[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / Analysis / IVDescriptors.h
blob7be1fd3f57883651ff83ad9d62cd24d0754009f1
1 //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14 #define LLVM_ANALYSIS_IVDESCRIPTORS_H
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/DemandedBits.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/Casting.h"
34 namespace llvm {
36 class AliasSet;
37 class AliasSetTracker;
38 class BasicBlock;
39 class DataLayout;
40 class Loop;
41 class LoopInfo;
42 class OptimizationRemarkEmitter;
43 class PredicatedScalarEvolution;
44 class PredIteratorCache;
45 class ScalarEvolution;
46 class SCEV;
47 class TargetLibraryInfo;
48 class TargetTransformInfo;
50 /// The RecurrenceDescriptor is used to identify recurrences variables in a
51 /// loop. Reduction is a special case of recurrence that has uses of the
52 /// recurrence variable outside the loop. The method isReductionPHI identifies
53 /// reductions that are basic recurrences.
54 ///
55 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
56 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
57 /// array[i]; } is a summation of array elements. Basic recurrences are a
58 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
59 /// references.
61 /// This struct holds information about recurrence variables.
62 class RecurrenceDescriptor {
63 public:
64 /// This enum represents the kinds of recurrences that we support.
65 enum RecurrenceKind {
66 RK_NoRecurrence, ///< Not a recurrence.
67 RK_IntegerAdd, ///< Sum of integers.
68 RK_IntegerMult, ///< Product of integers.
69 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
70 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
71 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
72 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
73 RK_FloatAdd, ///< Sum of floats.
74 RK_FloatMult, ///< Product of floats.
75 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
78 // This enum represents the kind of minmax recurrence.
79 enum MinMaxRecurrenceKind {
80 MRK_Invalid,
81 MRK_UIntMin,
82 MRK_UIntMax,
83 MRK_SIntMin,
84 MRK_SIntMax,
85 MRK_FloatMin,
86 MRK_FloatMax
89 RecurrenceDescriptor() = default;
91 RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
92 FastMathFlags FMF, MinMaxRecurrenceKind MK,
93 Instruction *UAI, Type *RT, bool Signed,
94 SmallPtrSetImpl<Instruction *> &CI)
95 : StartValue(Start), LoopExitInstr(Exit), Kind(K), FMF(FMF),
96 MinMaxKind(MK), UnsafeAlgebraInst(UAI), RecurrenceType(RT),
97 IsSigned(Signed) {
98 CastInsts.insert(CI.begin(), CI.end());
101 /// This POD struct holds information about a potential recurrence operation.
102 class InstDesc {
103 public:
104 InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
105 : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
106 UnsafeAlgebraInst(UAI) {}
108 InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
109 : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
110 UnsafeAlgebraInst(UAI) {}
112 bool isRecurrence() { return IsRecurrence; }
114 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
116 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
118 MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
120 Instruction *getPatternInst() { return PatternLastInst; }
122 private:
123 // Is this instruction a recurrence candidate.
124 bool IsRecurrence;
125 // The last instruction in a min/max pattern (select of the select(icmp())
126 // pattern), or the current recurrence instruction otherwise.
127 Instruction *PatternLastInst;
128 // If this is a min/max pattern the comparison predicate.
129 MinMaxRecurrenceKind MinMaxKind;
130 // Recurrence has unsafe algebra.
131 Instruction *UnsafeAlgebraInst;
134 /// Returns a struct describing if the instruction 'I' can be a recurrence
135 /// variable of type 'Kind'. If the recurrence is a min/max pattern of
136 /// select(icmp()) this function advances the instruction pointer 'I' from the
137 /// compare instruction to the select instruction and stores this pointer in
138 /// 'PatternLastInst' member of the returned struct.
139 static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
140 InstDesc &Prev, bool HasFunNoNaNAttr);
142 /// Returns true if instruction I has multiple uses in Insts
143 static bool hasMultipleUsesOf(Instruction *I,
144 SmallPtrSetImpl<Instruction *> &Insts,
145 unsigned MaxNumUses);
147 /// Returns true if all uses of the instruction I is within the Set.
148 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
150 /// Returns a struct describing if the instruction if the instruction is a
151 /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
152 /// or max(X, Y).
153 static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
155 /// Returns a struct describing if the instruction is a
156 /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
157 static InstDesc isConditionalRdxPattern(RecurrenceKind Kind, Instruction *I);
159 /// Returns identity corresponding to the RecurrenceKind.
160 static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
162 /// Returns the opcode of binary operation corresponding to the
163 /// RecurrenceKind.
164 static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
166 /// Returns true if Phi is a reduction of type Kind and adds it to the
167 /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
168 /// non-null, the minimal bit width needed to compute the reduction will be
169 /// computed.
170 static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
171 bool HasFunNoNaNAttr,
172 RecurrenceDescriptor &RedDes,
173 DemandedBits *DB = nullptr,
174 AssumptionCache *AC = nullptr,
175 DominatorTree *DT = nullptr);
177 /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
178 /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
179 /// non-null, the minimal bit width needed to compute the reduction will be
180 /// computed.
181 static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
182 RecurrenceDescriptor &RedDes,
183 DemandedBits *DB = nullptr,
184 AssumptionCache *AC = nullptr,
185 DominatorTree *DT = nullptr);
187 /// Returns true if Phi is a first-order recurrence. A first-order recurrence
188 /// is a non-reduction recurrence relation in which the value of the
189 /// recurrence in the current loop iteration equals a value defined in the
190 /// previous iteration. \p SinkAfter includes pairs of instructions where the
191 /// first will be rescheduled to appear after the second if/when the loop is
192 /// vectorized. It may be augmented with additional pairs if needed in order
193 /// to handle Phi as a first-order recurrence.
194 static bool
195 isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
196 DenseMap<Instruction *, Instruction *> &SinkAfter,
197 DominatorTree *DT);
199 RecurrenceKind getRecurrenceKind() { return Kind; }
201 MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
203 FastMathFlags getFastMathFlags() { return FMF; }
205 TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
207 Instruction *getLoopExitInstr() { return LoopExitInstr; }
209 /// Returns true if the recurrence has unsafe algebra which requires a relaxed
210 /// floating-point model.
211 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
213 /// Returns first unsafe algebra instruction in the PHI node's use-chain.
214 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
216 /// Returns true if the recurrence kind is an integer kind.
217 static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
219 /// Returns true if the recurrence kind is a floating point kind.
220 static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
222 /// Returns true if the recurrence kind is an arithmetic kind.
223 static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
225 /// Returns the type of the recurrence. This type can be narrower than the
226 /// actual type of the Phi if the recurrence has been type-promoted.
227 Type *getRecurrenceType() { return RecurrenceType; }
229 /// Returns a reference to the instructions used for type-promoting the
230 /// recurrence.
231 SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
233 /// Returns true if all source operands of the recurrence are SExtInsts.
234 bool isSigned() { return IsSigned; }
236 private:
237 // The starting value of the recurrence.
238 // It does not have to be zero!
239 TrackingVH<Value> StartValue;
240 // The instruction who's value is used outside the loop.
241 Instruction *LoopExitInstr = nullptr;
242 // The kind of the recurrence.
243 RecurrenceKind Kind = RK_NoRecurrence;
244 // The fast-math flags on the recurrent instructions. We propagate these
245 // fast-math flags into the vectorized FP instructions we generate.
246 FastMathFlags FMF;
247 // If this a min/max recurrence the kind of recurrence.
248 MinMaxRecurrenceKind MinMaxKind = MRK_Invalid;
249 // First occurrence of unasfe algebra in the PHI's use-chain.
250 Instruction *UnsafeAlgebraInst = nullptr;
251 // The type of the recurrence.
252 Type *RecurrenceType = nullptr;
253 // True if all source operands of the recurrence are SExtInsts.
254 bool IsSigned = false;
255 // Instructions used for type-promoting the recurrence.
256 SmallPtrSet<Instruction *, 8> CastInsts;
259 /// A struct for saving information about induction variables.
260 class InductionDescriptor {
261 public:
262 /// This enum represents the kinds of inductions that we support.
263 enum InductionKind {
264 IK_NoInduction, ///< Not an induction variable.
265 IK_IntInduction, ///< Integer induction variable. Step = C.
266 IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
267 IK_FpInduction ///< Floating point induction variable.
270 public:
271 /// Default constructor - creates an invalid induction.
272 InductionDescriptor() = default;
274 /// Get the consecutive direction. Returns:
275 /// 0 - unknown or non-consecutive.
276 /// 1 - consecutive and increasing.
277 /// -1 - consecutive and decreasing.
278 int getConsecutiveDirection() const;
280 Value *getStartValue() const { return StartValue; }
281 InductionKind getKind() const { return IK; }
282 const SCEV *getStep() const { return Step; }
283 BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
284 ConstantInt *getConstIntStepValue() const;
286 /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
287 /// induction, the induction descriptor \p D will contain the data describing
288 /// this induction. If by some other means the caller has a better SCEV
289 /// expression for \p Phi than the one returned by the ScalarEvolution
290 /// analysis, it can be passed through \p Expr. If the def-use chain
291 /// associated with the phi includes casts (that we know we can ignore
292 /// under proper runtime checks), they are passed through \p CastsToIgnore.
293 static bool
294 isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
295 InductionDescriptor &D, const SCEV *Expr = nullptr,
296 SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
298 /// Returns true if \p Phi is a floating point induction in the loop \p L.
299 /// If \p Phi is an induction, the induction descriptor \p D will contain
300 /// the data describing this induction.
301 static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
302 InductionDescriptor &D);
304 /// Returns true if \p Phi is a loop \p L induction, in the context associated
305 /// with the run-time predicate of PSE. If \p Assume is true, this can add
306 /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
307 /// induction.
308 /// If \p Phi is an induction, \p D will contain the data describing this
309 /// induction.
310 static bool isInductionPHI(PHINode *Phi, const Loop *L,
311 PredicatedScalarEvolution &PSE,
312 InductionDescriptor &D, bool Assume = false);
314 /// Returns true if the induction type is FP and the binary operator does
315 /// not have the "fast-math" property. Such operation requires a relaxed FP
316 /// mode.
317 bool hasUnsafeAlgebra() {
318 return (IK == IK_FpInduction) && InductionBinOp &&
319 !cast<FPMathOperator>(InductionBinOp)->isFast();
322 /// Returns induction operator that does not have "fast-math" property
323 /// and requires FP unsafe mode.
324 Instruction *getUnsafeAlgebraInst() {
325 if (IK != IK_FpInduction)
326 return nullptr;
328 if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast())
329 return nullptr;
330 return InductionBinOp;
333 /// Returns binary opcode of the induction operator.
334 Instruction::BinaryOps getInductionOpcode() const {
335 return InductionBinOp ? InductionBinOp->getOpcode()
336 : Instruction::BinaryOpsEnd;
339 /// Returns a reference to the type cast instructions in the induction
340 /// update chain, that are redundant when guarded with a runtime
341 /// SCEV overflow check.
342 const SmallVectorImpl<Instruction *> &getCastInsts() const {
343 return RedundantCasts;
346 private:
347 /// Private constructor - used by \c isInductionPHI.
348 InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
349 BinaryOperator *InductionBinOp = nullptr,
350 SmallVectorImpl<Instruction *> *Casts = nullptr);
352 /// Start value.
353 TrackingVH<Value> StartValue;
354 /// Induction kind.
355 InductionKind IK = IK_NoInduction;
356 /// Step value.
357 const SCEV *Step = nullptr;
358 // Instruction that advances induction variable.
359 BinaryOperator *InductionBinOp = nullptr;
360 // Instructions used for type-casts of the induction variable,
361 // that are redundant when guarded with a runtime SCEV overflow check.
362 SmallVector<Instruction *, 2> RedundantCasts;
365 } // end namespace llvm
367 #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H