1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This is the generic implementation of LoopInfo used for both Loops and
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
26 //===----------------------------------------------------------------------===//
27 // APIs for simple analysis of the loop. See header notes.
29 /// getExitingBlocks - Return all blocks inside the loop that have successors
30 /// outside of the loop. These are the blocks _inside of the current loop_
31 /// which branch out. The returned list is always unique.
33 template <class BlockT
, class LoopT
>
34 void LoopBase
<BlockT
, LoopT
>::getExitingBlocks(
35 SmallVectorImpl
<BlockT
*> &ExitingBlocks
) const {
36 assert(!isInvalid() && "Loop not in a valid state!");
37 for (const auto BB
: blocks())
38 for (const auto &Succ
: children
<BlockT
*>(BB
))
39 if (!contains(Succ
)) {
40 // Not in current loop? It must be an exit block.
41 ExitingBlocks
.push_back(BB
);
46 /// getExitingBlock - If getExitingBlocks would return exactly one block,
47 /// return that block. Otherwise return null.
48 template <class BlockT
, class LoopT
>
49 BlockT
*LoopBase
<BlockT
, LoopT
>::getExitingBlock() const {
50 assert(!isInvalid() && "Loop not in a valid state!");
51 SmallVector
<BlockT
*, 8> ExitingBlocks
;
52 getExitingBlocks(ExitingBlocks
);
53 if (ExitingBlocks
.size() == 1)
54 return ExitingBlocks
[0];
58 /// getExitBlocks - Return all of the successor blocks of this loop. These
59 /// are the blocks _outside of the current loop_ which are branched to.
61 template <class BlockT
, class LoopT
>
62 void LoopBase
<BlockT
, LoopT
>::getExitBlocks(
63 SmallVectorImpl
<BlockT
*> &ExitBlocks
) const {
64 assert(!isInvalid() && "Loop not in a valid state!");
65 for (const auto BB
: blocks())
66 for (const auto &Succ
: children
<BlockT
*>(BB
))
68 // Not in current loop? It must be an exit block.
69 ExitBlocks
.push_back(Succ
);
72 /// getExitBlock - If getExitBlocks would return exactly one block,
73 /// return that block. Otherwise return null.
74 template <class BlockT
, class LoopT
>
75 BlockT
*LoopBase
<BlockT
, LoopT
>::getExitBlock() const {
76 assert(!isInvalid() && "Loop not in a valid state!");
77 SmallVector
<BlockT
*, 8> ExitBlocks
;
78 getExitBlocks(ExitBlocks
);
79 if (ExitBlocks
.size() == 1)
84 template <class BlockT
, class LoopT
>
85 bool LoopBase
<BlockT
, LoopT
>::hasDedicatedExits() const {
86 // Each predecessor of each exit block of a normal loop is contained
88 SmallVector
<BlockT
*, 4> ExitBlocks
;
89 getExitBlocks(ExitBlocks
);
90 for (BlockT
*EB
: ExitBlocks
)
91 for (BlockT
*Predecessor
: children
<Inverse
<BlockT
*>>(EB
))
92 if (!contains(Predecessor
))
94 // All the requirements are met.
98 // Helper function to get unique loop exits. Pred is a predicate pointing to
99 // BasicBlocks in a loop which should be considered to find loop exits.
100 template <class BlockT
, class LoopT
, typename PredicateT
>
101 void getUniqueExitBlocksHelper(const LoopT
*L
,
102 SmallVectorImpl
<BlockT
*> &ExitBlocks
,
104 assert(!L
->isInvalid() && "Loop not in a valid state!");
105 SmallPtrSet
<BlockT
*, 32> Visited
;
106 auto Filtered
= make_filter_range(L
->blocks(), Pred
);
107 for (BlockT
*BB
: Filtered
)
108 for (BlockT
*Successor
: children
<BlockT
*>(BB
))
109 if (!L
->contains(Successor
))
110 if (Visited
.insert(Successor
).second
)
111 ExitBlocks
.push_back(Successor
);
114 template <class BlockT
, class LoopT
>
115 void LoopBase
<BlockT
, LoopT
>::getUniqueExitBlocks(
116 SmallVectorImpl
<BlockT
*> &ExitBlocks
) const {
117 getUniqueExitBlocksHelper(this, ExitBlocks
,
118 [](const BlockT
*BB
) { return true; });
121 template <class BlockT
, class LoopT
>
122 void LoopBase
<BlockT
, LoopT
>::getUniqueNonLatchExitBlocks(
123 SmallVectorImpl
<BlockT
*> &ExitBlocks
) const {
124 const BlockT
*Latch
= getLoopLatch();
125 assert(Latch
&& "Latch block must exists");
126 getUniqueExitBlocksHelper(this, ExitBlocks
,
127 [Latch
](const BlockT
*BB
) { return BB
!= Latch
; });
130 template <class BlockT
, class LoopT
>
131 BlockT
*LoopBase
<BlockT
, LoopT
>::getUniqueExitBlock() const {
132 SmallVector
<BlockT
*, 8> UniqueExitBlocks
;
133 getUniqueExitBlocks(UniqueExitBlocks
);
134 if (UniqueExitBlocks
.size() == 1)
135 return UniqueExitBlocks
[0];
139 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
140 template <class BlockT
, class LoopT
>
141 void LoopBase
<BlockT
, LoopT
>::getExitEdges(
142 SmallVectorImpl
<Edge
> &ExitEdges
) const {
143 assert(!isInvalid() && "Loop not in a valid state!");
144 for (const auto BB
: blocks())
145 for (const auto &Succ
: children
<BlockT
*>(BB
))
147 // Not in current loop? It must be an exit block.
148 ExitEdges
.emplace_back(BB
, Succ
);
151 /// getLoopPreheader - If there is a preheader for this loop, return it. A
152 /// loop has a preheader if there is only one edge to the header of the loop
153 /// from outside of the loop and it is legal to hoist instructions into the
154 /// predecessor. If this is the case, the block branching to the header of the
155 /// loop is the preheader node.
157 /// This method returns null if there is no preheader for the loop.
159 template <class BlockT
, class LoopT
>
160 BlockT
*LoopBase
<BlockT
, LoopT
>::getLoopPreheader() const {
161 assert(!isInvalid() && "Loop not in a valid state!");
162 // Keep track of nodes outside the loop branching to the header...
163 BlockT
*Out
= getLoopPredecessor();
167 // Make sure we are allowed to hoist instructions into the predecessor.
168 if (!Out
->isLegalToHoistInto())
171 // Make sure there is only one exit out of the preheader.
172 typedef GraphTraits
<BlockT
*> BlockTraits
;
173 typename
BlockTraits::ChildIteratorType SI
= BlockTraits::child_begin(Out
);
175 if (SI
!= BlockTraits::child_end(Out
))
176 return nullptr; // Multiple exits from the block, must not be a preheader.
178 // The predecessor has exactly one successor, so it is a preheader.
182 /// getLoopPredecessor - If the given loop's header has exactly one unique
183 /// predecessor outside the loop, return it. Otherwise return null.
184 /// This is less strict that the loop "preheader" concept, which requires
185 /// the predecessor to have exactly one successor.
187 template <class BlockT
, class LoopT
>
188 BlockT
*LoopBase
<BlockT
, LoopT
>::getLoopPredecessor() const {
189 assert(!isInvalid() && "Loop not in a valid state!");
190 // Keep track of nodes outside the loop branching to the header...
191 BlockT
*Out
= nullptr;
193 // Loop over the predecessors of the header node...
194 BlockT
*Header
= getHeader();
195 for (const auto Pred
: children
<Inverse
<BlockT
*>>(Header
)) {
196 if (!contains(Pred
)) { // If the block is not in the loop...
197 if (Out
&& Out
!= Pred
)
198 return nullptr; // Multiple predecessors outside the loop
203 // Make sure there is only one exit out of the preheader.
204 assert(Out
&& "Header of loop has no predecessors from outside loop?");
208 /// getLoopLatch - If there is a single latch block for this loop, return it.
209 /// A latch block is a block that contains a branch back to the header.
210 template <class BlockT
, class LoopT
>
211 BlockT
*LoopBase
<BlockT
, LoopT
>::getLoopLatch() const {
212 assert(!isInvalid() && "Loop not in a valid state!");
213 BlockT
*Header
= getHeader();
214 BlockT
*Latch
= nullptr;
215 for (const auto Pred
: children
<Inverse
<BlockT
*>>(Header
)) {
216 if (contains(Pred
)) {
226 //===----------------------------------------------------------------------===//
227 // APIs for updating loop information after changing the CFG
230 /// addBasicBlockToLoop - This method is used by other analyses to update loop
231 /// information. NewBB is set to be a new member of the current loop.
232 /// Because of this, it is added as a member of all parent loops, and is added
233 /// to the specified LoopInfo object as being in the current basic block. It
234 /// is not valid to replace the loop header with this method.
236 template <class BlockT
, class LoopT
>
237 void LoopBase
<BlockT
, LoopT
>::addBasicBlockToLoop(
238 BlockT
*NewBB
, LoopInfoBase
<BlockT
, LoopT
> &LIB
) {
239 assert(!isInvalid() && "Loop not in a valid state!");
241 if (!Blocks
.empty()) {
242 auto SameHeader
= LIB
[getHeader()];
243 assert(contains(SameHeader
) && getHeader() == SameHeader
->getHeader() &&
244 "Incorrect LI specified for this loop!");
247 assert(NewBB
&& "Cannot add a null basic block to the loop!");
248 assert(!LIB
[NewBB
] && "BasicBlock already in the loop!");
250 LoopT
*L
= static_cast<LoopT
*>(this);
252 // Add the loop mapping to the LoopInfo object...
253 LIB
.BBMap
[NewBB
] = L
;
255 // Add the basic block to this loop and all parent loops...
257 L
->addBlockEntry(NewBB
);
258 L
= L
->getParentLoop();
262 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
263 /// the OldChild entry in our children list with NewChild, and updates the
264 /// parent pointer of OldChild to be null and the NewChild to be this loop.
265 /// This updates the loop depth of the new child.
266 template <class BlockT
, class LoopT
>
267 void LoopBase
<BlockT
, LoopT
>::replaceChildLoopWith(LoopT
*OldChild
,
269 assert(!isInvalid() && "Loop not in a valid state!");
270 assert(OldChild
->ParentLoop
== this && "This loop is already broken!");
271 assert(!NewChild
->ParentLoop
&& "NewChild already has a parent!");
272 typename
std::vector
<LoopT
*>::iterator I
= find(SubLoops
, OldChild
);
273 assert(I
!= SubLoops
.end() && "OldChild not in loop!");
275 OldChild
->ParentLoop
= nullptr;
276 NewChild
->ParentLoop
= static_cast<LoopT
*>(this);
279 /// verifyLoop - Verify loop structure
280 template <class BlockT
, class LoopT
>
281 void LoopBase
<BlockT
, LoopT
>::verifyLoop() const {
282 assert(!isInvalid() && "Loop not in a valid state!");
284 assert(!Blocks
.empty() && "Loop header is missing");
286 // Setup for using a depth-first iterator to visit every block in the loop.
287 SmallVector
<BlockT
*, 8> ExitBBs
;
288 getExitBlocks(ExitBBs
);
289 df_iterator_default_set
<BlockT
*> VisitSet
;
290 VisitSet
.insert(ExitBBs
.begin(), ExitBBs
.end());
291 df_ext_iterator
<BlockT
*, df_iterator_default_set
<BlockT
*>>
292 BI
= df_ext_begin(getHeader(), VisitSet
),
293 BE
= df_ext_end(getHeader(), VisitSet
);
295 // Keep track of the BBs visited.
296 SmallPtrSet
<BlockT
*, 8> VisitedBBs
;
298 // Check the individual blocks.
299 for (; BI
!= BE
; ++BI
) {
302 assert(std::any_of(GraphTraits
<BlockT
*>::child_begin(BB
),
303 GraphTraits
<BlockT
*>::child_end(BB
),
304 [&](BlockT
*B
) { return contains(B
); }) &&
305 "Loop block has no in-loop successors!");
307 assert(std::any_of(GraphTraits
<Inverse
<BlockT
*>>::child_begin(BB
),
308 GraphTraits
<Inverse
<BlockT
*>>::child_end(BB
),
309 [&](BlockT
*B
) { return contains(B
); }) &&
310 "Loop block has no in-loop predecessors!");
312 SmallVector
<BlockT
*, 2> OutsideLoopPreds
;
313 std::for_each(GraphTraits
<Inverse
<BlockT
*>>::child_begin(BB
),
314 GraphTraits
<Inverse
<BlockT
*>>::child_end(BB
),
317 OutsideLoopPreds
.push_back(B
);
320 if (BB
== getHeader()) {
321 assert(!OutsideLoopPreds
.empty() && "Loop is unreachable!");
322 } else if (!OutsideLoopPreds
.empty()) {
323 // A non-header loop shouldn't be reachable from outside the loop,
324 // though it is permitted if the predecessor is not itself actually
326 BlockT
*EntryBB
= &BB
->getParent()->front();
327 for (BlockT
*CB
: depth_first(EntryBB
))
328 for (unsigned i
= 0, e
= OutsideLoopPreds
.size(); i
!= e
; ++i
)
329 assert(CB
!= OutsideLoopPreds
[i
] &&
330 "Loop has multiple entry points!");
332 assert(BB
!= &getHeader()->getParent()->front() &&
333 "Loop contains function entry block!");
335 VisitedBBs
.insert(BB
);
338 if (VisitedBBs
.size() != getNumBlocks()) {
339 dbgs() << "The following blocks are unreachable in the loop: ";
340 for (auto BB
: Blocks
) {
341 if (!VisitedBBs
.count(BB
)) {
342 dbgs() << *BB
<< "\n";
345 assert(false && "Unreachable block in loop");
348 // Check the subloops.
349 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
350 // Each block in each subloop should be contained within this loop.
351 for (block_iterator BI
= (*I
)->block_begin(), BE
= (*I
)->block_end();
353 assert(contains(*BI
) &&
354 "Loop does not contain all the blocks of a subloop!");
357 // Check the parent loop pointer.
359 assert(is_contained(*ParentLoop
, this) &&
360 "Loop is not a subloop of its parent!");
365 /// verifyLoop - Verify loop structure of this loop and all nested loops.
366 template <class BlockT
, class LoopT
>
367 void LoopBase
<BlockT
, LoopT
>::verifyLoopNest(
368 DenseSet
<const LoopT
*> *Loops
) const {
369 assert(!isInvalid() && "Loop not in a valid state!");
370 Loops
->insert(static_cast<const LoopT
*>(this));
373 // Verify the subloops.
374 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
375 (*I
)->verifyLoopNest(Loops
);
378 template <class BlockT
, class LoopT
>
379 void LoopBase
<BlockT
, LoopT
>::print(raw_ostream
&OS
, unsigned Depth
,
380 bool Verbose
) const {
381 OS
.indent(Depth
* 2);
382 if (static_cast<const LoopT
*>(this)->isAnnotatedParallel())
384 OS
<< "Loop at depth " << getLoopDepth() << " containing: ";
386 BlockT
*H
= getHeader();
387 for (unsigned i
= 0; i
< getBlocks().size(); ++i
) {
388 BlockT
*BB
= getBlocks()[i
];
392 BB
->printAsOperand(OS
, false);
400 if (isLoopExiting(BB
))
407 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
408 (*I
)->print(OS
, Depth
+ 2);
411 //===----------------------------------------------------------------------===//
412 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
413 /// result does / not depend on use list (block predecessor) order.
416 /// Discover a subloop with the specified backedges such that: All blocks within
417 /// this loop are mapped to this loop or a subloop. And all subloops within this
418 /// loop have their parent loop set to this loop or a subloop.
419 template <class BlockT
, class LoopT
>
420 static void discoverAndMapSubloop(LoopT
*L
, ArrayRef
<BlockT
*> Backedges
,
421 LoopInfoBase
<BlockT
, LoopT
> *LI
,
422 const DomTreeBase
<BlockT
> &DomTree
) {
423 typedef GraphTraits
<Inverse
<BlockT
*>> InvBlockTraits
;
425 unsigned NumBlocks
= 0;
426 unsigned NumSubloops
= 0;
428 // Perform a backward CFG traversal using a worklist.
429 std::vector
<BlockT
*> ReverseCFGWorklist(Backedges
.begin(), Backedges
.end());
430 while (!ReverseCFGWorklist
.empty()) {
431 BlockT
*PredBB
= ReverseCFGWorklist
.back();
432 ReverseCFGWorklist
.pop_back();
434 LoopT
*Subloop
= LI
->getLoopFor(PredBB
);
436 if (!DomTree
.isReachableFromEntry(PredBB
))
439 // This is an undiscovered block. Map it to the current loop.
440 LI
->changeLoopFor(PredBB
, L
);
442 if (PredBB
== L
->getHeader())
444 // Push all block predecessors on the worklist.
445 ReverseCFGWorklist
.insert(ReverseCFGWorklist
.end(),
446 InvBlockTraits::child_begin(PredBB
),
447 InvBlockTraits::child_end(PredBB
));
449 // This is a discovered block. Find its outermost discovered loop.
450 while (LoopT
*Parent
= Subloop
->getParentLoop())
453 // If it is already discovered to be a subloop of this loop, continue.
457 // Discover a subloop of this loop.
458 Subloop
->setParentLoop(L
);
460 NumBlocks
+= Subloop
->getBlocksVector().capacity();
461 PredBB
= Subloop
->getHeader();
462 // Continue traversal along predecessors that are not loop-back edges from
463 // within this subloop tree itself. Note that a predecessor may directly
464 // reach another subloop that is not yet discovered to be a subloop of
465 // this loop, which we must traverse.
466 for (const auto Pred
: children
<Inverse
<BlockT
*>>(PredBB
)) {
467 if (LI
->getLoopFor(Pred
) != Subloop
)
468 ReverseCFGWorklist
.push_back(Pred
);
472 L
->getSubLoopsVector().reserve(NumSubloops
);
473 L
->reserveBlocks(NumBlocks
);
476 /// Populate all loop data in a stable order during a single forward DFS.
477 template <class BlockT
, class LoopT
> class PopulateLoopsDFS
{
478 typedef GraphTraits
<BlockT
*> BlockTraits
;
479 typedef typename
BlockTraits::ChildIteratorType SuccIterTy
;
481 LoopInfoBase
<BlockT
, LoopT
> *LI
;
484 PopulateLoopsDFS(LoopInfoBase
<BlockT
, LoopT
> *li
) : LI(li
) {}
486 void traverse(BlockT
*EntryBlock
);
489 void insertIntoLoop(BlockT
*Block
);
492 /// Top-level driver for the forward DFS within the loop.
493 template <class BlockT
, class LoopT
>
494 void PopulateLoopsDFS
<BlockT
, LoopT
>::traverse(BlockT
*EntryBlock
) {
495 for (BlockT
*BB
: post_order(EntryBlock
))
499 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
500 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
501 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
502 template <class BlockT
, class LoopT
>
503 void PopulateLoopsDFS
<BlockT
, LoopT
>::insertIntoLoop(BlockT
*Block
) {
504 LoopT
*Subloop
= LI
->getLoopFor(Block
);
505 if (Subloop
&& Block
== Subloop
->getHeader()) {
506 // We reach this point once per subloop after processing all the blocks in
508 if (Subloop
->getParentLoop())
509 Subloop
->getParentLoop()->getSubLoopsVector().push_back(Subloop
);
511 LI
->addTopLevelLoop(Subloop
);
513 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
514 // the lists, except for the loop header, which is always at the beginning.
515 Subloop
->reverseBlock(1);
516 std::reverse(Subloop
->getSubLoopsVector().begin(),
517 Subloop
->getSubLoopsVector().end());
519 Subloop
= Subloop
->getParentLoop();
521 for (; Subloop
; Subloop
= Subloop
->getParentLoop())
522 Subloop
->addBlockEntry(Block
);
525 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
526 /// interleaved with backward CFG traversals within each subloop
527 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
528 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
529 /// Block vectors are then populated during a single forward CFG traversal
530 /// (PopulateLoopDFS).
532 /// During the two CFG traversals each block is seen three times:
533 /// 1) Discovered and mapped by a reverse CFG traversal.
534 /// 2) Visited during a forward DFS CFG traversal.
535 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
537 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
538 /// insertions per block.
539 template <class BlockT
, class LoopT
>
540 void LoopInfoBase
<BlockT
, LoopT
>::analyze(const DomTreeBase
<BlockT
> &DomTree
) {
541 // Postorder traversal of the dominator tree.
542 const DomTreeNodeBase
<BlockT
> *DomRoot
= DomTree
.getRootNode();
543 for (auto DomNode
: post_order(DomRoot
)) {
545 BlockT
*Header
= DomNode
->getBlock();
546 SmallVector
<BlockT
*, 4> Backedges
;
548 // Check each predecessor of the potential loop header.
549 for (const auto Backedge
: children
<Inverse
<BlockT
*>>(Header
)) {
550 // If Header dominates predBB, this is a new loop. Collect the backedges.
551 if (DomTree
.dominates(Header
, Backedge
) &&
552 DomTree
.isReachableFromEntry(Backedge
)) {
553 Backedges
.push_back(Backedge
);
556 // Perform a backward CFG traversal to discover and map blocks in this loop.
557 if (!Backedges
.empty()) {
558 LoopT
*L
= AllocateLoop(Header
);
559 discoverAndMapSubloop(L
, ArrayRef
<BlockT
*>(Backedges
), this, DomTree
);
562 // Perform a single forward CFG traversal to populate block and subloop
563 // vectors for all loops.
564 PopulateLoopsDFS
<BlockT
, LoopT
> DFS(this);
565 DFS
.traverse(DomRoot
->getBlock());
568 template <class BlockT
, class LoopT
>
569 SmallVector
<LoopT
*, 4> LoopInfoBase
<BlockT
, LoopT
>::getLoopsInPreorder() {
570 SmallVector
<LoopT
*, 4> PreOrderLoops
, PreOrderWorklist
;
571 // The outer-most loop actually goes into the result in the same relative
572 // order as we walk it. But LoopInfo stores the top level loops in reverse
573 // program order so for here we reverse it to get forward program order.
574 // FIXME: If we change the order of LoopInfo we will want to remove the
576 for (LoopT
*RootL
: reverse(*this)) {
577 auto PreOrderLoopsInRootL
= RootL
->getLoopsInPreorder();
578 PreOrderLoops
.append(PreOrderLoopsInRootL
.begin(),
579 PreOrderLoopsInRootL
.end());
582 return PreOrderLoops
;
585 template <class BlockT
, class LoopT
>
586 SmallVector
<LoopT
*, 4>
587 LoopInfoBase
<BlockT
, LoopT
>::getLoopsInReverseSiblingPreorder() {
588 SmallVector
<LoopT
*, 4> PreOrderLoops
, PreOrderWorklist
;
589 // The outer-most loop actually goes into the result in the same relative
590 // order as we walk it. LoopInfo stores the top level loops in reverse
591 // program order so we walk in order here.
592 // FIXME: If we change the order of LoopInfo we will want to add a reverse
594 for (LoopT
*RootL
: *this) {
595 assert(PreOrderWorklist
.empty() &&
596 "Must start with an empty preorder walk worklist.");
597 PreOrderWorklist
.push_back(RootL
);
599 LoopT
*L
= PreOrderWorklist
.pop_back_val();
600 // Sub-loops are stored in forward program order, but will process the
601 // worklist backwards so we can just append them in order.
602 PreOrderWorklist
.append(L
->begin(), L
->end());
603 PreOrderLoops
.push_back(L
);
604 } while (!PreOrderWorklist
.empty());
607 return PreOrderLoops
;
611 template <class BlockT
, class LoopT
>
612 void LoopInfoBase
<BlockT
, LoopT
>::print(raw_ostream
&OS
) const {
613 for (unsigned i
= 0; i
< TopLevelLoops
.size(); ++i
)
614 TopLevelLoops
[i
]->print(OS
);
616 for (DenseMap
<BasicBlock
*, LoopT
*>::const_iterator I
= BBMap
.begin(),
617 E
= BBMap
.end(); I
!= E
; ++I
)
618 OS
<< "BB '" << I
->first
->getName() << "' level = "
619 << I
->second
->getLoopDepth() << "\n";
623 template <typename T
>
624 bool compareVectors(std::vector
<T
> &BB1
, std::vector
<T
> &BB2
) {
630 template <class BlockT
, class LoopT
>
631 void addInnerLoopsToHeadersMap(DenseMap
<BlockT
*, const LoopT
*> &LoopHeaders
,
632 const LoopInfoBase
<BlockT
, LoopT
> &LI
,
634 LoopHeaders
[L
.getHeader()] = &L
;
636 addInnerLoopsToHeadersMap(LoopHeaders
, LI
, *SL
);
640 template <class BlockT
, class LoopT
>
641 static void compareLoops(const LoopT
*L
, const LoopT
*OtherL
,
642 DenseMap
<BlockT
*, const LoopT
*> &OtherLoopHeaders
) {
643 BlockT
*H
= L
->getHeader();
644 BlockT
*OtherH
= OtherL
->getHeader();
645 assert(H
== OtherH
&&
646 "Mismatched headers even though found in the same map entry!");
648 assert(L
->getLoopDepth() == OtherL
->getLoopDepth() &&
649 "Mismatched loop depth!");
650 const LoopT
*ParentL
= L
, *OtherParentL
= OtherL
;
652 assert(ParentL
->getHeader() == OtherParentL
->getHeader() &&
653 "Mismatched parent loop headers!");
654 ParentL
= ParentL
->getParentLoop();
655 OtherParentL
= OtherParentL
->getParentLoop();
658 for (const LoopT
*SubL
: *L
) {
659 BlockT
*SubH
= SubL
->getHeader();
660 const LoopT
*OtherSubL
= OtherLoopHeaders
.lookup(SubH
);
661 assert(OtherSubL
&& "Inner loop is missing in computed loop info!");
662 OtherLoopHeaders
.erase(SubH
);
663 compareLoops(SubL
, OtherSubL
, OtherLoopHeaders
);
666 std::vector
<BlockT
*> BBs
= L
->getBlocks();
667 std::vector
<BlockT
*> OtherBBs
= OtherL
->getBlocks();
668 assert(compareVectors(BBs
, OtherBBs
) &&
669 "Mismatched basic blocks in the loops!");
671 const SmallPtrSetImpl
<const BlockT
*> &BlocksSet
= L
->getBlocksSet();
672 const SmallPtrSetImpl
<const BlockT
*> &OtherBlocksSet
= L
->getBlocksSet();
673 assert(BlocksSet
.size() == OtherBlocksSet
.size() &&
674 std::all_of(BlocksSet
.begin(), BlocksSet
.end(),
675 [&OtherBlocksSet
](const BlockT
*BB
) {
676 return OtherBlocksSet
.count(BB
);
678 "Mismatched basic blocks in BlocksSets!");
682 template <class BlockT
, class LoopT
>
683 void LoopInfoBase
<BlockT
, LoopT
>::verify(
684 const DomTreeBase
<BlockT
> &DomTree
) const {
685 DenseSet
<const LoopT
*> Loops
;
686 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
687 assert(!(*I
)->getParentLoop() && "Top-level loop has a parent!");
688 (*I
)->verifyLoopNest(&Loops
);
691 // Verify that blocks are mapped to valid loops.
693 for (auto &Entry
: BBMap
) {
694 const BlockT
*BB
= Entry
.first
;
695 LoopT
*L
= Entry
.second
;
696 assert(Loops
.count(L
) && "orphaned loop");
697 assert(L
->contains(BB
) && "orphaned block");
698 for (LoopT
*ChildLoop
: *L
)
699 assert(!ChildLoop
->contains(BB
) &&
700 "BBMap should point to the innermost loop containing BB");
703 // Recompute LoopInfo to verify loops structure.
704 LoopInfoBase
<BlockT
, LoopT
> OtherLI
;
705 OtherLI
.analyze(DomTree
);
707 // Build a map we can use to move from our LI to the computed one. This
708 // allows us to ignore the particular order in any layer of the loop forest
709 // while still comparing the structure.
710 DenseMap
<BlockT
*, const LoopT
*> OtherLoopHeaders
;
711 for (LoopT
*L
: OtherLI
)
712 addInnerLoopsToHeadersMap(OtherLoopHeaders
, OtherLI
, *L
);
714 // Walk the top level loops and ensure there is a corresponding top-level
715 // loop in the computed version and then recursively compare those loop
717 for (LoopT
*L
: *this) {
718 BlockT
*Header
= L
->getHeader();
719 const LoopT
*OtherL
= OtherLoopHeaders
.lookup(Header
);
720 assert(OtherL
&& "Top level loop is missing in computed loop info!");
721 // Now that we've matched this loop, erase its header from the map.
722 OtherLoopHeaders
.erase(Header
);
723 // And recursively compare these loops.
724 compareLoops(L
, OtherL
, OtherLoopHeaders
);
727 // Any remaining entries in the map are loops which were found when computing
728 // a fresh LoopInfo but not present in the current one.
729 if (!OtherLoopHeaders
.empty()) {
730 for (const auto &HeaderAndLoop
: OtherLoopHeaders
)
731 dbgs() << "Found new loop: " << *HeaderAndLoop
.second
<< "\n";
732 llvm_unreachable("Found new loops when recomputing LoopInfo!");
737 } // End llvm namespace