[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / CodeGen / ScheduleDAGInstrs.h
blob0ddcca0932ec0b98d8c7332dd75023c927a3ceba
1 //===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Implements the ScheduleDAGInstrs class, which implements scheduling
10 /// for a MachineInstr-based dependency graph.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
15 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseMultiSet.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <list>
32 #include <utility>
33 #include <vector>
35 namespace llvm {
37 class LiveIntervals;
38 class MachineFrameInfo;
39 class MachineFunction;
40 class MachineInstr;
41 class MachineLoopInfo;
42 class MachineOperand;
43 struct MCSchedClassDesc;
44 class PressureDiffs;
45 class PseudoSourceValue;
46 class RegPressureTracker;
47 class UndefValue;
48 class Value;
50 /// An individual mapping from virtual register number to SUnit.
51 struct VReg2SUnit {
52 unsigned VirtReg;
53 LaneBitmask LaneMask;
54 SUnit *SU;
56 VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
57 : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
59 unsigned getSparseSetIndex() const {
60 return Register::virtReg2Index(VirtReg);
64 /// Mapping from virtual register to SUnit including an operand index.
65 struct VReg2SUnitOperIdx : public VReg2SUnit {
66 unsigned OperandIndex;
68 VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
69 unsigned OperandIndex, SUnit *SU)
70 : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
73 /// Record a physical register access.
74 /// For non-data-dependent uses, OpIdx == -1.
75 struct PhysRegSUOper {
76 SUnit *SU;
77 int OpIdx;
78 unsigned Reg;
80 PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
82 unsigned getSparseSetIndex() const { return Reg; }
85 /// Use a SparseMultiSet to track physical registers. Storage is only
86 /// allocated once for the pass. It can be cleared in constant time and reused
87 /// without any frees.
88 using Reg2SUnitsMap =
89 SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
91 /// Use SparseSet as a SparseMap by relying on the fact that it never
92 /// compares ValueT's, only unsigned keys. This allows the set to be cleared
93 /// between scheduling regions in constant time as long as ValueT does not
94 /// require a destructor.
95 using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
97 /// Track local uses of virtual registers. These uses are gathered by the DAG
98 /// builder and may be consulted by the scheduler to avoid iterating an entire
99 /// vreg use list.
100 using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
102 using VReg2SUnitOperIdxMultiMap =
103 SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
105 using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
107 struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
108 UnderlyingObject(ValueType V, bool MayAlias)
109 : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
111 ValueType getValue() const { return getPointer(); }
112 bool mayAlias() const { return getInt(); }
115 using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
117 /// A ScheduleDAG for scheduling lists of MachineInstr.
118 class ScheduleDAGInstrs : public ScheduleDAG {
119 protected:
120 const MachineLoopInfo *MLI;
121 const MachineFrameInfo &MFI;
123 /// TargetSchedModel provides an interface to the machine model.
124 TargetSchedModel SchedModel;
126 /// True if the DAG builder should remove kill flags (in preparation for
127 /// rescheduling).
128 bool RemoveKillFlags;
130 /// The standard DAG builder does not normally include terminators as DAG
131 /// nodes because it does not create the necessary dependencies to prevent
132 /// reordering. A specialized scheduler can override
133 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
134 /// it has taken responsibility for scheduling the terminator correctly.
135 bool CanHandleTerminators = false;
137 /// Whether lane masks should get tracked.
138 bool TrackLaneMasks = false;
140 // State specific to the current scheduling region.
141 // ------------------------------------------------
143 /// The block in which to insert instructions
144 MachineBasicBlock *BB;
146 /// The beginning of the range to be scheduled.
147 MachineBasicBlock::iterator RegionBegin;
149 /// The end of the range to be scheduled.
150 MachineBasicBlock::iterator RegionEnd;
152 /// Instructions in this region (distance(RegionBegin, RegionEnd)).
153 unsigned NumRegionInstrs;
155 /// After calling BuildSchedGraph, each machine instruction in the current
156 /// scheduling region is mapped to an SUnit.
157 DenseMap<MachineInstr*, SUnit*> MISUnitMap;
159 // State internal to DAG building.
160 // -------------------------------
162 /// Defs, Uses - Remember where defs and uses of each register are as we
163 /// iterate upward through the instructions. This is allocated here instead
164 /// of inside BuildSchedGraph to avoid the need for it to be initialized and
165 /// destructed for each block.
166 Reg2SUnitsMap Defs;
167 Reg2SUnitsMap Uses;
169 /// Tracks the last instruction(s) in this region defining each virtual
170 /// register. There may be multiple current definitions for a register with
171 /// disjunct lanemasks.
172 VReg2SUnitMultiMap CurrentVRegDefs;
173 /// Tracks the last instructions in this region using each virtual register.
174 VReg2SUnitOperIdxMultiMap CurrentVRegUses;
176 AliasAnalysis *AAForDep = nullptr;
178 /// Remember a generic side-effecting instruction as we proceed.
179 /// No other SU ever gets scheduled around it (except in the special
180 /// case of a huge region that gets reduced).
181 SUnit *BarrierChain = nullptr;
183 public:
184 /// A list of SUnits, used in Value2SUsMap, during DAG construction.
185 /// Note: to gain speed it might be worth investigating an optimized
186 /// implementation of this data structure, such as a singly linked list
187 /// with a memory pool (SmallVector was tried but slow and SparseSet is not
188 /// applicable).
189 using SUList = std::list<SUnit *>;
191 protected:
192 /// A map from ValueType to SUList, used during DAG construction, as
193 /// a means of remembering which SUs depend on which memory locations.
194 class Value2SUsMap;
196 /// Reduces maps in FIFO order, by N SUs. This is better than turning
197 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
198 /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
199 /// and those below it.
200 void reduceHugeMemNodeMaps(Value2SUsMap &stores,
201 Value2SUsMap &loads, unsigned N);
203 /// Adds a chain edge between SUa and SUb, but only if both
204 /// AliasAnalysis and Target fail to deny the dependency.
205 void addChainDependency(SUnit *SUa, SUnit *SUb,
206 unsigned Latency = 0);
208 /// Adds dependencies as needed from all SUs in list to SU.
209 void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
210 for (SUnit *Entry : SUs)
211 addChainDependency(SU, Entry, Latency);
214 /// Adds dependencies as needed from all SUs in map, to SU.
215 void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
217 /// Adds dependencies as needed to SU, from all SUs mapped to V.
218 void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
219 ValueType V);
221 /// Adds barrier chain edges from all SUs in map, and then clear the map.
222 /// This is equivalent to insertBarrierChain(), but optimized for the common
223 /// case where the new BarrierChain (a global memory object) has a higher
224 /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
225 /// before calling this.
226 void addBarrierChain(Value2SUsMap &map);
228 /// Inserts a barrier chain in a huge region, far below current SU.
229 /// Adds barrier chain edges from all SUs in map with higher NodeNums than
230 /// this new BarrierChain, and remove them from map. It is assumed
231 /// BarrierChain has been set before calling this.
232 void insertBarrierChain(Value2SUsMap &map);
234 /// For an unanalyzable memory access, this Value is used in maps.
235 UndefValue *UnknownValue;
238 /// Topo - A topological ordering for SUnits which permits fast IsReachable
239 /// and similar queries.
240 ScheduleDAGTopologicalSort Topo;
242 using DbgValueVector =
243 std::vector<std::pair<MachineInstr *, MachineInstr *>>;
244 /// Remember instruction that precedes DBG_VALUE.
245 /// These are generated by buildSchedGraph but persist so they can be
246 /// referenced when emitting the final schedule.
247 DbgValueVector DbgValues;
248 MachineInstr *FirstDbgValue = nullptr;
250 /// Set of live physical registers for updating kill flags.
251 LivePhysRegs LiveRegs;
253 public:
254 explicit ScheduleDAGInstrs(MachineFunction &mf,
255 const MachineLoopInfo *mli,
256 bool RemoveKillFlags = false);
258 ~ScheduleDAGInstrs() override = default;
260 /// Gets the machine model for instruction scheduling.
261 const TargetSchedModel *getSchedModel() const { return &SchedModel; }
263 /// Resolves and cache a resolved scheduling class for an SUnit.
264 const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
265 if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
266 SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
267 return SU->SchedClass;
270 /// Returns an iterator to the top of the current scheduling region.
271 MachineBasicBlock::iterator begin() const { return RegionBegin; }
273 /// Returns an iterator to the bottom of the current scheduling region.
274 MachineBasicBlock::iterator end() const { return RegionEnd; }
276 /// Creates a new SUnit and return a ptr to it.
277 SUnit *newSUnit(MachineInstr *MI);
279 /// Returns an existing SUnit for this MI, or nullptr.
280 SUnit *getSUnit(MachineInstr *MI) const;
282 /// If this method returns true, handling of the scheduling regions
283 /// themselves (in case of a scheduling boundary in MBB) will be done
284 /// beginning with the topmost region of MBB.
285 virtual bool doMBBSchedRegionsTopDown() const { return false; }
287 /// Prepares to perform scheduling in the given block.
288 virtual void startBlock(MachineBasicBlock *BB);
290 /// Cleans up after scheduling in the given block.
291 virtual void finishBlock();
293 /// Initialize the DAG and common scheduler state for a new
294 /// scheduling region. This does not actually create the DAG, only clears
295 /// it. The scheduling driver may call BuildSchedGraph multiple times per
296 /// scheduling region.
297 virtual void enterRegion(MachineBasicBlock *bb,
298 MachineBasicBlock::iterator begin,
299 MachineBasicBlock::iterator end,
300 unsigned regioninstrs);
302 /// Called when the scheduler has finished scheduling the current region.
303 virtual void exitRegion();
305 /// Builds SUnits for the current region.
306 /// If \p RPTracker is non-null, compute register pressure as a side effect.
307 /// The DAG builder is an efficient place to do it because it already visits
308 /// operands.
309 void buildSchedGraph(AliasAnalysis *AA,
310 RegPressureTracker *RPTracker = nullptr,
311 PressureDiffs *PDiffs = nullptr,
312 LiveIntervals *LIS = nullptr,
313 bool TrackLaneMasks = false);
315 /// Adds dependencies from instructions in the current list of
316 /// instructions being scheduled to scheduling barrier. We want to make sure
317 /// instructions which define registers that are either used by the
318 /// terminator or are live-out are properly scheduled. This is especially
319 /// important when the definition latency of the return value(s) are too
320 /// high to be hidden by the branch or when the liveout registers used by
321 /// instructions in the fallthrough block.
322 void addSchedBarrierDeps();
324 /// Orders nodes according to selected style.
326 /// Typically, a scheduling algorithm will implement schedule() without
327 /// overriding enterRegion() or exitRegion().
328 virtual void schedule() = 0;
330 /// Allow targets to perform final scheduling actions at the level of the
331 /// whole MachineFunction. By default does nothing.
332 virtual void finalizeSchedule() {}
334 void dumpNode(const SUnit &SU) const override;
335 void dump() const override;
337 /// Returns a label for a DAG node that points to an instruction.
338 std::string getGraphNodeLabel(const SUnit *SU) const override;
340 /// Returns a label for the region of code covered by the DAG.
341 std::string getDAGName() const override;
343 /// Fixes register kill flags that scheduling has made invalid.
344 void fixupKills(MachineBasicBlock &MBB);
346 /// True if an edge can be added from PredSU to SuccSU without creating
347 /// a cycle.
348 bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
350 /// Add a DAG edge to the given SU with the given predecessor
351 /// dependence data.
353 /// \returns true if the edge may be added without creating a cycle OR if an
354 /// equivalent edge already existed (false indicates failure).
355 bool addEdge(SUnit *SuccSU, const SDep &PredDep);
357 protected:
358 void initSUnits();
359 void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
360 void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
361 void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
362 void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
364 /// Initializes register live-range state for updating kills.
365 /// PostRA helper for rewriting kill flags.
366 void startBlockForKills(MachineBasicBlock *BB);
368 /// Toggles a register operand kill flag.
370 /// Other adjustments may be made to the instruction if necessary. Return
371 /// true if the operand has been deleted, false if not.
372 void toggleKillFlag(MachineInstr &MI, MachineOperand &MO);
374 /// Returns a mask for which lanes get read/written by the given (register)
375 /// machine operand.
376 LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
379 /// Creates a new SUnit and return a ptr to it.
380 inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
381 #ifndef NDEBUG
382 const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
383 #endif
384 SUnits.emplace_back(MI, (unsigned)SUnits.size());
385 assert((Addr == nullptr || Addr == &SUnits[0]) &&
386 "SUnits std::vector reallocated on the fly!");
387 return &SUnits.back();
390 /// Returns an existing SUnit for this MI, or nullptr.
391 inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
392 DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
393 if (I == MISUnitMap.end())
394 return nullptr;
395 return I->second;
398 } // end namespace llvm
400 #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H