[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / ADT / AllocatorList.h
blob405a2e4264dfbd2d6c477505ab175e6c5fef41b8
1 //===- llvm/ADT/AllocatorList.h - Custom allocator list ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_ADT_ALLOCATORLIST_H
10 #define LLVM_ADT_ALLOCATORLIST_H
12 #include "llvm/ADT/ilist_node.h"
13 #include "llvm/ADT/iterator.h"
14 #include "llvm/ADT/simple_ilist.h"
15 #include "llvm/Support/Allocator.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cstddef>
19 #include <iterator>
20 #include <type_traits>
21 #include <utility>
23 namespace llvm {
25 /// A linked-list with a custom, local allocator.
26 ///
27 /// Expose a std::list-like interface that owns and uses a custom LLVM-style
28 /// allocator (e.g., BumpPtrAllocator), leveraging \a simple_ilist for the
29 /// implementation details.
30 ///
31 /// Because this list owns the allocator, calling \a splice() with a different
32 /// list isn't generally safe. As such, \a splice has been left out of the
33 /// interface entirely.
34 template <class T, class AllocatorT> class AllocatorList : AllocatorT {
35 struct Node : ilist_node<Node> {
36 Node(Node &&) = delete;
37 Node(const Node &) = delete;
38 Node &operator=(Node &&) = delete;
39 Node &operator=(const Node &) = delete;
41 Node(T &&V) : V(std::move(V)) {}
42 Node(const T &V) : V(V) {}
43 template <class... Ts> Node(Ts &&... Vs) : V(std::forward<Ts>(Vs)...) {}
44 T V;
47 using list_type = simple_ilist<Node>;
49 list_type List;
51 AllocatorT &getAlloc() { return *this; }
52 const AllocatorT &getAlloc() const { return *this; }
54 template <class... ArgTs> Node *create(ArgTs &&... Args) {
55 return new (getAlloc()) Node(std::forward<ArgTs>(Args)...);
58 struct Cloner {
59 AllocatorList &AL;
61 Cloner(AllocatorList &AL) : AL(AL) {}
63 Node *operator()(const Node &N) const { return AL.create(N.V); }
66 struct Disposer {
67 AllocatorList &AL;
69 Disposer(AllocatorList &AL) : AL(AL) {}
71 void operator()(Node *N) const {
72 N->~Node();
73 AL.getAlloc().Deallocate(N);
77 public:
78 using value_type = T;
79 using pointer = T *;
80 using reference = T &;
81 using const_pointer = const T *;
82 using const_reference = const T &;
83 using size_type = typename list_type::size_type;
84 using difference_type = typename list_type::difference_type;
86 private:
87 template <class ValueT, class IteratorBase>
88 class IteratorImpl
89 : public iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>,
90 IteratorBase,
91 std::bidirectional_iterator_tag, ValueT> {
92 template <class OtherValueT, class OtherIteratorBase>
93 friend class IteratorImpl;
94 friend AllocatorList;
96 using base_type =
97 iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>, IteratorBase,
98 std::bidirectional_iterator_tag, ValueT>;
100 public:
101 using value_type = ValueT;
102 using pointer = ValueT *;
103 using reference = ValueT &;
105 IteratorImpl() = default;
106 IteratorImpl(const IteratorImpl &) = default;
107 IteratorImpl &operator=(const IteratorImpl &) = default;
109 explicit IteratorImpl(const IteratorBase &I) : base_type(I) {}
111 template <class OtherValueT, class OtherIteratorBase>
112 IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
113 typename std::enable_if<std::is_convertible<
114 OtherIteratorBase, IteratorBase>::value>::type * = nullptr)
115 : base_type(X.wrapped()) {}
117 ~IteratorImpl() = default;
119 reference operator*() const { return base_type::wrapped()->V; }
120 pointer operator->() const { return &operator*(); }
122 friend bool operator==(const IteratorImpl &L, const IteratorImpl &R) {
123 return L.wrapped() == R.wrapped();
125 friend bool operator!=(const IteratorImpl &L, const IteratorImpl &R) {
126 return !(L == R);
130 public:
131 using iterator = IteratorImpl<T, typename list_type::iterator>;
132 using reverse_iterator =
133 IteratorImpl<T, typename list_type::reverse_iterator>;
134 using const_iterator =
135 IteratorImpl<const T, typename list_type::const_iterator>;
136 using const_reverse_iterator =
137 IteratorImpl<const T, typename list_type::const_reverse_iterator>;
139 AllocatorList() = default;
140 AllocatorList(AllocatorList &&X)
141 : AllocatorT(std::move(X.getAlloc())), List(std::move(X.List)) {}
143 AllocatorList(const AllocatorList &X) {
144 List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
147 AllocatorList &operator=(AllocatorList &&X) {
148 clear(); // Dispose of current nodes explicitly.
149 List = std::move(X.List);
150 getAlloc() = std::move(X.getAlloc());
151 return *this;
154 AllocatorList &operator=(const AllocatorList &X) {
155 List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
156 return *this;
159 ~AllocatorList() { clear(); }
161 void swap(AllocatorList &RHS) {
162 List.swap(RHS.List);
163 std::swap(getAlloc(), RHS.getAlloc());
166 bool empty() { return List.empty(); }
167 size_t size() { return List.size(); }
169 iterator begin() { return iterator(List.begin()); }
170 iterator end() { return iterator(List.end()); }
171 const_iterator begin() const { return const_iterator(List.begin()); }
172 const_iterator end() const { return const_iterator(List.end()); }
173 reverse_iterator rbegin() { return reverse_iterator(List.rbegin()); }
174 reverse_iterator rend() { return reverse_iterator(List.rend()); }
175 const_reverse_iterator rbegin() const {
176 return const_reverse_iterator(List.rbegin());
178 const_reverse_iterator rend() const {
179 return const_reverse_iterator(List.rend());
182 T &back() { return List.back().V; }
183 T &front() { return List.front().V; }
184 const T &back() const { return List.back().V; }
185 const T &front() const { return List.front().V; }
187 template <class... Ts> iterator emplace(iterator I, Ts &&... Vs) {
188 return iterator(List.insert(I.wrapped(), *create(std::forward<Ts>(Vs)...)));
191 iterator insert(iterator I, T &&V) {
192 return iterator(List.insert(I.wrapped(), *create(std::move(V))));
194 iterator insert(iterator I, const T &V) {
195 return iterator(List.insert(I.wrapped(), *create(V)));
198 template <class Iterator>
199 void insert(iterator I, Iterator First, Iterator Last) {
200 for (; First != Last; ++First)
201 List.insert(I.wrapped(), *create(*First));
204 iterator erase(iterator I) {
205 return iterator(List.eraseAndDispose(I.wrapped(), Disposer(*this)));
208 iterator erase(iterator First, iterator Last) {
209 return iterator(
210 List.eraseAndDispose(First.wrapped(), Last.wrapped(), Disposer(*this)));
213 void clear() { List.clearAndDispose(Disposer(*this)); }
214 void pop_back() { List.eraseAndDispose(--List.end(), Disposer(*this)); }
215 void pop_front() { List.eraseAndDispose(List.begin(), Disposer(*this)); }
216 void push_back(T &&V) { insert(end(), std::move(V)); }
217 void push_front(T &&V) { insert(begin(), std::move(V)); }
218 void push_back(const T &V) { insert(end(), V); }
219 void push_front(const T &V) { insert(begin(), V); }
220 template <class... Ts> void emplace_back(Ts &&... Vs) {
221 emplace(end(), std::forward<Ts>(Vs)...);
223 template <class... Ts> void emplace_front(Ts &&... Vs) {
224 emplace(begin(), std::forward<Ts>(Vs)...);
227 /// Reset the underlying allocator.
229 /// \pre \c empty()
230 void resetAlloc() {
231 assert(empty() && "Cannot reset allocator if not empty");
232 getAlloc().Reset();
236 template <class T> using BumpPtrList = AllocatorList<T, BumpPtrAllocator>;
238 } // end namespace llvm
240 #endif // LLVM_ADT_ALLOCATORLIST_H