1 //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/STLExtras.h"
10 #include "gtest/gtest.h"
19 int f(rank
<0>) { return 0; }
20 int f(rank
<1>) { return 1; }
21 int f(rank
<2>) { return 2; }
22 int f(rank
<4>) { return 4; }
24 TEST(STLExtrasTest
, Rank
) {
25 // We shouldn't get ambiguities and should select the overload of the same
26 // rank as the argument.
27 EXPECT_EQ(0, f(rank
<0>()));
28 EXPECT_EQ(1, f(rank
<1>()));
29 EXPECT_EQ(2, f(rank
<2>()));
31 // This overload is missing so we end up back at 2.
32 EXPECT_EQ(2, f(rank
<3>()));
34 // But going past 3 should work fine.
35 EXPECT_EQ(4, f(rank
<4>()));
37 // And we can even go higher and just fall back to the last overload.
38 EXPECT_EQ(4, f(rank
<5>()));
39 EXPECT_EQ(4, f(rank
<6>()));
42 TEST(STLExtrasTest
, EnumerateLValue
) {
43 // Test that a simple LValue can be enumerated and gives correct results with
44 // multiple types, including the empty container.
45 std::vector
<char> foo
= {'a', 'b', 'c'};
46 typedef std::pair
<std::size_t, char> CharPairType
;
47 std::vector
<CharPairType
> CharResults
;
49 for (auto X
: llvm::enumerate(foo
)) {
50 CharResults
.emplace_back(X
.index(), X
.value());
52 ASSERT_EQ(3u, CharResults
.size());
53 EXPECT_EQ(CharPairType(0u, 'a'), CharResults
[0]);
54 EXPECT_EQ(CharPairType(1u, 'b'), CharResults
[1]);
55 EXPECT_EQ(CharPairType(2u, 'c'), CharResults
[2]);
57 // Test a const range of a different type.
58 typedef std::pair
<std::size_t, int> IntPairType
;
59 std::vector
<IntPairType
> IntResults
;
60 const std::vector
<int> bar
= {1, 2, 3};
61 for (auto X
: llvm::enumerate(bar
)) {
62 IntResults
.emplace_back(X
.index(), X
.value());
64 ASSERT_EQ(3u, IntResults
.size());
65 EXPECT_EQ(IntPairType(0u, 1), IntResults
[0]);
66 EXPECT_EQ(IntPairType(1u, 2), IntResults
[1]);
67 EXPECT_EQ(IntPairType(2u, 3), IntResults
[2]);
69 // Test an empty range.
71 const std::vector
<int> baz
{};
72 for (auto X
: llvm::enumerate(baz
)) {
73 IntResults
.emplace_back(X
.index(), X
.value());
75 EXPECT_TRUE(IntResults
.empty());
78 TEST(STLExtrasTest
, EnumerateModifyLValue
) {
79 // Test that you can modify the underlying entries of an lvalue range through
80 // the enumeration iterator.
81 std::vector
<char> foo
= {'a', 'b', 'c'};
83 for (auto X
: llvm::enumerate(foo
)) {
86 EXPECT_EQ('b', foo
[0]);
87 EXPECT_EQ('c', foo
[1]);
88 EXPECT_EQ('d', foo
[2]);
91 TEST(STLExtrasTest
, EnumerateRValueRef
) {
92 // Test that an rvalue can be enumerated.
93 typedef std::pair
<std::size_t, int> PairType
;
94 std::vector
<PairType
> Results
;
96 auto Enumerator
= llvm::enumerate(std::vector
<int>{1, 2, 3});
98 for (auto X
: llvm::enumerate(std::vector
<int>{1, 2, 3})) {
99 Results
.emplace_back(X
.index(), X
.value());
102 ASSERT_EQ(3u, Results
.size());
103 EXPECT_EQ(PairType(0u, 1), Results
[0]);
104 EXPECT_EQ(PairType(1u, 2), Results
[1]);
105 EXPECT_EQ(PairType(2u, 3), Results
[2]);
108 TEST(STLExtrasTest
, EnumerateModifyRValue
) {
109 // Test that when enumerating an rvalue, modification still works (even if
110 // this isn't terribly useful, it at least shows that we haven't snuck an
111 // extra const in there somewhere.
112 typedef std::pair
<std::size_t, char> PairType
;
113 std::vector
<PairType
> Results
;
115 for (auto X
: llvm::enumerate(std::vector
<char>{'1', '2', '3'})) {
117 Results
.emplace_back(X
.index(), X
.value());
120 ASSERT_EQ(3u, Results
.size());
121 EXPECT_EQ(PairType(0u, '2'), Results
[0]);
122 EXPECT_EQ(PairType(1u, '3'), Results
[1]);
123 EXPECT_EQ(PairType(2u, '4'), Results
[2]);
126 template <bool B
> struct CanMove
{};
127 template <> struct CanMove
<false> {
128 CanMove(CanMove
&&) = delete;
131 CanMove(const CanMove
&) = default;
134 template <bool B
> struct CanCopy
{};
135 template <> struct CanCopy
<false> {
136 CanCopy(const CanCopy
&) = delete;
139 CanCopy(CanCopy
&&) = default;
142 template <bool Moveable
, bool Copyable
>
143 struct Range
: CanMove
<Moveable
>, CanCopy
<Copyable
> {
144 explicit Range(int &C
, int &M
, int &D
) : C(C
), M(M
), D(D
) {}
145 Range(const Range
&R
) : CanCopy
<Copyable
>(R
), C(R
.C
), M(R
.M
), D(R
.D
) { ++C
; }
146 Range(Range
&&R
) : CanMove
<Moveable
>(std::move(R
)), C(R
.C
), M(R
.M
), D(R
.D
) {
155 int *begin() { return nullptr; }
156 int *end() { return nullptr; }
159 TEST(STLExtrasTest
, EnumerateLifetimeSemantics
) {
160 // Test that when enumerating lvalues and rvalues, there are no surprise
163 // With an rvalue, it should not be destroyed until the end of the scope.
168 auto E1
= enumerate(Range
<true, false>(Copies
, Moves
, Destructors
));
169 // Doesn't compile. rvalue ranges must be moveable.
170 // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
171 EXPECT_EQ(0, Copies
);
173 EXPECT_EQ(1, Destructors
);
175 EXPECT_EQ(0, Copies
);
177 EXPECT_EQ(2, Destructors
);
179 Copies
= Moves
= Destructors
= 0;
180 // With an lvalue, it should not be destroyed even after the end of the scope.
181 // lvalue ranges need be neither copyable nor moveable.
182 Range
<false, false> R(Copies
, Moves
, Destructors
);
184 auto Enumerator
= enumerate(R
);
186 EXPECT_EQ(0, Copies
);
188 EXPECT_EQ(0, Destructors
);
190 EXPECT_EQ(0, Copies
);
192 EXPECT_EQ(0, Destructors
);
195 TEST(STLExtrasTest
, ApplyTuple
) {
196 auto T
= std::make_tuple(1, 3, 7);
197 auto U
= llvm::apply_tuple(
198 [](int A
, int B
, int C
) { return std::make_tuple(A
- B
, B
- C
, C
- A
); },
201 EXPECT_EQ(-2, std::get
<0>(U
));
202 EXPECT_EQ(-4, std::get
<1>(U
));
203 EXPECT_EQ(6, std::get
<2>(U
));
205 auto V
= llvm::apply_tuple(
206 [](int A
, int B
, int C
) {
207 return std::make_tuple(std::make_pair(A
, char('A' + A
)),
208 std::make_pair(B
, char('A' + B
)),
209 std::make_pair(C
, char('A' + C
)));
213 EXPECT_EQ(std::make_pair(1, 'B'), std::get
<0>(V
));
214 EXPECT_EQ(std::make_pair(3, 'D'), std::get
<1>(V
));
215 EXPECT_EQ(std::make_pair(7, 'H'), std::get
<2>(V
));
218 class apply_variadic
{
219 static int apply_one(int X
) { return X
+ 1; }
220 static char apply_one(char C
) { return C
+ 1; }
221 static StringRef
apply_one(StringRef S
) { return S
.drop_back(); }
224 template <typename
... Ts
>
225 auto operator()(Ts
&&... Items
)
226 -> decltype(std::make_tuple(apply_one(Items
)...)) {
227 return std::make_tuple(apply_one(Items
)...);
231 TEST(STLExtrasTest
, ApplyTupleVariadic
) {
232 auto Items
= std::make_tuple(1, llvm::StringRef("Test"), 'X');
233 auto Values
= apply_tuple(apply_variadic(), Items
);
235 EXPECT_EQ(2, std::get
<0>(Values
));
236 EXPECT_EQ("Tes", std::get
<1>(Values
));
237 EXPECT_EQ('Y', std::get
<2>(Values
));
240 TEST(STLExtrasTest
, CountAdaptor
) {
251 EXPECT_EQ(3, count(v
, 1));
252 EXPECT_EQ(2, count(v
, 2));
253 EXPECT_EQ(1, count(v
, 3));
254 EXPECT_EQ(1, count(v
, 4));
257 TEST(STLExtrasTest
, for_each
) {
258 std::vector
<int> v
{0, 1, 2, 3, 4};
261 llvm::for_each(v
, [&count
](int) { ++count
; });
265 TEST(STLExtrasTest
, ToVector
) {
266 std::vector
<char> v
= {'a', 'b', 'c'};
267 auto Enumerated
= to_vector
<4>(enumerate(v
));
268 ASSERT_EQ(3u, Enumerated
.size());
269 for (size_t I
= 0; I
< v
.size(); ++I
) {
270 EXPECT_EQ(I
, Enumerated
[I
].index());
271 EXPECT_EQ(v
[I
], Enumerated
[I
].value());
275 TEST(STLExtrasTest
, ConcatRange
) {
276 std::vector
<int> Expected
= {1, 2, 3, 4, 5, 6, 7, 8};
277 std::vector
<int> Test
;
279 std::vector
<int> V1234
= {1, 2, 3, 4};
280 std::list
<int> L56
= {5, 6};
281 SmallVector
<int, 2> SV78
= {7, 8};
283 // Use concat across different sized ranges of different types with different
285 for (int &i
: concat
<int>(V1234
, L56
, SV78
))
287 EXPECT_EQ(Expected
, Test
);
289 // Use concat between a temporary, an L-value, and an R-value to make sure
290 // complex lifetimes work well.
292 for (int &i
: concat
<int>(std::vector
<int>(V1234
), L56
, std::move(SV78
)))
294 EXPECT_EQ(Expected
, Test
);
297 TEST(STLExtrasTest
, PartitionAdaptor
) {
298 std::vector
<int> V
= {1, 2, 3, 4, 5, 6, 7, 8};
300 auto I
= partition(V
, [](int i
) { return i
% 2 == 0; });
301 ASSERT_EQ(V
.begin() + 4, I
);
303 // Sort the two halves as partition may have messed with the order.
304 llvm::sort(V
.begin(), I
);
305 llvm::sort(I
, V
.end());
317 TEST(STLExtrasTest
, EraseIf
) {
318 std::vector
<int> V
= {1, 2, 3, 4, 5, 6, 7, 8};
320 erase_if(V
, [](int i
) { return i
% 2 == 0; });
321 EXPECT_EQ(4u, V
.size());
328 namespace some_namespace
{
330 std::vector
<int> data
;
331 std::string swap_val
;
334 std::vector
<int>::const_iterator
begin(const some_struct
&s
) {
335 return s
.data
.begin();
338 std::vector
<int>::const_iterator
end(const some_struct
&s
) {
342 void swap(some_struct
&lhs
, some_struct
&rhs
) {
343 // make swap visible as non-adl swap would even seem to
344 // work with std::swap which defaults to moving
345 lhs
.swap_val
= "lhs";
346 rhs
.swap_val
= "rhs";
348 } // namespace some_namespace
350 TEST(STLExtrasTest
, ADLTest
) {
351 some_namespace::some_struct s
{{1, 2, 3, 4, 5}, ""};
352 some_namespace::some_struct s2
{{2, 4, 6, 8, 10}, ""};
354 EXPECT_EQ(*adl_begin(s
), 1);
355 EXPECT_EQ(*(adl_end(s
) - 1), 5);
358 EXPECT_EQ(s
.swap_val
, "lhs");
359 EXPECT_EQ(s2
.swap_val
, "rhs");
362 llvm::for_each(s
, [&count
](int) { ++count
; });
366 TEST(STLExtrasTest
, EmptyTest
) {
367 std::vector
<void*> V
;
368 EXPECT_TRUE(llvm::empty(V
));
369 V
.push_back(nullptr);
370 EXPECT_FALSE(llvm::empty(V
));
372 std::initializer_list
<int> E
= {};
373 std::initializer_list
<int> NotE
= {7, 13, 42};
374 EXPECT_TRUE(llvm::empty(E
));
375 EXPECT_FALSE(llvm::empty(NotE
));
377 auto R0
= make_range(V
.begin(), V
.begin());
378 EXPECT_TRUE(llvm::empty(R0
));
379 auto R1
= make_range(V
.begin(), V
.end());
380 EXPECT_FALSE(llvm::empty(R1
));
383 TEST(STLExtrasTest
, EarlyIncrementTest
) {
384 std::list
<int> L
= {1, 2, 3, 4};
386 auto EIR
= make_early_inc_range(L
);
388 auto I
= EIR
.begin();
393 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
395 // Repeated dereferences are not allowed.
396 EXPECT_DEATH(*I
, "Cannot dereference");
397 // Comparison after dereference is not allowed.
398 EXPECT_DEATH((void)(I
== EI
), "Cannot compare");
399 EXPECT_DEATH((void)(I
!= EI
), "Cannot compare");
405 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
407 // You cannot increment prior to dereference.
408 EXPECT_DEATH(++I
, "Cannot increment");
412 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
414 // Repeated dereferences are not allowed.
415 EXPECT_DEATH(*I
, "Cannot dereference");
419 // Inserting shouldn't break anything. We should be able to keep dereferencing
420 // the currrent iterator and increment. The increment to go to the "next"
421 // iterator from before we inserted.
422 L
.insert(std::next(L
.begin(), 2), -1);
426 // Erasing the front including the current doesn't break incrementing.
427 L
.erase(L
.begin(), std::prev(L
.end()));
431 EXPECT_EQ(EIR
.end(), I
);
434 TEST(STLExtrasTest
, splat
) {
436 EXPECT_FALSE(is_splat(V
));
439 EXPECT_TRUE(is_splat(V
));
443 EXPECT_TRUE(is_splat(V
));
446 EXPECT_FALSE(is_splat(V
));
449 TEST(STLExtrasTest
, to_address
) {
451 EXPECT_EQ(V1
, to_address(V1
));
453 // Check fancy pointer overload for unique_ptr
454 std::unique_ptr
<int> V2
= std::make_unique
<int>(0);
455 EXPECT_EQ(V2
.get(), to_address(V2
));
458 EXPECT_EQ(V1
, to_address(V2
));
461 // Check fancy pointer overload for shared_ptr
462 std::shared_ptr
<int> V3
= std::make_shared
<int>(0);
463 std::shared_ptr
<int> V4
= V3
;
464 EXPECT_EQ(V3
.get(), V4
.get());
465 EXPECT_EQ(V3
.get(), to_address(V3
));
466 EXPECT_EQ(V4
.get(), to_address(V4
));
469 EXPECT_EQ(V1
, to_address(V3
));
472 TEST(STLExtrasTest
, partition_point
) {
473 std::vector
<int> V
= {1, 3, 5, 7, 9};
476 EXPECT_EQ(V
.begin() + 3,
477 partition_point(V
, [](unsigned X
) { return X
< 7; }));
478 EXPECT_EQ(V
.begin(), partition_point(V
, [](unsigned X
) { return X
< 1; }));
479 EXPECT_EQ(V
.end(), partition_point(V
, [](unsigned X
) { return X
< 50; }));