SDValue
&LHS
, SDValue
&RHS
) {
3973 if (O
.getOpcode() != ISD::SELECT_CC
)
3975 ISD::CondCode CC
= cast
<CondCodeSDNode
>(O
.getOperand(4))->get();
3977 if (!isa
<ConstantSDNode
>(O
.getOperand(2)) ||
3978 !isa
<ConstantSDNode
>(O
.getOperand(3)))
3981 uint64_t PM
= O
.getConstantOperandVal(2);
3982 uint64_t PAlt
= O
.getConstantOperandVal(3);
3983 for (b
= 0; b
< 8; ++b
) {
3984 uint64_t Mask
= UINT64_C(0xFF) << (8*b
);
3985 if (PM
&& (PM
& Mask
) == PM
&& (PAlt
& Mask
) == PAlt
)
3994 if (!isa
<ConstantSDNode
>(O
.getOperand(1)) ||
3995 O
.getConstantOperandVal(1) != 0) {
3996 SDValue Op0
= O
.getOperand(0), Op1
= O
.getOperand(1);
3997 if (Op0
.getOpcode() == ISD::TRUNCATE
)
3998 Op0
= Op0
.getOperand(0);
3999 if (Op1
.getOpcode() == ISD::TRUNCATE
)
4000 Op1
= Op1
.getOperand(0);
4002 if (Op0
.getOpcode() == ISD::SRL
&& Op1
.getOpcode() == ISD::SRL
&&
4003 Op0
.getOperand(1) == Op1
.getOperand(1) && CC
== ISD::SETEQ
&&
4004 isa
<ConstantSDNode
>(Op0
.getOperand(1))) {
4006 unsigned Bits
= Op0
.getValueSizeInBits();
4009 if (Op0
.getConstantOperandVal(1) != Bits
-8)
4012 LHS
= Op0
.getOperand(0);
4013 RHS
= Op1
.getOperand(0);
4017 // When we have small integers (i16 to be specific), the form present
4018 // post-legalization uses SETULT in the SELECT_CC for the
4019 // higher-order byte, depending on the fact that the
4020 // even-higher-order bytes are known to all be zero, for example:
4021 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
4022 // (so when the second byte is the same, because all higher-order
4023 // bits from bytes 3 and 4 are known to be zero, the result of the
4024 // xor can be at most 255)
4025 if (Op0
.getOpcode() == ISD::XOR
&& CC
== ISD::SETULT
&&
4026 isa
<ConstantSDNode
>(O
.getOperand(1))) {
4028 uint64_t ULim
= O
.getConstantOperandVal(1);
4029 if (ULim
!= (UINT64_C(1) << b
*8))
4032 // Now we need to make sure that the upper bytes are known to be
4034 unsigned Bits
= Op0
.getValueSizeInBits();
4035 if (!CurDAG
->MaskedValueIsZero(
4036 Op0
, APInt::getHighBitsSet(Bits
, Bits
- (b
+ 1) * 8)))
4039 LHS
= Op0
.getOperand(0);
4040 RHS
= Op0
.getOperand(1);
4047 if (CC
!= ISD::SETEQ
)
4050 SDValue Op
= O
.getOperand(0);
4051 if (Op
.getOpcode() == ISD::AND
) {
4052 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4054 if (Op
.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b
)))
4057 SDValue XOR
= Op
.getOperand(0);
4058 if (XOR
.getOpcode() == ISD::TRUNCATE
)
4059 XOR
= XOR
.getOperand(0);
4060 if (XOR
.getOpcode() != ISD::XOR
)
4063 LHS
= XOR
.getOperand(0);
4064 RHS
= XOR
.getOperand(1);
4066 } else if (Op
.getOpcode() == ISD::SRL
) {
4067 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4069 unsigned Bits
= Op
.getValueSizeInBits();
4072 if (Op
.getConstantOperandVal(1) != Bits
-8)
4075 SDValue XOR
= Op
.getOperand(0);
4076 if (XOR
.getOpcode() == ISD::TRUNCATE
)
4077 XOR
= XOR
.getOperand(0);
4078 if (XOR
.getOpcode() != ISD::XOR
)
4081 LHS
= XOR
.getOperand(0);
4082 RHS
= XOR
.getOperand(1);
4089 SmallVector
<SDValue
, 8> Queue(1, SDValue(N
, 0));
4090 while (!Queue
.empty()) {
4091 SDValue V
= Queue
.pop_back_val();
4093 for (const SDValue
&O
: V
.getNode()->ops()) {
4095 uint64_t M
= 0, A
= 0;
4097 if (O
.getOpcode() == ISD::OR
) {
4099 } else if (IsByteSelectCC(O
, b
, M
, A
, OLHS
, ORHS
)) {
4103 BytesFound
[b
] = true;
4106 } else if ((LHS
== ORHS
&& RHS
== OLHS
) ||
4107 (RHS
== ORHS
&& LHS
== OLHS
)) {
4108 BytesFound
[b
] = true;
4120 unsigned LastB
= 0, BCnt
= 0;
4121 for (unsigned i
= 0; i
< 8; ++i
)
4122 if (BytesFound
[LastB
]) {
4127 if (!LastB
|| BCnt
< 2)
4130 // Because we'll be zero-extending the output anyway if don't have a specific
4131 // value for each input byte (via the Mask), we can 'anyext' the inputs.
4132 if (LHS
.getValueType() != VT
) {
4133 LHS
= CurDAG
->getAnyExtOrTrunc(LHS
, dl
, VT
);
4134 RHS
= CurDAG
->getAnyExtOrTrunc(RHS
, dl
, VT
);
4137 Res
= CurDAG
->getNode(PPCISD::CMPB
, dl
, VT
, LHS
, RHS
);
4139 bool NonTrivialMask
= ((int64_t) Mask
) != INT64_C(-1);
4140 if (NonTrivialMask
&& !Alt
) {
4141 // Res = Mask & CMPB
4142 Res
= CurDAG
->getNode(ISD::AND
, dl
, VT
, Res
,
4143 CurDAG
->getConstant(Mask
, dl
, VT
));
4145 // Res = (CMPB & Mask) | (~CMPB & Alt)
4146 // Which, as suggested here:
4147 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
4148 // can be written as:
4149 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
4150 // useful because the (Alt ^ Mask) can be pre-computed.
4151 Res
= CurDAG
->getNode(ISD::AND
, dl
, VT
, Res
,
4152 CurDAG
->getConstant(Mask
^ Alt
, dl
, VT
));
4153 Res
= CurDAG
->getNode(ISD::XOR
, dl
, VT
, Res
,
4154 CurDAG
->getConstant(Alt
, dl
, VT
));
4160 // When CR bit registers are enabled, an extension of an i1 variable to a i32
4161 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
4162 // involves constant materialization of a 0 or a 1 or both. If the result of
4163 // the extension is then operated upon by some operator that can be constant
4164 // folded with a constant 0 or 1, and that constant can be materialized using
4165 // only one instruction (like a zero or one), then we should fold in those
4166 // operations with the select.
4167 void PPCDAGToDAGISel::foldBoolExts(SDValue
&Res
, SDNode
*&N
) {
4168 if (!PPCSubTarget
->useCRBits())
4171 if (N
->getOpcode() != ISD::ZERO_EXTEND
&&
4172 N
->getOpcode() != ISD::SIGN_EXTEND
&&
4173 N
->getOpcode() != ISD::ANY_EXTEND
)
4176 if (N
->getOperand(0).getValueType() != MVT::i1
)
4179 if (!N
->hasOneUse())
4183 EVT VT
= N
->getValueType(0);
4184 SDValue Cond
= N
->getOperand(0);
4186 CurDAG
->getConstant(N
->getOpcode() == ISD::SIGN_EXTEND
? -1 : 1, dl
, VT
);
4187 SDValue ConstFalse
= CurDAG
->getConstant(0, dl
, VT
);
4190 SDNode
*User
= *N
->use_begin();
4191 if (User
->getNumOperands() != 2)
4194 auto TryFold
= [this, N
, User
, dl
](SDValue Val
) {
4195 SDValue UserO0
= User
->getOperand(0), UserO1
= User
->getOperand(1);
4196 SDValue O0
= UserO0
.getNode() == N
? Val
: UserO0
;
4197 SDValue O1
= UserO1
.getNode() == N
? Val
: UserO1
;
4199 return CurDAG
->FoldConstantArithmetic(User
->getOpcode(), dl
,
4200 User
->getValueType(0),
4201 O0
.getNode(), O1
.getNode());
4204 // FIXME: When the semantics of the interaction between select and undef
4205 // are clearly defined, it may turn out to be unnecessary to break here.
4206 SDValue TrueRes
= TryFold(ConstTrue
);
4207 if (!TrueRes
|| TrueRes
.isUndef())
4209 SDValue FalseRes
= TryFold(ConstFalse
);
4210 if (!FalseRes
|| FalseRes
.isUndef())
4213 // For us to materialize these using one instruction, we must be able to
4214 // represent them as signed 16-bit integers.
4215 uint64_t True
= cast
<ConstantSDNode
>(TrueRes
)->getZExtValue(),
4216 False
= cast
<ConstantSDNode
>(FalseRes
)->getZExtValue();
4217 if (!isInt
<16>(True
) || !isInt
<16>(False
))
4220 // We can replace User with a new SELECT node, and try again to see if we
4221 // can fold the select with its user.
4222 Res
= CurDAG
->getSelect(dl
, User
->getValueType(0), Cond
, TrueRes
, FalseRes
);
4224 ConstTrue
= TrueRes
;
4225 ConstFalse
= FalseRes
;
4226 } while (N
->hasOneUse());
4229 void PPCDAGToDAGISel::PreprocessISelDAG() {
4230 SelectionDAG::allnodes_iterator
Position(CurDAG
->getRoot().getNode());
4233 bool MadeChange
= false;
4234 while (Position
!= CurDAG
->allnodes_begin()) {
4235 SDNode
*N
= &*--Position
;
4240 switch (N
->getOpcode()) {
4243 Res
= combineToCMPB(N
);
4248 foldBoolExts(Res
, N
);
4251 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
4252 DEBUG(N
->dump(CurDAG
));
4253 DEBUG(dbgs() << "\nNew: ");
4254 DEBUG(Res
.getNode()->dump(CurDAG
));
4255 DEBUG(dbgs() << "\n");
4257 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), Res
);
4263 CurDAG
->RemoveDeadNodes();
4266 /// PostprocessISelDAG - Perform some late peephole optimizations
4267 /// on the DAG representation.
4268 void PPCDAGToDAGISel::PostprocessISelDAG() {
4269 // Skip peepholes at -O0.
4270 if (TM
.getOptLevel() == CodeGenOpt::None
)
4275 PeepholePPC64ZExt();
4278 // Check if all users of this node will become isel where the second operand
4279 // is the constant zero. If this is so, and if we can negate the condition,
4280 // then we can flip the true and false operands. This will allow the zero to
4281 // be folded with the isel so that we don't need to materialize a register
4283 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode
*N
) {
4284 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4287 if (!User
->isMachineOpcode())
4289 if (User
->getMachineOpcode() != PPC::SELECT_I4
&&
4290 User
->getMachineOpcode() != PPC::SELECT_I8
)
4293 SDNode
*Op2
= User
->getOperand(2).getNode();
4294 if (!Op2
->isMachineOpcode())
4297 if (Op2
->getMachineOpcode() != PPC::LI
&&
4298 Op2
->getMachineOpcode() != PPC::LI8
)
4301 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op2
->getOperand(0));
4305 if (!C
->isNullValue())
4312 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode
*N
) {
4313 SmallVector
<SDNode
*, 4> ToReplace
;
4314 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4317 assert((User
->getMachineOpcode() == PPC::SELECT_I4
||
4318 User
->getMachineOpcode() == PPC::SELECT_I8
) &&
4319 "Must have all select users");
4320 ToReplace
.push_back(User
);
4323 for (SmallVector
<SDNode
*, 4>::iterator UI
= ToReplace
.begin(),
4324 UE
= ToReplace
.end(); UI
!= UE
; ++UI
) {
4327 CurDAG
->getMachineNode(User
->getMachineOpcode(), SDLoc(User
),
4328 User
->getValueType(0), User
->getOperand(0),
4329 User
->getOperand(2),
4330 User
->getOperand(1));
4332 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
4333 DEBUG(User
->dump(CurDAG
));
4334 DEBUG(dbgs() << "\nNew: ");
4335 DEBUG(ResNode
->dump(CurDAG
));
4336 DEBUG(dbgs() << "\n");
4338 ReplaceUses(User
, ResNode
);
4342 void PPCDAGToDAGISel::PeepholeCROps() {
4346 for (SDNode
&Node
: CurDAG
->allnodes()) {
4347 MachineSDNode
*MachineNode
= dyn_cast
<MachineSDNode
>(&Node
);
4348 if (!MachineNode
|| MachineNode
->use_empty())
4350 SDNode
*ResNode
= MachineNode
;
4352 bool Op1Set
= false, Op1Unset
= false,
4354 Op2Set
= false, Op2Unset
= false,
4357 unsigned Opcode
= MachineNode
->getMachineOpcode();
4368 SDValue Op
= MachineNode
->getOperand(1);
4369 if (Op
.isMachineOpcode()) {
4370 if (Op
.getMachineOpcode() == PPC::CRSET
)
4372 else if (Op
.getMachineOpcode() == PPC::CRUNSET
)
4374 else if (Op
.getMachineOpcode() == PPC::CRNOR
&&
4375 Op
.getOperand(0) == Op
.getOperand(1))
4382 case PPC::SELECT_I4
:
4383 case PPC::SELECT_I8
:
4384 case PPC::SELECT_F4
:
4385 case PPC::SELECT_F8
:
4386 case PPC::SELECT_QFRC
:
4387 case PPC::SELECT_QSRC
:
4388 case PPC::SELECT_QBRC
:
4389 case PPC::SELECT_VRRC
:
4390 case PPC::SELECT_VSFRC
:
4391 case PPC::SELECT_VSSRC
:
4392 case PPC::SELECT_VSRC
: {
4393 SDValue Op
= MachineNode
->getOperand(0);
4394 if (Op
.isMachineOpcode()) {
4395 if (Op
.getMachineOpcode() == PPC::CRSET
)
4397 else if (Op
.getMachineOpcode() == PPC::CRUNSET
)
4399 else if (Op
.getMachineOpcode() == PPC::CRNOR
&&
4400 Op
.getOperand(0) == Op
.getOperand(1))
4407 bool SelectSwap
= false;
4411 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4413 ResNode
= MachineNode
->getOperand(0).getNode();
4416 ResNode
= MachineNode
->getOperand(1).getNode();
4419 ResNode
= MachineNode
->getOperand(0).getNode();
4420 else if (Op1Unset
|| Op2Unset
)
4421 // x & 0 = 0 & y = 0
4422 ResNode
= CurDAG
->getMachineNode(PPC::CRUNSET
, SDLoc(MachineNode
),
4425 // ~x & y = andc(y, x)
4426 ResNode
= CurDAG
->getMachineNode(PPC::CRANDC
, SDLoc(MachineNode
),
4427 MVT::i1
, MachineNode
->getOperand(1),
4428 MachineNode
->getOperand(0).
4431 // x & ~y = andc(x, y)
4432 ResNode
= CurDAG
->getMachineNode(PPC::CRANDC
, SDLoc(MachineNode
),
4433 MVT::i1
, MachineNode
->getOperand(0),
4434 MachineNode
->getOperand(1).
4436 else if (AllUsersSelectZero(MachineNode
)) {
4437 ResNode
= CurDAG
->getMachineNode(PPC::CRNAND
, SDLoc(MachineNode
),
4438 MVT::i1
, MachineNode
->getOperand(0),
4439 MachineNode
->getOperand(1));
4444 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4445 // nand(x, x) -> nor(x, x)
4446 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4447 MVT::i1
, MachineNode
->getOperand(0),
4448 MachineNode
->getOperand(0));
4450 // nand(1, y) -> nor(y, y)
4451 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4452 MVT::i1
, MachineNode
->getOperand(1),
4453 MachineNode
->getOperand(1));
4455 // nand(x, 1) -> nor(x, x)
4456 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4457 MVT::i1
, MachineNode
->getOperand(0),
4458 MachineNode
->getOperand(0));
4459 else if (Op1Unset
|| Op2Unset
)
4460 // nand(x, 0) = nand(0, y) = 1
4461 ResNode
= CurDAG
->getMachineNode(PPC::CRSET
, SDLoc(MachineNode
),
4464 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
4465 ResNode
= CurDAG
->getMachineNode(PPC::CRORC
, SDLoc(MachineNode
),
4466 MVT::i1
, MachineNode
->getOperand(0).
4468 MachineNode
->getOperand(1));
4470 // nand(x, ~y) = ~x | y = orc(y, x)
4471 ResNode
= CurDAG
->getMachineNode(PPC::CRORC
, SDLoc(MachineNode
),
4472 MVT::i1
, MachineNode
->getOperand(1).
4474 MachineNode
->getOperand(0));
4475 else if (AllUsersSelectZero(MachineNode
)) {
4476 ResNode
= CurDAG
->getMachineNode(PPC::CRAND
, SDLoc(MachineNode
),
4477 MVT::i1
, MachineNode
->getOperand(0),
4478 MachineNode
->getOperand(1));
4483 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4485 ResNode
= MachineNode
->getOperand(0).getNode();
4486 else if (Op1Set
|| Op2Set
)
4487 // x | 1 = 1 | y = 1
4488 ResNode
= CurDAG
->getMachineNode(PPC::CRSET
, SDLoc(MachineNode
),
4492 ResNode
= MachineNode
->getOperand(1).getNode();
4495 ResNode
= MachineNode
->getOperand(0).getNode();
4497 // ~x | y = orc(y, x)
4498 ResNode
= CurDAG
->getMachineNode(PPC::CRORC
, SDLoc(MachineNode
),
4499 MVT::i1
, MachineNode
->getOperand(1),
4500 MachineNode
->getOperand(0).
4503 // x | ~y = orc(x, y)
4504 ResNode
= CurDAG
->getMachineNode(PPC::CRORC
, SDLoc(MachineNode
),
4505 MVT::i1
, MachineNode
->getOperand(0),
4506 MachineNode
->getOperand(1).
4508 else if (AllUsersSelectZero(MachineNode
)) {
4509 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4510 MVT::i1
, MachineNode
->getOperand(0),
4511 MachineNode
->getOperand(1));
4516 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4518 ResNode
= CurDAG
->getMachineNode(PPC::CRUNSET
, SDLoc(MachineNode
),
4521 // xor(1, y) -> nor(y, y)
4522 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4523 MVT::i1
, MachineNode
->getOperand(1),
4524 MachineNode
->getOperand(1));
4526 // xor(x, 1) -> nor(x, x)
4527 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4528 MVT::i1
, MachineNode
->getOperand(0),
4529 MachineNode
->getOperand(0));
4532 ResNode
= MachineNode
->getOperand(1).getNode();
4535 ResNode
= MachineNode
->getOperand(0).getNode();
4537 // xor(~x, y) = eqv(x, y)
4538 ResNode
= CurDAG
->getMachineNode(PPC::CREQV
, SDLoc(MachineNode
),
4539 MVT::i1
, MachineNode
->getOperand(0).
4541 MachineNode
->getOperand(1));
4543 // xor(x, ~y) = eqv(x, y)
4544 ResNode
= CurDAG
->getMachineNode(PPC::CREQV
, SDLoc(MachineNode
),
4545 MVT::i1
, MachineNode
->getOperand(0),
4546 MachineNode
->getOperand(1).
4548 else if (AllUsersSelectZero(MachineNode
)) {
4549 ResNode
= CurDAG
->getMachineNode(PPC::CREQV
, SDLoc(MachineNode
),
4550 MVT::i1
, MachineNode
->getOperand(0),
4551 MachineNode
->getOperand(1));
4556 if (Op1Set
|| Op2Set
)
4558 ResNode
= CurDAG
->getMachineNode(PPC::CRUNSET
, SDLoc(MachineNode
),
4561 // nor(0, y) = ~y -> nor(y, y)
4562 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4563 MVT::i1
, MachineNode
->getOperand(1),
4564 MachineNode
->getOperand(1));
4567 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4568 MVT::i1
, MachineNode
->getOperand(0),
4569 MachineNode
->getOperand(0));
4571 // nor(~x, y) = andc(x, y)
4572 ResNode
= CurDAG
->getMachineNode(PPC::CRANDC
, SDLoc(MachineNode
),
4573 MVT::i1
, MachineNode
->getOperand(0).
4575 MachineNode
->getOperand(1));
4577 // nor(x, ~y) = andc(y, x)
4578 ResNode
= CurDAG
->getMachineNode(PPC::CRANDC
, SDLoc(MachineNode
),
4579 MVT::i1
, MachineNode
->getOperand(1).
4581 MachineNode
->getOperand(0));
4582 else if (AllUsersSelectZero(MachineNode
)) {
4583 ResNode
= CurDAG
->getMachineNode(PPC::CROR
, SDLoc(MachineNode
),
4584 MVT::i1
, MachineNode
->getOperand(0),
4585 MachineNode
->getOperand(1));
4590 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4592 ResNode
= CurDAG
->getMachineNode(PPC::CRSET
, SDLoc(MachineNode
),
4596 ResNode
= MachineNode
->getOperand(1).getNode();
4599 ResNode
= MachineNode
->getOperand(0).getNode();
4601 // eqv(0, y) = ~y -> nor(y, y)
4602 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4603 MVT::i1
, MachineNode
->getOperand(1),
4604 MachineNode
->getOperand(1));
4607 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4608 MVT::i1
, MachineNode
->getOperand(0),
4609 MachineNode
->getOperand(0));
4611 // eqv(~x, y) = xor(x, y)
4612 ResNode
= CurDAG
->getMachineNode(PPC::CRXOR
, SDLoc(MachineNode
),
4613 MVT::i1
, MachineNode
->getOperand(0).
4615 MachineNode
->getOperand(1));
4617 // eqv(x, ~y) = xor(x, y)
4618 ResNode
= CurDAG
->getMachineNode(PPC::CRXOR
, SDLoc(MachineNode
),
4619 MVT::i1
, MachineNode
->getOperand(0),
4620 MachineNode
->getOperand(1).
4622 else if (AllUsersSelectZero(MachineNode
)) {
4623 ResNode
= CurDAG
->getMachineNode(PPC::CRXOR
, SDLoc(MachineNode
),
4624 MVT::i1
, MachineNode
->getOperand(0),
4625 MachineNode
->getOperand(1));
4630 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4632 ResNode
= CurDAG
->getMachineNode(PPC::CRUNSET
, SDLoc(MachineNode
),
4636 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4637 MVT::i1
, MachineNode
->getOperand(1),
4638 MachineNode
->getOperand(1));
4639 else if (Op1Unset
|| Op2Set
)
4640 // andc(0, y) = andc(x, 1) = 0
4641 ResNode
= CurDAG
->getMachineNode(PPC::CRUNSET
, SDLoc(MachineNode
),
4645 ResNode
= MachineNode
->getOperand(0).getNode();
4647 // andc(~x, y) = ~(x | y) = nor(x, y)
4648 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4649 MVT::i1
, MachineNode
->getOperand(0).
4651 MachineNode
->getOperand(1));
4653 // andc(x, ~y) = x & y
4654 ResNode
= CurDAG
->getMachineNode(PPC::CRAND
, SDLoc(MachineNode
),
4655 MVT::i1
, MachineNode
->getOperand(0),
4656 MachineNode
->getOperand(1).
4658 else if (AllUsersSelectZero(MachineNode
)) {
4659 ResNode
= CurDAG
->getMachineNode(PPC::CRORC
, SDLoc(MachineNode
),
4660 MVT::i1
, MachineNode
->getOperand(1),
4661 MachineNode
->getOperand(0));
4666 if (MachineNode
->getOperand(0) == MachineNode
->getOperand(1))
4668 ResNode
= CurDAG
->getMachineNode(PPC::CRSET
, SDLoc(MachineNode
),
4670 else if (Op1Set
|| Op2Unset
)
4671 // orc(1, y) = orc(x, 0) = 1
4672 ResNode
= CurDAG
->getMachineNode(PPC::CRSET
, SDLoc(MachineNode
),
4676 ResNode
= MachineNode
->getOperand(0).getNode();
4679 ResNode
= CurDAG
->getMachineNode(PPC::CRNOR
, SDLoc(MachineNode
),
4680 MVT::i1
, MachineNode
->getOperand(1),
4681 MachineNode
->getOperand(1));
4683 // orc(~x, y) = ~(x & y) = nand(x, y)
4684 ResNode
= CurDAG
->getMachineNode(PPC::CRNAND
, SDLoc(MachineNode
),
4685 MVT::i1
, MachineNode
->getOperand(0).
4687 MachineNode
->getOperand(1));
4689 // orc(x, ~y) = x | y
4690 ResNode
= CurDAG
->getMachineNode(PPC::CROR
, SDLoc(MachineNode
),
4691 MVT::i1
, MachineNode
->getOperand(0),
4692 MachineNode
->getOperand(1).
4694 else if (AllUsersSelectZero(MachineNode
)) {
4695 ResNode
= CurDAG
->getMachineNode(PPC::CRANDC
, SDLoc(MachineNode
),
4696 MVT::i1
, MachineNode
->getOperand(1),
4697 MachineNode
->getOperand(0));
4701 case PPC::SELECT_I4
:
4702 case PPC::SELECT_I8
:
4703 case PPC::SELECT_F4
:
4704 case PPC::SELECT_F8
:
4705 case PPC::SELECT_QFRC
:
4706 case PPC::SELECT_QSRC
:
4707 case PPC::SELECT_QBRC
:
4708 case PPC::SELECT_VRRC
:
4709 case PPC::SELECT_VSFRC
:
4710 case PPC::SELECT_VSSRC
:
4711 case PPC::SELECT_VSRC
:
4713 ResNode
= MachineNode
->getOperand(1).getNode();
4715 ResNode
= MachineNode
->getOperand(2).getNode();
4717 ResNode
= CurDAG
->getMachineNode(MachineNode
->getMachineOpcode(),
4719 MachineNode
->getValueType(0),
4720 MachineNode
->getOperand(0).
4722 MachineNode
->getOperand(2),
4723 MachineNode
->getOperand(1));
4728 ResNode
= CurDAG
->getMachineNode(Opcode
== PPC::BC
? PPC::BCn
:
4732 MachineNode
->getOperand(0).
4734 MachineNode
->getOperand(1),
4735 MachineNode
->getOperand(2));
4736 // FIXME: Handle Op1Set, Op1Unset here too.
4740 // If we're inverting this node because it is used only by selects that
4741 // we'd like to swap, then swap the selects before the node replacement.
4743 SwapAllSelectUsers(MachineNode
);
4745 if (ResNode
!= MachineNode
) {
4746 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
4747 DEBUG(MachineNode
->dump(CurDAG
));
4748 DEBUG(dbgs() << "\nNew: ");
4749 DEBUG(ResNode
->dump(CurDAG
));
4750 DEBUG(dbgs() << "\n");
4752 ReplaceUses(MachineNode
, ResNode
);
4757 CurDAG
->RemoveDeadNodes();
4758 } while (IsModified
);
4761 // Gather the set of 32-bit operations that are known to have their
4762 // higher-order 32 bits zero, where ToPromote contains all such operations.
4763 static bool PeepholePPC64ZExtGather(SDValue Op32
,
4764 SmallPtrSetImpl
<SDNode
*> &ToPromote
) {
4765 if (!Op32
.isMachineOpcode())
4768 // First, check for the "frontier" instructions (those that will clear the
4769 // higher-order 32 bits.
4771 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
4772 // around. If it does not, then these instructions will clear the
4773 // higher-order bits.
4774 if ((Op32
.getMachineOpcode() == PPC::RLWINM
||
4775 Op32
.getMachineOpcode() == PPC::RLWNM
) &&
4776 Op32
.getConstantOperandVal(2) <= Op32
.getConstantOperandVal(3)) {
4777 ToPromote
.insert(Op32
.getNode());
4781 // SLW and SRW always clear the higher-order bits.
4782 if (Op32
.getMachineOpcode() == PPC::SLW
||
4783 Op32
.getMachineOpcode() == PPC::SRW
) {
4784 ToPromote
.insert(Op32
.getNode());
4788 // For LI and LIS, we need the immediate to be positive (so that it is not
4790 if (Op32
.getMachineOpcode() == PPC::LI
||
4791 Op32
.getMachineOpcode() == PPC::LIS
) {
4792 if (!isUInt
<15>(Op32
.getConstantOperandVal(0)))
4795 ToPromote
.insert(Op32
.getNode());
4799 // LHBRX and LWBRX always clear the higher-order bits.
4800 if (Op32
.getMachineOpcode() == PPC::LHBRX
||
4801 Op32
.getMachineOpcode() == PPC::LWBRX
) {
4802 ToPromote
.insert(Op32
.getNode());
4806 // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
4807 if (Op32
.getMachineOpcode() == PPC::CNTLZW
||
4808 Op32
.getMachineOpcode() == PPC::CNTTZW
) {
4809 ToPromote
.insert(Op32
.getNode());
4813 // Next, check for those instructions we can look through.
4815 // Assuming the mask does not wrap around, then the higher-order bits are
4816 // taken directly from the first operand.
4817 if (Op32
.getMachineOpcode() == PPC::RLWIMI
&&
4818 Op32
.getConstantOperandVal(3) <= Op32
.getConstantOperandVal(4)) {
4819 SmallPtrSet
<SDNode
*, 16> ToPromote1
;
4820 if (!PeepholePPC64ZExtGather(Op32
.getOperand(0), ToPromote1
))
4823 ToPromote
.insert(Op32
.getNode());
4824 ToPromote
.insert(ToPromote1
.begin(), ToPromote1
.end());
4828 // For OR, the higher-order bits are zero if that is true for both operands.
4829 // For SELECT_I4, the same is true (but the relevant operand numbers are
4831 if (Op32
.getMachineOpcode() == PPC::OR
||
4832 Op32
.getMachineOpcode() == PPC::SELECT_I4
) {
4833 unsigned B
= Op32
.getMachineOpcode() == PPC::SELECT_I4
? 1 : 0;
4834 SmallPtrSet
<SDNode
*, 16> ToPromote1
;
4835 if (!PeepholePPC64ZExtGather(Op32
.getOperand(B
+0), ToPromote1
))
4837 if (!PeepholePPC64ZExtGather(Op32
.getOperand(B
+1), ToPromote1
))
4840 ToPromote
.insert(Op32
.getNode());
4841 ToPromote
.insert(ToPromote1
.begin(), ToPromote1
.end());
4845 // For ORI and ORIS, we need the higher-order bits of the first operand to be
4846 // zero, and also for the constant to be positive (so that it is not sign
4848 if (Op32
.getMachineOpcode() == PPC::ORI
||
4849 Op32
.getMachineOpcode() == PPC::ORIS
) {
4850 SmallPtrSet
<SDNode
*, 16> ToPromote1
;
4851 if (!PeepholePPC64ZExtGather(Op32
.getOperand(0), ToPromote1
))
4853 if (!isUInt
<15>(Op32
.getConstantOperandVal(1)))
4856 ToPromote
.insert(Op32
.getNode());
4857 ToPromote
.insert(ToPromote1
.begin(), ToPromote1
.end());
4861 // The higher-order bits of AND are zero if that is true for at least one of
4863 if (Op32
.getMachineOpcode() == PPC::AND
) {
4864 SmallPtrSet
<SDNode
*, 16> ToPromote1
, ToPromote2
;
4866 PeepholePPC64ZExtGather(Op32
.getOperand(0), ToPromote1
);
4868 PeepholePPC64ZExtGather(Op32
.getOperand(1), ToPromote2
);
4869 if (!Op0OK
&& !Op1OK
)
4872 ToPromote
.insert(Op32
.getNode());
4875 ToPromote
.insert(ToPromote1
.begin(), ToPromote1
.end());
4878 ToPromote
.insert(ToPromote2
.begin(), ToPromote2
.end());
4883 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4884 // of the first operand, or if the second operand is positive (so that it is
4885 // not sign extended).
4886 if (Op32
.getMachineOpcode() == PPC::ANDIo
||
4887 Op32
.getMachineOpcode() == PPC::ANDISo
) {
4888 SmallPtrSet
<SDNode
*, 16> ToPromote1
;
4890 PeepholePPC64ZExtGather(Op32
.getOperand(0), ToPromote1
);
4891 bool Op1OK
= isUInt
<15>(Op32
.getConstantOperandVal(1));
4892 if (!Op0OK
&& !Op1OK
)
4895 ToPromote
.insert(Op32
.getNode());
4898 ToPromote
.insert(ToPromote1
.begin(), ToPromote1
.end());
4906 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4907 if (!PPCSubTarget
->isPPC64())
4910 // When we zero-extend from i32 to i64, we use a pattern like this:
4911 // def : Pat<(i64 (zext i32:$in)),
4912 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4914 // There are several 32-bit shift/rotate instructions, however, that will
4915 // clear the higher-order bits of their output, rendering the RLDICL
4916 // unnecessary. When that happens, we remove it here, and redefine the
4917 // relevant 32-bit operation to be a 64-bit operation.
4919 SelectionDAG::allnodes_iterator
Position(CurDAG
->getRoot().getNode());
4922 bool MadeChange
= false;
4923 while (Position
!= CurDAG
->allnodes_begin()) {
4924 SDNode
*N
= &*--Position
;
4925 // Skip dead nodes and any non-machine opcodes.
4926 if (N
->use_empty() || !N
->isMachineOpcode())
4929 if (N
->getMachineOpcode() != PPC::RLDICL
)
4932 if (N
->getConstantOperandVal(1) != 0 ||
4933 N
->getConstantOperandVal(2) != 32)
4936 SDValue ISR
= N
->getOperand(0);
4937 if (!ISR
.isMachineOpcode() ||
4938 ISR
.getMachineOpcode() != TargetOpcode::INSERT_SUBREG
)
4941 if (!ISR
.hasOneUse())
4944 if (ISR
.getConstantOperandVal(2) != PPC::sub_32
)
4947 SDValue IDef
= ISR
.getOperand(0);
4948 if (!IDef
.isMachineOpcode() ||
4949 IDef
.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF
)
4952 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4953 // can get rid of it.
4955 SDValue Op32
= ISR
->getOperand(1);
4956 if (!Op32
.isMachineOpcode())
4959 // There are some 32-bit instructions that always clear the high-order 32
4960 // bits, there are also some instructions (like AND) that we can look
4962 SmallPtrSet
<SDNode
*, 16> ToPromote
;
4963 if (!PeepholePPC64ZExtGather(Op32
, ToPromote
))
4966 // If the ToPromote set contains nodes that have uses outside of the set
4967 // (except for the original INSERT_SUBREG), then abort the transformation.
4968 bool OutsideUse
= false;
4969 for (SDNode
*PN
: ToPromote
) {
4970 for (SDNode
*UN
: PN
->uses()) {
4971 if (!ToPromote
.count(UN
) && UN
!= ISR
.getNode()) {
4985 // We now know that this zero extension can be removed by promoting to
4986 // nodes in ToPromote to 64-bit operations, where for operations in the
4987 // frontier of the set, we need to insert INSERT_SUBREGs for their
4989 for (SDNode
*PN
: ToPromote
) {
4991 switch (PN
->getMachineOpcode()) {
4993 llvm_unreachable("Don't know the 64-bit variant of this instruction");
4994 case PPC::RLWINM
: NewOpcode
= PPC::RLWINM8
; break;
4995 case PPC::RLWNM
: NewOpcode
= PPC::RLWNM8
; break;
4996 case PPC::SLW
: NewOpcode
= PPC::SLW8
; break;
4997 case PPC::SRW
: NewOpcode
= PPC::SRW8
; break;
4998 case PPC::LI
: NewOpcode
= PPC::LI8
; break;
4999 case PPC::LIS
: NewOpcode
= PPC::LIS8
; break;
5000 case PPC::LHBRX
: NewOpcode
= PPC::LHBRX8
; break;
5001 case PPC::LWBRX
: NewOpcode
= PPC::LWBRX8
; break;
5002 case PPC::CNTLZW
: NewOpcode
= PPC::CNTLZW8
; break;
5003 case PPC::CNTTZW
: NewOpcode
= PPC::CNTTZW8
; break;
5004 case PPC::RLWIMI
: NewOpcode
= PPC::RLWIMI8
; break;
5005 case PPC::OR
: NewOpcode
= PPC::OR8
; break;
5006 case PPC::SELECT_I4
: NewOpcode
= PPC::SELECT_I8
; break;
5007 case PPC::ORI
: NewOpcode
= PPC::ORI8
; break;
5008 case PPC::ORIS
: NewOpcode
= PPC::ORIS8
; break;
5009 case PPC::AND
: NewOpcode
= PPC::AND8
; break;
5010 case PPC::ANDIo
: NewOpcode
= PPC::ANDIo8
; break;
5011 case PPC::ANDISo
: NewOpcode
= PPC::ANDISo8
; break;
5014 // Note: During the replacement process, the nodes will be in an
5015 // inconsistent state (some instructions will have operands with values
5016 // of the wrong type). Once done, however, everything should be right
5019 SmallVector
<SDValue
, 4> Ops
;
5020 for (const SDValue
&V
: PN
->ops()) {
5021 if (!ToPromote
.count(V
.getNode()) && V
.getValueType() == MVT::i32
&&
5022 !isa
<ConstantSDNode
>(V
)) {
5023 SDValue ReplOpOps
[] = { ISR
.getOperand(0), V
, ISR
.getOperand(2) };
5025 CurDAG
->getMachineNode(TargetOpcode::INSERT_SUBREG
, SDLoc(V
),
5026 ISR
.getNode()->getVTList(), ReplOpOps
);
5027 Ops
.push_back(SDValue(ReplOp
, 0));
5033 // Because all to-be-promoted nodes only have users that are other
5034 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
5035 // the i32 result value type with i64.
5037 SmallVector
<EVT
, 2> NewVTs
;
5038 SDVTList VTs
= PN
->getVTList();
5039 for (unsigned i
= 0, ie
= VTs
.NumVTs
; i
!= ie
; ++i
)
5040 if (VTs
.VTs
[i
] == MVT::i32
)
5041 NewVTs
.push_back(MVT::i64
);
5043 NewVTs
.push_back(VTs
.VTs
[i
]);
5045 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
5046 DEBUG(PN
->dump(CurDAG
));
5048 CurDAG
->SelectNodeTo(PN
, NewOpcode
, CurDAG
->getVTList(NewVTs
), Ops
);
5050 DEBUG(dbgs() << "\nNew: ");
5051 DEBUG(PN
->dump(CurDAG
));
5052 DEBUG(dbgs() << "\n");
5055 // Now we replace the original zero extend and its associated INSERT_SUBREG
5056 // with the value feeding the INSERT_SUBREG (which has now been promoted to
5059 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
5060 DEBUG(N
->dump(CurDAG
));
5061 DEBUG(dbgs() << "\nNew: ");
5062 DEBUG(Op32
.getNode()->dump(CurDAG
));
5063 DEBUG(dbgs() << "\n");
5065 ReplaceUses(N
, Op32
.getNode());
5069 CurDAG
->RemoveDeadNodes();
5072 void PPCDAGToDAGISel::PeepholePPC64() {
5073 // These optimizations are currently supported only for 64-bit SVR4.
5074 if (PPCSubTarget
->isDarwin() || !PPCSubTarget
->isPPC64())
5077 SelectionDAG::allnodes_iterator
Position(CurDAG
->getRoot().getNode());
5080 while (Position
!= CurDAG
->allnodes_begin()) {
5081 SDNode
*N
= &*--Position
;
5082 // Skip dead nodes and any non-machine opcodes.
5083 if (N
->use_empty() || !N
->isMachineOpcode())
5087 unsigned StorageOpcode
= N
->getMachineOpcode();
5089 switch (StorageOpcode
) {
5120 // If this is a load or store with a zero offset, or within the alignment,
5121 // we may be able to fold an add-immediate into the memory operation.
5122 // The check against alignment is below, as it can't occur until we check
5123 // the arguments to N
5124 if (!isa
<ConstantSDNode
>(N
->getOperand(FirstOp
)))
5127 SDValue Base
= N
->getOperand(FirstOp
+ 1);
5128 if (!Base
.isMachineOpcode())
5132 bool ReplaceFlags
= true;
5134 // When the feeding operation is an add-immediate of some sort,
5135 // determine whether we need to add relocation information to the
5136 // target flags on the immediate operand when we fold it into the
5137 // load instruction.
5139 // For something like ADDItocL, the relocation information is
5140 // inferred from the opcode; when we process it in the AsmPrinter,
5141 // we add the necessary relocation there. A load, though, can receive
5142 // relocation from various flavors of ADDIxxx, so we need to carry
5143 // the relocation information in the target flags.
5144 switch (Base
.getMachineOpcode()) {
5149 // In some cases (such as TLS) the relocation information
5150 // is already in place on the operand, so copying the operand
5152 ReplaceFlags
= false;
5153 // For these cases, the immediate may not be divisible by 4, in
5154 // which case the fold is illegal for DS-form instructions. (The
5155 // other cases provide aligned addresses and are always safe.)
5156 if ((StorageOpcode
== PPC::LWA
||
5157 StorageOpcode
== PPC::LD
||
5158 StorageOpcode
== PPC::STD
) &&
5159 (!isa
<ConstantSDNode
>(Base
.getOperand(1)) ||
5160 Base
.getConstantOperandVal(1) % 4 != 0))
5163 case PPC::ADDIdtprelL
:
5164 Flags
= PPCII::MO_DTPREL_LO
;
5166 case PPC::ADDItlsldL
:
5167 Flags
= PPCII::MO_TLSLD_LO
;
5170 Flags
= PPCII::MO_TOC_LO
;
5174 SDValue ImmOpnd
= Base
.getOperand(1);
5176 // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
5177 // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
5178 // we might have needed different @ha relocation values for the offset
5180 int MaxDisplacement
= 7;
5181 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(ImmOpnd
)) {
5182 const GlobalValue
*GV
= GA
->getGlobal();
5183 MaxDisplacement
= std::min((int) GV
->getAlignment() - 1, MaxDisplacement
);
5186 bool UpdateHBase
= false;
5187 SDValue HBase
= Base
.getOperand(0);
5189 int Offset
= N
->getConstantOperandVal(FirstOp
);
5191 if (Offset
< 0 || Offset
> MaxDisplacement
) {
5192 // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
5193 // one use, then we can do this for any offset, we just need to also
5194 // update the offset (i.e. the symbol addend) on the addis also.
5195 if (Base
.getMachineOpcode() != PPC::ADDItocL
)
5198 if (!HBase
.isMachineOpcode() ||
5199 HBase
.getMachineOpcode() != PPC::ADDIStocHA
)
5202 if (!Base
.hasOneUse() || !HBase
.hasOneUse())
5205 SDValue HImmOpnd
= HBase
.getOperand(1);
5206 if (HImmOpnd
!= ImmOpnd
)
5212 // If we're directly folding the addend from an addi instruction, then:
5213 // 1. In general, the offset on the memory access must be zero.
5214 // 2. If the addend is a constant, then it can be combined with a
5215 // non-zero offset, but only if the result meets the encoding
5217 if (auto *C
= dyn_cast
<ConstantSDNode
>(ImmOpnd
)) {
5218 Offset
+= C
->getSExtValue();
5220 if ((StorageOpcode
== PPC::LWA
|| StorageOpcode
== PPC::LD
||
5221 StorageOpcode
== PPC::STD
) && (Offset
% 4) != 0)
5224 if (!isInt
<16>(Offset
))
5227 ImmOpnd
= CurDAG
->getTargetConstant(Offset
, SDLoc(ImmOpnd
),
5228 ImmOpnd
.getValueType());
5229 } else if (Offset
!= 0) {
5234 // We found an opportunity. Reverse the operands from the add
5235 // immediate and substitute them into the load or store. If
5236 // needed, update the target flags for the immediate operand to
5237 // reflect the necessary relocation information.
5238 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
5239 DEBUG(Base
->dump(CurDAG
));
5240 DEBUG(dbgs() << "\nN: ");
5241 DEBUG(N
->dump(CurDAG
));
5242 DEBUG(dbgs() << "\n");
5244 // If the relocation information isn't already present on the
5245 // immediate operand, add it now.
5247 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(ImmOpnd
)) {
5249 const GlobalValue
*GV
= GA
->getGlobal();
5250 // We can't perform this optimization for data whose alignment
5251 // is insufficient for the instruction encoding.
5252 if (GV
->getAlignment() < 4 &&
5253 (StorageOpcode
== PPC::LD
|| StorageOpcode
== PPC::STD
||
5254 StorageOpcode
== PPC::LWA
|| (Offset
% 4) != 0)) {
5255 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
5258 ImmOpnd
= CurDAG
->getTargetGlobalAddress(GV
, dl
, MVT::i64
, Offset
, Flags
);
5259 } else if (ConstantPoolSDNode
*CP
=
5260 dyn_cast
<ConstantPoolSDNode
>(ImmOpnd
)) {
5261 const Constant
*C
= CP
->getConstVal();
5262 ImmOpnd
= CurDAG
->getTargetConstantPool(C
, MVT::i64
,
5268 if (FirstOp
== 1) // Store
5269 (void)CurDAG
->UpdateNodeOperands(N
, N
->getOperand(0), ImmOpnd
,
5270 Base
.getOperand(0), N
->getOperand(3));
5272 (void)CurDAG
->UpdateNodeOperands(N
, ImmOpnd
, Base
.getOperand(0),
5276 (void)CurDAG
->UpdateNodeOperands(HBase
.getNode(), HBase
.getOperand(0),
5279 // The add-immediate may now be dead, in which case remove it.
5280 if (Base
.getNode()->use_empty())
5281 CurDAG
->RemoveDeadNode(Base
.getNode());
5285 /// createPPCISelDag - This pass converts a legalized DAG into a
5286 /// PowerPC-specific DAG, ready for instruction scheduling.
5288 FunctionPass
*llvm::createPPCISelDag(PPCTargetMachine
&TM
,
5289 CodeGenOpt::Level OptLevel
) {
5290 return new PPCDAGToDAGISel(TM
, OptLevel
);