[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / ADT / SparseMultiSet.h
blobd9d3ff4592679e7c0aec10d67e2fdfc93a84c9cb
1 //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the SparseMultiSet class, which adds multiset behavior to
10 // the SparseSet.
12 // A sparse multiset holds a small number of objects identified by integer keys
13 // from a moderately sized universe. The sparse multiset uses more memory than
14 // other containers in order to provide faster operations. Any key can map to
15 // multiple values. A SparseMultiSetNode class is provided, which serves as a
16 // convenient base class for the contents of a SparseMultiSet.
18 //===----------------------------------------------------------------------===//
20 #ifndef LLVM_ADT_SPARSEMULTISET_H
21 #define LLVM_ADT_SPARSEMULTISET_H
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseSet.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <iterator>
30 #include <limits>
31 #include <utility>
33 namespace llvm {
35 /// Fast multiset implementation for objects that can be identified by small
36 /// unsigned keys.
37 ///
38 /// SparseMultiSet allocates memory proportional to the size of the key
39 /// universe, so it is not recommended for building composite data structures.
40 /// It is useful for algorithms that require a single set with fast operations.
41 ///
42 /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
43 /// fast clear() as fast as a vector. The find(), insert(), and erase()
44 /// operations are all constant time, and typically faster than a hash table.
45 /// The iteration order doesn't depend on numerical key values, it only depends
46 /// on the order of insert() and erase() operations. Iteration order is the
47 /// insertion order. Iteration is only provided over elements of equivalent
48 /// keys, but iterators are bidirectional.
49 ///
50 /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
51 /// offers constant-time clear() and size() operations as well as fast iteration
52 /// independent on the size of the universe.
53 ///
54 /// SparseMultiSet contains a dense vector holding all the objects and a sparse
55 /// array holding indexes into the dense vector. Most of the memory is used by
56 /// the sparse array which is the size of the key universe. The SparseT template
57 /// parameter provides a space/speed tradeoff for sets holding many elements.
58 ///
59 /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
60 /// sparse array uses 4 x Universe bytes.
61 ///
62 /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
63 /// lines, but the sparse array is 4x smaller. N is the number of elements in
64 /// the set.
65 ///
66 /// For sets that may grow to thousands of elements, SparseT should be set to
67 /// uint16_t or uint32_t.
68 ///
69 /// Multiset behavior is provided by providing doubly linked lists for values
70 /// that are inlined in the dense vector. SparseMultiSet is a good choice when
71 /// one desires a growable number of entries per key, as it will retain the
72 /// SparseSet algorithmic properties despite being growable. Thus, it is often a
73 /// better choice than a SparseSet of growable containers or a vector of
74 /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
75 /// the iterators don't point to the element erased), allowing for more
76 /// intuitive and fast removal.
77 ///
78 /// @tparam ValueT The type of objects in the set.
79 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
80 /// @tparam SparseT An unsigned integer type. See above.
81 ///
82 template<typename ValueT,
83 typename KeyFunctorT = identity<unsigned>,
84 typename SparseT = uint8_t>
85 class SparseMultiSet {
86 static_assert(std::numeric_limits<SparseT>::is_integer &&
87 !std::numeric_limits<SparseT>::is_signed,
88 "SparseT must be an unsigned integer type");
90 /// The actual data that's stored, as a doubly-linked list implemented via
91 /// indices into the DenseVector. The doubly linked list is implemented
92 /// circular in Prev indices, and INVALID-terminated in Next indices. This
93 /// provides efficient access to list tails. These nodes can also be
94 /// tombstones, in which case they are actually nodes in a single-linked
95 /// freelist of recyclable slots.
96 struct SMSNode {
97 static const unsigned INVALID = ~0U;
99 ValueT Data;
100 unsigned Prev;
101 unsigned Next;
103 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
105 /// List tails have invalid Nexts.
106 bool isTail() const {
107 return Next == INVALID;
110 /// Whether this node is a tombstone node, and thus is in our freelist.
111 bool isTombstone() const {
112 return Prev == INVALID;
115 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
116 /// Prev.
117 bool isValid() const { return Prev != INVALID; }
120 using KeyT = typename KeyFunctorT::argument_type;
121 using DenseT = SmallVector<SMSNode, 8>;
122 DenseT Dense;
123 SparseT *Sparse = nullptr;
124 unsigned Universe = 0;
125 KeyFunctorT KeyIndexOf;
126 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
128 /// We have a built-in recycler for reusing tombstone slots. This recycler
129 /// puts a singly-linked free list into tombstone slots, allowing us quick
130 /// erasure, iterator preservation, and dense size.
131 unsigned FreelistIdx = SMSNode::INVALID;
132 unsigned NumFree = 0;
134 unsigned sparseIndex(const ValueT &Val) const {
135 assert(ValIndexOf(Val) < Universe &&
136 "Invalid key in set. Did object mutate?");
137 return ValIndexOf(Val);
139 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
141 /// Whether the given entry is the head of the list. List heads's previous
142 /// pointers are to the tail of the list, allowing for efficient access to the
143 /// list tail. D must be a valid entry node.
144 bool isHead(const SMSNode &D) const {
145 assert(D.isValid() && "Invalid node for head");
146 return Dense[D.Prev].isTail();
149 /// Whether the given entry is a singleton entry, i.e. the only entry with
150 /// that key.
151 bool isSingleton(const SMSNode &N) const {
152 assert(N.isValid() && "Invalid node for singleton");
153 // Is N its own predecessor?
154 return &Dense[N.Prev] == &N;
157 /// Add in the given SMSNode. Uses a free entry in our freelist if
158 /// available. Returns the index of the added node.
159 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
160 if (NumFree == 0) {
161 Dense.push_back(SMSNode(V, Prev, Next));
162 return Dense.size() - 1;
165 // Peel off a free slot
166 unsigned Idx = FreelistIdx;
167 unsigned NextFree = Dense[Idx].Next;
168 assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
170 Dense[Idx] = SMSNode(V, Prev, Next);
171 FreelistIdx = NextFree;
172 --NumFree;
173 return Idx;
176 /// Make the current index a new tombstone. Pushes it onto the freelist.
177 void makeTombstone(unsigned Idx) {
178 Dense[Idx].Prev = SMSNode::INVALID;
179 Dense[Idx].Next = FreelistIdx;
180 FreelistIdx = Idx;
181 ++NumFree;
184 public:
185 using value_type = ValueT;
186 using reference = ValueT &;
187 using const_reference = const ValueT &;
188 using pointer = ValueT *;
189 using const_pointer = const ValueT *;
190 using size_type = unsigned;
192 SparseMultiSet() = default;
193 SparseMultiSet(const SparseMultiSet &) = delete;
194 SparseMultiSet &operator=(const SparseMultiSet &) = delete;
195 ~SparseMultiSet() { free(Sparse); }
197 /// Set the universe size which determines the largest key the set can hold.
198 /// The universe must be sized before any elements can be added.
200 /// @param U Universe size. All object keys must be less than U.
202 void setUniverse(unsigned U) {
203 // It's not hard to resize the universe on a non-empty set, but it doesn't
204 // seem like a likely use case, so we can add that code when we need it.
205 assert(empty() && "Can only resize universe on an empty map");
206 // Hysteresis prevents needless reallocations.
207 if (U >= Universe/4 && U <= Universe)
208 return;
209 free(Sparse);
210 // The Sparse array doesn't actually need to be initialized, so malloc
211 // would be enough here, but that will cause tools like valgrind to
212 // complain about branching on uninitialized data.
213 Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
214 Universe = U;
217 /// Our iterators are iterators over the collection of objects that share a
218 /// key.
219 template<typename SMSPtrTy>
220 class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
221 ValueT> {
222 friend class SparseMultiSet;
224 SMSPtrTy SMS;
225 unsigned Idx;
226 unsigned SparseIdx;
228 iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
229 : SMS(P), Idx(I), SparseIdx(SI) {}
231 /// Whether our iterator has fallen outside our dense vector.
232 bool isEnd() const {
233 if (Idx == SMSNode::INVALID)
234 return true;
236 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
237 return false;
240 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
241 bool isKeyed() const { return SparseIdx < SMS->Universe; }
243 unsigned Prev() const { return SMS->Dense[Idx].Prev; }
244 unsigned Next() const { return SMS->Dense[Idx].Next; }
246 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
247 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
249 public:
250 using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
251 using value_type = typename super::value_type;
252 using difference_type = typename super::difference_type;
253 using pointer = typename super::pointer;
254 using reference = typename super::reference;
256 reference operator*() const {
257 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
258 "Dereferencing iterator of invalid key or index");
260 return SMS->Dense[Idx].Data;
262 pointer operator->() const { return &operator*(); }
264 /// Comparison operators
265 bool operator==(const iterator_base &RHS) const {
266 // end compares equal
267 if (SMS == RHS.SMS && Idx == RHS.Idx) {
268 assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
269 "Same dense entry, but different keys?");
270 return true;
273 return false;
276 bool operator!=(const iterator_base &RHS) const {
277 return !operator==(RHS);
280 /// Increment and decrement operators
281 iterator_base &operator--() { // predecrement - Back up
282 assert(isKeyed() && "Decrementing an invalid iterator");
283 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
284 "Decrementing head of list");
286 // If we're at the end, then issue a new find()
287 if (isEnd())
288 Idx = SMS->findIndex(SparseIdx).Prev();
289 else
290 Idx = Prev();
292 return *this;
294 iterator_base &operator++() { // preincrement - Advance
295 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
296 Idx = Next();
297 return *this;
299 iterator_base operator--(int) { // postdecrement
300 iterator_base I(*this);
301 --*this;
302 return I;
304 iterator_base operator++(int) { // postincrement
305 iterator_base I(*this);
306 ++*this;
307 return I;
311 using iterator = iterator_base<SparseMultiSet *>;
312 using const_iterator = iterator_base<const SparseMultiSet *>;
314 // Convenience types
315 using RangePair = std::pair<iterator, iterator>;
317 /// Returns an iterator past this container. Note that such an iterator cannot
318 /// be decremented, but will compare equal to other end iterators.
319 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
320 const_iterator end() const {
321 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
324 /// Returns true if the set is empty.
326 /// This is not the same as BitVector::empty().
328 bool empty() const { return size() == 0; }
330 /// Returns the number of elements in the set.
332 /// This is not the same as BitVector::size() which returns the size of the
333 /// universe.
335 size_type size() const {
336 assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
337 return Dense.size() - NumFree;
340 /// Clears the set. This is a very fast constant time operation.
342 void clear() {
343 // Sparse does not need to be cleared, see find().
344 Dense.clear();
345 NumFree = 0;
346 FreelistIdx = SMSNode::INVALID;
349 /// Find an element by its index.
351 /// @param Idx A valid index to find.
352 /// @returns An iterator to the element identified by key, or end().
354 iterator findIndex(unsigned Idx) {
355 assert(Idx < Universe && "Key out of range");
356 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
357 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
358 const unsigned FoundIdx = sparseIndex(Dense[i]);
359 // Check that we're pointing at the correct entry and that it is the head
360 // of a valid list.
361 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
362 return iterator(this, i, Idx);
363 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
364 if (!Stride)
365 break;
367 return end();
370 /// Find an element by its key.
372 /// @param Key A valid key to find.
373 /// @returns An iterator to the element identified by key, or end().
375 iterator find(const KeyT &Key) {
376 return findIndex(KeyIndexOf(Key));
379 const_iterator find(const KeyT &Key) const {
380 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
381 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
384 /// Returns the number of elements identified by Key. This will be linear in
385 /// the number of elements of that key.
386 size_type count(const KeyT &Key) const {
387 unsigned Ret = 0;
388 for (const_iterator It = find(Key); It != end(); ++It)
389 ++Ret;
391 return Ret;
394 /// Returns true if this set contains an element identified by Key.
395 bool contains(const KeyT &Key) const {
396 return find(Key) != end();
399 /// Return the head and tail of the subset's list, otherwise returns end().
400 iterator getHead(const KeyT &Key) { return find(Key); }
401 iterator getTail(const KeyT &Key) {
402 iterator I = find(Key);
403 if (I != end())
404 I = iterator(this, I.Prev(), KeyIndexOf(Key));
405 return I;
408 /// The bounds of the range of items sharing Key K. First member is the head
409 /// of the list, and the second member is a decrementable end iterator for
410 /// that key.
411 RangePair equal_range(const KeyT &K) {
412 iterator B = find(K);
413 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
414 return make_pair(B, E);
417 /// Insert a new element at the tail of the subset list. Returns an iterator
418 /// to the newly added entry.
419 iterator insert(const ValueT &Val) {
420 unsigned Idx = sparseIndex(Val);
421 iterator I = findIndex(Idx);
423 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
425 if (I == end()) {
426 // Make a singleton list
427 Sparse[Idx] = NodeIdx;
428 Dense[NodeIdx].Prev = NodeIdx;
429 return iterator(this, NodeIdx, Idx);
432 // Stick it at the end.
433 unsigned HeadIdx = I.Idx;
434 unsigned TailIdx = I.Prev();
435 Dense[TailIdx].Next = NodeIdx;
436 Dense[HeadIdx].Prev = NodeIdx;
437 Dense[NodeIdx].Prev = TailIdx;
439 return iterator(this, NodeIdx, Idx);
442 /// Erases an existing element identified by a valid iterator.
444 /// This invalidates iterators pointing at the same entry, but erase() returns
445 /// an iterator pointing to the next element in the subset's list. This makes
446 /// it possible to erase selected elements while iterating over the subset:
448 /// tie(I, E) = Set.equal_range(Key);
449 /// while (I != E)
450 /// if (test(*I))
451 /// I = Set.erase(I);
452 /// else
453 /// ++I;
455 /// Note that if the last element in the subset list is erased, this will
456 /// return an end iterator which can be decremented to get the new tail (if it
457 /// exists):
459 /// tie(B, I) = Set.equal_range(Key);
460 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
461 /// isBegin = (--I) == B;
462 /// if (test(I))
463 /// break;
464 /// I = erase(I);
465 /// }
466 iterator erase(iterator I) {
467 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
468 "erasing invalid/end/tombstone iterator");
470 // First, unlink the node from its list. Then swap the node out with the
471 // dense vector's last entry
472 iterator NextI = unlink(Dense[I.Idx]);
474 // Put in a tombstone.
475 makeTombstone(I.Idx);
477 return NextI;
480 /// Erase all elements with the given key. This invalidates all
481 /// iterators of that key.
482 void eraseAll(const KeyT &K) {
483 for (iterator I = find(K); I != end(); /* empty */)
484 I = erase(I);
487 private:
488 /// Unlink the node from its list. Returns the next node in the list.
489 iterator unlink(const SMSNode &N) {
490 if (isSingleton(N)) {
491 // Singleton is already unlinked
492 assert(N.Next == SMSNode::INVALID && "Singleton has next?");
493 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
496 if (isHead(N)) {
497 // If we're the head, then update the sparse array and our next.
498 Sparse[sparseIndex(N)] = N.Next;
499 Dense[N.Next].Prev = N.Prev;
500 return iterator(this, N.Next, ValIndexOf(N.Data));
503 if (N.isTail()) {
504 // If we're the tail, then update our head and our previous.
505 findIndex(sparseIndex(N)).setPrev(N.Prev);
506 Dense[N.Prev].Next = N.Next;
508 // Give back an end iterator that can be decremented
509 iterator I(this, N.Prev, ValIndexOf(N.Data));
510 return ++I;
513 // Otherwise, just drop us
514 Dense[N.Next].Prev = N.Prev;
515 Dense[N.Prev].Next = N.Next;
516 return iterator(this, N.Next, ValIndexOf(N.Data));
520 } // end namespace llvm
522 #endif // LLVM_ADT_SPARSEMULTISET_H