1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the SparseSet class derived from the version described in
10 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
11 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
13 // A sparse set holds a small number of objects identified by integer keys from
14 // a moderately sized universe. The sparse set uses more memory than other
15 // containers in order to provide faster operations.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_ADT_SPARSESET_H
20 #define LLVM_ADT_SPARSESET_H
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/Allocator.h"
33 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
34 /// be uniquely converted to a small integer less than the set's universe. This
35 /// class allows the set to hold values that differ from the set's key type as
36 /// long as an index can still be derived from the value. SparseSet never
37 /// directly compares ValueT, only their indices, so it can map keys to
38 /// arbitrary values. SparseSetValTraits computes the index from the value
39 /// object. To compute the index from a key, SparseSet uses a separate
40 /// KeyFunctorT template argument.
42 /// A simple type declaration, SparseSet<Type>, handles these cases:
43 /// - unsigned key, identity index, identity value
44 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
46 /// The type declaration SparseSet<Type, UnaryFunction> handles:
47 /// - unsigned key, remapped index, identity value (virtual registers)
48 /// - pointer key, pointer-derived index, identity value (node+ID)
49 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
51 /// Only other, unexpected cases require specializing SparseSetValTraits.
53 /// For best results, ValueT should not require a destructor.
55 template<typename ValueT
>
56 struct SparseSetValTraits
{
57 static unsigned getValIndex(const ValueT
&Val
) {
58 return Val
.getSparseSetIndex();
62 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
63 /// generic implementation handles ValueT classes which either provide
64 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
66 template<typename KeyT
, typename ValueT
, typename KeyFunctorT
>
67 struct SparseSetValFunctor
{
68 unsigned operator()(const ValueT
&Val
) const {
69 return SparseSetValTraits
<ValueT
>::getValIndex(Val
);
73 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
74 /// identity key/value sets.
75 template<typename KeyT
, typename KeyFunctorT
>
76 struct SparseSetValFunctor
<KeyT
, KeyT
, KeyFunctorT
> {
77 unsigned operator()(const KeyT
&Key
) const {
78 return KeyFunctorT()(Key
);
82 /// SparseSet - Fast set implmentation for objects that can be identified by
83 /// small unsigned keys.
85 /// SparseSet allocates memory proportional to the size of the key universe, so
86 /// it is not recommended for building composite data structures. It is useful
87 /// for algorithms that require a single set with fast operations.
89 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
90 /// clear() and iteration as fast as a vector. The find(), insert(), and
91 /// erase() operations are all constant time, and typically faster than a hash
92 /// table. The iteration order doesn't depend on numerical key values, it only
93 /// depends on the order of insert() and erase() operations. When no elements
94 /// have been erased, the iteration order is the insertion order.
96 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
97 /// offers constant-time clear() and size() operations as well as fast
98 /// iteration independent on the size of the universe.
100 /// SparseSet contains a dense vector holding all the objects and a sparse
101 /// array holding indexes into the dense vector. Most of the memory is used by
102 /// the sparse array which is the size of the key universe. The SparseT
103 /// template parameter provides a space/speed tradeoff for sets holding many
106 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
107 /// array uses 4 x Universe bytes.
109 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
110 /// lines, but the sparse array is 4x smaller. N is the number of elements in
113 /// For sets that may grow to thousands of elements, SparseT should be set to
114 /// uint16_t or uint32_t.
116 /// @tparam ValueT The type of objects in the set.
117 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
118 /// @tparam SparseT An unsigned integer type. See above.
120 template<typename ValueT
,
121 typename KeyFunctorT
= identity
<unsigned>,
122 typename SparseT
= uint8_t>
124 static_assert(std::numeric_limits
<SparseT
>::is_integer
&&
125 !std::numeric_limits
<SparseT
>::is_signed
,
126 "SparseT must be an unsigned integer type");
128 using KeyT
= typename
KeyFunctorT::argument_type
;
129 using DenseT
= SmallVector
<ValueT
, 8>;
130 using size_type
= unsigned;
132 SparseT
*Sparse
= nullptr;
133 unsigned Universe
= 0;
134 KeyFunctorT KeyIndexOf
;
135 SparseSetValFunctor
<KeyT
, ValueT
, KeyFunctorT
> ValIndexOf
;
138 using value_type
= ValueT
;
139 using reference
= ValueT
&;
140 using const_reference
= const ValueT
&;
141 using pointer
= ValueT
*;
142 using const_pointer
= const ValueT
*;
144 SparseSet() = default;
145 SparseSet(const SparseSet
&) = delete;
146 SparseSet
&operator=(const SparseSet
&) = delete;
147 ~SparseSet() { free(Sparse
); }
149 /// setUniverse - Set the universe size which determines the largest key the
150 /// set can hold. The universe must be sized before any elements can be
153 /// @param U Universe size. All object keys must be less than U.
155 void setUniverse(unsigned U
) {
156 // It's not hard to resize the universe on a non-empty set, but it doesn't
157 // seem like a likely use case, so we can add that code when we need it.
158 assert(empty() && "Can only resize universe on an empty map");
159 // Hysteresis prevents needless reallocations.
160 if (U
>= Universe
/4 && U
<= Universe
)
163 // The Sparse array doesn't actually need to be initialized, so malloc
164 // would be enough here, but that will cause tools like valgrind to
165 // complain about branching on uninitialized data.
166 Sparse
= static_cast<SparseT
*>(safe_calloc(U
, sizeof(SparseT
)));
170 // Import trivial vector stuff from DenseT.
171 using iterator
= typename
DenseT::iterator
;
172 using const_iterator
= typename
DenseT::const_iterator
;
174 const_iterator
begin() const { return Dense
.begin(); }
175 const_iterator
end() const { return Dense
.end(); }
176 iterator
begin() { return Dense
.begin(); }
177 iterator
end() { return Dense
.end(); }
179 /// empty - Returns true if the set is empty.
181 /// This is not the same as BitVector::empty().
183 bool empty() const { return Dense
.empty(); }
185 /// size - Returns the number of elements in the set.
187 /// This is not the same as BitVector::size() which returns the size of the
190 size_type
size() const { return Dense
.size(); }
192 /// clear - Clears the set. This is a very fast constant time operation.
195 // Sparse does not need to be cleared, see find().
199 /// findIndex - Find an element by its index.
201 /// @param Idx A valid index to find.
202 /// @returns An iterator to the element identified by key, or end().
204 iterator
findIndex(unsigned Idx
) {
205 assert(Idx
< Universe
&& "Key out of range");
206 const unsigned Stride
= std::numeric_limits
<SparseT
>::max() + 1u;
207 for (unsigned i
= Sparse
[Idx
], e
= size(); i
< e
; i
+= Stride
) {
208 const unsigned FoundIdx
= ValIndexOf(Dense
[i
]);
209 assert(FoundIdx
< Universe
&& "Invalid key in set. Did object mutate?");
212 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
219 /// find - Find an element by its key.
221 /// @param Key A valid key to find.
222 /// @returns An iterator to the element identified by key, or end().
224 iterator
find(const KeyT
&Key
) {
225 return findIndex(KeyIndexOf(Key
));
228 const_iterator
find(const KeyT
&Key
) const {
229 return const_cast<SparseSet
*>(this)->findIndex(KeyIndexOf(Key
));
232 /// count - Returns 1 if this set contains an element identified by Key,
235 size_type
count(const KeyT
&Key
) const {
236 return find(Key
) == end() ? 0 : 1;
239 /// insert - Attempts to insert a new element.
241 /// If Val is successfully inserted, return (I, true), where I is an iterator
242 /// pointing to the newly inserted element.
244 /// If the set already contains an element with the same key as Val, return
245 /// (I, false), where I is an iterator pointing to the existing element.
247 /// Insertion invalidates all iterators.
249 std::pair
<iterator
, bool> insert(const ValueT
&Val
) {
250 unsigned Idx
= ValIndexOf(Val
);
251 iterator I
= findIndex(Idx
);
253 return std::make_pair(I
, false);
254 Sparse
[Idx
] = size();
255 Dense
.push_back(Val
);
256 return std::make_pair(end() - 1, true);
259 /// array subscript - If an element already exists with this key, return it.
260 /// Otherwise, automatically construct a new value from Key, insert it,
261 /// and return the newly inserted element.
262 ValueT
&operator[](const KeyT
&Key
) {
263 return *insert(ValueT(Key
)).first
;
266 ValueT
pop_back_val() {
267 // Sparse does not need to be cleared, see find().
268 return Dense
.pop_back_val();
271 /// erase - Erases an existing element identified by a valid iterator.
273 /// This invalidates all iterators, but erase() returns an iterator pointing
274 /// to the next element. This makes it possible to erase selected elements
275 /// while iterating over the set:
277 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
279 /// I = Set.erase(I);
283 /// Note that end() changes when elements are erased, unlike std::list.
285 iterator
erase(iterator I
) {
286 assert(unsigned(I
- begin()) < size() && "Invalid iterator");
287 if (I
!= end() - 1) {
289 unsigned BackIdx
= ValIndexOf(Dense
.back());
290 assert(BackIdx
< Universe
&& "Invalid key in set. Did object mutate?");
291 Sparse
[BackIdx
] = I
- begin();
293 // This depends on SmallVector::pop_back() not invalidating iterators.
294 // std::vector::pop_back() doesn't give that guarantee.
299 /// erase - Erases an element identified by Key, if it exists.
301 /// @param Key The key identifying the element to erase.
302 /// @returns True when an element was erased, false if no element was found.
304 bool erase(const KeyT
&Key
) {
305 iterator I
= find(Key
);
313 } // end namespace llvm
315 #endif // LLVM_ADT_SPARSESET_H