1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
14 /// 3. Codegen-level implementation which uses target-specific hooks.
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
19 //===----------------------------------------------------------------------===//
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Analysis/AssumptionCache.h"
42 class AssumptionCache
;
50 class ScalarEvolution
;
53 class TargetLibraryInfo
;
58 /// Information about a load/store intrinsic defined by the target.
59 struct MemIntrinsicInfo
{
60 /// This is the pointer that the intrinsic is loading from or storing to.
61 /// If this is non-null, then analysis/optimization passes can assume that
62 /// this intrinsic is functionally equivalent to a load/store from this
64 Value
*PtrVal
= nullptr;
66 // Ordering for atomic operations.
67 AtomicOrdering Ordering
= AtomicOrdering::NotAtomic
;
69 // Same Id is set by the target for corresponding load/store intrinsics.
70 unsigned short MatchingId
= 0;
73 bool WriteMem
= false;
74 bool IsVolatile
= false;
76 bool isUnordered() const {
77 return (Ordering
== AtomicOrdering::NotAtomic
||
78 Ordering
== AtomicOrdering::Unordered
) && !IsVolatile
;
82 /// Attributes of a target dependent hardware loop.
83 struct HardwareLoopInfo
{
84 HardwareLoopInfo() = delete;
85 HardwareLoopInfo(Loop
*L
) : L(L
) {}
87 BasicBlock
*ExitBlock
= nullptr;
88 BranchInst
*ExitBranch
= nullptr;
89 const SCEV
*ExitCount
= nullptr;
90 IntegerType
*CountType
= nullptr;
91 Value
*LoopDecrement
= nullptr; // Decrement the loop counter by this
92 // value in every iteration.
93 bool IsNestingLegal
= false; // Can a hardware loop be a parent to
94 // another hardware loop?
95 bool CounterInReg
= false; // Should loop counter be updated in
96 // the loop via a phi?
97 bool PerformEntryTest
= false; // Generate the intrinsic which also performs
98 // icmp ne zero on the loop counter value and
99 // produces an i1 to guard the loop entry.
100 bool isHardwareLoopCandidate(ScalarEvolution
&SE
, LoopInfo
&LI
,
101 DominatorTree
&DT
, bool ForceNestedLoop
= false,
102 bool ForceHardwareLoopPHI
= false);
103 bool canAnalyze(LoopInfo
&LI
);
106 /// This pass provides access to the codegen interfaces that are needed
107 /// for IR-level transformations.
108 class TargetTransformInfo
{
110 /// Construct a TTI object using a type implementing the \c Concept
113 /// This is used by targets to construct a TTI wrapping their target-specific
114 /// implementation that encodes appropriate costs for their target.
115 template <typename T
> TargetTransformInfo(T Impl
);
117 /// Construct a baseline TTI object using a minimal implementation of
118 /// the \c Concept API below.
120 /// The TTI implementation will reflect the information in the DataLayout
121 /// provided if non-null.
122 explicit TargetTransformInfo(const DataLayout
&DL
);
124 // Provide move semantics.
125 TargetTransformInfo(TargetTransformInfo
&&Arg
);
126 TargetTransformInfo
&operator=(TargetTransformInfo
&&RHS
);
128 // We need to define the destructor out-of-line to define our sub-classes
130 ~TargetTransformInfo();
132 /// Handle the invalidation of this information.
134 /// When used as a result of \c TargetIRAnalysis this method will be called
135 /// when the function this was computed for changes. When it returns false,
136 /// the information is preserved across those changes.
137 bool invalidate(Function
&, const PreservedAnalyses
&,
138 FunctionAnalysisManager::Invalidator
&) {
139 // FIXME: We should probably in some way ensure that the subtarget
140 // information for a function hasn't changed.
144 /// \name Generic Target Information
147 /// The kind of cost model.
149 /// There are several different cost models that can be customized by the
150 /// target. The normalization of each cost model may be target specific.
151 enum TargetCostKind
{
152 TCK_RecipThroughput
, ///< Reciprocal throughput.
153 TCK_Latency
, ///< The latency of instruction.
154 TCK_CodeSize
///< Instruction code size.
157 /// Query the cost of a specified instruction.
159 /// Clients should use this interface to query the cost of an existing
160 /// instruction. The instruction must have a valid parent (basic block).
162 /// Note, this method does not cache the cost calculation and it
163 /// can be expensive in some cases.
164 int getInstructionCost(const Instruction
*I
, enum TargetCostKind kind
) const {
166 case TCK_RecipThroughput
:
167 return getInstructionThroughput(I
);
170 return getInstructionLatency(I
);
173 return getUserCost(I
);
175 llvm_unreachable("Unknown instruction cost kind");
178 /// Underlying constants for 'cost' values in this interface.
180 /// Many APIs in this interface return a cost. This enum defines the
181 /// fundamental values that should be used to interpret (and produce) those
182 /// costs. The costs are returned as an int rather than a member of this
183 /// enumeration because it is expected that the cost of one IR instruction
184 /// may have a multiplicative factor to it or otherwise won't fit directly
185 /// into the enum. Moreover, it is common to sum or average costs which works
186 /// better as simple integral values. Thus this enum only provides constants.
187 /// Also note that the returned costs are signed integers to make it natural
188 /// to add, subtract, and test with zero (a common boundary condition). It is
189 /// not expected that 2^32 is a realistic cost to be modeling at any point.
191 /// Note that these costs should usually reflect the intersection of code-size
192 /// cost and execution cost. A free instruction is typically one that folds
193 /// into another instruction. For example, reg-to-reg moves can often be
194 /// skipped by renaming the registers in the CPU, but they still are encoded
195 /// and thus wouldn't be considered 'free' here.
196 enum TargetCostConstants
{
197 TCC_Free
= 0, ///< Expected to fold away in lowering.
198 TCC_Basic
= 1, ///< The cost of a typical 'add' instruction.
199 TCC_Expensive
= 4 ///< The cost of a 'div' instruction on x86.
202 /// Estimate the cost of a specific operation when lowered.
204 /// Note that this is designed to work on an arbitrary synthetic opcode, and
205 /// thus work for hypothetical queries before an instruction has even been
206 /// formed. However, this does *not* work for GEPs, and must not be called
207 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
208 /// analyzing a GEP's cost required more information.
210 /// Typically only the result type is required, and the operand type can be
211 /// omitted. However, if the opcode is one of the cast instructions, the
212 /// operand type is required.
214 /// The returned cost is defined in terms of \c TargetCostConstants, see its
215 /// comments for a detailed explanation of the cost values.
216 int getOperationCost(unsigned Opcode
, Type
*Ty
, Type
*OpTy
= nullptr) const;
218 /// Estimate the cost of a GEP operation when lowered.
220 /// The contract for this function is the same as \c getOperationCost except
221 /// that it supports an interface that provides extra information specific to
222 /// the GEP operation.
223 int getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
224 ArrayRef
<const Value
*> Operands
) const;
226 /// Estimate the cost of a EXT operation when lowered.
228 /// The contract for this function is the same as \c getOperationCost except
229 /// that it supports an interface that provides extra information specific to
230 /// the EXT operation.
231 int getExtCost(const Instruction
*I
, const Value
*Src
) const;
233 /// Estimate the cost of a function call when lowered.
235 /// The contract for this is the same as \c getOperationCost except that it
236 /// supports an interface that provides extra information specific to call
239 /// This is the most basic query for estimating call cost: it only knows the
240 /// function type and (potentially) the number of arguments at the call site.
241 /// The latter is only interesting for varargs function types.
242 int getCallCost(FunctionType
*FTy
, int NumArgs
= -1,
243 const User
*U
= nullptr) const;
245 /// Estimate the cost of calling a specific function when lowered.
247 /// This overload adds the ability to reason about the particular function
248 /// being called in the event it is a library call with special lowering.
249 int getCallCost(const Function
*F
, int NumArgs
= -1,
250 const User
*U
= nullptr) const;
252 /// Estimate the cost of calling a specific function when lowered.
254 /// This overload allows specifying a set of candidate argument values.
255 int getCallCost(const Function
*F
, ArrayRef
<const Value
*> Arguments
,
256 const User
*U
= nullptr) const;
258 /// \returns A value by which our inlining threshold should be multiplied.
259 /// This is primarily used to bump up the inlining threshold wholesale on
260 /// targets where calls are unusually expensive.
262 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
263 /// individual classes of instructions would be better.
264 unsigned getInliningThresholdMultiplier() const;
266 /// \returns Vector bonus in percent.
268 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
269 /// and apply this bonus based on the percentage of vector instructions. A
270 /// bonus is applied if the vector instructions exceed 50% and half that amount
271 /// is applied if it exceeds 10%. Note that these bonuses are some what
272 /// arbitrary and evolved over time by accident as much as because they are
273 /// principled bonuses.
274 /// FIXME: It would be nice to base the bonus values on something more
275 /// scientific. A target may has no bonus on vector instructions.
276 int getInlinerVectorBonusPercent() const;
278 /// Estimate the cost of an intrinsic when lowered.
280 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
281 int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
282 ArrayRef
<Type
*> ParamTys
,
283 const User
*U
= nullptr) const;
285 /// Estimate the cost of an intrinsic when lowered.
287 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
288 int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
289 ArrayRef
<const Value
*> Arguments
,
290 const User
*U
= nullptr) const;
292 /// \return the expected cost of a memcpy, which could e.g. depend on the
293 /// source/destination type and alignment and the number of bytes copied.
294 int getMemcpyCost(const Instruction
*I
) const;
296 /// \return The estimated number of case clusters when lowering \p 'SI'.
297 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
299 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
300 unsigned &JTSize
) const;
302 /// Estimate the cost of a given IR user when lowered.
304 /// This can estimate the cost of either a ConstantExpr or Instruction when
305 /// lowered. It has two primary advantages over the \c getOperationCost and
306 /// \c getGEPCost above, and one significant disadvantage: it can only be
307 /// used when the IR construct has already been formed.
309 /// The advantages are that it can inspect the SSA use graph to reason more
310 /// accurately about the cost. For example, all-constant-GEPs can often be
311 /// folded into a load or other instruction, but if they are used in some
312 /// other context they may not be folded. This routine can distinguish such
315 /// \p Operands is a list of operands which can be a result of transformations
316 /// of the current operands. The number of the operands on the list must equal
317 /// to the number of the current operands the IR user has. Their order on the
318 /// list must be the same as the order of the current operands the IR user
321 /// The returned cost is defined in terms of \c TargetCostConstants, see its
322 /// comments for a detailed explanation of the cost values.
323 int getUserCost(const User
*U
, ArrayRef
<const Value
*> Operands
) const;
325 /// This is a helper function which calls the two-argument getUserCost
326 /// with \p Operands which are the current operands U has.
327 int getUserCost(const User
*U
) const {
328 SmallVector
<const Value
*, 4> Operands(U
->value_op_begin(),
330 return getUserCost(U
, Operands
);
333 /// Return true if branch divergence exists.
335 /// Branch divergence has a significantly negative impact on GPU performance
336 /// when threads in the same wavefront take different paths due to conditional
338 bool hasBranchDivergence() const;
340 /// Returns whether V is a source of divergence.
342 /// This function provides the target-dependent information for
343 /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
344 /// builds the dependency graph, and then runs the reachability algorithm
345 /// starting with the sources of divergence.
346 bool isSourceOfDivergence(const Value
*V
) const;
348 // Returns true for the target specific
349 // set of operations which produce uniform result
350 // even taking non-uniform arguments
351 bool isAlwaysUniform(const Value
*V
) const;
353 /// Returns the address space ID for a target's 'flat' address space. Note
354 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
355 /// refers to as the generic address space. The flat address space is a
356 /// generic address space that can be used access multiple segments of memory
357 /// with different address spaces. Access of a memory location through a
358 /// pointer with this address space is expected to be legal but slower
359 /// compared to the same memory location accessed through a pointer with a
360 /// different address space.
362 /// This is for targets with different pointer representations which can
363 /// be converted with the addrspacecast instruction. If a pointer is converted
364 /// to this address space, optimizations should attempt to replace the access
365 /// with the source address space.
367 /// \returns ~0u if the target does not have such a flat address space to
369 unsigned getFlatAddressSpace() const;
371 /// Return any intrinsic address operand indexes which may be rewritten if
372 /// they use a flat address space pointer.
374 /// \returns true if the intrinsic was handled.
375 bool collectFlatAddressOperands(SmallVectorImpl
<int> &OpIndexes
,
376 Intrinsic::ID IID
) const;
378 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
379 /// NewV, which has a different address space. This should happen for every
380 /// operand index that collectFlatAddressOperands returned for the intrinsic.
381 /// \returns true if the intrinsic /// was handled.
382 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst
*II
,
383 Value
*OldV
, Value
*NewV
) const;
385 /// Test whether calls to a function lower to actual program function
388 /// The idea is to test whether the program is likely to require a 'call'
389 /// instruction or equivalent in order to call the given function.
391 /// FIXME: It's not clear that this is a good or useful query API. Client's
392 /// should probably move to simpler cost metrics using the above.
393 /// Alternatively, we could split the cost interface into distinct code-size
394 /// and execution-speed costs. This would allow modelling the core of this
395 /// query more accurately as a call is a single small instruction, but
396 /// incurs significant execution cost.
397 bool isLoweredToCall(const Function
*F
) const;
400 /// TODO: Some of these could be merged. Also, a lexical ordering
401 /// isn't always optimal.
406 unsigned NumBaseAdds
;
412 /// Parameters that control the generic loop unrolling transformation.
413 struct UnrollingPreferences
{
414 /// The cost threshold for the unrolled loop. Should be relative to the
415 /// getUserCost values returned by this API, and the expectation is that
416 /// the unrolled loop's instructions when run through that interface should
417 /// not exceed this cost. However, this is only an estimate. Also, specific
418 /// loops may be unrolled even with a cost above this threshold if deemed
419 /// profitable. Set this to UINT_MAX to disable the loop body cost
422 /// If complete unrolling will reduce the cost of the loop, we will boost
423 /// the Threshold by a certain percent to allow more aggressive complete
424 /// unrolling. This value provides the maximum boost percentage that we
425 /// can apply to Threshold (The value should be no less than 100).
426 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
427 /// MaxPercentThresholdBoost / 100)
428 /// E.g. if complete unrolling reduces the loop execution time by 50%
429 /// then we boost the threshold by the factor of 2x. If unrolling is not
430 /// expected to reduce the running time, then we do not increase the
432 unsigned MaxPercentThresholdBoost
;
433 /// The cost threshold for the unrolled loop when optimizing for size (set
434 /// to UINT_MAX to disable).
435 unsigned OptSizeThreshold
;
436 /// The cost threshold for the unrolled loop, like Threshold, but used
437 /// for partial/runtime unrolling (set to UINT_MAX to disable).
438 unsigned PartialThreshold
;
439 /// The cost threshold for the unrolled loop when optimizing for size, like
440 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
441 /// UINT_MAX to disable).
442 unsigned PartialOptSizeThreshold
;
443 /// A forced unrolling factor (the number of concatenated bodies of the
444 /// original loop in the unrolled loop body). When set to 0, the unrolling
445 /// transformation will select an unrolling factor based on the current cost
446 /// threshold and other factors.
448 /// A forced peeling factor (the number of bodied of the original loop
449 /// that should be peeled off before the loop body). When set to 0, the
450 /// unrolling transformation will select a peeling factor based on profile
451 /// information and other factors.
453 /// Default unroll count for loops with run-time trip count.
454 unsigned DefaultUnrollRuntimeCount
;
455 // Set the maximum unrolling factor. The unrolling factor may be selected
456 // using the appropriate cost threshold, but may not exceed this number
457 // (set to UINT_MAX to disable). This does not apply in cases where the
458 // loop is being fully unrolled.
460 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
461 /// applies even if full unrolling is selected. This allows a target to fall
462 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
463 unsigned FullUnrollMaxCount
;
464 // Represents number of instructions optimized when "back edge"
465 // becomes "fall through" in unrolled loop.
466 // For now we count a conditional branch on a backedge and a comparison
469 /// Allow partial unrolling (unrolling of loops to expand the size of the
470 /// loop body, not only to eliminate small constant-trip-count loops).
472 /// Allow runtime unrolling (unrolling of loops to expand the size of the
473 /// loop body even when the number of loop iterations is not known at
476 /// Allow generation of a loop remainder (extra iterations after unroll).
478 /// Allow emitting expensive instructions (such as divisions) when computing
479 /// the trip count of a loop for runtime unrolling.
480 bool AllowExpensiveTripCount
;
481 /// Apply loop unroll on any kind of loop
482 /// (mainly to loops that fail runtime unrolling).
484 /// Allow using trip count upper bound to unroll loops.
486 /// Allow peeling off loop iterations.
488 /// Allow unrolling of all the iterations of the runtime loop remainder.
489 bool UnrollRemainder
;
490 /// Allow unroll and jam. Used to enable unroll and jam for the target.
492 /// Allow peeling basing on profile. Uses to enable peeling off all
493 /// iterations basing on provided profile.
494 /// If the value is true the peeling cost model can decide to peel only
495 /// some iterations and in this case it will set this to false.
496 bool PeelProfiledIterations
;
497 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
498 /// value above is used during unroll and jam for the outer loop size.
499 /// This value is used in the same manner to limit the size of the inner
501 unsigned UnrollAndJamInnerLoopThreshold
;
504 /// Get target-customized preferences for the generic loop unrolling
505 /// transformation. The caller will initialize UP with the current
506 /// target-independent defaults.
507 void getUnrollingPreferences(Loop
*L
, ScalarEvolution
&,
508 UnrollingPreferences
&UP
) const;
510 /// Query the target whether it would be profitable to convert the given loop
511 /// into a hardware loop.
512 bool isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
514 TargetLibraryInfo
*LibInfo
,
515 HardwareLoopInfo
&HWLoopInfo
) const;
519 /// \name Scalar Target Information
522 /// Flags indicating the kind of support for population count.
524 /// Compared to the SW implementation, HW support is supposed to
525 /// significantly boost the performance when the population is dense, and it
526 /// may or may not degrade performance if the population is sparse. A HW
527 /// support is considered as "Fast" if it can outperform, or is on a par
528 /// with, SW implementation when the population is sparse; otherwise, it is
529 /// considered as "Slow".
530 enum PopcntSupportKind
{ PSK_Software
, PSK_SlowHardware
, PSK_FastHardware
};
532 /// Return true if the specified immediate is legal add immediate, that
533 /// is the target has add instructions which can add a register with the
534 /// immediate without having to materialize the immediate into a register.
535 bool isLegalAddImmediate(int64_t Imm
) const;
537 /// Return true if the specified immediate is legal icmp immediate,
538 /// that is the target has icmp instructions which can compare a register
539 /// against the immediate without having to materialize the immediate into a
541 bool isLegalICmpImmediate(int64_t Imm
) const;
543 /// Return true if the addressing mode represented by AM is legal for
544 /// this target, for a load/store of the specified type.
545 /// The type may be VoidTy, in which case only return true if the addressing
546 /// mode is legal for a load/store of any legal type.
547 /// If target returns true in LSRWithInstrQueries(), I may be valid.
548 /// TODO: Handle pre/postinc as well.
549 bool isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
550 bool HasBaseReg
, int64_t Scale
,
551 unsigned AddrSpace
= 0,
552 Instruction
*I
= nullptr) const;
554 /// Return true if LSR cost of C1 is lower than C1.
555 bool isLSRCostLess(TargetTransformInfo::LSRCost
&C1
,
556 TargetTransformInfo::LSRCost
&C2
) const;
558 /// Return true if the target can fuse a compare and branch.
559 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
560 /// calculation for the instructions in a loop.
561 bool canMacroFuseCmp() const;
563 /// Return true if the target can save a compare for loop count, for example
564 /// hardware loop saves a compare.
565 bool canSaveCmp(Loop
*L
, BranchInst
**BI
, ScalarEvolution
*SE
, LoopInfo
*LI
,
566 DominatorTree
*DT
, AssumptionCache
*AC
,
567 TargetLibraryInfo
*LibInfo
) const;
569 /// \return True is LSR should make efforts to create/preserve post-inc
570 /// addressing mode expressions.
571 bool shouldFavorPostInc() const;
573 /// Return true if LSR should make efforts to generate indexed addressing
574 /// modes that operate across loop iterations.
575 bool shouldFavorBackedgeIndex(const Loop
*L
) const;
577 /// Return true if the target supports masked load.
578 bool isLegalMaskedStore(Type
*DataType
) const;
579 /// Return true if the target supports masked store.
580 bool isLegalMaskedLoad(Type
*DataType
) const;
582 /// Return true if the target supports nontemporal store.
583 bool isLegalNTStore(Type
*DataType
, llvm::Align Alignment
) const;
584 /// Return true if the target supports nontemporal load.
585 bool isLegalNTLoad(Type
*DataType
, llvm::Align Alignment
) const;
587 /// Return true if the target supports masked scatter.
588 bool isLegalMaskedScatter(Type
*DataType
) const;
589 /// Return true if the target supports masked gather.
590 bool isLegalMaskedGather(Type
*DataType
) const;
592 /// Return true if the target supports masked compress store.
593 bool isLegalMaskedCompressStore(Type
*DataType
) const;
594 /// Return true if the target supports masked expand load.
595 bool isLegalMaskedExpandLoad(Type
*DataType
) const;
597 /// Return true if the target has a unified operation to calculate division
598 /// and remainder. If so, the additional implicit multiplication and
599 /// subtraction required to calculate a remainder from division are free. This
600 /// can enable more aggressive transformations for division and remainder than
601 /// would typically be allowed using throughput or size cost models.
602 bool hasDivRemOp(Type
*DataType
, bool IsSigned
) const;
604 /// Return true if the given instruction (assumed to be a memory access
605 /// instruction) has a volatile variant. If that's the case then we can avoid
606 /// addrspacecast to generic AS for volatile loads/stores. Default
607 /// implementation returns false, which prevents address space inference for
608 /// volatile loads/stores.
609 bool hasVolatileVariant(Instruction
*I
, unsigned AddrSpace
) const;
611 /// Return true if target doesn't mind addresses in vectors.
612 bool prefersVectorizedAddressing() const;
614 /// Return the cost of the scaling factor used in the addressing
615 /// mode represented by AM for this target, for a load/store
616 /// of the specified type.
617 /// If the AM is supported, the return value must be >= 0.
618 /// If the AM is not supported, it returns a negative value.
619 /// TODO: Handle pre/postinc as well.
620 int getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
621 bool HasBaseReg
, int64_t Scale
,
622 unsigned AddrSpace
= 0) const;
624 /// Return true if the loop strength reduce pass should make
625 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
626 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
627 /// immediate offset and no index register.
628 bool LSRWithInstrQueries() const;
630 /// Return true if it's free to truncate a value of type Ty1 to type
631 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
632 /// by referencing its sub-register AX.
633 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const;
635 /// Return true if it is profitable to hoist instruction in the
636 /// then/else to before if.
637 bool isProfitableToHoist(Instruction
*I
) const;
641 /// Return true if this type is legal.
642 bool isTypeLegal(Type
*Ty
) const;
644 /// Returns the target's jmp_buf alignment in bytes.
645 unsigned getJumpBufAlignment() const;
647 /// Returns the target's jmp_buf size in bytes.
648 unsigned getJumpBufSize() const;
650 /// Return true if switches should be turned into lookup tables for the
652 bool shouldBuildLookupTables() const;
654 /// Return true if switches should be turned into lookup tables
655 /// containing this constant value for the target.
656 bool shouldBuildLookupTablesForConstant(Constant
*C
) const;
658 /// Return true if the input function which is cold at all call sites,
659 /// should use coldcc calling convention.
660 bool useColdCCForColdCall(Function
&F
) const;
662 unsigned getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) const;
664 unsigned getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
667 /// If target has efficient vector element load/store instructions, it can
668 /// return true here so that insertion/extraction costs are not added to
669 /// the scalarization cost of a load/store.
670 bool supportsEfficientVectorElementLoadStore() const;
672 /// Don't restrict interleaved unrolling to small loops.
673 bool enableAggressiveInterleaving(bool LoopHasReductions
) const;
675 /// Returns options for expansion of memcmp. IsZeroCmp is
676 // true if this is the expansion of memcmp(p1, p2, s) == 0.
677 struct MemCmpExpansionOptions
{
678 // Return true if memcmp expansion is enabled.
679 operator bool() const { return MaxNumLoads
> 0; }
681 // Maximum number of load operations.
682 unsigned MaxNumLoads
= 0;
684 // The list of available load sizes (in bytes), sorted in decreasing order.
685 SmallVector
<unsigned, 8> LoadSizes
;
687 // For memcmp expansion when the memcmp result is only compared equal or
688 // not-equal to 0, allow up to this number of load pairs per block. As an
689 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
690 // a0 = load2bytes &a[0]
691 // b0 = load2bytes &b[0]
692 // a2 = load1byte &a[2]
693 // b2 = load1byte &b[2]
694 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
695 unsigned NumLoadsPerBlock
= 1;
697 // Set to true to allow overlapping loads. For example, 7-byte compares can
698 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
699 // requires all loads in LoadSizes to be doable in an unaligned way.
700 bool AllowOverlappingLoads
= false;
702 MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize
,
703 bool IsZeroCmp
) const;
705 /// Enable matching of interleaved access groups.
706 bool enableInterleavedAccessVectorization() const;
708 /// Enable matching of interleaved access groups that contain predicated
709 /// accesses or gaps and therefore vectorized using masked
710 /// vector loads/stores.
711 bool enableMaskedInterleavedAccessVectorization() const;
713 /// Indicate that it is potentially unsafe to automatically vectorize
714 /// floating-point operations because the semantics of vector and scalar
715 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
716 /// does not support IEEE-754 denormal numbers, while depending on the
717 /// platform, scalar floating-point math does.
718 /// This applies to floating-point math operations and calls, not memory
719 /// operations, shuffles, or casts.
720 bool isFPVectorizationPotentiallyUnsafe() const;
722 /// Determine if the target supports unaligned memory accesses.
723 bool allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
724 unsigned BitWidth
, unsigned AddressSpace
= 0,
725 unsigned Alignment
= 1,
726 bool *Fast
= nullptr) const;
728 /// Return hardware support for population count.
729 PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit
) const;
731 /// Return true if the hardware has a fast square-root instruction.
732 bool haveFastSqrt(Type
*Ty
) const;
734 /// Return true if it is faster to check if a floating-point value is NaN
735 /// (or not-NaN) versus a comparison against a constant FP zero value.
736 /// Targets should override this if materializing a 0.0 for comparison is
737 /// generally as cheap as checking for ordered/unordered.
738 bool isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) const;
740 /// Return the expected cost of supporting the floating point operation
741 /// of the specified type.
742 int getFPOpCost(Type
*Ty
) const;
744 /// Return the expected cost of materializing for the given integer
745 /// immediate of the specified type.
746 int getIntImmCost(const APInt
&Imm
, Type
*Ty
) const;
748 /// Return the expected cost of materialization for the given integer
749 /// immediate of the specified type for a given instruction. The cost can be
750 /// zero if the immediate can be folded into the specified instruction.
751 int getIntImmCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
753 int getIntImmCost(Intrinsic::ID IID
, unsigned Idx
, const APInt
&Imm
,
756 /// Return the expected cost for the given integer when optimising
757 /// for size. This is different than the other integer immediate cost
758 /// functions in that it is subtarget agnostic. This is useful when you e.g.
759 /// target one ISA such as Aarch32 but smaller encodings could be possible
760 /// with another such as Thumb. This return value is used as a penalty when
761 /// the total costs for a constant is calculated (the bigger the cost, the
762 /// more beneficial constant hoisting is).
763 int getIntImmCodeSizeCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
767 /// \name Vector Target Information
770 /// The various kinds of shuffle patterns for vector queries.
772 SK_Broadcast
, ///< Broadcast element 0 to all other elements.
773 SK_Reverse
, ///< Reverse the order of the vector.
774 SK_Select
, ///< Selects elements from the corresponding lane of
775 ///< either source operand. This is equivalent to a
776 ///< vector select with a constant condition operand.
777 SK_Transpose
, ///< Transpose two vectors.
778 SK_InsertSubvector
, ///< InsertSubvector. Index indicates start offset.
779 SK_ExtractSubvector
,///< ExtractSubvector Index indicates start offset.
780 SK_PermuteTwoSrc
, ///< Merge elements from two source vectors into one
781 ///< with any shuffle mask.
782 SK_PermuteSingleSrc
///< Shuffle elements of single source vector with any
786 /// Additional information about an operand's possible values.
787 enum OperandValueKind
{
788 OK_AnyValue
, // Operand can have any value.
789 OK_UniformValue
, // Operand is uniform (splat of a value).
790 OK_UniformConstantValue
, // Operand is uniform constant.
791 OK_NonUniformConstantValue
// Operand is a non uniform constant value.
794 /// Additional properties of an operand's values.
795 enum OperandValueProperties
{ OP_None
= 0, OP_PowerOf2
= 1 };
797 /// \return The number of scalar or vector registers that the target has.
798 /// If 'Vectors' is true, it returns the number of vector registers. If it is
799 /// set to false, it returns the number of scalar registers.
800 unsigned getNumberOfRegisters(bool Vector
) const;
802 /// \return The width of the largest scalar or vector register type.
803 unsigned getRegisterBitWidth(bool Vector
) const;
805 /// \return The width of the smallest vector register type.
806 unsigned getMinVectorRegisterBitWidth() const;
808 /// \return True if the vectorization factor should be chosen to
809 /// make the vector of the smallest element type match the size of a
810 /// vector register. For wider element types, this could result in
811 /// creating vectors that span multiple vector registers.
812 /// If false, the vectorization factor will be chosen based on the
813 /// size of the widest element type.
814 bool shouldMaximizeVectorBandwidth(bool OptSize
) const;
816 /// \return The minimum vectorization factor for types of given element
817 /// bit width, or 0 if there is no minimum VF. The returned value only
818 /// applies when shouldMaximizeVectorBandwidth returns true.
819 unsigned getMinimumVF(unsigned ElemWidth
) const;
821 /// \return True if it should be considered for address type promotion.
822 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
823 /// profitable without finding other extensions fed by the same input.
824 bool shouldConsiderAddressTypePromotion(
825 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) const;
827 /// \return The size of a cache line in bytes.
828 unsigned getCacheLineSize() const;
830 /// The possible cache levels
831 enum class CacheLevel
{
832 L1D
, // The L1 data cache
833 L2D
, // The L2 data cache
835 // We currently do not model L3 caches, as their sizes differ widely between
836 // microarchitectures. Also, we currently do not have a use for L3 cache
837 // size modeling yet.
840 /// \return The size of the cache level in bytes, if available.
841 llvm::Optional
<unsigned> getCacheSize(CacheLevel Level
) const;
843 /// \return The associativity of the cache level, if available.
844 llvm::Optional
<unsigned> getCacheAssociativity(CacheLevel Level
) const;
846 /// \return How much before a load we should place the prefetch instruction.
847 /// This is currently measured in number of instructions.
848 unsigned getPrefetchDistance() const;
850 /// \return Some HW prefetchers can handle accesses up to a certain constant
851 /// stride. This is the minimum stride in bytes where it makes sense to start
852 /// adding SW prefetches. The default is 1, i.e. prefetch with any stride.
853 unsigned getMinPrefetchStride() const;
855 /// \return The maximum number of iterations to prefetch ahead. If the
856 /// required number of iterations is more than this number, no prefetching is
858 unsigned getMaxPrefetchIterationsAhead() const;
860 /// \return The maximum interleave factor that any transform should try to
861 /// perform for this target. This number depends on the level of parallelism
862 /// and the number of execution units in the CPU.
863 unsigned getMaxInterleaveFactor(unsigned VF
) const;
865 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
866 static OperandValueKind
getOperandInfo(Value
*V
,
867 OperandValueProperties
&OpProps
);
869 /// This is an approximation of reciprocal throughput of a math/logic op.
870 /// A higher cost indicates less expected throughput.
871 /// From Agner Fog's guides, reciprocal throughput is "the average number of
872 /// clock cycles per instruction when the instructions are not part of a
873 /// limiting dependency chain."
874 /// Therefore, costs should be scaled to account for multiple execution units
875 /// on the target that can process this type of instruction. For example, if
876 /// there are 5 scalar integer units and 2 vector integer units that can
877 /// calculate an 'add' in a single cycle, this model should indicate that the
878 /// cost of the vector add instruction is 2.5 times the cost of the scalar
880 /// \p Args is an optional argument which holds the instruction operands
881 /// values so the TTI can analyze those values searching for special
882 /// cases or optimizations based on those values.
883 int getArithmeticInstrCost(
884 unsigned Opcode
, Type
*Ty
, OperandValueKind Opd1Info
= OK_AnyValue
,
885 OperandValueKind Opd2Info
= OK_AnyValue
,
886 OperandValueProperties Opd1PropInfo
= OP_None
,
887 OperandValueProperties Opd2PropInfo
= OP_None
,
888 ArrayRef
<const Value
*> Args
= ArrayRef
<const Value
*>()) const;
890 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
891 /// The index and subtype parameters are used by the subvector insertion and
892 /// extraction shuffle kinds to show the insert/extract point and the type of
893 /// the subvector being inserted/extracted.
894 /// NOTE: For subvector extractions Tp represents the source type.
895 int getShuffleCost(ShuffleKind Kind
, Type
*Tp
, int Index
= 0,
896 Type
*SubTp
= nullptr) const;
898 /// \return The expected cost of cast instructions, such as bitcast, trunc,
899 /// zext, etc. If there is an existing instruction that holds Opcode, it
900 /// may be passed in the 'I' parameter.
901 int getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
902 const Instruction
*I
= nullptr) const;
904 /// \return The expected cost of a sign- or zero-extended vector extract. Use
905 /// -1 to indicate that there is no information about the index value.
906 int getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
, VectorType
*VecTy
,
907 unsigned Index
= -1) const;
909 /// \return The expected cost of control-flow related instructions such as
911 int getCFInstrCost(unsigned Opcode
) const;
913 /// \returns The expected cost of compare and select instructions. If there
914 /// is an existing instruction that holds Opcode, it may be passed in the
916 int getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
917 Type
*CondTy
= nullptr, const Instruction
*I
= nullptr) const;
919 /// \return The expected cost of vector Insert and Extract.
920 /// Use -1 to indicate that there is no information on the index value.
921 int getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
= -1) const;
923 /// \return The cost of Load and Store instructions.
924 int getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
925 unsigned AddressSpace
, const Instruction
*I
= nullptr) const;
927 /// \return The cost of masked Load and Store instructions.
928 int getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
929 unsigned AddressSpace
) const;
931 /// \return The cost of Gather or Scatter operation
932 /// \p Opcode - is a type of memory access Load or Store
933 /// \p DataTy - a vector type of the data to be loaded or stored
934 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
935 /// \p VariableMask - true when the memory access is predicated with a mask
936 /// that is not a compile-time constant
937 /// \p Alignment - alignment of single element
938 int getGatherScatterOpCost(unsigned Opcode
, Type
*DataTy
, Value
*Ptr
,
939 bool VariableMask
, unsigned Alignment
) const;
941 /// \return The cost of the interleaved memory operation.
942 /// \p Opcode is the memory operation code
943 /// \p VecTy is the vector type of the interleaved access.
944 /// \p Factor is the interleave factor
945 /// \p Indices is the indices for interleaved load members (as interleaved
946 /// load allows gaps)
947 /// \p Alignment is the alignment of the memory operation
948 /// \p AddressSpace is address space of the pointer.
949 /// \p UseMaskForCond indicates if the memory access is predicated.
950 /// \p UseMaskForGaps indicates if gaps should be masked.
951 int getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
, unsigned Factor
,
952 ArrayRef
<unsigned> Indices
, unsigned Alignment
,
953 unsigned AddressSpace
,
954 bool UseMaskForCond
= false,
955 bool UseMaskForGaps
= false) const;
957 /// Calculate the cost of performing a vector reduction.
959 /// This is the cost of reducing the vector value of type \p Ty to a scalar
960 /// value using the operation denoted by \p Opcode. The form of the reduction
961 /// can either be a pairwise reduction or a reduction that splits the vector
962 /// at every reduction level.
966 /// ((v0+v1), (v2+v3), undef, undef)
969 /// ((v0+v2), (v1+v3), undef, undef)
970 int getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
971 bool IsPairwiseForm
) const;
972 int getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
, bool IsPairwiseForm
,
973 bool IsUnsigned
) const;
975 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
976 /// Three cases are handled: 1. scalar instruction 2. vector instruction
977 /// 3. scalar instruction which is to be vectorized with VF.
978 int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
979 ArrayRef
<Value
*> Args
, FastMathFlags FMF
,
980 unsigned VF
= 1) const;
982 /// \returns The cost of Intrinsic instructions. Types analysis only.
983 /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
984 /// arguments and the return value will be computed based on types.
985 int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
986 ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
987 unsigned ScalarizationCostPassed
= UINT_MAX
) const;
989 /// \returns The cost of Call instructions.
990 int getCallInstrCost(Function
*F
, Type
*RetTy
, ArrayRef
<Type
*> Tys
) const;
992 /// \returns The number of pieces into which the provided type must be
993 /// split during legalization. Zero is returned when the answer is unknown.
994 unsigned getNumberOfParts(Type
*Tp
) const;
996 /// \returns The cost of the address computation. For most targets this can be
997 /// merged into the instruction indexing mode. Some targets might want to
998 /// distinguish between address computation for memory operations on vector
999 /// types and scalar types. Such targets should override this function.
1000 /// The 'SE' parameter holds pointer for the scalar evolution object which
1001 /// is used in order to get the Ptr step value in case of constant stride.
1002 /// The 'Ptr' parameter holds SCEV of the access pointer.
1003 int getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
= nullptr,
1004 const SCEV
*Ptr
= nullptr) const;
1006 /// \returns The cost, if any, of keeping values of the given types alive
1007 /// over a callsite.
1009 /// Some types may require the use of register classes that do not have
1010 /// any callee-saved registers, so would require a spill and fill.
1011 unsigned getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) const;
1013 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1014 /// will contain additional information - whether the intrinsic may write
1015 /// or read to memory, volatility and the pointer. Info is undefined
1016 /// if false is returned.
1017 bool getTgtMemIntrinsic(IntrinsicInst
*Inst
, MemIntrinsicInfo
&Info
) const;
1019 /// \returns The maximum element size, in bytes, for an element
1020 /// unordered-atomic memory intrinsic.
1021 unsigned getAtomicMemIntrinsicMaxElementSize() const;
1023 /// \returns A value which is the result of the given memory intrinsic. New
1024 /// instructions may be created to extract the result from the given intrinsic
1025 /// memory operation. Returns nullptr if the target cannot create a result
1026 /// from the given intrinsic.
1027 Value
*getOrCreateResultFromMemIntrinsic(IntrinsicInst
*Inst
,
1028 Type
*ExpectedType
) const;
1030 /// \returns The type to use in a loop expansion of a memcpy call.
1031 Type
*getMemcpyLoopLoweringType(LLVMContext
&Context
, Value
*Length
,
1032 unsigned SrcAlign
, unsigned DestAlign
) const;
1034 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1035 /// \param RemainingBytes The number of bytes to copy.
1037 /// Calculates the operand types to use when copying \p RemainingBytes of
1038 /// memory, where source and destination alignments are \p SrcAlign and
1039 /// \p DestAlign respectively.
1040 void getMemcpyLoopResidualLoweringType(SmallVectorImpl
<Type
*> &OpsOut
,
1041 LLVMContext
&Context
,
1042 unsigned RemainingBytes
,
1044 unsigned DestAlign
) const;
1046 /// \returns True if the two functions have compatible attributes for inlining
1048 bool areInlineCompatible(const Function
*Caller
,
1049 const Function
*Callee
) const;
1051 /// \returns True if the caller and callee agree on how \p Args will be passed
1053 /// \param[out] Args The list of compatible arguments. The implementation may
1054 /// filter out any incompatible args from this list.
1055 bool areFunctionArgsABICompatible(const Function
*Caller
,
1056 const Function
*Callee
,
1057 SmallPtrSetImpl
<Argument
*> &Args
) const;
1059 /// The type of load/store indexing.
1060 enum MemIndexedMode
{
1061 MIM_Unindexed
, ///< No indexing.
1062 MIM_PreInc
, ///< Pre-incrementing.
1063 MIM_PreDec
, ///< Pre-decrementing.
1064 MIM_PostInc
, ///< Post-incrementing.
1065 MIM_PostDec
///< Post-decrementing.
1068 /// \returns True if the specified indexed load for the given type is legal.
1069 bool isIndexedLoadLegal(enum MemIndexedMode Mode
, Type
*Ty
) const;
1071 /// \returns True if the specified indexed store for the given type is legal.
1072 bool isIndexedStoreLegal(enum MemIndexedMode Mode
, Type
*Ty
) const;
1074 /// \returns The bitwidth of the largest vector type that should be used to
1075 /// load/store in the given address space.
1076 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace
) const;
1078 /// \returns True if the load instruction is legal to vectorize.
1079 bool isLegalToVectorizeLoad(LoadInst
*LI
) const;
1081 /// \returns True if the store instruction is legal to vectorize.
1082 bool isLegalToVectorizeStore(StoreInst
*SI
) const;
1084 /// \returns True if it is legal to vectorize the given load chain.
1085 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes
,
1087 unsigned AddrSpace
) const;
1089 /// \returns True if it is legal to vectorize the given store chain.
1090 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes
,
1092 unsigned AddrSpace
) const;
1094 /// \returns The new vector factor value if the target doesn't support \p
1095 /// SizeInBytes loads or has a better vector factor.
1096 unsigned getLoadVectorFactor(unsigned VF
, unsigned LoadSize
,
1097 unsigned ChainSizeInBytes
,
1098 VectorType
*VecTy
) const;
1100 /// \returns The new vector factor value if the target doesn't support \p
1101 /// SizeInBytes stores or has a better vector factor.
1102 unsigned getStoreVectorFactor(unsigned VF
, unsigned StoreSize
,
1103 unsigned ChainSizeInBytes
,
1104 VectorType
*VecTy
) const;
1106 /// Flags describing the kind of vector reduction.
1107 struct ReductionFlags
{
1108 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
1109 bool IsMaxOp
; ///< If the op a min/max kind, true if it's a max operation.
1110 bool IsSigned
; ///< Whether the operation is a signed int reduction.
1111 bool NoNaN
; ///< If op is an fp min/max, whether NaNs may be present.
1114 /// \returns True if the target wants to handle the given reduction idiom in
1115 /// the intrinsics form instead of the shuffle form.
1116 bool useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
1117 ReductionFlags Flags
) const;
1119 /// \returns True if the target wants to expand the given reduction intrinsic
1120 /// into a shuffle sequence.
1121 bool shouldExpandReduction(const IntrinsicInst
*II
) const;
1123 /// \returns the size cost of rematerializing a GlobalValue address relative
1124 /// to a stack reload.
1125 unsigned getGISelRematGlobalCost() const;
1130 /// Estimate the latency of specified instruction.
1131 /// Returns 1 as the default value.
1132 int getInstructionLatency(const Instruction
*I
) const;
1134 /// Returns the expected throughput cost of the instruction.
1135 /// Returns -1 if the cost is unknown.
1136 int getInstructionThroughput(const Instruction
*I
) const;
1138 /// The abstract base class used to type erase specific TTI
1139 /// implementations.
1142 /// The template model for the base class which wraps a concrete
1143 /// implementation in a type erased interface.
1144 template <typename T
> class Model
;
1146 std::unique_ptr
<Concept
> TTIImpl
;
1149 class TargetTransformInfo::Concept
{
1151 virtual ~Concept() = 0;
1152 virtual const DataLayout
&getDataLayout() const = 0;
1153 virtual int getOperationCost(unsigned Opcode
, Type
*Ty
, Type
*OpTy
) = 0;
1154 virtual int getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
1155 ArrayRef
<const Value
*> Operands
) = 0;
1156 virtual int getExtCost(const Instruction
*I
, const Value
*Src
) = 0;
1157 virtual int getCallCost(FunctionType
*FTy
, int NumArgs
, const User
*U
) = 0;
1158 virtual int getCallCost(const Function
*F
, int NumArgs
, const User
*U
) = 0;
1159 virtual int getCallCost(const Function
*F
,
1160 ArrayRef
<const Value
*> Arguments
, const User
*U
) = 0;
1161 virtual unsigned getInliningThresholdMultiplier() = 0;
1162 virtual int getInlinerVectorBonusPercent() = 0;
1163 virtual int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
1164 ArrayRef
<Type
*> ParamTys
, const User
*U
) = 0;
1165 virtual int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
1166 ArrayRef
<const Value
*> Arguments
,
1168 virtual int getMemcpyCost(const Instruction
*I
) = 0;
1169 virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
1170 unsigned &JTSize
) = 0;
1172 getUserCost(const User
*U
, ArrayRef
<const Value
*> Operands
) = 0;
1173 virtual bool hasBranchDivergence() = 0;
1174 virtual bool isSourceOfDivergence(const Value
*V
) = 0;
1175 virtual bool isAlwaysUniform(const Value
*V
) = 0;
1176 virtual unsigned getFlatAddressSpace() = 0;
1177 virtual bool collectFlatAddressOperands(SmallVectorImpl
<int> &OpIndexes
,
1178 Intrinsic::ID IID
) const = 0;
1179 virtual bool rewriteIntrinsicWithAddressSpace(
1180 IntrinsicInst
*II
, Value
*OldV
, Value
*NewV
) const = 0;
1181 virtual bool isLoweredToCall(const Function
*F
) = 0;
1182 virtual void getUnrollingPreferences(Loop
*L
, ScalarEvolution
&,
1183 UnrollingPreferences
&UP
) = 0;
1184 virtual bool isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
1185 AssumptionCache
&AC
,
1186 TargetLibraryInfo
*LibInfo
,
1187 HardwareLoopInfo
&HWLoopInfo
) = 0;
1188 virtual bool isLegalAddImmediate(int64_t Imm
) = 0;
1189 virtual bool isLegalICmpImmediate(int64_t Imm
) = 0;
1190 virtual bool isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
,
1191 int64_t BaseOffset
, bool HasBaseReg
,
1194 Instruction
*I
) = 0;
1195 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost
&C1
,
1196 TargetTransformInfo::LSRCost
&C2
) = 0;
1197 virtual bool canMacroFuseCmp() = 0;
1198 virtual bool canSaveCmp(Loop
*L
, BranchInst
**BI
, ScalarEvolution
*SE
,
1199 LoopInfo
*LI
, DominatorTree
*DT
, AssumptionCache
*AC
,
1200 TargetLibraryInfo
*LibInfo
) = 0;
1201 virtual bool shouldFavorPostInc() const = 0;
1202 virtual bool shouldFavorBackedgeIndex(const Loop
*L
) const = 0;
1203 virtual bool isLegalMaskedStore(Type
*DataType
) = 0;
1204 virtual bool isLegalMaskedLoad(Type
*DataType
) = 0;
1205 virtual bool isLegalNTStore(Type
*DataType
, llvm::Align Alignment
) = 0;
1206 virtual bool isLegalNTLoad(Type
*DataType
, llvm::Align Alignment
) = 0;
1207 virtual bool isLegalMaskedScatter(Type
*DataType
) = 0;
1208 virtual bool isLegalMaskedGather(Type
*DataType
) = 0;
1209 virtual bool isLegalMaskedCompressStore(Type
*DataType
) = 0;
1210 virtual bool isLegalMaskedExpandLoad(Type
*DataType
) = 0;
1211 virtual bool hasDivRemOp(Type
*DataType
, bool IsSigned
) = 0;
1212 virtual bool hasVolatileVariant(Instruction
*I
, unsigned AddrSpace
) = 0;
1213 virtual bool prefersVectorizedAddressing() = 0;
1214 virtual int getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
,
1215 int64_t BaseOffset
, bool HasBaseReg
,
1216 int64_t Scale
, unsigned AddrSpace
) = 0;
1217 virtual bool LSRWithInstrQueries() = 0;
1218 virtual bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) = 0;
1219 virtual bool isProfitableToHoist(Instruction
*I
) = 0;
1220 virtual bool useAA() = 0;
1221 virtual bool isTypeLegal(Type
*Ty
) = 0;
1222 virtual unsigned getJumpBufAlignment() = 0;
1223 virtual unsigned getJumpBufSize() = 0;
1224 virtual bool shouldBuildLookupTables() = 0;
1225 virtual bool shouldBuildLookupTablesForConstant(Constant
*C
) = 0;
1226 virtual bool useColdCCForColdCall(Function
&F
) = 0;
1228 getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) = 0;
1229 virtual unsigned getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
1231 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1232 virtual bool enableAggressiveInterleaving(bool LoopHasReductions
) = 0;
1233 virtual MemCmpExpansionOptions
1234 enableMemCmpExpansion(bool OptSize
, bool IsZeroCmp
) const = 0;
1235 virtual bool enableInterleavedAccessVectorization() = 0;
1236 virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1237 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1238 virtual bool allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
1240 unsigned AddressSpace
,
1243 virtual PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit
) = 0;
1244 virtual bool haveFastSqrt(Type
*Ty
) = 0;
1245 virtual bool isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) = 0;
1246 virtual int getFPOpCost(Type
*Ty
) = 0;
1247 virtual int getIntImmCodeSizeCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
1249 virtual int getIntImmCost(const APInt
&Imm
, Type
*Ty
) = 0;
1250 virtual int getIntImmCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
1252 virtual int getIntImmCost(Intrinsic::ID IID
, unsigned Idx
, const APInt
&Imm
,
1254 virtual unsigned getNumberOfRegisters(bool Vector
) = 0;
1255 virtual unsigned getRegisterBitWidth(bool Vector
) const = 0;
1256 virtual unsigned getMinVectorRegisterBitWidth() = 0;
1257 virtual bool shouldMaximizeVectorBandwidth(bool OptSize
) const = 0;
1258 virtual unsigned getMinimumVF(unsigned ElemWidth
) const = 0;
1259 virtual bool shouldConsiderAddressTypePromotion(
1260 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) = 0;
1261 virtual unsigned getCacheLineSize() = 0;
1262 virtual llvm::Optional
<unsigned> getCacheSize(CacheLevel Level
) = 0;
1263 virtual llvm::Optional
<unsigned> getCacheAssociativity(CacheLevel Level
) = 0;
1264 virtual unsigned getPrefetchDistance() = 0;
1265 virtual unsigned getMinPrefetchStride() = 0;
1266 virtual unsigned getMaxPrefetchIterationsAhead() = 0;
1267 virtual unsigned getMaxInterleaveFactor(unsigned VF
) = 0;
1269 getArithmeticInstrCost(unsigned Opcode
, Type
*Ty
, OperandValueKind Opd1Info
,
1270 OperandValueKind Opd2Info
,
1271 OperandValueProperties Opd1PropInfo
,
1272 OperandValueProperties Opd2PropInfo
,
1273 ArrayRef
<const Value
*> Args
) = 0;
1274 virtual int getShuffleCost(ShuffleKind Kind
, Type
*Tp
, int Index
,
1276 virtual int getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
1277 const Instruction
*I
) = 0;
1278 virtual int getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
1279 VectorType
*VecTy
, unsigned Index
) = 0;
1280 virtual int getCFInstrCost(unsigned Opcode
) = 0;
1281 virtual int getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
1282 Type
*CondTy
, const Instruction
*I
) = 0;
1283 virtual int getVectorInstrCost(unsigned Opcode
, Type
*Val
,
1284 unsigned Index
) = 0;
1285 virtual int getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
1286 unsigned AddressSpace
, const Instruction
*I
) = 0;
1287 virtual int getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
,
1289 unsigned AddressSpace
) = 0;
1290 virtual int getGatherScatterOpCost(unsigned Opcode
, Type
*DataTy
,
1291 Value
*Ptr
, bool VariableMask
,
1292 unsigned Alignment
) = 0;
1293 virtual int getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
1295 ArrayRef
<unsigned> Indices
,
1297 unsigned AddressSpace
,
1298 bool UseMaskForCond
= false,
1299 bool UseMaskForGaps
= false) = 0;
1300 virtual int getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
1301 bool IsPairwiseForm
) = 0;
1302 virtual int getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
,
1303 bool IsPairwiseForm
, bool IsUnsigned
) = 0;
1304 virtual int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
1305 ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
1306 unsigned ScalarizationCostPassed
) = 0;
1307 virtual int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
1308 ArrayRef
<Value
*> Args
, FastMathFlags FMF
, unsigned VF
) = 0;
1309 virtual int getCallInstrCost(Function
*F
, Type
*RetTy
,
1310 ArrayRef
<Type
*> Tys
) = 0;
1311 virtual unsigned getNumberOfParts(Type
*Tp
) = 0;
1312 virtual int getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
1313 const SCEV
*Ptr
) = 0;
1314 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) = 0;
1315 virtual bool getTgtMemIntrinsic(IntrinsicInst
*Inst
,
1316 MemIntrinsicInfo
&Info
) = 0;
1317 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1318 virtual Value
*getOrCreateResultFromMemIntrinsic(IntrinsicInst
*Inst
,
1319 Type
*ExpectedType
) = 0;
1320 virtual Type
*getMemcpyLoopLoweringType(LLVMContext
&Context
, Value
*Length
,
1322 unsigned DestAlign
) const = 0;
1323 virtual void getMemcpyLoopResidualLoweringType(
1324 SmallVectorImpl
<Type
*> &OpsOut
, LLVMContext
&Context
,
1325 unsigned RemainingBytes
, unsigned SrcAlign
, unsigned DestAlign
) const = 0;
1326 virtual bool areInlineCompatible(const Function
*Caller
,
1327 const Function
*Callee
) const = 0;
1329 areFunctionArgsABICompatible(const Function
*Caller
, const Function
*Callee
,
1330 SmallPtrSetImpl
<Argument
*> &Args
) const = 0;
1331 virtual bool isIndexedLoadLegal(MemIndexedMode Mode
, Type
*Ty
) const = 0;
1332 virtual bool isIndexedStoreLegal(MemIndexedMode Mode
,Type
*Ty
) const = 0;
1333 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace
) const = 0;
1334 virtual bool isLegalToVectorizeLoad(LoadInst
*LI
) const = 0;
1335 virtual bool isLegalToVectorizeStore(StoreInst
*SI
) const = 0;
1336 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes
,
1338 unsigned AddrSpace
) const = 0;
1339 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes
,
1341 unsigned AddrSpace
) const = 0;
1342 virtual unsigned getLoadVectorFactor(unsigned VF
, unsigned LoadSize
,
1343 unsigned ChainSizeInBytes
,
1344 VectorType
*VecTy
) const = 0;
1345 virtual unsigned getStoreVectorFactor(unsigned VF
, unsigned StoreSize
,
1346 unsigned ChainSizeInBytes
,
1347 VectorType
*VecTy
) const = 0;
1348 virtual bool useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
1349 ReductionFlags
) const = 0;
1350 virtual bool shouldExpandReduction(const IntrinsicInst
*II
) const = 0;
1351 virtual unsigned getGISelRematGlobalCost() const = 0;
1352 virtual int getInstructionLatency(const Instruction
*I
) = 0;
1355 template <typename T
>
1356 class TargetTransformInfo::Model final
: public TargetTransformInfo::Concept
{
1360 Model(T Impl
) : Impl(std::move(Impl
)) {}
1361 ~Model() override
{}
1363 const DataLayout
&getDataLayout() const override
{
1364 return Impl
.getDataLayout();
1367 int getOperationCost(unsigned Opcode
, Type
*Ty
, Type
*OpTy
) override
{
1368 return Impl
.getOperationCost(Opcode
, Ty
, OpTy
);
1370 int getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
1371 ArrayRef
<const Value
*> Operands
) override
{
1372 return Impl
.getGEPCost(PointeeType
, Ptr
, Operands
);
1374 int getExtCost(const Instruction
*I
, const Value
*Src
) override
{
1375 return Impl
.getExtCost(I
, Src
);
1377 int getCallCost(FunctionType
*FTy
, int NumArgs
, const User
*U
) override
{
1378 return Impl
.getCallCost(FTy
, NumArgs
, U
);
1380 int getCallCost(const Function
*F
, int NumArgs
, const User
*U
) override
{
1381 return Impl
.getCallCost(F
, NumArgs
, U
);
1383 int getCallCost(const Function
*F
,
1384 ArrayRef
<const Value
*> Arguments
, const User
*U
) override
{
1385 return Impl
.getCallCost(F
, Arguments
, U
);
1387 unsigned getInliningThresholdMultiplier() override
{
1388 return Impl
.getInliningThresholdMultiplier();
1390 int getInlinerVectorBonusPercent() override
{
1391 return Impl
.getInlinerVectorBonusPercent();
1393 int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
1394 ArrayRef
<Type
*> ParamTys
, const User
*U
= nullptr) override
{
1395 return Impl
.getIntrinsicCost(IID
, RetTy
, ParamTys
, U
);
1397 int getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
1398 ArrayRef
<const Value
*> Arguments
,
1399 const User
*U
= nullptr) override
{
1400 return Impl
.getIntrinsicCost(IID
, RetTy
, Arguments
, U
);
1402 int getMemcpyCost(const Instruction
*I
) override
{
1403 return Impl
.getMemcpyCost(I
);
1405 int getUserCost(const User
*U
, ArrayRef
<const Value
*> Operands
) override
{
1406 return Impl
.getUserCost(U
, Operands
);
1408 bool hasBranchDivergence() override
{ return Impl
.hasBranchDivergence(); }
1409 bool isSourceOfDivergence(const Value
*V
) override
{
1410 return Impl
.isSourceOfDivergence(V
);
1413 bool isAlwaysUniform(const Value
*V
) override
{
1414 return Impl
.isAlwaysUniform(V
);
1417 unsigned getFlatAddressSpace() override
{
1418 return Impl
.getFlatAddressSpace();
1421 bool collectFlatAddressOperands(SmallVectorImpl
<int> &OpIndexes
,
1422 Intrinsic::ID IID
) const override
{
1423 return Impl
.collectFlatAddressOperands(OpIndexes
, IID
);
1426 bool rewriteIntrinsicWithAddressSpace(
1427 IntrinsicInst
*II
, Value
*OldV
, Value
*NewV
) const override
{
1428 return Impl
.rewriteIntrinsicWithAddressSpace(II
, OldV
, NewV
);
1431 bool isLoweredToCall(const Function
*F
) override
{
1432 return Impl
.isLoweredToCall(F
);
1434 void getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
1435 UnrollingPreferences
&UP
) override
{
1436 return Impl
.getUnrollingPreferences(L
, SE
, UP
);
1438 bool isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
1439 AssumptionCache
&AC
,
1440 TargetLibraryInfo
*LibInfo
,
1441 HardwareLoopInfo
&HWLoopInfo
) override
{
1442 return Impl
.isHardwareLoopProfitable(L
, SE
, AC
, LibInfo
, HWLoopInfo
);
1444 bool isLegalAddImmediate(int64_t Imm
) override
{
1445 return Impl
.isLegalAddImmediate(Imm
);
1447 bool isLegalICmpImmediate(int64_t Imm
) override
{
1448 return Impl
.isLegalICmpImmediate(Imm
);
1450 bool isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
1451 bool HasBaseReg
, int64_t Scale
,
1453 Instruction
*I
) override
{
1454 return Impl
.isLegalAddressingMode(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
1455 Scale
, AddrSpace
, I
);
1457 bool isLSRCostLess(TargetTransformInfo::LSRCost
&C1
,
1458 TargetTransformInfo::LSRCost
&C2
) override
{
1459 return Impl
.isLSRCostLess(C1
, C2
);
1461 bool canMacroFuseCmp() override
{
1462 return Impl
.canMacroFuseCmp();
1464 bool canSaveCmp(Loop
*L
, BranchInst
**BI
,
1465 ScalarEvolution
*SE
,
1466 LoopInfo
*LI
, DominatorTree
*DT
, AssumptionCache
*AC
,
1467 TargetLibraryInfo
*LibInfo
) override
{
1468 return Impl
.canSaveCmp(L
, BI
, SE
, LI
, DT
, AC
, LibInfo
);
1470 bool shouldFavorPostInc() const override
{
1471 return Impl
.shouldFavorPostInc();
1473 bool shouldFavorBackedgeIndex(const Loop
*L
) const override
{
1474 return Impl
.shouldFavorBackedgeIndex(L
);
1476 bool isLegalMaskedStore(Type
*DataType
) override
{
1477 return Impl
.isLegalMaskedStore(DataType
);
1479 bool isLegalMaskedLoad(Type
*DataType
) override
{
1480 return Impl
.isLegalMaskedLoad(DataType
);
1482 bool isLegalNTStore(Type
*DataType
, llvm::Align Alignment
) override
{
1483 return Impl
.isLegalNTStore(DataType
, Alignment
);
1485 bool isLegalNTLoad(Type
*DataType
, llvm::Align Alignment
) override
{
1486 return Impl
.isLegalNTLoad(DataType
, Alignment
);
1488 bool isLegalMaskedScatter(Type
*DataType
) override
{
1489 return Impl
.isLegalMaskedScatter(DataType
);
1491 bool isLegalMaskedGather(Type
*DataType
) override
{
1492 return Impl
.isLegalMaskedGather(DataType
);
1494 bool isLegalMaskedCompressStore(Type
*DataType
) override
{
1495 return Impl
.isLegalMaskedCompressStore(DataType
);
1497 bool isLegalMaskedExpandLoad(Type
*DataType
) override
{
1498 return Impl
.isLegalMaskedExpandLoad(DataType
);
1500 bool hasDivRemOp(Type
*DataType
, bool IsSigned
) override
{
1501 return Impl
.hasDivRemOp(DataType
, IsSigned
);
1503 bool hasVolatileVariant(Instruction
*I
, unsigned AddrSpace
) override
{
1504 return Impl
.hasVolatileVariant(I
, AddrSpace
);
1506 bool prefersVectorizedAddressing() override
{
1507 return Impl
.prefersVectorizedAddressing();
1509 int getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
1510 bool HasBaseReg
, int64_t Scale
,
1511 unsigned AddrSpace
) override
{
1512 return Impl
.getScalingFactorCost(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
1515 bool LSRWithInstrQueries() override
{
1516 return Impl
.LSRWithInstrQueries();
1518 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) override
{
1519 return Impl
.isTruncateFree(Ty1
, Ty2
);
1521 bool isProfitableToHoist(Instruction
*I
) override
{
1522 return Impl
.isProfitableToHoist(I
);
1524 bool useAA() override
{ return Impl
.useAA(); }
1525 bool isTypeLegal(Type
*Ty
) override
{ return Impl
.isTypeLegal(Ty
); }
1526 unsigned getJumpBufAlignment() override
{ return Impl
.getJumpBufAlignment(); }
1527 unsigned getJumpBufSize() override
{ return Impl
.getJumpBufSize(); }
1528 bool shouldBuildLookupTables() override
{
1529 return Impl
.shouldBuildLookupTables();
1531 bool shouldBuildLookupTablesForConstant(Constant
*C
) override
{
1532 return Impl
.shouldBuildLookupTablesForConstant(C
);
1534 bool useColdCCForColdCall(Function
&F
) override
{
1535 return Impl
.useColdCCForColdCall(F
);
1538 unsigned getScalarizationOverhead(Type
*Ty
, bool Insert
,
1539 bool Extract
) override
{
1540 return Impl
.getScalarizationOverhead(Ty
, Insert
, Extract
);
1542 unsigned getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
1543 unsigned VF
) override
{
1544 return Impl
.getOperandsScalarizationOverhead(Args
, VF
);
1547 bool supportsEfficientVectorElementLoadStore() override
{
1548 return Impl
.supportsEfficientVectorElementLoadStore();
1551 bool enableAggressiveInterleaving(bool LoopHasReductions
) override
{
1552 return Impl
.enableAggressiveInterleaving(LoopHasReductions
);
1554 MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize
,
1555 bool IsZeroCmp
) const override
{
1556 return Impl
.enableMemCmpExpansion(OptSize
, IsZeroCmp
);
1558 bool enableInterleavedAccessVectorization() override
{
1559 return Impl
.enableInterleavedAccessVectorization();
1561 bool enableMaskedInterleavedAccessVectorization() override
{
1562 return Impl
.enableMaskedInterleavedAccessVectorization();
1564 bool isFPVectorizationPotentiallyUnsafe() override
{
1565 return Impl
.isFPVectorizationPotentiallyUnsafe();
1567 bool allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
1568 unsigned BitWidth
, unsigned AddressSpace
,
1569 unsigned Alignment
, bool *Fast
) override
{
1570 return Impl
.allowsMisalignedMemoryAccesses(Context
, BitWidth
, AddressSpace
,
1573 PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit
) override
{
1574 return Impl
.getPopcntSupport(IntTyWidthInBit
);
1576 bool haveFastSqrt(Type
*Ty
) override
{ return Impl
.haveFastSqrt(Ty
); }
1578 bool isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) override
{
1579 return Impl
.isFCmpOrdCheaperThanFCmpZero(Ty
);
1582 int getFPOpCost(Type
*Ty
) override
{ return Impl
.getFPOpCost(Ty
); }
1584 int getIntImmCodeSizeCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
1585 Type
*Ty
) override
{
1586 return Impl
.getIntImmCodeSizeCost(Opc
, Idx
, Imm
, Ty
);
1588 int getIntImmCost(const APInt
&Imm
, Type
*Ty
) override
{
1589 return Impl
.getIntImmCost(Imm
, Ty
);
1591 int getIntImmCost(unsigned Opc
, unsigned Idx
, const APInt
&Imm
,
1592 Type
*Ty
) override
{
1593 return Impl
.getIntImmCost(Opc
, Idx
, Imm
, Ty
);
1595 int getIntImmCost(Intrinsic::ID IID
, unsigned Idx
, const APInt
&Imm
,
1596 Type
*Ty
) override
{
1597 return Impl
.getIntImmCost(IID
, Idx
, Imm
, Ty
);
1599 unsigned getNumberOfRegisters(bool Vector
) override
{
1600 return Impl
.getNumberOfRegisters(Vector
);
1602 unsigned getRegisterBitWidth(bool Vector
) const override
{
1603 return Impl
.getRegisterBitWidth(Vector
);
1605 unsigned getMinVectorRegisterBitWidth() override
{
1606 return Impl
.getMinVectorRegisterBitWidth();
1608 bool shouldMaximizeVectorBandwidth(bool OptSize
) const override
{
1609 return Impl
.shouldMaximizeVectorBandwidth(OptSize
);
1611 unsigned getMinimumVF(unsigned ElemWidth
) const override
{
1612 return Impl
.getMinimumVF(ElemWidth
);
1614 bool shouldConsiderAddressTypePromotion(
1615 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) override
{
1616 return Impl
.shouldConsiderAddressTypePromotion(
1617 I
, AllowPromotionWithoutCommonHeader
);
1619 unsigned getCacheLineSize() override
{
1620 return Impl
.getCacheLineSize();
1622 llvm::Optional
<unsigned> getCacheSize(CacheLevel Level
) override
{
1623 return Impl
.getCacheSize(Level
);
1625 llvm::Optional
<unsigned> getCacheAssociativity(CacheLevel Level
) override
{
1626 return Impl
.getCacheAssociativity(Level
);
1628 unsigned getPrefetchDistance() override
{ return Impl
.getPrefetchDistance(); }
1629 unsigned getMinPrefetchStride() override
{
1630 return Impl
.getMinPrefetchStride();
1632 unsigned getMaxPrefetchIterationsAhead() override
{
1633 return Impl
.getMaxPrefetchIterationsAhead();
1635 unsigned getMaxInterleaveFactor(unsigned VF
) override
{
1636 return Impl
.getMaxInterleaveFactor(VF
);
1638 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
1639 unsigned &JTSize
) override
{
1640 return Impl
.getEstimatedNumberOfCaseClusters(SI
, JTSize
);
1643 getArithmeticInstrCost(unsigned Opcode
, Type
*Ty
, OperandValueKind Opd1Info
,
1644 OperandValueKind Opd2Info
,
1645 OperandValueProperties Opd1PropInfo
,
1646 OperandValueProperties Opd2PropInfo
,
1647 ArrayRef
<const Value
*> Args
) override
{
1648 return Impl
.getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
1649 Opd1PropInfo
, Opd2PropInfo
, Args
);
1651 int getShuffleCost(ShuffleKind Kind
, Type
*Tp
, int Index
,
1652 Type
*SubTp
) override
{
1653 return Impl
.getShuffleCost(Kind
, Tp
, Index
, SubTp
);
1655 int getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
1656 const Instruction
*I
) override
{
1657 return Impl
.getCastInstrCost(Opcode
, Dst
, Src
, I
);
1659 int getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
, VectorType
*VecTy
,
1660 unsigned Index
) override
{
1661 return Impl
.getExtractWithExtendCost(Opcode
, Dst
, VecTy
, Index
);
1663 int getCFInstrCost(unsigned Opcode
) override
{
1664 return Impl
.getCFInstrCost(Opcode
);
1666 int getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
1667 const Instruction
*I
) override
{
1668 return Impl
.getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
1670 int getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
) override
{
1671 return Impl
.getVectorInstrCost(Opcode
, Val
, Index
);
1673 int getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
1674 unsigned AddressSpace
, const Instruction
*I
) override
{
1675 return Impl
.getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
, I
);
1677 int getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
1678 unsigned AddressSpace
) override
{
1679 return Impl
.getMaskedMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
);
1681 int getGatherScatterOpCost(unsigned Opcode
, Type
*DataTy
,
1682 Value
*Ptr
, bool VariableMask
,
1683 unsigned Alignment
) override
{
1684 return Impl
.getGatherScatterOpCost(Opcode
, DataTy
, Ptr
, VariableMask
,
1687 int getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
, unsigned Factor
,
1688 ArrayRef
<unsigned> Indices
, unsigned Alignment
,
1689 unsigned AddressSpace
, bool UseMaskForCond
,
1690 bool UseMaskForGaps
) override
{
1691 return Impl
.getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
1692 Alignment
, AddressSpace
,
1693 UseMaskForCond
, UseMaskForGaps
);
1695 int getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
1696 bool IsPairwiseForm
) override
{
1697 return Impl
.getArithmeticReductionCost(Opcode
, Ty
, IsPairwiseForm
);
1699 int getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
,
1700 bool IsPairwiseForm
, bool IsUnsigned
) override
{
1701 return Impl
.getMinMaxReductionCost(Ty
, CondTy
, IsPairwiseForm
, IsUnsigned
);
1703 int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
, ArrayRef
<Type
*> Tys
,
1704 FastMathFlags FMF
, unsigned ScalarizationCostPassed
) override
{
1705 return Impl
.getIntrinsicInstrCost(ID
, RetTy
, Tys
, FMF
,
1706 ScalarizationCostPassed
);
1708 int getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
1709 ArrayRef
<Value
*> Args
, FastMathFlags FMF
, unsigned VF
) override
{
1710 return Impl
.getIntrinsicInstrCost(ID
, RetTy
, Args
, FMF
, VF
);
1712 int getCallInstrCost(Function
*F
, Type
*RetTy
,
1713 ArrayRef
<Type
*> Tys
) override
{
1714 return Impl
.getCallInstrCost(F
, RetTy
, Tys
);
1716 unsigned getNumberOfParts(Type
*Tp
) override
{
1717 return Impl
.getNumberOfParts(Tp
);
1719 int getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
1720 const SCEV
*Ptr
) override
{
1721 return Impl
.getAddressComputationCost(Ty
, SE
, Ptr
);
1723 unsigned getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) override
{
1724 return Impl
.getCostOfKeepingLiveOverCall(Tys
);
1726 bool getTgtMemIntrinsic(IntrinsicInst
*Inst
,
1727 MemIntrinsicInfo
&Info
) override
{
1728 return Impl
.getTgtMemIntrinsic(Inst
, Info
);
1730 unsigned getAtomicMemIntrinsicMaxElementSize() const override
{
1731 return Impl
.getAtomicMemIntrinsicMaxElementSize();
1733 Value
*getOrCreateResultFromMemIntrinsic(IntrinsicInst
*Inst
,
1734 Type
*ExpectedType
) override
{
1735 return Impl
.getOrCreateResultFromMemIntrinsic(Inst
, ExpectedType
);
1737 Type
*getMemcpyLoopLoweringType(LLVMContext
&Context
, Value
*Length
,
1739 unsigned DestAlign
) const override
{
1740 return Impl
.getMemcpyLoopLoweringType(Context
, Length
, SrcAlign
, DestAlign
);
1742 void getMemcpyLoopResidualLoweringType(SmallVectorImpl
<Type
*> &OpsOut
,
1743 LLVMContext
&Context
,
1744 unsigned RemainingBytes
,
1746 unsigned DestAlign
) const override
{
1747 Impl
.getMemcpyLoopResidualLoweringType(OpsOut
, Context
, RemainingBytes
,
1748 SrcAlign
, DestAlign
);
1750 bool areInlineCompatible(const Function
*Caller
,
1751 const Function
*Callee
) const override
{
1752 return Impl
.areInlineCompatible(Caller
, Callee
);
1754 bool areFunctionArgsABICompatible(
1755 const Function
*Caller
, const Function
*Callee
,
1756 SmallPtrSetImpl
<Argument
*> &Args
) const override
{
1757 return Impl
.areFunctionArgsABICompatible(Caller
, Callee
, Args
);
1759 bool isIndexedLoadLegal(MemIndexedMode Mode
, Type
*Ty
) const override
{
1760 return Impl
.isIndexedLoadLegal(Mode
, Ty
, getDataLayout());
1762 bool isIndexedStoreLegal(MemIndexedMode Mode
, Type
*Ty
) const override
{
1763 return Impl
.isIndexedStoreLegal(Mode
, Ty
, getDataLayout());
1765 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace
) const override
{
1766 return Impl
.getLoadStoreVecRegBitWidth(AddrSpace
);
1768 bool isLegalToVectorizeLoad(LoadInst
*LI
) const override
{
1769 return Impl
.isLegalToVectorizeLoad(LI
);
1771 bool isLegalToVectorizeStore(StoreInst
*SI
) const override
{
1772 return Impl
.isLegalToVectorizeStore(SI
);
1774 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes
,
1776 unsigned AddrSpace
) const override
{
1777 return Impl
.isLegalToVectorizeLoadChain(ChainSizeInBytes
, Alignment
,
1780 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes
,
1782 unsigned AddrSpace
) const override
{
1783 return Impl
.isLegalToVectorizeStoreChain(ChainSizeInBytes
, Alignment
,
1786 unsigned getLoadVectorFactor(unsigned VF
, unsigned LoadSize
,
1787 unsigned ChainSizeInBytes
,
1788 VectorType
*VecTy
) const override
{
1789 return Impl
.getLoadVectorFactor(VF
, LoadSize
, ChainSizeInBytes
, VecTy
);
1791 unsigned getStoreVectorFactor(unsigned VF
, unsigned StoreSize
,
1792 unsigned ChainSizeInBytes
,
1793 VectorType
*VecTy
) const override
{
1794 return Impl
.getStoreVectorFactor(VF
, StoreSize
, ChainSizeInBytes
, VecTy
);
1796 bool useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
1797 ReductionFlags Flags
) const override
{
1798 return Impl
.useReductionIntrinsic(Opcode
, Ty
, Flags
);
1800 bool shouldExpandReduction(const IntrinsicInst
*II
) const override
{
1801 return Impl
.shouldExpandReduction(II
);
1804 unsigned getGISelRematGlobalCost() const override
{
1805 return Impl
.getGISelRematGlobalCost();
1808 int getInstructionLatency(const Instruction
*I
) override
{
1809 return Impl
.getInstructionLatency(I
);
1813 template <typename T
>
1814 TargetTransformInfo::TargetTransformInfo(T Impl
)
1815 : TTIImpl(new Model
<T
>(Impl
)) {}
1817 /// Analysis pass providing the \c TargetTransformInfo.
1819 /// The core idea of the TargetIRAnalysis is to expose an interface through
1820 /// which LLVM targets can analyze and provide information about the middle
1821 /// end's target-independent IR. This supports use cases such as target-aware
1822 /// cost modeling of IR constructs.
1824 /// This is a function analysis because much of the cost modeling for targets
1825 /// is done in a subtarget specific way and LLVM supports compiling different
1826 /// functions targeting different subtargets in order to support runtime
1827 /// dispatch according to the observed subtarget.
1828 class TargetIRAnalysis
: public AnalysisInfoMixin
<TargetIRAnalysis
> {
1830 typedef TargetTransformInfo Result
;
1832 /// Default construct a target IR analysis.
1834 /// This will use the module's datalayout to construct a baseline
1835 /// conservative TTI result.
1838 /// Construct an IR analysis pass around a target-provide callback.
1840 /// The callback will be called with a particular function for which the TTI
1841 /// is needed and must return a TTI object for that function.
1842 TargetIRAnalysis(std::function
<Result(const Function
&)> TTICallback
);
1844 // Value semantics. We spell out the constructors for MSVC.
1845 TargetIRAnalysis(const TargetIRAnalysis
&Arg
)
1846 : TTICallback(Arg
.TTICallback
) {}
1847 TargetIRAnalysis(TargetIRAnalysis
&&Arg
)
1848 : TTICallback(std::move(Arg
.TTICallback
)) {}
1849 TargetIRAnalysis
&operator=(const TargetIRAnalysis
&RHS
) {
1850 TTICallback
= RHS
.TTICallback
;
1853 TargetIRAnalysis
&operator=(TargetIRAnalysis
&&RHS
) {
1854 TTICallback
= std::move(RHS
.TTICallback
);
1858 Result
run(const Function
&F
, FunctionAnalysisManager
&);
1861 friend AnalysisInfoMixin
<TargetIRAnalysis
>;
1862 static AnalysisKey Key
;
1864 /// The callback used to produce a result.
1866 /// We use a completely opaque callback so that targets can provide whatever
1867 /// mechanism they desire for constructing the TTI for a given function.
1869 /// FIXME: Should we really use std::function? It's relatively inefficient.
1870 /// It might be possible to arrange for even stateful callbacks to outlive
1871 /// the analysis and thus use a function_ref which would be lighter weight.
1872 /// This may also be less error prone as the callback is likely to reference
1873 /// the external TargetMachine, and that reference needs to never dangle.
1874 std::function
<Result(const Function
&)> TTICallback
;
1876 /// Helper function used as the callback in the default constructor.
1877 static Result
getDefaultTTI(const Function
&F
);
1880 /// Wrapper pass for TargetTransformInfo.
1882 /// This pass can be constructed from a TTI object which it stores internally
1883 /// and is queried by passes.
1884 class TargetTransformInfoWrapperPass
: public ImmutablePass
{
1885 TargetIRAnalysis TIRA
;
1886 Optional
<TargetTransformInfo
> TTI
;
1888 virtual void anchor();
1893 /// We must provide a default constructor for the pass but it should
1896 /// Use the constructor below or call one of the creation routines.
1897 TargetTransformInfoWrapperPass();
1899 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA
);
1901 TargetTransformInfo
&getTTI(const Function
&F
);
1904 /// Create an analysis pass wrapper around a TTI object.
1906 /// This analysis pass just holds the TTI instance and makes it available to
1908 ImmutablePass
*createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA
);
1910 } // End llvm namespace