[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / Analysis / ScalarEvolutionExpressions.h
blobd008af7b7e6fbbf6538efcc5337b42491a25b4c2
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to represent and build scalar expressions.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
14 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <cassert>
28 #include <cstddef>
30 namespace llvm {
32 class APInt;
33 class Constant;
34 class ConstantRange;
35 class Loop;
36 class Type;
38 enum SCEVTypes {
39 // These should be ordered in terms of increasing complexity to make the
40 // folders simpler.
41 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
42 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUMinExpr, scSMinExpr,
43 scUnknown, scCouldNotCompute
46 /// This class represents a constant integer value.
47 class SCEVConstant : public SCEV {
48 friend class ScalarEvolution;
50 ConstantInt *V;
52 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
53 SCEV(ID, scConstant, 1), V(v) {}
55 public:
56 ConstantInt *getValue() const { return V; }
57 const APInt &getAPInt() const { return getValue()->getValue(); }
59 Type *getType() const { return V->getType(); }
61 /// Methods for support type inquiry through isa, cast, and dyn_cast:
62 static bool classof(const SCEV *S) {
63 return S->getSCEVType() == scConstant;
67 static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
68 APInt Size(16, 1);
69 for (auto *Arg : Args)
70 Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
71 return (unsigned short)Size.getZExtValue();
74 /// This is the base class for unary cast operator classes.
75 class SCEVCastExpr : public SCEV {
76 protected:
77 const SCEV *Op;
78 Type *Ty;
80 SCEVCastExpr(const FoldingSetNodeIDRef ID,
81 unsigned SCEVTy, const SCEV *op, Type *ty);
83 public:
84 const SCEV *getOperand() const { return Op; }
85 Type *getType() const { return Ty; }
87 /// Methods for support type inquiry through isa, cast, and dyn_cast:
88 static bool classof(const SCEV *S) {
89 return S->getSCEVType() == scTruncate ||
90 S->getSCEVType() == scZeroExtend ||
91 S->getSCEVType() == scSignExtend;
95 /// This class represents a truncation of an integer value to a
96 /// smaller integer value.
97 class SCEVTruncateExpr : public SCEVCastExpr {
98 friend class ScalarEvolution;
100 SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
101 const SCEV *op, Type *ty);
103 public:
104 /// Methods for support type inquiry through isa, cast, and dyn_cast:
105 static bool classof(const SCEV *S) {
106 return S->getSCEVType() == scTruncate;
110 /// This class represents a zero extension of a small integer value
111 /// to a larger integer value.
112 class SCEVZeroExtendExpr : public SCEVCastExpr {
113 friend class ScalarEvolution;
115 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
116 const SCEV *op, Type *ty);
118 public:
119 /// Methods for support type inquiry through isa, cast, and dyn_cast:
120 static bool classof(const SCEV *S) {
121 return S->getSCEVType() == scZeroExtend;
125 /// This class represents a sign extension of a small integer value
126 /// to a larger integer value.
127 class SCEVSignExtendExpr : public SCEVCastExpr {
128 friend class ScalarEvolution;
130 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
131 const SCEV *op, Type *ty);
133 public:
134 /// Methods for support type inquiry through isa, cast, and dyn_cast:
135 static bool classof(const SCEV *S) {
136 return S->getSCEVType() == scSignExtend;
140 /// This node is a base class providing common functionality for
141 /// n'ary operators.
142 class SCEVNAryExpr : public SCEV {
143 protected:
144 // Since SCEVs are immutable, ScalarEvolution allocates operand
145 // arrays with its SCEVAllocator, so this class just needs a simple
146 // pointer rather than a more elaborate vector-like data structure.
147 // This also avoids the need for a non-trivial destructor.
148 const SCEV *const *Operands;
149 size_t NumOperands;
151 SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
152 const SCEV *const *O, size_t N)
153 : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O),
154 NumOperands(N) {}
156 public:
157 size_t getNumOperands() const { return NumOperands; }
159 const SCEV *getOperand(unsigned i) const {
160 assert(i < NumOperands && "Operand index out of range!");
161 return Operands[i];
164 using op_iterator = const SCEV *const *;
165 using op_range = iterator_range<op_iterator>;
167 op_iterator op_begin() const { return Operands; }
168 op_iterator op_end() const { return Operands + NumOperands; }
169 op_range operands() const {
170 return make_range(op_begin(), op_end());
173 Type *getType() const { return getOperand(0)->getType(); }
175 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
176 return (NoWrapFlags)(SubclassData & Mask);
179 bool hasNoUnsignedWrap() const {
180 return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
183 bool hasNoSignedWrap() const {
184 return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
187 bool hasNoSelfWrap() const {
188 return getNoWrapFlags(FlagNW) != FlagAnyWrap;
191 /// Methods for support type inquiry through isa, cast, and dyn_cast:
192 static bool classof(const SCEV *S) {
193 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
194 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
195 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr ||
196 S->getSCEVType() == scAddRecExpr;
200 /// This node is the base class for n'ary commutative operators.
201 class SCEVCommutativeExpr : public SCEVNAryExpr {
202 protected:
203 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
204 enum SCEVTypes T, const SCEV *const *O, size_t N)
205 : SCEVNAryExpr(ID, T, O, N) {}
207 public:
208 /// Methods for support type inquiry through isa, cast, and dyn_cast:
209 static bool classof(const SCEV *S) {
210 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
211 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
212 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr;
215 /// Set flags for a non-recurrence without clearing previously set flags.
216 void setNoWrapFlags(NoWrapFlags Flags) {
217 SubclassData |= Flags;
221 /// This node represents an addition of some number of SCEVs.
222 class SCEVAddExpr : public SCEVCommutativeExpr {
223 friend class ScalarEvolution;
225 SCEVAddExpr(const FoldingSetNodeIDRef ID,
226 const SCEV *const *O, size_t N)
227 : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
229 public:
230 Type *getType() const {
231 // Use the type of the last operand, which is likely to be a pointer
232 // type, if there is one. This doesn't usually matter, but it can help
233 // reduce casts when the expressions are expanded.
234 return getOperand(getNumOperands() - 1)->getType();
237 /// Methods for support type inquiry through isa, cast, and dyn_cast:
238 static bool classof(const SCEV *S) {
239 return S->getSCEVType() == scAddExpr;
243 /// This node represents multiplication of some number of SCEVs.
244 class SCEVMulExpr : public SCEVCommutativeExpr {
245 friend class ScalarEvolution;
247 SCEVMulExpr(const FoldingSetNodeIDRef ID,
248 const SCEV *const *O, size_t N)
249 : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
251 public:
252 /// Methods for support type inquiry through isa, cast, and dyn_cast:
253 static bool classof(const SCEV *S) {
254 return S->getSCEVType() == scMulExpr;
258 /// This class represents a binary unsigned division operation.
259 class SCEVUDivExpr : public SCEV {
260 friend class ScalarEvolution;
262 const SCEV *LHS;
263 const SCEV *RHS;
265 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
266 : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs),
267 RHS(rhs) {}
269 public:
270 const SCEV *getLHS() const { return LHS; }
271 const SCEV *getRHS() const { return RHS; }
273 Type *getType() const {
274 // In most cases the types of LHS and RHS will be the same, but in some
275 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
276 // depend on the type for correctness, but handling types carefully can
277 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
278 // a pointer type than the RHS, so use the RHS' type here.
279 return getRHS()->getType();
282 /// Methods for support type inquiry through isa, cast, and dyn_cast:
283 static bool classof(const SCEV *S) {
284 return S->getSCEVType() == scUDivExpr;
288 /// This node represents a polynomial recurrence on the trip count
289 /// of the specified loop. This is the primary focus of the
290 /// ScalarEvolution framework; all the other SCEV subclasses are
291 /// mostly just supporting infrastructure to allow SCEVAddRecExpr
292 /// expressions to be created and analyzed.
294 /// All operands of an AddRec are required to be loop invariant.
296 class SCEVAddRecExpr : public SCEVNAryExpr {
297 friend class ScalarEvolution;
299 const Loop *L;
301 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
302 const SCEV *const *O, size_t N, const Loop *l)
303 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
305 public:
306 const SCEV *getStart() const { return Operands[0]; }
307 const Loop *getLoop() const { return L; }
309 /// Constructs and returns the recurrence indicating how much this
310 /// expression steps by. If this is a polynomial of degree N, it
311 /// returns a chrec of degree N-1. We cannot determine whether
312 /// the step recurrence has self-wraparound.
313 const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
314 if (isAffine()) return getOperand(1);
315 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
316 op_end()),
317 getLoop(), FlagAnyWrap);
320 /// Return true if this represents an expression A + B*x where A
321 /// and B are loop invariant values.
322 bool isAffine() const {
323 // We know that the start value is invariant. This expression is thus
324 // affine iff the step is also invariant.
325 return getNumOperands() == 2;
328 /// Return true if this represents an expression A + B*x + C*x^2
329 /// where A, B and C are loop invariant values. This corresponds
330 /// to an addrec of the form {L,+,M,+,N}
331 bool isQuadratic() const {
332 return getNumOperands() == 3;
335 /// Set flags for a recurrence without clearing any previously set flags.
336 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
337 /// to make it easier to propagate flags.
338 void setNoWrapFlags(NoWrapFlags Flags) {
339 if (Flags & (FlagNUW | FlagNSW))
340 Flags = ScalarEvolution::setFlags(Flags, FlagNW);
341 SubclassData |= Flags;
344 /// Return the value of this chain of recurrences at the specified
345 /// iteration number.
346 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
348 /// Return the number of iterations of this loop that produce
349 /// values in the specified constant range. Another way of
350 /// looking at this is that it returns the first iteration number
351 /// where the value is not in the condition, thus computing the
352 /// exit count. If the iteration count can't be computed, an
353 /// instance of SCEVCouldNotCompute is returned.
354 const SCEV *getNumIterationsInRange(const ConstantRange &Range,
355 ScalarEvolution &SE) const;
357 /// Return an expression representing the value of this expression
358 /// one iteration of the loop ahead.
359 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;
361 /// Methods for support type inquiry through isa, cast, and dyn_cast:
362 static bool classof(const SCEV *S) {
363 return S->getSCEVType() == scAddRecExpr;
367 /// This node is the base class min/max selections.
368 class SCEVMinMaxExpr : public SCEVCommutativeExpr {
369 friend class ScalarEvolution;
371 static bool isMinMaxType(enum SCEVTypes T) {
372 return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr ||
373 T == scUMinExpr;
376 protected:
377 /// Note: Constructing subclasses via this constructor is allowed
378 SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
379 const SCEV *const *O, size_t N)
380 : SCEVCommutativeExpr(ID, T, O, N) {
381 assert(isMinMaxType(T));
382 // Min and max never overflow
383 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
386 public:
387 static bool classof(const SCEV *S) {
388 return isMinMaxType(static_cast<SCEVTypes>(S->getSCEVType()));
391 static enum SCEVTypes negate(enum SCEVTypes T) {
392 switch (T) {
393 case scSMaxExpr:
394 return scSMinExpr;
395 case scSMinExpr:
396 return scSMaxExpr;
397 case scUMaxExpr:
398 return scUMinExpr;
399 case scUMinExpr:
400 return scUMaxExpr;
401 default:
402 llvm_unreachable("Not a min or max SCEV type!");
407 /// This class represents a signed maximum selection.
408 class SCEVSMaxExpr : public SCEVMinMaxExpr {
409 friend class ScalarEvolution;
411 SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
412 : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {}
414 public:
415 /// Methods for support type inquiry through isa, cast, and dyn_cast:
416 static bool classof(const SCEV *S) {
417 return S->getSCEVType() == scSMaxExpr;
421 /// This class represents an unsigned maximum selection.
422 class SCEVUMaxExpr : public SCEVMinMaxExpr {
423 friend class ScalarEvolution;
425 SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
426 : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {}
428 public:
429 /// Methods for support type inquiry through isa, cast, and dyn_cast:
430 static bool classof(const SCEV *S) {
431 return S->getSCEVType() == scUMaxExpr;
435 /// This class represents a signed minimum selection.
436 class SCEVSMinExpr : public SCEVMinMaxExpr {
437 friend class ScalarEvolution;
439 SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
440 : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {}
442 public:
443 /// Methods for support type inquiry through isa, cast, and dyn_cast:
444 static bool classof(const SCEV *S) {
445 return S->getSCEVType() == scSMinExpr;
449 /// This class represents an unsigned minimum selection.
450 class SCEVUMinExpr : public SCEVMinMaxExpr {
451 friend class ScalarEvolution;
453 SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
454 : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {}
456 public:
457 /// Methods for support type inquiry through isa, cast, and dyn_cast:
458 static bool classof(const SCEV *S) {
459 return S->getSCEVType() == scUMinExpr;
463 /// This means that we are dealing with an entirely unknown SCEV
464 /// value, and only represent it as its LLVM Value. This is the
465 /// "bottom" value for the analysis.
466 class SCEVUnknown final : public SCEV, private CallbackVH {
467 friend class ScalarEvolution;
469 /// The parent ScalarEvolution value. This is used to update the
470 /// parent's maps when the value associated with a SCEVUnknown is
471 /// deleted or RAUW'd.
472 ScalarEvolution *SE;
474 /// The next pointer in the linked list of all SCEVUnknown
475 /// instances owned by a ScalarEvolution.
476 SCEVUnknown *Next;
478 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
479 ScalarEvolution *se, SCEVUnknown *next) :
480 SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}
482 // Implement CallbackVH.
483 void deleted() override;
484 void allUsesReplacedWith(Value *New) override;
486 public:
487 Value *getValue() const { return getValPtr(); }
489 /// @{
490 /// Test whether this is a special constant representing a type
491 /// size, alignment, or field offset in a target-independent
492 /// manner, and hasn't happened to have been folded with other
493 /// operations into something unrecognizable. This is mainly only
494 /// useful for pretty-printing and other situations where it isn't
495 /// absolutely required for these to succeed.
496 bool isSizeOf(Type *&AllocTy) const;
497 bool isAlignOf(Type *&AllocTy) const;
498 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
499 /// @}
501 Type *getType() const { return getValPtr()->getType(); }
503 /// Methods for support type inquiry through isa, cast, and dyn_cast:
504 static bool classof(const SCEV *S) {
505 return S->getSCEVType() == scUnknown;
509 /// This class defines a simple visitor class that may be used for
510 /// various SCEV analysis purposes.
511 template<typename SC, typename RetVal=void>
512 struct SCEVVisitor {
513 RetVal visit(const SCEV *S) {
514 switch (S->getSCEVType()) {
515 case scConstant:
516 return ((SC*)this)->visitConstant((const SCEVConstant*)S);
517 case scTruncate:
518 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
519 case scZeroExtend:
520 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
521 case scSignExtend:
522 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
523 case scAddExpr:
524 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
525 case scMulExpr:
526 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
527 case scUDivExpr:
528 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
529 case scAddRecExpr:
530 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
531 case scSMaxExpr:
532 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
533 case scUMaxExpr:
534 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
535 case scSMinExpr:
536 return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S);
537 case scUMinExpr:
538 return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S);
539 case scUnknown:
540 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
541 case scCouldNotCompute:
542 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
543 default:
544 llvm_unreachable("Unknown SCEV type!");
548 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
549 llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
553 /// Visit all nodes in the expression tree using worklist traversal.
555 /// Visitor implements:
556 /// // return true to follow this node.
557 /// bool follow(const SCEV *S);
558 /// // return true to terminate the search.
559 /// bool isDone();
560 template<typename SV>
561 class SCEVTraversal {
562 SV &Visitor;
563 SmallVector<const SCEV *, 8> Worklist;
564 SmallPtrSet<const SCEV *, 8> Visited;
566 void push(const SCEV *S) {
567 if (Visited.insert(S).second && Visitor.follow(S))
568 Worklist.push_back(S);
571 public:
572 SCEVTraversal(SV& V): Visitor(V) {}
574 void visitAll(const SCEV *Root) {
575 push(Root);
576 while (!Worklist.empty() && !Visitor.isDone()) {
577 const SCEV *S = Worklist.pop_back_val();
579 switch (S->getSCEVType()) {
580 case scConstant:
581 case scUnknown:
582 break;
583 case scTruncate:
584 case scZeroExtend:
585 case scSignExtend:
586 push(cast<SCEVCastExpr>(S)->getOperand());
587 break;
588 case scAddExpr:
589 case scMulExpr:
590 case scSMaxExpr:
591 case scUMaxExpr:
592 case scSMinExpr:
593 case scUMinExpr:
594 case scAddRecExpr:
595 for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
596 push(Op);
597 break;
598 case scUDivExpr: {
599 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
600 push(UDiv->getLHS());
601 push(UDiv->getRHS());
602 break;
604 case scCouldNotCompute:
605 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
606 default:
607 llvm_unreachable("Unknown SCEV kind!");
613 /// Use SCEVTraversal to visit all nodes in the given expression tree.
614 template<typename SV>
615 void visitAll(const SCEV *Root, SV& Visitor) {
616 SCEVTraversal<SV> T(Visitor);
617 T.visitAll(Root);
620 /// Return true if any node in \p Root satisfies the predicate \p Pred.
621 template <typename PredTy>
622 bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
623 struct FindClosure {
624 bool Found = false;
625 PredTy Pred;
627 FindClosure(PredTy Pred) : Pred(Pred) {}
629 bool follow(const SCEV *S) {
630 if (!Pred(S))
631 return true;
633 Found = true;
634 return false;
637 bool isDone() const { return Found; }
640 FindClosure FC(Pred);
641 visitAll(Root, FC);
642 return FC.Found;
645 /// This visitor recursively visits a SCEV expression and re-writes it.
646 /// The result from each visit is cached, so it will return the same
647 /// SCEV for the same input.
648 template<typename SC>
649 class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
650 protected:
651 ScalarEvolution &SE;
652 // Memoize the result of each visit so that we only compute once for
653 // the same input SCEV. This is to avoid redundant computations when
654 // a SCEV is referenced by multiple SCEVs. Without memoization, this
655 // visit algorithm would have exponential time complexity in the worst
656 // case, causing the compiler to hang on certain tests.
657 DenseMap<const SCEV *, const SCEV *> RewriteResults;
659 public:
660 SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
662 const SCEV *visit(const SCEV *S) {
663 auto It = RewriteResults.find(S);
664 if (It != RewriteResults.end())
665 return It->second;
666 auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
667 auto Result = RewriteResults.try_emplace(S, Visited);
668 assert(Result.second && "Should insert a new entry");
669 return Result.first->second;
672 const SCEV *visitConstant(const SCEVConstant *Constant) {
673 return Constant;
676 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
677 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
678 return Operand == Expr->getOperand()
679 ? Expr
680 : SE.getTruncateExpr(Operand, Expr->getType());
683 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
684 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
685 return Operand == Expr->getOperand()
686 ? Expr
687 : SE.getZeroExtendExpr(Operand, Expr->getType());
690 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
691 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
692 return Operand == Expr->getOperand()
693 ? Expr
694 : SE.getSignExtendExpr(Operand, Expr->getType());
697 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
698 SmallVector<const SCEV *, 2> Operands;
699 bool Changed = false;
700 for (auto *Op : Expr->operands()) {
701 Operands.push_back(((SC*)this)->visit(Op));
702 Changed |= Op != Operands.back();
704 return !Changed ? Expr : SE.getAddExpr(Operands);
707 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
708 SmallVector<const SCEV *, 2> Operands;
709 bool Changed = false;
710 for (auto *Op : Expr->operands()) {
711 Operands.push_back(((SC*)this)->visit(Op));
712 Changed |= Op != Operands.back();
714 return !Changed ? Expr : SE.getMulExpr(Operands);
717 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
718 auto *LHS = ((SC *)this)->visit(Expr->getLHS());
719 auto *RHS = ((SC *)this)->visit(Expr->getRHS());
720 bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
721 return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
724 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
725 SmallVector<const SCEV *, 2> Operands;
726 bool Changed = false;
727 for (auto *Op : Expr->operands()) {
728 Operands.push_back(((SC*)this)->visit(Op));
729 Changed |= Op != Operands.back();
731 return !Changed ? Expr
732 : SE.getAddRecExpr(Operands, Expr->getLoop(),
733 Expr->getNoWrapFlags());
736 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
737 SmallVector<const SCEV *, 2> Operands;
738 bool Changed = false;
739 for (auto *Op : Expr->operands()) {
740 Operands.push_back(((SC *)this)->visit(Op));
741 Changed |= Op != Operands.back();
743 return !Changed ? Expr : SE.getSMaxExpr(Operands);
746 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
747 SmallVector<const SCEV *, 2> Operands;
748 bool Changed = false;
749 for (auto *Op : Expr->operands()) {
750 Operands.push_back(((SC*)this)->visit(Op));
751 Changed |= Op != Operands.back();
753 return !Changed ? Expr : SE.getUMaxExpr(Operands);
756 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
757 SmallVector<const SCEV *, 2> Operands;
758 bool Changed = false;
759 for (auto *Op : Expr->operands()) {
760 Operands.push_back(((SC *)this)->visit(Op));
761 Changed |= Op != Operands.back();
763 return !Changed ? Expr : SE.getSMinExpr(Operands);
766 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
767 SmallVector<const SCEV *, 2> Operands;
768 bool Changed = false;
769 for (auto *Op : Expr->operands()) {
770 Operands.push_back(((SC *)this)->visit(Op));
771 Changed |= Op != Operands.back();
773 return !Changed ? Expr : SE.getUMinExpr(Operands);
776 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
777 return Expr;
780 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
781 return Expr;
785 using ValueToValueMap = DenseMap<const Value *, Value *>;
787 /// The SCEVParameterRewriter takes a scalar evolution expression and updates
788 /// the SCEVUnknown components following the Map (Value -> Value).
789 class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
790 public:
791 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
792 ValueToValueMap &Map,
793 bool InterpretConsts = false) {
794 SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
795 return Rewriter.visit(Scev);
798 SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
799 : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
801 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
802 Value *V = Expr->getValue();
803 if (Map.count(V)) {
804 Value *NV = Map[V];
805 if (InterpretConsts && isa<ConstantInt>(NV))
806 return SE.getConstant(cast<ConstantInt>(NV));
807 return SE.getUnknown(NV);
809 return Expr;
812 private:
813 ValueToValueMap &Map;
814 bool InterpretConsts;
817 using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
819 /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
820 /// the Map (Loop -> SCEV) to all AddRecExprs.
821 class SCEVLoopAddRecRewriter
822 : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
823 public:
824 SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
825 : SCEVRewriteVisitor(SE), Map(M) {}
827 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
828 ScalarEvolution &SE) {
829 SCEVLoopAddRecRewriter Rewriter(SE, Map);
830 return Rewriter.visit(Scev);
833 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
834 SmallVector<const SCEV *, 2> Operands;
835 for (const SCEV *Op : Expr->operands())
836 Operands.push_back(visit(Op));
838 const Loop *L = Expr->getLoop();
839 const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
841 if (0 == Map.count(L))
842 return Res;
844 const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
845 return Rec->evaluateAtIteration(Map[L], SE);
848 private:
849 LoopToScevMapT &Map;
852 } // end namespace llvm
854 #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H