1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The file defines the MachineFrameInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Support/Alignment.h"
18 #include "llvm/Support/DataTypes.h"
24 class MachineFunction
;
25 class MachineBasicBlock
;
29 /// The CalleeSavedInfo class tracks the information need to locate where a
30 /// callee saved register is in the current frame.
31 /// Callee saved reg can also be saved to a different register rather than
32 /// on the stack by setting DstReg instead of FrameIdx.
33 class CalleeSavedInfo
{
39 /// Flag indicating whether the register is actually restored in the epilog.
40 /// In most cases, if a register is saved, it is also restored. There are
41 /// some situations, though, when this is not the case. For example, the
42 /// LR register on ARM is usually saved, but on exit from the function its
43 /// saved value may be loaded directly into PC. Since liveness tracking of
44 /// physical registers treats callee-saved registers are live outside of
45 /// the function, LR would be treated as live-on-exit, even though in these
46 /// scenarios it is not. This flag is added to indicate that the saved
47 /// register described by this object is not restored in the epilog.
48 /// The long-term solution is to model the liveness of callee-saved registers
49 /// by implicit uses on the return instructions, however, the required
50 /// changes in the ARM backend would be quite extensive.
52 /// Flag indicating whether the register is spilled to stack or another
57 explicit CalleeSavedInfo(unsigned R
, int FI
= 0)
58 : Reg(R
), FrameIdx(FI
), Restored(true), SpilledToReg(false) {}
61 unsigned getReg() const { return Reg
; }
62 int getFrameIdx() const { return FrameIdx
; }
63 unsigned getDstReg() const { return DstReg
; }
64 void setFrameIdx(int FI
) {
68 void setDstReg(unsigned SpillReg
) {
72 bool isRestored() const { return Restored
; }
73 void setRestored(bool R
) { Restored
= R
; }
74 bool isSpilledToReg() const { return SpilledToReg
; }
77 /// The MachineFrameInfo class represents an abstract stack frame until
78 /// prolog/epilog code is inserted. This class is key to allowing stack frame
79 /// representation optimizations, such as frame pointer elimination. It also
80 /// allows more mundane (but still important) optimizations, such as reordering
81 /// of abstract objects on the stack frame.
83 /// To support this, the class assigns unique integer identifiers to stack
84 /// objects requested clients. These identifiers are negative integers for
85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
86 /// for objects that may be reordered. Instructions which refer to stack
87 /// objects use a special MO_FrameIndex operand to represent these frame
90 /// Because this class keeps track of all references to the stack frame, it
91 /// knows when a variable sized object is allocated on the stack. This is the
92 /// sole condition which prevents frame pointer elimination, which is an
93 /// important optimization on register-poor architectures. Because original
94 /// variable sized alloca's in the source program are the only source of
95 /// variable sized stack objects, it is safe to decide whether there will be
96 /// any variable sized objects before all stack objects are known (for
97 /// example, register allocator spill code never needs variable sized
100 /// When prolog/epilog code emission is performed, the final stack frame is
101 /// built and the machine instructions are modified to refer to the actual
102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
105 /// Abstract Stack Frame Information
106 class MachineFrameInfo
{
108 /// Stack Smashing Protection (SSP) rules require that vulnerable stack
109 /// allocations are located close the stack protector.
111 SSPLK_None
, ///< Did not trigger a stack protector. No effect on data
113 SSPLK_LargeArray
, ///< Array or nested array >= SSP-buffer-size. Closest
114 ///< to the stack protector.
115 SSPLK_SmallArray
, ///< Array or nested array < SSP-buffer-size. 2nd closest
116 ///< to the stack protector.
117 SSPLK_AddrOf
///< The address of this allocation is exposed and
118 ///< triggered protection. 3rd closest to the protector.
122 // Represent a single object allocated on the stack.
124 // The offset of this object from the stack pointer on entry to
125 // the function. This field has no meaning for a variable sized element.
128 // The size of this object on the stack. 0 means a variable sized object,
129 // ~0ULL means a dead object.
132 // The required alignment of this stack slot.
135 // If true, the value of the stack object is set before
136 // entering the function and is not modified inside the function. By
137 // default, fixed objects are immutable unless marked otherwise.
140 // If true the stack object is used as spill slot. It
141 // cannot alias any other memory objects.
144 /// If true, this stack slot is used to spill a value (could be deopt
145 /// and/or GC related) over a statepoint. We know that the address of the
146 /// slot can't alias any LLVM IR value. This is very similar to a Spill
147 /// Slot, but is created by statepoint lowering is SelectionDAG, not the
148 /// register allocator.
149 bool isStatepointSpillSlot
= false;
151 /// Identifier for stack memory type analagous to address space. If this is
152 /// non-0, the meaning is target defined. Offsets cannot be directly
153 /// compared between objects with different stack IDs. The object may not
154 /// necessarily reside in the same contiguous memory block as other stack
155 /// objects. Objects with differing stack IDs should not be merged or
156 /// replaced substituted for each other.
158 /// It is assumed a target uses consecutive, increasing stack IDs starting
162 /// If this stack object is originated from an Alloca instruction
163 /// this value saves the original IR allocation. Can be NULL.
164 const AllocaInst
*Alloca
;
166 // If true, the object was mapped into the local frame
167 // block and doesn't need additional handling for allocation beyond that.
168 bool PreAllocated
= false;
170 // If true, an LLVM IR value might point to this object.
171 // Normally, spill slots and fixed-offset objects don't alias IR-accessible
172 // objects, but there are exceptions (on PowerPC, for example, some byval
173 // arguments have ABI-prescribed offsets).
176 /// If true, the object has been zero-extended.
179 /// If true, the object has been zero-extended.
184 StackObject(uint64_t Size
, llvm::Align Alignment
, int64_t SPOffset
,
185 bool IsImmutable
, bool IsSpillSlot
, const AllocaInst
*Alloca
,
186 bool IsAliased
, uint8_t StackID
= 0)
187 : SPOffset(SPOffset
), Size(Size
), Alignment(Alignment
),
188 isImmutable(IsImmutable
), isSpillSlot(IsSpillSlot
), StackID(StackID
),
189 Alloca(Alloca
), isAliased(IsAliased
), SSPLayout(SSPLK_None
) {}
192 /// The alignment of the stack.
193 Align StackAlignment
;
195 /// Can the stack be realigned. This can be false if the target does not
196 /// support stack realignment, or if the user asks us not to realign the
197 /// stack. In this situation, overaligned allocas are all treated as dynamic
198 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199 /// lowering. All non-alloca stack objects have their alignment clamped to the
200 /// base ABI stack alignment.
201 /// FIXME: There is room for improvement in this case, in terms of
202 /// grouping overaligned allocas into a "secondary stack frame" and
203 /// then only use a single alloca to allocate this frame and only a
204 /// single virtual register to access it. Currently, without such an
205 /// optimization, each such alloca gets its own dynamic realignment.
206 bool StackRealignable
;
208 /// Whether the function has the \c alignstack attribute.
211 /// The list of stack objects allocated.
212 std::vector
<StackObject
> Objects
;
214 /// This contains the number of fixed objects contained on
215 /// the stack. Because fixed objects are stored at a negative index in the
216 /// Objects list, this is also the index to the 0th object in the list.
217 unsigned NumFixedObjects
= 0;
219 /// This boolean keeps track of whether any variable
220 /// sized objects have been allocated yet.
221 bool HasVarSizedObjects
= false;
223 /// This boolean keeps track of whether there is a call
224 /// to builtin \@llvm.frameaddress.
225 bool FrameAddressTaken
= false;
227 /// This boolean keeps track of whether there is a call
228 /// to builtin \@llvm.returnaddress.
229 bool ReturnAddressTaken
= false;
231 /// This boolean keeps track of whether there is a call
232 /// to builtin \@llvm.experimental.stackmap.
233 bool HasStackMap
= false;
235 /// This boolean keeps track of whether there is a call
236 /// to builtin \@llvm.experimental.patchpoint.
237 bool HasPatchPoint
= false;
239 /// The prolog/epilog code inserter calculates the final stack
240 /// offsets for all of the fixed size objects, updating the Objects list
241 /// above. It then updates StackSize to contain the number of bytes that need
242 /// to be allocated on entry to the function.
243 uint64_t StackSize
= 0;
245 /// The amount that a frame offset needs to be adjusted to
246 /// have the actual offset from the stack/frame pointer. The exact usage of
247 /// this is target-dependent, but it is typically used to adjust between
248 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via
249 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250 /// to the distance between the initial SP and the value in FP. For many
251 /// targets, this value is only used when generating debug info (via
252 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253 /// corresponding adjustments are performed directly.
254 int OffsetAdjustment
= 0;
256 /// The prolog/epilog code inserter may process objects that require greater
257 /// alignment than the default alignment the target provides.
258 /// To handle this, MaxAlignment is set to the maximum alignment
259 /// needed by the objects on the current frame. If this is greater than the
260 /// native alignment maintained by the compiler, dynamic alignment code will
265 /// Set to true if this function adjusts the stack -- e.g.,
266 /// when calling another function. This is only valid during and after
267 /// prolog/epilog code insertion.
268 bool AdjustsStack
= false;
270 /// Set to true if this function has any function calls.
271 bool HasCalls
= false;
273 /// The frame index for the stack protector.
274 int StackProtectorIdx
= -1;
276 /// The frame index for the function context. Used for SjLj exceptions.
277 int FunctionContextIdx
= -1;
279 /// This contains the size of the largest call frame if the target uses frame
280 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281 /// class). This information is important for frame pointer elimination.
282 /// It is only valid during and after prolog/epilog code insertion.
283 unsigned MaxCallFrameSize
= ~0u;
285 /// The number of bytes of callee saved registers that the target wants to
286 /// report for the current function in the CodeView S_FRAMEPROC record.
287 unsigned CVBytesOfCalleeSavedRegisters
= 0;
289 /// The prolog/epilog code inserter fills in this vector with each
290 /// callee saved register saved in either the frame or a different
291 /// register. Beyond its use by the prolog/ epilog code inserter,
292 /// this data is used for debug info and exception handling.
293 std::vector
<CalleeSavedInfo
> CSInfo
;
295 /// Has CSInfo been set yet?
296 bool CSIValid
= false;
298 /// References to frame indices which are mapped
299 /// into the local frame allocation block. <FrameIdx, LocalOffset>
300 SmallVector
<std::pair
<int, int64_t>, 32> LocalFrameObjects
;
302 /// Size of the pre-allocated local frame block.
303 int64_t LocalFrameSize
= 0;
305 /// Required alignment of the local object blob, which is the strictest
306 /// alignment of any object in it.
307 Align LocalFrameMaxAlign
;
309 /// Whether the local object blob needs to be allocated together. If not,
310 /// PEI should ignore the isPreAllocated flags on the stack objects and
311 /// just allocate them normally.
312 bool UseLocalStackAllocationBlock
= false;
314 /// True if the function dynamically adjusts the stack pointer through some
315 /// opaque mechanism like inline assembly or Win32 EH.
316 bool HasOpaqueSPAdjustment
= false;
318 /// True if the function contains operations which will lower down to
319 /// instructions which manipulate the stack pointer.
320 bool HasCopyImplyingStackAdjustment
= false;
322 /// True if the function contains a call to the llvm.vastart intrinsic.
323 bool HasVAStart
= false;
325 /// True if this is a varargs function that contains a musttail call.
326 bool HasMustTailInVarArgFunc
= false;
328 /// True if this function contains a tail call. If so immutable objects like
329 /// function arguments are no longer so. A tail call *can* override fixed
330 /// stack objects like arguments so we can't treat them as immutable.
331 bool HasTailCall
= false;
333 /// Not null, if shrink-wrapping found a better place for the prologue.
334 MachineBasicBlock
*Save
= nullptr;
335 /// Not null, if shrink-wrapping found a better place for the epilogue.
336 MachineBasicBlock
*Restore
= nullptr;
339 explicit MachineFrameInfo(unsigned StackAlignment
, bool StackRealignable
,
341 : StackAlignment(assumeAligned(StackAlignment
)),
342 StackRealignable(StackRealignable
), ForcedRealign(ForcedRealign
) {}
344 /// Return true if there are any stack objects in this function.
345 bool hasStackObjects() const { return !Objects
.empty(); }
347 /// This method may be called any time after instruction
348 /// selection is complete to determine if the stack frame for this function
349 /// contains any variable sized objects.
350 bool hasVarSizedObjects() const { return HasVarSizedObjects
; }
352 /// Return the index for the stack protector object.
353 int getStackProtectorIndex() const { return StackProtectorIdx
; }
354 void setStackProtectorIndex(int I
) { StackProtectorIdx
= I
; }
355 bool hasStackProtectorIndex() const { return StackProtectorIdx
!= -1; }
357 /// Return the index for the function context object.
358 /// This object is used for SjLj exceptions.
359 int getFunctionContextIndex() const { return FunctionContextIdx
; }
360 void setFunctionContextIndex(int I
) { FunctionContextIdx
= I
; }
362 /// This method may be called any time after instruction
363 /// selection is complete to determine if there is a call to
364 /// \@llvm.frameaddress in this function.
365 bool isFrameAddressTaken() const { return FrameAddressTaken
; }
366 void setFrameAddressIsTaken(bool T
) { FrameAddressTaken
= T
; }
368 /// This method may be called any time after
369 /// instruction selection is complete to determine if there is a call to
370 /// \@llvm.returnaddress in this function.
371 bool isReturnAddressTaken() const { return ReturnAddressTaken
; }
372 void setReturnAddressIsTaken(bool s
) { ReturnAddressTaken
= s
; }
374 /// This method may be called any time after instruction
375 /// selection is complete to determine if there is a call to builtin
376 /// \@llvm.experimental.stackmap.
377 bool hasStackMap() const { return HasStackMap
; }
378 void setHasStackMap(bool s
= true) { HasStackMap
= s
; }
380 /// This method may be called any time after instruction
381 /// selection is complete to determine if there is a call to builtin
382 /// \@llvm.experimental.patchpoint.
383 bool hasPatchPoint() const { return HasPatchPoint
; }
384 void setHasPatchPoint(bool s
= true) { HasPatchPoint
= s
; }
386 /// Return the minimum frame object index.
387 int getObjectIndexBegin() const { return -NumFixedObjects
; }
389 /// Return one past the maximum frame object index.
390 int getObjectIndexEnd() const { return (int)Objects
.size()-NumFixedObjects
; }
392 /// Return the number of fixed objects.
393 unsigned getNumFixedObjects() const { return NumFixedObjects
; }
395 /// Return the number of objects.
396 unsigned getNumObjects() const { return Objects
.size(); }
398 /// Map a frame index into the local object block
399 void mapLocalFrameObject(int ObjectIndex
, int64_t Offset
) {
400 LocalFrameObjects
.push_back(std::pair
<int, int64_t>(ObjectIndex
, Offset
));
401 Objects
[ObjectIndex
+ NumFixedObjects
].PreAllocated
= true;
404 /// Get the local offset mapping for a for an object.
405 std::pair
<int, int64_t> getLocalFrameObjectMap(int i
) const {
406 assert (i
>= 0 && (unsigned)i
< LocalFrameObjects
.size() &&
407 "Invalid local object reference!");
408 return LocalFrameObjects
[i
];
411 /// Return the number of objects allocated into the local object block.
412 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects
.size(); }
414 /// Set the size of the local object blob.
415 void setLocalFrameSize(int64_t sz
) { LocalFrameSize
= sz
; }
417 /// Get the size of the local object blob.
418 int64_t getLocalFrameSize() const { return LocalFrameSize
; }
420 /// Required alignment of the local object blob,
421 /// which is the strictest alignment of any object in it.
422 void setLocalFrameMaxAlign(Align Align
) { LocalFrameMaxAlign
= Align
; }
424 /// Return the required alignment of the local object blob.
425 Align
getLocalFrameMaxAlign() const { return LocalFrameMaxAlign
; }
427 /// Get whether the local allocation blob should be allocated together or
428 /// let PEI allocate the locals in it directly.
429 bool getUseLocalStackAllocationBlock() const {
430 return UseLocalStackAllocationBlock
;
433 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
434 /// should be allocated together or let PEI allocate the locals in it
436 void setUseLocalStackAllocationBlock(bool v
) {
437 UseLocalStackAllocationBlock
= v
;
440 /// Return true if the object was pre-allocated into the local block.
441 bool isObjectPreAllocated(int ObjectIdx
) const {
442 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
443 "Invalid Object Idx!");
444 return Objects
[ObjectIdx
+NumFixedObjects
].PreAllocated
;
447 /// Return the size of the specified object.
448 int64_t getObjectSize(int ObjectIdx
) const {
449 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
450 "Invalid Object Idx!");
451 return Objects
[ObjectIdx
+NumFixedObjects
].Size
;
454 /// Change the size of the specified stack object.
455 void setObjectSize(int ObjectIdx
, int64_t Size
) {
456 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
457 "Invalid Object Idx!");
458 Objects
[ObjectIdx
+NumFixedObjects
].Size
= Size
;
461 /// Return the alignment of the specified stack object.
462 unsigned getObjectAlignment(int ObjectIdx
) const {
463 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
464 "Invalid Object Idx!");
465 return Objects
[ObjectIdx
+ NumFixedObjects
].Alignment
.value();
468 /// setObjectAlignment - Change the alignment of the specified stack object.
469 void setObjectAlignment(int ObjectIdx
, unsigned Align
) {
470 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
471 "Invalid Object Idx!");
472 Objects
[ObjectIdx
+ NumFixedObjects
].Alignment
= assumeAligned(Align
);
474 // Only ensure max alignment for the default stack.
475 if (getStackID(ObjectIdx
) == 0)
476 ensureMaxAlignment(Align
);
479 /// Return the underlying Alloca of the specified
480 /// stack object if it exists. Returns 0 if none exists.
481 const AllocaInst
* getObjectAllocation(int ObjectIdx
) const {
482 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
483 "Invalid Object Idx!");
484 return Objects
[ObjectIdx
+NumFixedObjects
].Alloca
;
487 /// Return the assigned stack offset of the specified object
488 /// from the incoming stack pointer.
489 int64_t getObjectOffset(int ObjectIdx
) const {
490 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
491 "Invalid Object Idx!");
492 assert(!isDeadObjectIndex(ObjectIdx
) &&
493 "Getting frame offset for a dead object?");
494 return Objects
[ObjectIdx
+NumFixedObjects
].SPOffset
;
497 bool isObjectZExt(int ObjectIdx
) const {
498 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
499 "Invalid Object Idx!");
500 return Objects
[ObjectIdx
+NumFixedObjects
].isZExt
;
503 void setObjectZExt(int ObjectIdx
, bool IsZExt
) {
504 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
505 "Invalid Object Idx!");
506 Objects
[ObjectIdx
+NumFixedObjects
].isZExt
= IsZExt
;
509 bool isObjectSExt(int ObjectIdx
) const {
510 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
511 "Invalid Object Idx!");
512 return Objects
[ObjectIdx
+NumFixedObjects
].isSExt
;
515 void setObjectSExt(int ObjectIdx
, bool IsSExt
) {
516 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
517 "Invalid Object Idx!");
518 Objects
[ObjectIdx
+NumFixedObjects
].isSExt
= IsSExt
;
521 /// Set the stack frame offset of the specified object. The
522 /// offset is relative to the stack pointer on entry to the function.
523 void setObjectOffset(int ObjectIdx
, int64_t SPOffset
) {
524 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
525 "Invalid Object Idx!");
526 assert(!isDeadObjectIndex(ObjectIdx
) &&
527 "Setting frame offset for a dead object?");
528 Objects
[ObjectIdx
+NumFixedObjects
].SPOffset
= SPOffset
;
531 SSPLayoutKind
getObjectSSPLayout(int ObjectIdx
) const {
532 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
533 "Invalid Object Idx!");
534 return (SSPLayoutKind
)Objects
[ObjectIdx
+NumFixedObjects
].SSPLayout
;
537 void setObjectSSPLayout(int ObjectIdx
, SSPLayoutKind Kind
) {
538 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
539 "Invalid Object Idx!");
540 assert(!isDeadObjectIndex(ObjectIdx
) &&
541 "Setting SSP layout for a dead object?");
542 Objects
[ObjectIdx
+NumFixedObjects
].SSPLayout
= Kind
;
545 /// Return the number of bytes that must be allocated to hold
546 /// all of the fixed size frame objects. This is only valid after
547 /// Prolog/Epilog code insertion has finalized the stack frame layout.
548 uint64_t getStackSize() const { return StackSize
; }
550 /// Set the size of the stack.
551 void setStackSize(uint64_t Size
) { StackSize
= Size
; }
553 /// Estimate and return the size of the stack frame.
554 unsigned estimateStackSize(const MachineFunction
&MF
) const;
556 /// Return the correction for frame offsets.
557 int getOffsetAdjustment() const { return OffsetAdjustment
; }
559 /// Set the correction for frame offsets.
560 void setOffsetAdjustment(int Adj
) { OffsetAdjustment
= Adj
; }
562 /// Return the alignment in bytes that this function must be aligned to,
563 /// which is greater than the default stack alignment provided by the target.
564 unsigned getMaxAlignment() const { return MaxAlignment
.value(); }
566 /// Make sure the function is at least Align bytes aligned.
567 void ensureMaxAlignment(llvm::Align Align
);
568 /// FIXME: Remove this once transition to Align is over.
569 inline void ensureMaxAlignment(unsigned Align
) {
570 ensureMaxAlignment(assumeAligned(Align
));
573 /// Return true if this function adjusts the stack -- e.g.,
574 /// when calling another function. This is only valid during and after
575 /// prolog/epilog code insertion.
576 bool adjustsStack() const { return AdjustsStack
; }
577 void setAdjustsStack(bool V
) { AdjustsStack
= V
; }
579 /// Return true if the current function has any function calls.
580 bool hasCalls() const { return HasCalls
; }
581 void setHasCalls(bool V
) { HasCalls
= V
; }
583 /// Returns true if the function contains opaque dynamic stack adjustments.
584 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment
; }
585 void setHasOpaqueSPAdjustment(bool B
) { HasOpaqueSPAdjustment
= B
; }
587 /// Returns true if the function contains operations which will lower down to
588 /// instructions which manipulate the stack pointer.
589 bool hasCopyImplyingStackAdjustment() const {
590 return HasCopyImplyingStackAdjustment
;
592 void setHasCopyImplyingStackAdjustment(bool B
) {
593 HasCopyImplyingStackAdjustment
= B
;
596 /// Returns true if the function calls the llvm.va_start intrinsic.
597 bool hasVAStart() const { return HasVAStart
; }
598 void setHasVAStart(bool B
) { HasVAStart
= B
; }
600 /// Returns true if the function is variadic and contains a musttail call.
601 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc
; }
602 void setHasMustTailInVarArgFunc(bool B
) { HasMustTailInVarArgFunc
= B
; }
604 /// Returns true if the function contains a tail call.
605 bool hasTailCall() const { return HasTailCall
; }
606 void setHasTailCall() { HasTailCall
= true; }
608 /// Computes the maximum size of a callframe and the AdjustsStack property.
609 /// This only works for targets defining
610 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
611 /// and getFrameSize().
612 /// This is usually computed by the prologue epilogue inserter but some
613 /// targets may call this to compute it earlier.
614 void computeMaxCallFrameSize(const MachineFunction
&MF
);
616 /// Return the maximum size of a call frame that must be
617 /// allocated for an outgoing function call. This is only available if
618 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
619 /// then only during or after prolog/epilog code insertion.
621 unsigned getMaxCallFrameSize() const {
622 // TODO: Enable this assert when targets are fixed.
623 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
624 if (!isMaxCallFrameSizeComputed())
626 return MaxCallFrameSize
;
628 bool isMaxCallFrameSizeComputed() const {
629 return MaxCallFrameSize
!= ~0u;
631 void setMaxCallFrameSize(unsigned S
) { MaxCallFrameSize
= S
; }
633 /// Returns how many bytes of callee-saved registers the target pushed in the
634 /// prologue. Only used for debug info.
635 unsigned getCVBytesOfCalleeSavedRegisters() const {
636 return CVBytesOfCalleeSavedRegisters
;
638 void setCVBytesOfCalleeSavedRegisters(unsigned S
) {
639 CVBytesOfCalleeSavedRegisters
= S
;
642 /// Create a new object at a fixed location on the stack.
643 /// All fixed objects should be created before other objects are created for
644 /// efficiency. By default, fixed objects are not pointed to by LLVM IR
645 /// values. This returns an index with a negative value.
646 int CreateFixedObject(uint64_t Size
, int64_t SPOffset
, bool IsImmutable
,
647 bool isAliased
= false);
649 /// Create a spill slot at a fixed location on the stack.
650 /// Returns an index with a negative value.
651 int CreateFixedSpillStackObject(uint64_t Size
, int64_t SPOffset
,
652 bool IsImmutable
= false);
654 /// Returns true if the specified index corresponds to a fixed stack object.
655 bool isFixedObjectIndex(int ObjectIdx
) const {
656 return ObjectIdx
< 0 && (ObjectIdx
>= -(int)NumFixedObjects
);
659 /// Returns true if the specified index corresponds
660 /// to an object that might be pointed to by an LLVM IR value.
661 bool isAliasedObjectIndex(int ObjectIdx
) const {
662 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
663 "Invalid Object Idx!");
664 return Objects
[ObjectIdx
+NumFixedObjects
].isAliased
;
667 /// Returns true if the specified index corresponds to an immutable object.
668 bool isImmutableObjectIndex(int ObjectIdx
) const {
669 // Tail calling functions can clobber their function arguments.
672 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
673 "Invalid Object Idx!");
674 return Objects
[ObjectIdx
+NumFixedObjects
].isImmutable
;
677 /// Marks the immutability of an object.
678 void setIsImmutableObjectIndex(int ObjectIdx
, bool IsImmutable
) {
679 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
680 "Invalid Object Idx!");
681 Objects
[ObjectIdx
+NumFixedObjects
].isImmutable
= IsImmutable
;
684 /// Returns true if the specified index corresponds to a spill slot.
685 bool isSpillSlotObjectIndex(int ObjectIdx
) const {
686 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
687 "Invalid Object Idx!");
688 return Objects
[ObjectIdx
+NumFixedObjects
].isSpillSlot
;
691 bool isStatepointSpillSlotObjectIndex(int ObjectIdx
) const {
692 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
693 "Invalid Object Idx!");
694 return Objects
[ObjectIdx
+NumFixedObjects
].isStatepointSpillSlot
;
698 uint8_t getStackID(int ObjectIdx
) const {
699 return Objects
[ObjectIdx
+NumFixedObjects
].StackID
;
703 void setStackID(int ObjectIdx
, uint8_t ID
) {
704 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
705 "Invalid Object Idx!");
706 Objects
[ObjectIdx
+NumFixedObjects
].StackID
= ID
;
707 // If ID > 0, MaxAlignment may now be overly conservative.
708 // If ID == 0, MaxAlignment will need to be updated separately.
711 /// Returns true if the specified index corresponds to a dead object.
712 bool isDeadObjectIndex(int ObjectIdx
) const {
713 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
714 "Invalid Object Idx!");
715 return Objects
[ObjectIdx
+NumFixedObjects
].Size
== ~0ULL;
718 /// Returns true if the specified index corresponds to a variable sized
720 bool isVariableSizedObjectIndex(int ObjectIdx
) const {
721 assert(unsigned(ObjectIdx
+ NumFixedObjects
) < Objects
.size() &&
722 "Invalid Object Idx!");
723 return Objects
[ObjectIdx
+ NumFixedObjects
].Size
== 0;
726 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx
) {
727 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
728 "Invalid Object Idx!");
729 Objects
[ObjectIdx
+NumFixedObjects
].isStatepointSpillSlot
= true;
730 assert(isStatepointSpillSlotObjectIndex(ObjectIdx
) && "inconsistent");
733 /// Create a new statically sized stack object, returning
734 /// a nonnegative identifier to represent it.
735 int CreateStackObject(uint64_t Size
, llvm::Align Alignment
, bool isSpillSlot
,
736 const AllocaInst
*Alloca
= nullptr, uint8_t ID
= 0);
737 /// FIXME: Remove this function when transition to llvm::Align is over.
738 inline int CreateStackObject(uint64_t Size
, unsigned Alignment
,
740 const AllocaInst
*Alloca
= nullptr,
742 return CreateStackObject(Size
, assumeAligned(Alignment
), isSpillSlot
,
746 /// Create a new statically sized stack object that represents a spill slot,
747 /// returning a nonnegative identifier to represent it.
748 int CreateSpillStackObject(uint64_t Size
, llvm::Align Alignment
);
749 /// FIXME: Remove this function when transition to llvm::Align is over.
750 inline int CreateSpillStackObject(uint64_t Size
, unsigned Alignment
) {
751 return CreateSpillStackObject(Size
, assumeAligned(Alignment
));
754 /// Remove or mark dead a statically sized stack object.
755 void RemoveStackObject(int ObjectIdx
) {
757 Objects
[ObjectIdx
+NumFixedObjects
].Size
= ~0ULL;
760 /// Notify the MachineFrameInfo object that a variable sized object has been
761 /// created. This must be created whenever a variable sized object is
762 /// created, whether or not the index returned is actually used.
763 int CreateVariableSizedObject(llvm::Align Alignment
,
764 const AllocaInst
*Alloca
);
765 /// FIXME: Remove this function when transition to llvm::Align is over.
766 int CreateVariableSizedObject(unsigned Alignment
, const AllocaInst
*Alloca
) {
767 return CreateVariableSizedObject(assumeAligned(Alignment
), Alloca
);
770 /// Returns a reference to call saved info vector for the current function.
771 const std::vector
<CalleeSavedInfo
> &getCalleeSavedInfo() const {
774 /// \copydoc getCalleeSavedInfo()
775 std::vector
<CalleeSavedInfo
> &getCalleeSavedInfo() { return CSInfo
; }
777 /// Used by prolog/epilog inserter to set the function's callee saved
779 void setCalleeSavedInfo(const std::vector
<CalleeSavedInfo
> &CSI
) {
783 /// Has the callee saved info been calculated yet?
784 bool isCalleeSavedInfoValid() const { return CSIValid
; }
786 void setCalleeSavedInfoValid(bool v
) { CSIValid
= v
; }
788 MachineBasicBlock
*getSavePoint() const { return Save
; }
789 void setSavePoint(MachineBasicBlock
*NewSave
) { Save
= NewSave
; }
790 MachineBasicBlock
*getRestorePoint() const { return Restore
; }
791 void setRestorePoint(MachineBasicBlock
*NewRestore
) { Restore
= NewRestore
; }
793 /// Return a set of physical registers that are pristine.
795 /// Pristine registers hold a value that is useless to the current function,
796 /// but that must be preserved - they are callee saved registers that are not
799 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
800 /// method always returns an empty set.
801 BitVector
getPristineRegs(const MachineFunction
&MF
) const;
803 /// Used by the MachineFunction printer to print information about
804 /// stack objects. Implemented in MachineFunction.cpp.
805 void print(const MachineFunction
&MF
, raw_ostream
&OS
) const;
807 /// dump - Print the function to stderr.
808 void dump(const MachineFunction
&MF
) const;
811 } // End llvm namespace