1 //===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines a hash set that can be used to remove duplication of nodes
10 // in a graph. This code was originally created by Chris Lattner for use with
11 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_ADT_FOLDINGSET_H
16 #define LLVM_ADT_FOLDINGSET_H
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/Support/Allocator.h"
28 /// This folding set used for two purposes:
29 /// 1. Given information about a node we want to create, look up the unique
30 /// instance of the node in the set. If the node already exists, return
31 /// it, otherwise return the bucket it should be inserted into.
32 /// 2. Given a node that has already been created, remove it from the set.
34 /// This class is implemented as a single-link chained hash table, where the
35 /// "buckets" are actually the nodes themselves (the next pointer is in the
36 /// node). The last node points back to the bucket to simplify node removal.
38 /// Any node that is to be included in the folding set must be a subclass of
39 /// FoldingSetNode. The node class must also define a Profile method used to
40 /// establish the unique bits of data for the node. The Profile method is
41 /// passed a FoldingSetNodeID object which is used to gather the bits. Just
42 /// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
43 /// NOTE: That the folding set does not own the nodes and it is the
44 /// responsibility of the user to dispose of the nodes.
47 /// class MyNode : public FoldingSetNode {
52 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
54 /// void Profile(FoldingSetNodeID &ID) const {
55 /// ID.AddString(Name);
56 /// ID.AddInteger(Value);
61 /// To define the folding set itself use the FoldingSet template;
64 /// FoldingSet<MyNode> MyFoldingSet;
66 /// Four public methods are available to manipulate the folding set;
68 /// 1) If you have an existing node that you want add to the set but unsure
69 /// that the node might already exist then call;
71 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
73 /// If The result is equal to the input then the node has been inserted.
74 /// Otherwise, the result is the node existing in the folding set, and the
75 /// input can be discarded (use the result instead.)
77 /// 2) If you are ready to construct a node but want to check if it already
78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
81 /// FoldingSetNodeID ID;
82 /// ID.AddString(Name);
83 /// ID.AddInteger(Value);
84 /// void *InsertPoint;
86 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
88 /// If found then M with be non-NULL, else InsertPoint will point to where it
89 /// should be inserted using InsertNode.
91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
92 /// node with FindNodeOrInsertPos;
94 /// InsertNode(N, InsertPoint);
96 /// 4) Finally, if you want to remove a node from the folding set call;
98 /// bool WasRemoved = RemoveNode(N);
100 /// The result indicates whether the node existed in the folding set.
102 class FoldingSetNodeID
;
105 //===----------------------------------------------------------------------===//
106 /// FoldingSetBase - Implements the folding set functionality. The main
107 /// structure is an array of buckets. Each bucket is indexed by the hash of
108 /// the nodes it contains. The bucket itself points to the nodes contained
109 /// in the bucket via a singly linked list. The last node in the list points
110 /// back to the bucket to facilitate node removal.
112 class FoldingSetBase
{
113 virtual void anchor(); // Out of line virtual method.
116 /// Buckets - Array of bucket chains.
119 /// NumBuckets - Length of the Buckets array. Always a power of 2.
122 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
123 /// is greater than twice the number of buckets.
126 explicit FoldingSetBase(unsigned Log2InitSize
= 6);
127 FoldingSetBase(FoldingSetBase
&&Arg
);
128 FoldingSetBase
&operator=(FoldingSetBase
&&RHS
);
132 //===--------------------------------------------------------------------===//
133 /// Node - This class is used to maintain the singly linked bucket list in
137 // NextInFoldingSetBucket - next link in the bucket list.
138 void *NextInFoldingSetBucket
= nullptr;
144 void *getNextInBucket() const { return NextInFoldingSetBucket
; }
145 void SetNextInBucket(void *N
) { NextInFoldingSetBucket
= N
; }
148 /// clear - Remove all nodes from the folding set.
151 /// size - Returns the number of nodes in the folding set.
152 unsigned size() const { return NumNodes
; }
154 /// empty - Returns true if there are no nodes in the folding set.
155 bool empty() const { return NumNodes
== 0; }
157 /// reserve - Increase the number of buckets such that adding the
158 /// EltCount-th node won't cause a rebucket operation. reserve is permitted
159 /// to allocate more space than requested by EltCount.
160 void reserve(unsigned EltCount
);
162 /// capacity - Returns the number of nodes permitted in the folding set
163 /// before a rebucket operation is performed.
164 unsigned capacity() {
165 // We allow a load factor of up to 2.0,
166 // so that means our capacity is NumBuckets * 2
167 return NumBuckets
* 2;
171 /// GrowHashTable - Double the size of the hash table and rehash everything.
172 void GrowHashTable();
174 /// GrowBucketCount - resize the hash table and rehash everything.
175 /// NewBucketCount must be a power of two, and must be greater than the old
177 void GrowBucketCount(unsigned NewBucketCount
);
180 /// GetNodeProfile - Instantiations of the FoldingSet template implement
181 /// this function to gather data bits for the given node.
182 virtual void GetNodeProfile(Node
*N
, FoldingSetNodeID
&ID
) const = 0;
184 /// NodeEquals - Instantiations of the FoldingSet template implement
185 /// this function to compare the given node with the given ID.
186 virtual bool NodeEquals(Node
*N
, const FoldingSetNodeID
&ID
, unsigned IDHash
,
187 FoldingSetNodeID
&TempID
) const=0;
189 /// ComputeNodeHash - Instantiations of the FoldingSet template implement
190 /// this function to compute a hash value for the given node.
191 virtual unsigned ComputeNodeHash(Node
*N
, FoldingSetNodeID
&TempID
) const = 0;
193 // The below methods are protected to encourage subclasses to provide a more
196 /// RemoveNode - Remove a node from the folding set, returning true if one
197 /// was removed or false if the node was not in the folding set.
198 bool RemoveNode(Node
*N
);
200 /// GetOrInsertNode - If there is an existing simple Node exactly
201 /// equal to the specified node, return it. Otherwise, insert 'N' and return
203 Node
*GetOrInsertNode(Node
*N
);
205 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
206 /// return it. If not, return the insertion token that will make insertion
208 Node
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
);
210 /// InsertNode - Insert the specified node into the folding set, knowing that
211 /// it is not already in the folding set. InsertPos must be obtained from
212 /// FindNodeOrInsertPos.
213 void InsertNode(Node
*N
, void *InsertPos
);
216 //===----------------------------------------------------------------------===//
218 /// DefaultFoldingSetTrait - This class provides default implementations
219 /// for FoldingSetTrait implementations.
220 template<typename T
> struct DefaultFoldingSetTrait
{
221 static void Profile(const T
&X
, FoldingSetNodeID
&ID
) {
224 static void Profile(T
&X
, FoldingSetNodeID
&ID
) {
228 // Equals - Test if the profile for X would match ID, using TempID
229 // to compute a temporary ID if necessary. The default implementation
230 // just calls Profile and does a regular comparison. Implementations
231 // can override this to provide more efficient implementations.
232 static inline bool Equals(T
&X
, const FoldingSetNodeID
&ID
, unsigned IDHash
,
233 FoldingSetNodeID
&TempID
);
235 // ComputeHash - Compute a hash value for X, using TempID to
236 // compute a temporary ID if necessary. The default implementation
237 // just calls Profile and does a regular hash computation.
238 // Implementations can override this to provide more efficient
240 static inline unsigned ComputeHash(T
&X
, FoldingSetNodeID
&TempID
);
243 /// FoldingSetTrait - This trait class is used to define behavior of how
244 /// to "profile" (in the FoldingSet parlance) an object of a given type.
245 /// The default behavior is to invoke a 'Profile' method on an object, but
246 /// through template specialization the behavior can be tailored for specific
247 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects
248 /// to FoldingSets that were not originally designed to have that behavior.
249 template<typename T
> struct FoldingSetTrait
250 : public DefaultFoldingSetTrait
<T
> {};
252 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
253 /// for ContextualFoldingSets.
254 template<typename T
, typename Ctx
>
255 struct DefaultContextualFoldingSetTrait
{
256 static void Profile(T
&X
, FoldingSetNodeID
&ID
, Ctx Context
) {
257 X
.Profile(ID
, Context
);
260 static inline bool Equals(T
&X
, const FoldingSetNodeID
&ID
, unsigned IDHash
,
261 FoldingSetNodeID
&TempID
, Ctx Context
);
262 static inline unsigned ComputeHash(T
&X
, FoldingSetNodeID
&TempID
,
266 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
267 /// ContextualFoldingSets.
268 template<typename T
, typename Ctx
> struct ContextualFoldingSetTrait
269 : public DefaultContextualFoldingSetTrait
<T
, Ctx
> {};
271 //===--------------------------------------------------------------------===//
272 /// FoldingSetNodeIDRef - This class describes a reference to an interned
273 /// FoldingSetNodeID, which can be a useful to store node id data rather
274 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
275 /// is often much larger than necessary, and the possibility of heap
276 /// allocation means it requires a non-trivial destructor call.
277 class FoldingSetNodeIDRef
{
278 const unsigned *Data
= nullptr;
282 FoldingSetNodeIDRef() = default;
283 FoldingSetNodeIDRef(const unsigned *D
, size_t S
) : Data(D
), Size(S
) {}
285 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
286 /// used to lookup the node in the FoldingSetBase.
287 unsigned ComputeHash() const;
289 bool operator==(FoldingSetNodeIDRef
) const;
291 bool operator!=(FoldingSetNodeIDRef RHS
) const { return !(*this == RHS
); }
293 /// Used to compare the "ordering" of two nodes as defined by the
294 /// profiled bits and their ordering defined by memcmp().
295 bool operator<(FoldingSetNodeIDRef
) const;
297 const unsigned *getData() const { return Data
; }
298 size_t getSize() const { return Size
; }
301 //===--------------------------------------------------------------------===//
302 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
303 /// a node. When all the bits are gathered this class is used to produce a
304 /// hash value for the node.
305 class FoldingSetNodeID
{
306 /// Bits - Vector of all the data bits that make the node unique.
307 /// Use a SmallVector to avoid a heap allocation in the common case.
308 SmallVector
<unsigned, 32> Bits
;
311 FoldingSetNodeID() = default;
313 FoldingSetNodeID(FoldingSetNodeIDRef Ref
)
314 : Bits(Ref
.getData(), Ref
.getData() + Ref
.getSize()) {}
316 /// Add* - Add various data types to Bit data.
317 void AddPointer(const void *Ptr
);
318 void AddInteger(signed I
);
319 void AddInteger(unsigned I
);
320 void AddInteger(long I
);
321 void AddInteger(unsigned long I
);
322 void AddInteger(long long I
);
323 void AddInteger(unsigned long long I
);
324 void AddBoolean(bool B
) { AddInteger(B
? 1U : 0U); }
325 void AddString(StringRef String
);
326 void AddNodeID(const FoldingSetNodeID
&ID
);
328 template <typename T
>
329 inline void Add(const T
&x
) { FoldingSetTrait
<T
>::Profile(x
, *this); }
331 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
332 /// object to be used to compute a new profile.
333 inline void clear() { Bits
.clear(); }
335 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
336 /// to lookup the node in the FoldingSetBase.
337 unsigned ComputeHash() const;
339 /// operator== - Used to compare two nodes to each other.
340 bool operator==(const FoldingSetNodeID
&RHS
) const;
341 bool operator==(const FoldingSetNodeIDRef RHS
) const;
343 bool operator!=(const FoldingSetNodeID
&RHS
) const { return !(*this == RHS
); }
344 bool operator!=(const FoldingSetNodeIDRef RHS
) const { return !(*this ==RHS
);}
346 /// Used to compare the "ordering" of two nodes as defined by the
347 /// profiled bits and their ordering defined by memcmp().
348 bool operator<(const FoldingSetNodeID
&RHS
) const;
349 bool operator<(const FoldingSetNodeIDRef RHS
) const;
351 /// Intern - Copy this node's data to a memory region allocated from the
352 /// given allocator and return a FoldingSetNodeIDRef describing the
354 FoldingSetNodeIDRef
Intern(BumpPtrAllocator
&Allocator
) const;
357 // Convenience type to hide the implementation of the folding set.
358 using FoldingSetNode
= FoldingSetBase::Node
;
359 template<class T
> class FoldingSetIterator
;
360 template<class T
> class FoldingSetBucketIterator
;
362 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
363 // require the definition of FoldingSetNodeID.
366 DefaultFoldingSetTrait
<T
>::Equals(T
&X
, const FoldingSetNodeID
&ID
,
368 FoldingSetNodeID
&TempID
) {
369 FoldingSetTrait
<T
>::Profile(X
, TempID
);
374 DefaultFoldingSetTrait
<T
>::ComputeHash(T
&X
, FoldingSetNodeID
&TempID
) {
375 FoldingSetTrait
<T
>::Profile(X
, TempID
);
376 return TempID
.ComputeHash();
378 template<typename T
, typename Ctx
>
380 DefaultContextualFoldingSetTrait
<T
, Ctx
>::Equals(T
&X
,
381 const FoldingSetNodeID
&ID
,
383 FoldingSetNodeID
&TempID
,
385 ContextualFoldingSetTrait
<T
, Ctx
>::Profile(X
, TempID
, Context
);
388 template<typename T
, typename Ctx
>
390 DefaultContextualFoldingSetTrait
<T
, Ctx
>::ComputeHash(T
&X
,
391 FoldingSetNodeID
&TempID
,
393 ContextualFoldingSetTrait
<T
, Ctx
>::Profile(X
, TempID
, Context
);
394 return TempID
.ComputeHash();
397 //===----------------------------------------------------------------------===//
398 /// FoldingSetImpl - An implementation detail that lets us share code between
399 /// FoldingSet and ContextualFoldingSet.
400 template <class T
> class FoldingSetImpl
: public FoldingSetBase
{
402 explicit FoldingSetImpl(unsigned Log2InitSize
)
403 : FoldingSetBase(Log2InitSize
) {}
405 FoldingSetImpl(FoldingSetImpl
&&Arg
) = default;
406 FoldingSetImpl
&operator=(FoldingSetImpl
&&RHS
) = default;
407 ~FoldingSetImpl() = default;
410 using iterator
= FoldingSetIterator
<T
>;
412 iterator
begin() { return iterator(Buckets
); }
413 iterator
end() { return iterator(Buckets
+NumBuckets
); }
415 using const_iterator
= FoldingSetIterator
<const T
>;
417 const_iterator
begin() const { return const_iterator(Buckets
); }
418 const_iterator
end() const { return const_iterator(Buckets
+NumBuckets
); }
420 using bucket_iterator
= FoldingSetBucketIterator
<T
>;
422 bucket_iterator
bucket_begin(unsigned hash
) {
423 return bucket_iterator(Buckets
+ (hash
& (NumBuckets
-1)));
426 bucket_iterator
bucket_end(unsigned hash
) {
427 return bucket_iterator(Buckets
+ (hash
& (NumBuckets
-1)), true);
430 /// RemoveNode - Remove a node from the folding set, returning true if one
431 /// was removed or false if the node was not in the folding set.
432 bool RemoveNode(T
*N
) { return FoldingSetBase::RemoveNode(N
); }
434 /// GetOrInsertNode - If there is an existing simple Node exactly
435 /// equal to the specified node, return it. Otherwise, insert 'N' and
436 /// return it instead.
437 T
*GetOrInsertNode(T
*N
) {
438 return static_cast<T
*>(FoldingSetBase::GetOrInsertNode(N
));
441 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
442 /// return it. If not, return the insertion token that will make insertion
444 T
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
) {
445 return static_cast<T
*>(FoldingSetBase::FindNodeOrInsertPos(ID
, InsertPos
));
448 /// InsertNode - Insert the specified node into the folding set, knowing that
449 /// it is not already in the folding set. InsertPos must be obtained from
450 /// FindNodeOrInsertPos.
451 void InsertNode(T
*N
, void *InsertPos
) {
452 FoldingSetBase::InsertNode(N
, InsertPos
);
455 /// InsertNode - Insert the specified node into the folding set, knowing that
456 /// it is not already in the folding set.
457 void InsertNode(T
*N
) {
458 T
*Inserted
= GetOrInsertNode(N
);
460 assert(Inserted
== N
&& "Node already inserted!");
464 //===----------------------------------------------------------------------===//
465 /// FoldingSet - This template class is used to instantiate a specialized
466 /// implementation of the folding set to the node class T. T must be a
467 /// subclass of FoldingSetNode and implement a Profile function.
469 /// Note that this set type is movable and move-assignable. However, its
470 /// moved-from state is not a valid state for anything other than
471 /// move-assigning and destroying. This is primarily to enable movable APIs
472 /// that incorporate these objects.
473 template <class T
> class FoldingSet final
: public FoldingSetImpl
<T
> {
474 using Super
= FoldingSetImpl
<T
>;
475 using Node
= typename
Super::Node
;
477 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
478 /// way to convert nodes into a unique specifier.
479 void GetNodeProfile(Node
*N
, FoldingSetNodeID
&ID
) const override
{
480 T
*TN
= static_cast<T
*>(N
);
481 FoldingSetTrait
<T
>::Profile(*TN
, ID
);
484 /// NodeEquals - Instantiations may optionally provide a way to compare a
485 /// node with a specified ID.
486 bool NodeEquals(Node
*N
, const FoldingSetNodeID
&ID
, unsigned IDHash
,
487 FoldingSetNodeID
&TempID
) const override
{
488 T
*TN
= static_cast<T
*>(N
);
489 return FoldingSetTrait
<T
>::Equals(*TN
, ID
, IDHash
, TempID
);
492 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
493 /// hash value directly from a node.
494 unsigned ComputeNodeHash(Node
*N
, FoldingSetNodeID
&TempID
) const override
{
495 T
*TN
= static_cast<T
*>(N
);
496 return FoldingSetTrait
<T
>::ComputeHash(*TN
, TempID
);
500 explicit FoldingSet(unsigned Log2InitSize
= 6) : Super(Log2InitSize
) {}
501 FoldingSet(FoldingSet
&&Arg
) = default;
502 FoldingSet
&operator=(FoldingSet
&&RHS
) = default;
505 //===----------------------------------------------------------------------===//
506 /// ContextualFoldingSet - This template class is a further refinement
507 /// of FoldingSet which provides a context argument when calling
508 /// Profile on its nodes. Currently, that argument is fixed at
509 /// initialization time.
511 /// T must be a subclass of FoldingSetNode and implement a Profile
512 /// function with signature
513 /// void Profile(FoldingSetNodeID &, Ctx);
514 template <class T
, class Ctx
>
515 class ContextualFoldingSet final
: public FoldingSetImpl
<T
> {
516 // Unfortunately, this can't derive from FoldingSet<T> because the
517 // construction of the vtable for FoldingSet<T> requires
518 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
519 // requires a single-argument T::Profile().
521 using Super
= FoldingSetImpl
<T
>;
522 using Node
= typename
Super::Node
;
526 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
527 /// way to convert nodes into a unique specifier.
528 void GetNodeProfile(Node
*N
, FoldingSetNodeID
&ID
) const override
{
529 T
*TN
= static_cast<T
*>(N
);
530 ContextualFoldingSetTrait
<T
, Ctx
>::Profile(*TN
, ID
, Context
);
533 bool NodeEquals(Node
*N
, const FoldingSetNodeID
&ID
, unsigned IDHash
,
534 FoldingSetNodeID
&TempID
) const override
{
535 T
*TN
= static_cast<T
*>(N
);
536 return ContextualFoldingSetTrait
<T
, Ctx
>::Equals(*TN
, ID
, IDHash
, TempID
,
540 unsigned ComputeNodeHash(Node
*N
, FoldingSetNodeID
&TempID
) const override
{
541 T
*TN
= static_cast<T
*>(N
);
542 return ContextualFoldingSetTrait
<T
, Ctx
>::ComputeHash(*TN
, TempID
, Context
);
546 explicit ContextualFoldingSet(Ctx Context
, unsigned Log2InitSize
= 6)
547 : Super(Log2InitSize
), Context(Context
) {}
549 Ctx
getContext() const { return Context
; }
552 //===----------------------------------------------------------------------===//
553 /// FoldingSetVector - This template class combines a FoldingSet and a vector
554 /// to provide the interface of FoldingSet but with deterministic iteration
555 /// order based on the insertion order. T must be a subclass of FoldingSetNode
556 /// and implement a Profile function.
557 template <class T
, class VectorT
= SmallVector
<T
*, 8>>
558 class FoldingSetVector
{
563 explicit FoldingSetVector(unsigned Log2InitSize
= 6) : Set(Log2InitSize
) {}
565 using iterator
= pointee_iterator
<typename
VectorT::iterator
>;
567 iterator
begin() { return Vector
.begin(); }
568 iterator
end() { return Vector
.end(); }
570 using const_iterator
= pointee_iterator
<typename
VectorT::const_iterator
>;
572 const_iterator
begin() const { return Vector
.begin(); }
573 const_iterator
end() const { return Vector
.end(); }
575 /// clear - Remove all nodes from the folding set.
576 void clear() { Set
.clear(); Vector
.clear(); }
578 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
579 /// return it. If not, return the insertion token that will make insertion
581 T
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
) {
582 return Set
.FindNodeOrInsertPos(ID
, InsertPos
);
585 /// GetOrInsertNode - If there is an existing simple Node exactly
586 /// equal to the specified node, return it. Otherwise, insert 'N' and
587 /// return it instead.
588 T
*GetOrInsertNode(T
*N
) {
589 T
*Result
= Set
.GetOrInsertNode(N
);
590 if (Result
== N
) Vector
.push_back(N
);
594 /// InsertNode - Insert the specified node into the folding set, knowing that
595 /// it is not already in the folding set. InsertPos must be obtained from
596 /// FindNodeOrInsertPos.
597 void InsertNode(T
*N
, void *InsertPos
) {
598 Set
.InsertNode(N
, InsertPos
);
602 /// InsertNode - Insert the specified node into the folding set, knowing that
603 /// it is not already in the folding set.
604 void InsertNode(T
*N
) {
609 /// size - Returns the number of nodes in the folding set.
610 unsigned size() const { return Set
.size(); }
612 /// empty - Returns true if there are no nodes in the folding set.
613 bool empty() const { return Set
.empty(); }
616 //===----------------------------------------------------------------------===//
617 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
618 /// folding sets, which knows how to walk the folding set hash table.
619 class FoldingSetIteratorImpl
{
621 FoldingSetNode
*NodePtr
;
623 FoldingSetIteratorImpl(void **Bucket
);
628 bool operator==(const FoldingSetIteratorImpl
&RHS
) const {
629 return NodePtr
== RHS
.NodePtr
;
631 bool operator!=(const FoldingSetIteratorImpl
&RHS
) const {
632 return NodePtr
!= RHS
.NodePtr
;
636 template <class T
> class FoldingSetIterator
: public FoldingSetIteratorImpl
{
638 explicit FoldingSetIterator(void **Bucket
) : FoldingSetIteratorImpl(Bucket
) {}
640 T
&operator*() const {
641 return *static_cast<T
*>(NodePtr
);
644 T
*operator->() const {
645 return static_cast<T
*>(NodePtr
);
648 inline FoldingSetIterator
&operator++() { // Preincrement
652 FoldingSetIterator
operator++(int) { // Postincrement
653 FoldingSetIterator tmp
= *this; ++*this; return tmp
;
657 //===----------------------------------------------------------------------===//
658 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
659 /// shared by all folding sets, which knows how to walk a particular bucket
660 /// of a folding set hash table.
661 class FoldingSetBucketIteratorImpl
{
665 explicit FoldingSetBucketIteratorImpl(void **Bucket
);
667 FoldingSetBucketIteratorImpl(void **Bucket
, bool) : Ptr(Bucket
) {}
670 void *Probe
= static_cast<FoldingSetNode
*>(Ptr
)->getNextInBucket();
671 uintptr_t x
= reinterpret_cast<uintptr_t>(Probe
) & ~0x1;
672 Ptr
= reinterpret_cast<void*>(x
);
676 bool operator==(const FoldingSetBucketIteratorImpl
&RHS
) const {
677 return Ptr
== RHS
.Ptr
;
679 bool operator!=(const FoldingSetBucketIteratorImpl
&RHS
) const {
680 return Ptr
!= RHS
.Ptr
;
685 class FoldingSetBucketIterator
: public FoldingSetBucketIteratorImpl
{
687 explicit FoldingSetBucketIterator(void **Bucket
) :
688 FoldingSetBucketIteratorImpl(Bucket
) {}
690 FoldingSetBucketIterator(void **Bucket
, bool) :
691 FoldingSetBucketIteratorImpl(Bucket
, true) {}
693 T
&operator*() const { return *static_cast<T
*>(Ptr
); }
694 T
*operator->() const { return static_cast<T
*>(Ptr
); }
696 inline FoldingSetBucketIterator
&operator++() { // Preincrement
700 FoldingSetBucketIterator
operator++(int) { // Postincrement
701 FoldingSetBucketIterator tmp
= *this; ++*this; return tmp
;
705 //===----------------------------------------------------------------------===//
706 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
707 /// types in an enclosing object so that they can be inserted into FoldingSets.
708 template <typename T
>
709 class FoldingSetNodeWrapper
: public FoldingSetNode
{
713 template <typename
... Ts
>
714 explicit FoldingSetNodeWrapper(Ts
&&... Args
)
715 : data(std::forward
<Ts
>(Args
)...) {}
717 void Profile(FoldingSetNodeID
&ID
) { FoldingSetTrait
<T
>::Profile(data
, ID
); }
719 T
&getValue() { return data
; }
720 const T
&getValue() const { return data
; }
722 operator T
&() { return data
; }
723 operator const T
&() const { return data
; }
726 //===----------------------------------------------------------------------===//
727 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
728 /// a FoldingSetNodeID value rather than requiring the node to recompute it
729 /// each time it is needed. This trades space for speed (which can be
730 /// significant if the ID is long), and it also permits nodes to drop
731 /// information that would otherwise only be required for recomputing an ID.
732 class FastFoldingSetNode
: public FoldingSetNode
{
733 FoldingSetNodeID FastID
;
736 explicit FastFoldingSetNode(const FoldingSetNodeID
&ID
) : FastID(ID
) {}
739 void Profile(FoldingSetNodeID
&ID
) const { ID
.AddNodeID(FastID
); }
742 //===----------------------------------------------------------------------===//
743 // Partial specializations of FoldingSetTrait.
745 template<typename T
> struct FoldingSetTrait
<T
*> {
746 static inline void Profile(T
*X
, FoldingSetNodeID
&ID
) {
750 template <typename T1
, typename T2
>
751 struct FoldingSetTrait
<std::pair
<T1
, T2
>> {
752 static inline void Profile(const std::pair
<T1
, T2
> &P
,
753 FoldingSetNodeID
&ID
) {
759 } // end namespace llvm
761 #endif // LLVM_ADT_FOLDINGSET_H