[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / CodeGen / GlobalISel / MachineIRBuilder.h
blobc807be855ec7e55435d870a1e7c08c210a5eaeb5
1 //===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file declares the MachineIRBuilder class.
10 /// This is a helper class to build MachineInstr.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
14 #define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
16 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Types.h"
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugLoc.h"
27 namespace llvm {
29 // Forward declarations.
30 class MachineFunction;
31 class MachineInstr;
32 class TargetInstrInfo;
33 class GISelChangeObserver;
35 /// Class which stores all the state required in a MachineIRBuilder.
36 /// Since MachineIRBuilders will only store state in this object, it allows
37 /// to transfer BuilderState between different kinds of MachineIRBuilders.
38 struct MachineIRBuilderState {
39 /// MachineFunction under construction.
40 MachineFunction *MF;
41 /// Information used to access the description of the opcodes.
42 const TargetInstrInfo *TII;
43 /// Information used to verify types are consistent and to create virtual registers.
44 MachineRegisterInfo *MRI;
45 /// Debug location to be set to any instruction we create.
46 DebugLoc DL;
48 /// \name Fields describing the insertion point.
49 /// @{
50 MachineBasicBlock *MBB;
51 MachineBasicBlock::iterator II;
52 /// @}
54 GISelChangeObserver *Observer;
56 GISelCSEInfo *CSEInfo;
59 class DstOp {
60 union {
61 LLT LLTTy;
62 Register Reg;
63 const TargetRegisterClass *RC;
66 public:
67 enum class DstType { Ty_LLT, Ty_Reg, Ty_RC };
68 DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {}
69 DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {}
70 DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {}
71 DstOp(const LLT &T) : LLTTy(T), Ty(DstType::Ty_LLT) {}
72 DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {}
74 void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const {
75 switch (Ty) {
76 case DstType::Ty_Reg:
77 MIB.addDef(Reg);
78 break;
79 case DstType::Ty_LLT:
80 MIB.addDef(MRI.createGenericVirtualRegister(LLTTy));
81 break;
82 case DstType::Ty_RC:
83 MIB.addDef(MRI.createVirtualRegister(RC));
84 break;
88 LLT getLLTTy(const MachineRegisterInfo &MRI) const {
89 switch (Ty) {
90 case DstType::Ty_RC:
91 return LLT{};
92 case DstType::Ty_LLT:
93 return LLTTy;
94 case DstType::Ty_Reg:
95 return MRI.getType(Reg);
97 llvm_unreachable("Unrecognised DstOp::DstType enum");
100 Register getReg() const {
101 assert(Ty == DstType::Ty_Reg && "Not a register");
102 return Reg;
105 const TargetRegisterClass *getRegClass() const {
106 switch (Ty) {
107 case DstType::Ty_RC:
108 return RC;
109 default:
110 llvm_unreachable("Not a RC Operand");
114 DstType getDstOpKind() const { return Ty; }
116 private:
117 DstType Ty;
120 class SrcOp {
121 union {
122 MachineInstrBuilder SrcMIB;
123 Register Reg;
124 CmpInst::Predicate Pred;
125 int64_t Imm;
128 public:
129 enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm };
130 SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {}
131 SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {}
132 SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {}
133 SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {}
134 /// Use of registers held in unsigned integer variables (or more rarely signed
135 /// integers) is no longer permitted to avoid ambiguity with upcoming support
136 /// for immediates.
137 SrcOp(unsigned) = delete;
138 SrcOp(int) = delete;
139 SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
140 SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
142 void addSrcToMIB(MachineInstrBuilder &MIB) const {
143 switch (Ty) {
144 case SrcType::Ty_Predicate:
145 MIB.addPredicate(Pred);
146 break;
147 case SrcType::Ty_Reg:
148 MIB.addUse(Reg);
149 break;
150 case SrcType::Ty_MIB:
151 MIB.addUse(SrcMIB->getOperand(0).getReg());
152 break;
153 case SrcType::Ty_Imm:
154 MIB.addImm(Imm);
155 break;
159 LLT getLLTTy(const MachineRegisterInfo &MRI) const {
160 switch (Ty) {
161 case SrcType::Ty_Predicate:
162 case SrcType::Ty_Imm:
163 llvm_unreachable("Not a register operand");
164 case SrcType::Ty_Reg:
165 return MRI.getType(Reg);
166 case SrcType::Ty_MIB:
167 return MRI.getType(SrcMIB->getOperand(0).getReg());
169 llvm_unreachable("Unrecognised SrcOp::SrcType enum");
172 Register getReg() const {
173 switch (Ty) {
174 case SrcType::Ty_Predicate:
175 case SrcType::Ty_Imm:
176 llvm_unreachable("Not a register operand");
177 case SrcType::Ty_Reg:
178 return Reg;
179 case SrcType::Ty_MIB:
180 return SrcMIB->getOperand(0).getReg();
182 llvm_unreachable("Unrecognised SrcOp::SrcType enum");
185 CmpInst::Predicate getPredicate() const {
186 switch (Ty) {
187 case SrcType::Ty_Predicate:
188 return Pred;
189 default:
190 llvm_unreachable("Not a register operand");
194 int64_t getImm() const {
195 switch (Ty) {
196 case SrcType::Ty_Imm:
197 return Imm;
198 default:
199 llvm_unreachable("Not an immediate");
203 SrcType getSrcOpKind() const { return Ty; }
205 private:
206 SrcType Ty;
209 class FlagsOp {
210 Optional<unsigned> Flags;
212 public:
213 explicit FlagsOp(unsigned F) : Flags(F) {}
214 FlagsOp() : Flags(None) {}
215 Optional<unsigned> getFlags() const { return Flags; }
217 /// Helper class to build MachineInstr.
218 /// It keeps internally the insertion point and debug location for all
219 /// the new instructions we want to create.
220 /// This information can be modify via the related setters.
221 class MachineIRBuilder {
223 MachineIRBuilderState State;
225 protected:
226 void validateTruncExt(const LLT &Dst, const LLT &Src, bool IsExtend);
228 void validateBinaryOp(const LLT &Res, const LLT &Op0, const LLT &Op1);
229 void validateShiftOp(const LLT &Res, const LLT &Op0, const LLT &Op1);
231 void validateSelectOp(const LLT &ResTy, const LLT &TstTy, const LLT &Op0Ty,
232 const LLT &Op1Ty);
233 void recordInsertion(MachineInstr *MI) const;
235 public:
236 /// Some constructors for easy use.
237 MachineIRBuilder() = default;
238 MachineIRBuilder(MachineFunction &MF) { setMF(MF); }
239 MachineIRBuilder(MachineInstr &MI) : MachineIRBuilder(*MI.getMF()) {
240 setInstr(MI);
243 virtual ~MachineIRBuilder() = default;
245 MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {}
247 const TargetInstrInfo &getTII() {
248 assert(State.TII && "TargetInstrInfo is not set");
249 return *State.TII;
252 /// Getter for the function we currently build.
253 MachineFunction &getMF() {
254 assert(State.MF && "MachineFunction is not set");
255 return *State.MF;
258 const MachineFunction &getMF() const {
259 assert(State.MF && "MachineFunction is not set");
260 return *State.MF;
263 const DataLayout &getDataLayout() const {
264 return getMF().getFunction().getParent()->getDataLayout();
267 /// Getter for DebugLoc
268 const DebugLoc &getDL() { return State.DL; }
270 /// Getter for MRI
271 MachineRegisterInfo *getMRI() { return State.MRI; }
272 const MachineRegisterInfo *getMRI() const { return State.MRI; }
274 /// Getter for the State
275 MachineIRBuilderState &getState() { return State; }
277 /// Getter for the basic block we currently build.
278 const MachineBasicBlock &getMBB() const {
279 assert(State.MBB && "MachineBasicBlock is not set");
280 return *State.MBB;
283 MachineBasicBlock &getMBB() {
284 return const_cast<MachineBasicBlock &>(
285 const_cast<const MachineIRBuilder *>(this)->getMBB());
288 GISelCSEInfo *getCSEInfo() { return State.CSEInfo; }
289 const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; }
291 /// Current insertion point for new instructions.
292 MachineBasicBlock::iterator getInsertPt() { return State.II; }
294 /// Set the insertion point before the specified position.
295 /// \pre MBB must be in getMF().
296 /// \pre II must be a valid iterator in MBB.
297 void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II);
298 /// @}
300 void setCSEInfo(GISelCSEInfo *Info);
302 /// \name Setters for the insertion point.
303 /// @{
304 /// Set the MachineFunction where to build instructions.
305 void setMF(MachineFunction &MF);
307 /// Set the insertion point to the end of \p MBB.
308 /// \pre \p MBB must be contained by getMF().
309 void setMBB(MachineBasicBlock &MBB);
311 /// Set the insertion point to before MI.
312 /// \pre MI must be in getMF().
313 void setInstr(MachineInstr &MI);
314 /// @}
316 void setChangeObserver(GISelChangeObserver &Observer);
317 void stopObservingChanges();
318 /// @}
320 /// Set the debug location to \p DL for all the next build instructions.
321 void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; }
323 /// Get the current instruction's debug location.
324 DebugLoc getDebugLoc() { return State.DL; }
326 /// Build and insert <empty> = \p Opcode <empty>.
327 /// The insertion point is the one set by the last call of either
328 /// setBasicBlock or setMI.
330 /// \pre setBasicBlock or setMI must have been called.
332 /// \return a MachineInstrBuilder for the newly created instruction.
333 MachineInstrBuilder buildInstr(unsigned Opcode);
335 /// Build but don't insert <empty> = \p Opcode <empty>.
337 /// \pre setMF, setBasicBlock or setMI must have been called.
339 /// \return a MachineInstrBuilder for the newly created instruction.
340 MachineInstrBuilder buildInstrNoInsert(unsigned Opcode);
342 /// Insert an existing instruction at the insertion point.
343 MachineInstrBuilder insertInstr(MachineInstrBuilder MIB);
345 /// Build and insert a DBG_VALUE instruction expressing the fact that the
346 /// associated \p Variable lives in \p Reg (suitably modified by \p Expr).
347 MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable,
348 const MDNode *Expr);
350 /// Build and insert a DBG_VALUE instruction expressing the fact that the
351 /// associated \p Variable lives in memory at \p Reg (suitably modified by \p
352 /// Expr).
353 MachineInstrBuilder buildIndirectDbgValue(Register Reg,
354 const MDNode *Variable,
355 const MDNode *Expr);
357 /// Build and insert a DBG_VALUE instruction expressing the fact that the
358 /// associated \p Variable lives in the stack slot specified by \p FI
359 /// (suitably modified by \p Expr).
360 MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable,
361 const MDNode *Expr);
363 /// Build and insert a DBG_VALUE instructions specifying that \p Variable is
364 /// given by \p C (suitably modified by \p Expr).
365 MachineInstrBuilder buildConstDbgValue(const Constant &C,
366 const MDNode *Variable,
367 const MDNode *Expr);
369 /// Build and insert a DBG_LABEL instructions specifying that \p Label is
370 /// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label".
371 MachineInstrBuilder buildDbgLabel(const MDNode *Label);
373 /// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align
375 /// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of
376 /// the allocated memory into \p Res.
377 /// \pre setBasicBlock or setMI must have been called.
378 /// \pre \p Res must be a generic virtual register with pointer type.
380 /// \return a MachineInstrBuilder for the newly created instruction.
381 MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size,
382 unsigned Align);
384 /// Build and insert \p Res = G_FRAME_INDEX \p Idx
386 /// G_FRAME_INDEX materializes the address of an alloca value or other
387 /// stack-based object.
389 /// \pre setBasicBlock or setMI must have been called.
390 /// \pre \p Res must be a generic virtual register with pointer type.
392 /// \return a MachineInstrBuilder for the newly created instruction.
393 MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx);
395 /// Build and insert \p Res = G_GLOBAL_VALUE \p GV
397 /// G_GLOBAL_VALUE materializes the address of the specified global
398 /// into \p Res.
400 /// \pre setBasicBlock or setMI must have been called.
401 /// \pre \p Res must be a generic virtual register with pointer type
402 /// in the same address space as \p GV.
404 /// \return a MachineInstrBuilder for the newly created instruction.
405 MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV);
407 /// Build and insert \p Res = G_GEP \p Op0, \p Op1
409 /// G_GEP adds \p Op1 bytes to the pointer specified by \p Op0,
410 /// storing the resulting pointer in \p Res.
412 /// \pre setBasicBlock or setMI must have been called.
413 /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
414 /// type.
415 /// \pre \p Op1 must be a generic virtual register with scalar type.
417 /// \return a MachineInstrBuilder for the newly created instruction.
418 MachineInstrBuilder buildGEP(const DstOp &Res, const SrcOp &Op0,
419 const SrcOp &Op1);
421 /// Materialize and insert \p Res = G_GEP \p Op0, (G_CONSTANT \p Value)
423 /// G_GEP adds \p Value bytes to the pointer specified by \p Op0,
424 /// storing the resulting pointer in \p Res. If \p Value is zero then no
425 /// G_GEP or G_CONSTANT will be created and \pre Op0 will be assigned to
426 /// \p Res.
428 /// \pre setBasicBlock or setMI must have been called.
429 /// \pre \p Op0 must be a generic virtual register with pointer type.
430 /// \pre \p ValueTy must be a scalar type.
431 /// \pre \p Res must be 0. This is to detect confusion between
432 /// materializeGEP() and buildGEP().
433 /// \post \p Res will either be a new generic virtual register of the same
434 /// type as \p Op0 or \p Op0 itself.
436 /// \return a MachineInstrBuilder for the newly created instruction.
437 Optional<MachineInstrBuilder> materializeGEP(Register &Res, Register Op0,
438 const LLT &ValueTy,
439 uint64_t Value);
441 /// Build and insert \p Res = G_PTR_MASK \p Op0, \p NumBits
443 /// G_PTR_MASK clears the low bits of a pointer operand without destroying its
444 /// pointer properties. This has the effect of rounding the address *down* to
445 /// a specified alignment in bits.
447 /// \pre setBasicBlock or setMI must have been called.
448 /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
449 /// type.
450 /// \pre \p NumBits must be an integer representing the number of low bits to
451 /// be cleared in \p Op0.
453 /// \return a MachineInstrBuilder for the newly created instruction.
454 MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0,
455 uint32_t NumBits);
457 /// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1
459 /// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and
460 /// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic.
462 /// \pre setBasicBlock or setMI must have been called.
463 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the
464 /// same scalar type.
465 ////\pre \p CarryOut must be generic virtual register with scalar type
466 ///(typically s1)
468 /// \return The newly created instruction.
469 MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut,
470 const SrcOp &Op0, const SrcOp &Op1);
472 /// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0,
473 /// \p Op1, \p CarryIn
475 /// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit
476 /// width) and sets \p CarryOut to 1 if the result overflowed in unsigned
477 /// arithmetic.
479 /// \pre setBasicBlock or setMI must have been called.
480 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
481 /// with the same scalar type.
482 /// \pre \p CarryOut and \p CarryIn must be generic virtual
483 /// registers with the same scalar type (typically s1)
485 /// \return The newly created instruction.
486 MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut,
487 const SrcOp &Op0, const SrcOp &Op1,
488 const SrcOp &CarryIn);
490 /// Build and insert \p Res = G_ANYEXT \p Op0
492 /// G_ANYEXT produces a register of the specified width, with bits 0 to
493 /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified
494 /// (i.e. this is neither zero nor sign-extension). For a vector register,
495 /// each element is extended individually.
497 /// \pre setBasicBlock or setMI must have been called.
498 /// \pre \p Res must be a generic virtual register with scalar or vector type.
499 /// \pre \p Op must be a generic virtual register with scalar or vector type.
500 /// \pre \p Op must be smaller than \p Res
502 /// \return The newly created instruction.
504 MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op);
506 /// Build and insert \p Res = G_SEXT \p Op
508 /// G_SEXT produces a register of the specified width, with bits 0 to
509 /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the
510 /// high bit of \p Op (i.e. 2s-complement sign extended).
512 /// \pre setBasicBlock or setMI must have been called.
513 /// \pre \p Res must be a generic virtual register with scalar or vector type.
514 /// \pre \p Op must be a generic virtual register with scalar or vector type.
515 /// \pre \p Op must be smaller than \p Res
517 /// \return The newly created instruction.
518 MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op);
520 /// Build and insert a G_PTRTOINT instruction.
521 MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) {
522 return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src});
525 /// Build and insert a G_INTTOPTR instruction.
526 MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) {
527 return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src});
530 /// Build and insert \p Dst = G_BITCAST \p Src
531 MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) {
532 return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src});
535 /// \return The opcode of the extension the target wants to use for boolean
536 /// values.
537 unsigned getBoolExtOp(bool IsVec, bool IsFP) const;
539 // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res
540 // = G_ZEXT \p Op depending on how the target wants to extend boolean values.
541 MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op,
542 bool IsFP);
544 /// Build and insert \p Res = G_ZEXT \p Op
546 /// G_ZEXT produces a register of the specified width, with bits 0 to
547 /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector
548 /// register, each element is extended individually.
550 /// \pre setBasicBlock or setMI must have been called.
551 /// \pre \p Res must be a generic virtual register with scalar or vector type.
552 /// \pre \p Op must be a generic virtual register with scalar or vector type.
553 /// \pre \p Op must be smaller than \p Res
555 /// \return The newly created instruction.
556 MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op);
558 /// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or
559 /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
560 /// ///
561 /// \pre setBasicBlock or setMI must have been called.
562 /// \pre \p Res must be a generic virtual register with scalar or vector type.
563 /// \pre \p Op must be a generic virtual register with scalar or vector type.
565 /// \return The newly created instruction.
566 MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op);
568 /// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or
569 /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
570 /// ///
571 /// \pre setBasicBlock or setMI must have been called.
572 /// \pre \p Res must be a generic virtual register with scalar or vector type.
573 /// \pre \p Op must be a generic virtual register with scalar or vector type.
575 /// \return The newly created instruction.
576 MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op);
578 // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or
579 /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
580 /// ///
581 /// \pre setBasicBlock or setMI must have been called.
582 /// \pre \p Res must be a generic virtual register with scalar or vector type.
583 /// \pre \p Op must be a generic virtual register with scalar or vector type.
585 /// \return The newly created instruction.
586 MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op);
588 /// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p
589 /// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and
590 /// \p Op.
591 /// ///
592 /// \pre setBasicBlock or setMI must have been called.
593 /// \pre \p Res must be a generic virtual register with scalar or vector type.
594 /// \pre \p Op must be a generic virtual register with scalar or vector type.
596 /// \return The newly created instruction.
597 MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res,
598 const SrcOp &Op);
600 /// Build and insert an appropriate cast between two registers of equal size.
601 MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src);
603 /// Build and insert G_BR \p Dest
605 /// G_BR is an unconditional branch to \p Dest.
607 /// \pre setBasicBlock or setMI must have been called.
609 /// \return a MachineInstrBuilder for the newly created instruction.
610 MachineInstrBuilder buildBr(MachineBasicBlock &Dest);
612 /// Build and insert G_BRCOND \p Tst, \p Dest
614 /// G_BRCOND is a conditional branch to \p Dest.
616 /// \pre setBasicBlock or setMI must have been called.
617 /// \pre \p Tst must be a generic virtual register with scalar
618 /// type. At the beginning of legalization, this will be a single
619 /// bit (s1). Targets with interesting flags registers may change
620 /// this. For a wider type, whether the branch is taken must only
621 /// depend on bit 0 (for now).
623 /// \return The newly created instruction.
624 MachineInstrBuilder buildBrCond(Register Tst, MachineBasicBlock &Dest);
626 /// Build and insert G_BRINDIRECT \p Tgt
628 /// G_BRINDIRECT is an indirect branch to \p Tgt.
630 /// \pre setBasicBlock or setMI must have been called.
631 /// \pre \p Tgt must be a generic virtual register with pointer type.
633 /// \return a MachineInstrBuilder for the newly created instruction.
634 MachineInstrBuilder buildBrIndirect(Register Tgt);
636 /// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg
638 /// G_BRJT is a jump table branch using a table base pointer \p TablePtr,
639 /// jump table index \p JTI and index \p IndexReg
641 /// \pre setBasicBlock or setMI must have been called.
642 /// \pre \p TablePtr must be a generic virtual register with pointer type.
643 /// \pre \p JTI must be be a jump table index.
644 /// \pre \p IndexReg must be a generic virtual register with pointer type.
646 /// \return a MachineInstrBuilder for the newly created instruction.
647 MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI,
648 Register IndexReg);
650 /// Build and insert \p Res = G_CONSTANT \p Val
652 /// G_CONSTANT is an integer constant with the specified size and value. \p
653 /// Val will be extended or truncated to the size of \p Reg.
655 /// \pre setBasicBlock or setMI must have been called.
656 /// \pre \p Res must be a generic virtual register with scalar or pointer
657 /// type.
659 /// \return The newly created instruction.
660 virtual MachineInstrBuilder buildConstant(const DstOp &Res,
661 const ConstantInt &Val);
663 /// Build and insert \p Res = G_CONSTANT \p Val
665 /// G_CONSTANT is an integer constant with the specified size and value.
667 /// \pre setBasicBlock or setMI must have been called.
668 /// \pre \p Res must be a generic virtual register with scalar type.
670 /// \return The newly created instruction.
671 MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val);
672 MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val);
674 /// Build and insert \p Res = G_FCONSTANT \p Val
676 /// G_FCONSTANT is a floating-point constant with the specified size and
677 /// value.
679 /// \pre setBasicBlock or setMI must have been called.
680 /// \pre \p Res must be a generic virtual register with scalar type.
682 /// \return The newly created instruction.
683 virtual MachineInstrBuilder buildFConstant(const DstOp &Res,
684 const ConstantFP &Val);
686 MachineInstrBuilder buildFConstant(const DstOp &Res, double Val);
687 MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val);
689 /// Build and insert \p Res = COPY Op
691 /// Register-to-register COPY sets \p Res to \p Op.
693 /// \pre setBasicBlock or setMI must have been called.
695 /// \return a MachineInstrBuilder for the newly created instruction.
696 MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op);
698 /// Build and insert `Res = G_LOAD Addr, MMO`.
700 /// Loads the value stored at \p Addr. Puts the result in \p Res.
702 /// \pre setBasicBlock or setMI must have been called.
703 /// \pre \p Res must be a generic virtual register.
704 /// \pre \p Addr must be a generic virtual register with pointer type.
706 /// \return a MachineInstrBuilder for the newly created instruction.
707 MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr,
708 MachineMemOperand &MMO);
710 /// Build and insert `Res = <opcode> Addr, MMO`.
712 /// Loads the value stored at \p Addr. Puts the result in \p Res.
714 /// \pre setBasicBlock or setMI must have been called.
715 /// \pre \p Res must be a generic virtual register.
716 /// \pre \p Addr must be a generic virtual register with pointer type.
718 /// \return a MachineInstrBuilder for the newly created instruction.
719 MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res,
720 const SrcOp &Addr, MachineMemOperand &MMO);
722 /// Build and insert `G_STORE Val, Addr, MMO`.
724 /// Stores the value \p Val to \p Addr.
726 /// \pre setBasicBlock or setMI must have been called.
727 /// \pre \p Val must be a generic virtual register.
728 /// \pre \p Addr must be a generic virtual register with pointer type.
730 /// \return a MachineInstrBuilder for the newly created instruction.
731 MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr,
732 MachineMemOperand &MMO);
734 /// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`.
736 /// \pre setBasicBlock or setMI must have been called.
737 /// \pre \p Res and \p Src must be generic virtual registers.
739 /// \return a MachineInstrBuilder for the newly created instruction.
740 MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index);
742 /// Build and insert \p Res = IMPLICIT_DEF.
743 MachineInstrBuilder buildUndef(const DstOp &Res);
745 /// Build and insert instructions to put \p Ops together at the specified p
746 /// Indices to form a larger register.
748 /// If the types of the input registers are uniform and cover the entirity of
749 /// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF
750 /// followed by a sequence of G_INSERT instructions.
752 /// \pre setBasicBlock or setMI must have been called.
753 /// \pre The final element of the sequence must not extend past the end of the
754 /// destination register.
755 /// \pre The bits defined by each Op (derived from index and scalar size) must
756 /// not overlap.
757 /// \pre \p Indices must be in ascending order of bit position.
758 void buildSequence(Register Res, ArrayRef<Register> Ops,
759 ArrayRef<uint64_t> Indices);
761 /// Build and insert \p Res = G_MERGE_VALUES \p Op0, ...
763 /// G_MERGE_VALUES combines the input elements contiguously into a larger
764 /// register.
766 /// \pre setBasicBlock or setMI must have been called.
767 /// \pre The entire register \p Res (and no more) must be covered by the input
768 /// registers.
769 /// \pre The type of all \p Ops registers must be identical.
771 /// \return a MachineInstrBuilder for the newly created instruction.
772 MachineInstrBuilder buildMerge(const DstOp &Res, ArrayRef<Register> Ops);
774 /// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op
776 /// G_UNMERGE_VALUES splits contiguous bits of the input into multiple
778 /// \pre setBasicBlock or setMI must have been called.
779 /// \pre The entire register \p Res (and no more) must be covered by the input
780 /// registers.
781 /// \pre The type of all \p Res registers must be identical.
783 /// \return a MachineInstrBuilder for the newly created instruction.
784 MachineInstrBuilder buildUnmerge(ArrayRef<LLT> Res, const SrcOp &Op);
785 MachineInstrBuilder buildUnmerge(ArrayRef<Register> Res, const SrcOp &Op);
787 /// Build and insert an unmerge of \p Res sized pieces to cover \p Op
788 MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op);
790 /// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ...
792 /// G_BUILD_VECTOR creates a vector value from multiple scalar registers.
793 /// \pre setBasicBlock or setMI must have been called.
794 /// \pre The entire register \p Res (and no more) must be covered by the
795 /// input scalar registers.
796 /// \pre The type of all \p Ops registers must be identical.
798 /// \return a MachineInstrBuilder for the newly created instruction.
799 MachineInstrBuilder buildBuildVector(const DstOp &Res,
800 ArrayRef<Register> Ops);
802 /// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill
803 /// the number of elements
804 MachineInstrBuilder buildSplatVector(const DstOp &Res,
805 const SrcOp &Src);
807 /// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ...
809 /// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers
810 /// which have types larger than the destination vector element type, and
811 /// truncates the values to fit.
813 /// If the operands given are already the same size as the vector elt type,
814 /// then this method will instead create a G_BUILD_VECTOR instruction.
816 /// \pre setBasicBlock or setMI must have been called.
817 /// \pre The type of all \p Ops registers must be identical.
819 /// \return a MachineInstrBuilder for the newly created instruction.
820 MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res,
821 ArrayRef<Register> Ops);
823 /// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ...
825 /// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more
826 /// vectors.
828 /// \pre setBasicBlock or setMI must have been called.
829 /// \pre The entire register \p Res (and no more) must be covered by the input
830 /// registers.
831 /// \pre The type of all source operands must be identical.
833 /// \return a MachineInstrBuilder for the newly created instruction.
834 MachineInstrBuilder buildConcatVectors(const DstOp &Res,
835 ArrayRef<Register> Ops);
837 MachineInstrBuilder buildInsert(Register Res, Register Src,
838 Register Op, unsigned Index);
840 /// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or
841 /// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the
842 /// result register definition unless \p Reg is NoReg (== 0). The second
843 /// operand will be the intrinsic's ID.
845 /// Callers are expected to add the required definitions and uses afterwards.
847 /// \pre setBasicBlock or setMI must have been called.
849 /// \return a MachineInstrBuilder for the newly created instruction.
850 MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<Register> Res,
851 bool HasSideEffects);
852 MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<DstOp> Res,
853 bool HasSideEffects);
855 /// Build and insert \p Res = G_FPTRUNC \p Op
857 /// G_FPTRUNC converts a floating-point value into one with a smaller type.
859 /// \pre setBasicBlock or setMI must have been called.
860 /// \pre \p Res must be a generic virtual register with scalar or vector type.
861 /// \pre \p Op must be a generic virtual register with scalar or vector type.
862 /// \pre \p Res must be smaller than \p Op
864 /// \return The newly created instruction.
865 MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op);
867 /// Build and insert \p Res = G_TRUNC \p Op
869 /// G_TRUNC extracts the low bits of a type. For a vector type each element is
870 /// truncated independently before being packed into the destination.
872 /// \pre setBasicBlock or setMI must have been called.
873 /// \pre \p Res must be a generic virtual register with scalar or vector type.
874 /// \pre \p Op must be a generic virtual register with scalar or vector type.
875 /// \pre \p Res must be smaller than \p Op
877 /// \return The newly created instruction.
878 MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op);
880 /// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1
882 /// \pre setBasicBlock or setMI must have been called.
884 /// \pre \p Res must be a generic virtual register with scalar or
885 /// vector type. Typically this starts as s1 or <N x s1>.
886 /// \pre \p Op0 and Op1 must be generic virtual registers with the
887 /// same number of elements as \p Res. If \p Res is a scalar,
888 /// \p Op0 must be either a scalar or pointer.
889 /// \pre \p Pred must be an integer predicate.
891 /// \return a MachineInstrBuilder for the newly created instruction.
892 MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res,
893 const SrcOp &Op0, const SrcOp &Op1);
895 /// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1
897 /// \pre setBasicBlock or setMI must have been called.
899 /// \pre \p Res must be a generic virtual register with scalar or
900 /// vector type. Typically this starts as s1 or <N x s1>.
901 /// \pre \p Op0 and Op1 must be generic virtual registers with the
902 /// same number of elements as \p Res (or scalar, if \p Res is
903 /// scalar).
904 /// \pre \p Pred must be a floating-point predicate.
906 /// \return a MachineInstrBuilder for the newly created instruction.
907 MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res,
908 const SrcOp &Op0, const SrcOp &Op1,
909 Optional<unsigned> Flags = None);
911 /// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1
913 /// \pre setBasicBlock or setMI must have been called.
914 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
915 /// with the same type.
916 /// \pre \p Tst must be a generic virtual register with scalar, pointer or
917 /// vector type. If vector then it must have the same number of
918 /// elements as the other parameters.
920 /// \return a MachineInstrBuilder for the newly created instruction.
921 MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst,
922 const SrcOp &Op0, const SrcOp &Op1,
923 Optional<unsigned> Flags = None);
925 /// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val,
926 /// \p Elt, \p Idx
928 /// \pre setBasicBlock or setMI must have been called.
929 /// \pre \p Res and \p Val must be a generic virtual register
930 // with the same vector type.
931 /// \pre \p Elt and \p Idx must be a generic virtual register
932 /// with scalar type.
934 /// \return The newly created instruction.
935 MachineInstrBuilder buildInsertVectorElement(const DstOp &Res,
936 const SrcOp &Val,
937 const SrcOp &Elt,
938 const SrcOp &Idx);
940 /// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx
942 /// \pre setBasicBlock or setMI must have been called.
943 /// \pre \p Res must be a generic virtual register with scalar type.
944 /// \pre \p Val must be a generic virtual register with vector type.
945 /// \pre \p Idx must be a generic virtual register with scalar type.
947 /// \return The newly created instruction.
948 MachineInstrBuilder buildExtractVectorElement(const DstOp &Res,
949 const SrcOp &Val,
950 const SrcOp &Idx);
952 /// Build and insert `OldValRes<def>, SuccessRes<def> =
953 /// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`.
955 /// Atomically replace the value at \p Addr with \p NewVal if it is currently
956 /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
957 /// Addr in \p Res, along with an s1 indicating whether it was replaced.
959 /// \pre setBasicBlock or setMI must have been called.
960 /// \pre \p OldValRes must be a generic virtual register of scalar type.
961 /// \pre \p SuccessRes must be a generic virtual register of scalar type. It
962 /// will be assigned 0 on failure and 1 on success.
963 /// \pre \p Addr must be a generic virtual register with pointer type.
964 /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
965 /// registers of the same type.
967 /// \return a MachineInstrBuilder for the newly created instruction.
968 MachineInstrBuilder
969 buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes,
970 Register Addr, Register CmpVal, Register NewVal,
971 MachineMemOperand &MMO);
973 /// Build and insert `OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal,
974 /// MMO`.
976 /// Atomically replace the value at \p Addr with \p NewVal if it is currently
977 /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
978 /// Addr in \p Res.
980 /// \pre setBasicBlock or setMI must have been called.
981 /// \pre \p OldValRes must be a generic virtual register of scalar type.
982 /// \pre \p Addr must be a generic virtual register with pointer type.
983 /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
984 /// registers of the same type.
986 /// \return a MachineInstrBuilder for the newly created instruction.
987 MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr,
988 Register CmpVal, Register NewVal,
989 MachineMemOperand &MMO);
991 /// Build and insert `OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO`.
993 /// Atomically read-modify-update the value at \p Addr with \p Val. Puts the
994 /// original value from \p Addr in \p OldValRes. The modification is
995 /// determined by the opcode.
997 /// \pre setBasicBlock or setMI must have been called.
998 /// \pre \p OldValRes must be a generic virtual register.
999 /// \pre \p Addr must be a generic virtual register with pointer type.
1000 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1001 /// same type.
1003 /// \return a MachineInstrBuilder for the newly created instruction.
1004 MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes,
1005 const SrcOp &Addr, const SrcOp &Val,
1006 MachineMemOperand &MMO);
1008 /// Build and insert `OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO`.
1010 /// Atomically replace the value at \p Addr with \p Val. Puts the original
1011 /// value from \p Addr in \p OldValRes.
1013 /// \pre setBasicBlock or setMI must have been called.
1014 /// \pre \p OldValRes must be a generic virtual register.
1015 /// \pre \p Addr must be a generic virtual register with pointer type.
1016 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1017 /// same type.
1019 /// \return a MachineInstrBuilder for the newly created instruction.
1020 MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr,
1021 Register Val, MachineMemOperand &MMO);
1023 /// Build and insert `OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO`.
1025 /// Atomically replace the value at \p Addr with the addition of \p Val and
1026 /// the original value. Puts the original value from \p Addr in \p OldValRes.
1028 /// \pre setBasicBlock or setMI must have been called.
1029 /// \pre \p OldValRes must be a generic virtual register.
1030 /// \pre \p Addr must be a generic virtual register with pointer type.
1031 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1032 /// same type.
1034 /// \return a MachineInstrBuilder for the newly created instruction.
1035 MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr,
1036 Register Val, MachineMemOperand &MMO);
1038 /// Build and insert `OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO`.
1040 /// Atomically replace the value at \p Addr with the subtraction of \p Val and
1041 /// the original value. Puts the original value from \p Addr in \p OldValRes.
1043 /// \pre setBasicBlock or setMI must have been called.
1044 /// \pre \p OldValRes must be a generic virtual register.
1045 /// \pre \p Addr must be a generic virtual register with pointer type.
1046 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1047 /// same type.
1049 /// \return a MachineInstrBuilder for the newly created instruction.
1050 MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr,
1051 Register Val, MachineMemOperand &MMO);
1053 /// Build and insert `OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO`.
1055 /// Atomically replace the value at \p Addr with the bitwise and of \p Val and
1056 /// the original value. Puts the original value from \p Addr in \p OldValRes.
1058 /// \pre setBasicBlock or setMI must have been called.
1059 /// \pre \p OldValRes must be a generic virtual register.
1060 /// \pre \p Addr must be a generic virtual register with pointer type.
1061 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1062 /// same type.
1064 /// \return a MachineInstrBuilder for the newly created instruction.
1065 MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr,
1066 Register Val, MachineMemOperand &MMO);
1068 /// Build and insert `OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO`.
1070 /// Atomically replace the value at \p Addr with the bitwise nand of \p Val
1071 /// and the original value. Puts the original value from \p Addr in \p
1072 /// OldValRes.
1074 /// \pre setBasicBlock or setMI must have been called.
1075 /// \pre \p OldValRes must be a generic virtual register.
1076 /// \pre \p Addr must be a generic virtual register with pointer type.
1077 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1078 /// same type.
1080 /// \return a MachineInstrBuilder for the newly created instruction.
1081 MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr,
1082 Register Val, MachineMemOperand &MMO);
1084 /// Build and insert `OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO`.
1086 /// Atomically replace the value at \p Addr with the bitwise or of \p Val and
1087 /// the original value. Puts the original value from \p Addr in \p OldValRes.
1089 /// \pre setBasicBlock or setMI must have been called.
1090 /// \pre \p OldValRes must be a generic virtual register.
1091 /// \pre \p Addr must be a generic virtual register with pointer type.
1092 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1093 /// same type.
1095 /// \return a MachineInstrBuilder for the newly created instruction.
1096 MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr,
1097 Register Val, MachineMemOperand &MMO);
1099 /// Build and insert `OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO`.
1101 /// Atomically replace the value at \p Addr with the bitwise xor of \p Val and
1102 /// the original value. Puts the original value from \p Addr in \p OldValRes.
1104 /// \pre setBasicBlock or setMI must have been called.
1105 /// \pre \p OldValRes must be a generic virtual register.
1106 /// \pre \p Addr must be a generic virtual register with pointer type.
1107 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1108 /// same type.
1110 /// \return a MachineInstrBuilder for the newly created instruction.
1111 MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr,
1112 Register Val, MachineMemOperand &MMO);
1114 /// Build and insert `OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO`.
1116 /// Atomically replace the value at \p Addr with the signed maximum of \p
1117 /// Val and the original value. Puts the original value from \p Addr in \p
1118 /// OldValRes.
1120 /// \pre setBasicBlock or setMI must have been called.
1121 /// \pre \p OldValRes must be a generic virtual register.
1122 /// \pre \p Addr must be a generic virtual register with pointer type.
1123 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1124 /// same type.
1126 /// \return a MachineInstrBuilder for the newly created instruction.
1127 MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr,
1128 Register Val, MachineMemOperand &MMO);
1130 /// Build and insert `OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO`.
1132 /// Atomically replace the value at \p Addr with the signed minimum of \p
1133 /// Val and the original value. Puts the original value from \p Addr in \p
1134 /// OldValRes.
1136 /// \pre setBasicBlock or setMI must have been called.
1137 /// \pre \p OldValRes must be a generic virtual register.
1138 /// \pre \p Addr must be a generic virtual register with pointer type.
1139 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1140 /// same type.
1142 /// \return a MachineInstrBuilder for the newly created instruction.
1143 MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr,
1144 Register Val, MachineMemOperand &MMO);
1146 /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO`.
1148 /// Atomically replace the value at \p Addr with the unsigned maximum of \p
1149 /// Val and the original value. Puts the original value from \p Addr in \p
1150 /// OldValRes.
1152 /// \pre setBasicBlock or setMI must have been called.
1153 /// \pre \p OldValRes must be a generic virtual register.
1154 /// \pre \p Addr must be a generic virtual register with pointer type.
1155 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1156 /// same type.
1158 /// \return a MachineInstrBuilder for the newly created instruction.
1159 MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr,
1160 Register Val, MachineMemOperand &MMO);
1162 /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO`.
1164 /// Atomically replace the value at \p Addr with the unsigned minimum of \p
1165 /// Val and the original value. Puts the original value from \p Addr in \p
1166 /// OldValRes.
1168 /// \pre setBasicBlock or setMI must have been called.
1169 /// \pre \p OldValRes must be a generic virtual register.
1170 /// \pre \p Addr must be a generic virtual register with pointer type.
1171 /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1172 /// same type.
1174 /// \return a MachineInstrBuilder for the newly created instruction.
1175 MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr,
1176 Register Val, MachineMemOperand &MMO);
1178 /// Build and insert `OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO`.
1179 MachineInstrBuilder buildAtomicRMWFAdd(
1180 const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1181 MachineMemOperand &MMO);
1183 /// Build and insert `OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO`.
1184 MachineInstrBuilder buildAtomicRMWFSub(
1185 const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1186 MachineMemOperand &MMO);
1188 /// Build and insert `G_FENCE Ordering, Scope`.
1189 MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope);
1191 /// Build and insert \p Res = G_BLOCK_ADDR \p BA
1193 /// G_BLOCK_ADDR computes the address of a basic block.
1195 /// \pre setBasicBlock or setMI must have been called.
1196 /// \pre \p Res must be a generic virtual register of a pointer type.
1198 /// \return The newly created instruction.
1199 MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA);
1201 /// Build and insert \p Res = G_ADD \p Op0, \p Op1
1203 /// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1204 /// truncated to their width.
1206 /// \pre setBasicBlock or setMI must have been called.
1207 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1208 /// with the same (scalar or vector) type).
1210 /// \return a MachineInstrBuilder for the newly created instruction.
1212 MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0,
1213 const SrcOp &Src1,
1214 Optional<unsigned> Flags = None) {
1215 return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags);
1218 /// Build and insert \p Res = G_SUB \p Op0, \p Op1
1220 /// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1221 /// truncated to their width.
1223 /// \pre setBasicBlock or setMI must have been called.
1224 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1225 /// with the same (scalar or vector) type).
1227 /// \return a MachineInstrBuilder for the newly created instruction.
1229 MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0,
1230 const SrcOp &Src1,
1231 Optional<unsigned> Flags = None) {
1232 return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags);
1235 /// Build and insert \p Res = G_MUL \p Op0, \p Op1
1237 /// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1238 /// truncated to their width.
1240 /// \pre setBasicBlock or setMI must have been called.
1241 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1242 /// with the same (scalar or vector) type).
1244 /// \return a MachineInstrBuilder for the newly created instruction.
1245 MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0,
1246 const SrcOp &Src1,
1247 Optional<unsigned> Flags = None) {
1248 return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags);
1251 MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0,
1252 const SrcOp &Src1,
1253 Optional<unsigned> Flags = None) {
1254 return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags);
1257 MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0,
1258 const SrcOp &Src1,
1259 Optional<unsigned> Flags = None) {
1260 return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags);
1263 MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0,
1264 const SrcOp &Src1,
1265 Optional<unsigned> Flags = None) {
1266 return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags);
1269 MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0,
1270 const SrcOp &Src1,
1271 Optional<unsigned> Flags = None) {
1272 return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags);
1275 MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0,
1276 const SrcOp &Src1,
1277 Optional<unsigned> Flags = None) {
1278 return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags);
1281 MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0,
1282 const SrcOp &Src1,
1283 Optional<unsigned> Flags = None) {
1284 return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags);
1287 /// Build and insert \p Res = G_AND \p Op0, \p Op1
1289 /// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p
1290 /// Op1.
1292 /// \pre setBasicBlock or setMI must have been called.
1293 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1294 /// with the same (scalar or vector) type).
1296 /// \return a MachineInstrBuilder for the newly created instruction.
1298 MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0,
1299 const SrcOp &Src1) {
1300 return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1});
1303 /// Build and insert \p Res = G_OR \p Op0, \p Op1
1305 /// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p
1306 /// Op1.
1308 /// \pre setBasicBlock or setMI must have been called.
1309 /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1310 /// with the same (scalar or vector) type).
1312 /// \return a MachineInstrBuilder for the newly created instruction.
1313 MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0,
1314 const SrcOp &Src1) {
1315 return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1});
1318 /// Build and insert \p Res = G_XOR \p Op0, \p Op1
1319 MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0,
1320 const SrcOp &Src1) {
1321 return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1});
1324 /// Build and insert a bitwise not,
1325 /// \p NegOne = G_CONSTANT -1
1326 /// \p Res = G_OR \p Op0, NegOne
1327 MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) {
1328 auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1);
1329 return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne});
1332 /// Build and insert \p Res = G_CTPOP \p Op0, \p Src0
1333 MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) {
1334 return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0});
1337 /// Build and insert \p Res = G_CTLZ \p Op0, \p Src0
1338 MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) {
1339 return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0});
1342 /// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0
1343 MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1344 return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0});
1347 /// Build and insert \p Res = G_CTTZ \p Op0, \p Src0
1348 MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) {
1349 return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0});
1352 /// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0
1353 MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1354 return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0});
1357 /// Build and insert \p Res = G_FADD \p Op0, \p Op1
1358 MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0,
1359 const SrcOp &Src1) {
1360 return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1});
1363 /// Build and insert \p Res = G_FSUB \p Op0, \p Op1
1364 MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0,
1365 const SrcOp &Src1) {
1366 return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1});
1369 /// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2
1370 MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0,
1371 const SrcOp &Src1, const SrcOp &Src2) {
1372 return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2});
1375 /// Build and insert \p Res = G_FNEG \p Op0
1376 MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0) {
1377 return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0});
1380 /// Build and insert \p Res = G_FABS \p Op0
1381 MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0,
1382 Optional<unsigned> Flags = None) {
1383 return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags);
1386 /// Build and insert \p Dst = G_FCANONICALIZE \p Src0
1387 MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0,
1388 Optional<unsigned> Flags = None) {
1389 return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags);
1392 /// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1
1393 MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0,
1394 const SrcOp &Src1) {
1395 return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1});
1398 /// Build and insert \p Res = G_UITOFP \p Src0
1399 MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) {
1400 return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0});
1403 /// Build and insert \p Res = G_SITOFP \p Src0
1404 MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) {
1405 return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0});
1408 /// Build and insert \p Res = G_FPTOUI \p Src0
1409 MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) {
1410 return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0});
1413 /// Build and insert \p Res = G_FPTOSI \p Src0
1414 MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) {
1415 return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0});
1418 /// Build and insert \p Res = G_SMIN \p Op0, \p Op1
1419 MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0,
1420 const SrcOp &Src1) {
1421 return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1});
1424 /// Build and insert \p Res = G_SMAX \p Op0, \p Op1
1425 MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0,
1426 const SrcOp &Src1) {
1427 return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1});
1430 /// Build and insert \p Res = G_UMIN \p Op0, \p Op1
1431 MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0,
1432 const SrcOp &Src1) {
1433 return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1});
1436 /// Build and insert \p Res = G_UMAX \p Op0, \p Op1
1437 MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0,
1438 const SrcOp &Src1) {
1439 return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1});
1442 /// Build and insert \p Res = G_JUMP_TABLE \p JTI
1444 /// G_JUMP_TABLE sets \p Res to the address of the jump table specified by
1445 /// the jump table index \p JTI.
1447 /// \return a MachineInstrBuilder for the newly created instruction.
1448 MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI);
1450 virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef<DstOp> DstOps,
1451 ArrayRef<SrcOp> SrcOps,
1452 Optional<unsigned> Flags = None);
1455 } // End namespace llvm.
1456 #endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H